Comparative analysis of temperature and CO₂ fluxes for winter wheat in Tibetan Plain and North China Plain using the EMD method

JIANG Zhaoyang¹,², YU Qiang²**, LEI Shuhua³, WANG Tianduo⁴, SUN Xiaomin² and ZHANG Renhua²

¹. Chinese Academy of Meteorological Science, Beijing 100081, China; 2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 3. Mathematics Department, Ocean University of China, Qingdao 266071, China; 4. Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China

Received January 10, 2006; revised April 7, 2006

Abstract Comparative study of spectral properties of temperature and CO₂ fluxes measured by eddy covariance method at Yucheng (36°57'N, 116°36'E, 28 m a.s.l., in the North China Plain) and at Lhasa (29°41'N, 91°20'E, 3688 m a.s.l., on the Tibetan Plateau) is described using the empirical mode decomposition (EMD) method. The main results are: (1) The intrinsic oscillation modes or intrinsic mode functions (IMFs) were extracted from data of temperature (T) and CO₂ fluxes (F) measured at Yucheng (T₁ and F₁) and Lhasa (T₂ and F₂). (2) Hilbert transform was applied to these IMF components, then the Hilbert-Huang spectra and the marginal spectra of these data were obtained. (3) Comparison of temperature and CO₂ fluxes in North China Plain and on Tibetan Plain illustrated that the characteristic frequencies corresponding to T₁, F₁, T₂ and F₂ are 0.05 Hz, 0.03 Hz, 0.014 Hz and 0.005 Hz, respectively.

Keywords: empirical mode decomposition (EMD), intrinsic mode function (IMF), flux, Hilbert transform, wheat, Tibet.

Microclimatic variables like temperature and CO₂ flux are non-linear and non-stationary stochastic variables¹,². A series of continuous records of these variables often contain components with time scales from seconds to months³,⁴. Changes in temperature and flux density are the results of variations of microclimatic factors and characteristics of plants, caused by interactions between atmospheric movements and physiological processes of vegetation⁵,⁶. The analysis of spectral properties of variations with time series of microclimatic variables may help to reveal the causes of the changes in density and frequency of the variables⁷-⁹. Many models developed to describe the interactions between the biosphere and atmosphere have become essential parts of simulations of regional or global climatic processes¹⁰-¹². This multi-scale nature of microclimatic variables is now being simulated by some models using data of long-term (over one or more years) measurement¹³, but periods shorter than a day do not appear in the results of such simulations¹⁴.

Spectral and auto-correlation or cross-correlation analyse are often used in meteorology¹⁵,¹⁶ with some success. The traditional method used in spectral analysis is Fourier transform, which has been used successfully in the analysis of time series of land surface fluxes.¹⁷ However, as has been pointed out by some authors¹⁸,¹⁹, Fourier transform finds only limited use in the analysis of non-stationary signals, which has many components of different frequencies. To extract information from such signals, it is desirable to use windows with different temporal characteristics so that both high-frequency information with high precision and wholesome low-frequency information can be obtained²⁰. Signal decomposition can be implemented in many ways, for instance, by some set of appropriate eigenfunctions²¹,²². Recently, the wavelet eigenfunctions set has been of much use because it decomposes a signal into a convenient set of levels of resolution²³-²⁵. Unfortunately, in the case of non-stationary or non-linear signals, a large number of terms are needed for convergence which results in undesired spread of the signal energy among the various expansion modes²⁵. To avoid this shortcoming, empirical mode decomposition (EMD) method has been devel-

* Supported by the National Program on Key Basic Research Projects (Grant No. G1999-11708) and National Natural Science Foundation of China (Grant No. 40328001)

** To whom correspondence should be addressed. E-mail: zyjiang@cmns.cma.gov.cn
oped to analyze the non-stationary or non-linear signals\cite{22,26}. The EMD method is included in the so-called Hilbert-Huang technique based on the direct extraction of the energy associated with the intrinsic time scales in the signal\cite{22,26}. This process generates a set of components, called the intrinsic mode functions (IMF).

Tibetan Plateau is the highest plateau on the earth, which covers 1.2 million km² of area with an average height of more than 4000 m above sea level\cite{27}. Because of its high altitude, it has the highest solar radiation (total radiation between 6704—7500 MJ·m⁻²·a⁻¹) and lowest CO₂ partial pressure of all crop-growing regions on the Earth. It has been observed that global solar radiation even exceeded the solar constant on the plateau if the sky is clear and accompanied by some low clouds\cite{28}. As solar radiation is the energy and CO₂ is one of the chief materials for photosynthesis, these influences on photosynthesis result in the fact that the productivity of vegetation is very different from that on low plains.

The aim of this study was to compare the spectral properties of temperature and CO₂ fluxes measured on Tibetan Plateau and in North China Plain using EMD method and Hilbert-Huang transform. Comparative analysis was adopted to reveal the changes in temperature and CO₂ fluxes measured in different areas on time scales from seconds to minutes, which may serve as the basis of building up models for microclimate of a particular locality and be more accurate and closer to reality.

1 Site description and experiment

Eddy covariance and meteorological measurements for winter wheat were carried out in 1994 at Lhasa Agricultural Experiment Station, Chinese Academy of Sciences (29°41'N, 91°20'E, 3688 m a. s. l.), on the Tibetan Plateau from June 10 to 30 under the extreme conditions of the highest solar radiation and lowest CO₂ partial pressure on the Earth. Similar measurements were also carried out in a low plain at Yucheng Agricultural Experiment Station, Chinese Academy of Sciences (36°57'N, 116°36'E, 28 m a. s. l.) in the North China Plain in 2002 from November 10 to 30. Yucheng belongs to the semi-arid temperate plateau climate zone. The fields in which measurements were performed occupied an area of 800 m × 1000 m and the fetch was more than 500 m for winds from all directions. During the period of measurements, the leaf area index (LAI) and the height of wheat canopy were 3.0 and 0.1 m, respectively.

The contents of observation include (1) microclimatic variables: solar radiation, net radiation at a reference height of 1 m, air temperature, relative humidity and wind speed at three heights (0.9, 1.77 and 3.37 m); (2) mass fluxes of CO₂ and water vapor between winter wheat field and the atmosphere measured by eddy covariance method.

The eddy-covariance measuring system comprised a CO₂/H₂O infrared gas analyzer (LI-7500, LI-COR, USA, the sampling frequency is 20 Hz), and a triaxial sonic anemometer (DA600, KAIJO, Japan) set at a height of 2 m above the ground surface. A data taker sampled the data of all these variables every 20 Hz (Lhasa) and 10 Hz (Yucheng). These original data were then averaged every 1 s using the procedures described by Katul et al.\cite{29–31}.

2 Results and discussion

When examining the spectral properties of meteorological variables, it is helpful to consider three basic time scales: seconds to minutes (turbulent time scales), hours to days (meteorological time scales), and months to years (seasonal time scales)\cite{9}. On the seconds to minutes time scales, the interactions between the physiological and biophysical processes of the canopy and its microclimate were driven mainly by atmospheric turbulence. The analysis is therefore focused on turbulent time scales, to compare the spectral properties of temperature and CO₂ fluxes measured in the North China Plain and Tibetan Plateau.

2.1 Data description

Eddy covariance measurements were carried out in the fields of winter wheat in 1994 at Lhasa on the Tibetan Plateau, and in 2002 at Yucheng in the North China Plain. Time series of the 1s-averaged temperature and CO₂ flux measured from 11:00 to 12:00 on June 15, 1994 at Lhasa and on November 17, 2002 at Yucheng (a total of 3600 sets of data of each measurement) are shown in Fig. 1. The temperature \(T_1\) and CO₂ flux \(F_1\) measured at Yucheng are shown in Figs. 1(a) and (b), and the corresponding \(T_2\) and \(F_2\) measured at Lhasa are shown in Figs. 1(c) and (d). The time series of the four measurements are non-linear and non-stationary stochastic variables. There are rich pulsations superimposed on
these measurements.

![Graphs showing time series of temperature and CO2 fluxes measured by eddy-covariance at 2 m above the ground surface at Yucheng and Lhasa (sampling frequency, f_s = 1 Hz). (a) Temperature measured at Yucheng (T1); (b) CO2 flux measured at Yucheng (F1); (c) temperature measured at Lhasa (T2); (d) CO2 flux measured at Lhasa (F2).]

2.2 Application of empirical mode decomposition (EMD) to the extraction of the intrinsic mode functions (IMFs)

The intrinsic mode function (IMF) c_i(t) represents the oscillation mode embedded in the data of temperature and CO2 fluxes measured at Yucheng and Lhasa. Therefore, the decomposition of these time series expressed as IMFs will have two advantages. The first one is that it will allow us to examine the physical meaning of each IMF component. The second one is that the residual will contain the data trend, and in this way we can perform the analysis even if the data are not stationary.

The EMD method was applied to the analyses of the temperature and CO2 fluxes shown in Fig. 1. There were a total of eleven IMFs components decomposed from the time series of T1, F1, and F2, but the decomposition of the time series of T2 gave a total of twelve IMFs components. The first four IMFs components c1 to c4 are probably associated with noise. c5 to c8, or c9 components represent the main oscillation mode of the four measurements. The other components or low frequency components are related chiefly to the trend of the data.

2.3 Hilbert-Huang spectrum

Since the Hilbert-Huang transform defines the instantaneous frequency of each IMF, the transform was applied to the IMF matrix of the four measurements of T1, F1, T2 and F2. Then, the instantaneous frequency (IF), the average instantaneous frequency (AIF) and marginal Hilbert spectra could be calculated.

2.3.1 The Hilbert-Huang spectra of the data measured at Yucheng and Lhasa

Fig. 2 shows the low-frequency domains (lower than 0.2 Hz) of the Hilbert-Huang spectra of T1(a), F1(b), T2(c) and F2(d). In all these figures displaying Hilbert-Huang spectra, the basic units are 1 s for time (X-axis) and 1 Hz for frequency (Y-axis), and the lighter the gray scales, the larger the values of the Hilbert-Huang transform coefficient. In the Hilbert-Huang spectra of the four measurements, most of the signal energy along the time axis accumulates from 0.03 Hz to 0.01 Hz and from 0.015 Hz to 0.005 Hz for T1(a), from 0.02 Hz to 0.01 Hz and from 0.015 Hz to 0.004 Hz for F1(b), from 0.015 to 0.01 Hz and from 0.008 to 0.003 Hz for T2(c) and from 0.025 to 0.015 Hz and lower than 0.005 Hz for F2(d), respectively. There are almost no energy concentrations in the domains lower than 0.005 Hz of the Hilber-Huang spectra of the data measured at Yucheng, but the domains concentrate most of the energy of the Hilbert-Huang spectra of the data measured at Lhasa on the Tibetan Plateau.

From the Hilbert-Huang transform, the average instantaneous frequency (AIF) of each IMF component of the four measurements was calculated. The AIFs of each IMF component of T1, F1, T2 and F2 are shown in Fig. 3. Almost each AIF of the IMF components T2 and F2 is slightly larger than those of T1 and F1.

2.3.2 The marginal frequency spectra of the data measured at Yucheng and Lhasa

With the help of the sifting algorithm explained in Ref. [22], the marginal frequency spectra h(ω) can be deduced from the Hilbert-Huang spectra of the four measurements. Fig. 4 displays the marginal frequency spectra.
of $T_1(a)$, $F_1(b)$, $T_2(c)$ and $F_2(d)$. These marginal frequency spectra display very similar spectral properties to the Fourier spectra of these measurements, and the slopes of the spectra of T_1, F_1 and T_2 are nearly $-4/3$, but the slope of the spectrum of F_2 is nearly -1.

Fig. 2. Lower frequency domain (lower than 0.2 Hz) of Hilbert-Huang spectra $H(w,t)$ of $T_1(a)$, $F_1(b)$, $T_2(c)$ and $F_2(d)$.

Fig. 3. The averaged instantaneous frequency (AIF) for IMFs of T_1, F_1, T_2 and F_2.

The percentages of relative energy accumulated at different frequency levels of resolution of the four measurements are presented in Fig. 5, which shows the energy distribution corresponding to the Hilbert-Huang spectra in Fig. 2. In Fig. 5, more than 60% of the energy (or amplitude) of the spectra of the four measurements are concentrated in the lowest frequency domain.
2.4 The average local marginal spectra analysis

After the instantaneous frequencies of IMFs are computed, the characteristic frequencies located at c_i can be obtained. The local marginal spectra $h' (\omega)$ can be obtained from the Hilbert-Huang spectrum analysis. The average marginal spectra of IMF of the four measurements T_1, F_1, T_2 and F_2 are shown in Fig. 6. The average marginal spectra illustrate clearly the characteristic frequencies corresponding to $c_8 (0.05 \text{ Hz})$ for T_1, c_9 for $F_1 (0.03 \text{ Hz})$, c_{11} for $T_2 (0.014 \text{ Hz})$, and c_{11} for $F_2 (0.005 \text{ Hz})$.

3 Conclusions

The EMD method has been shown to be a useful tool to analyze changes in micrometeorological variables in this study. The intrinsic oscillation modes or intrinsic mode functions (IMFs) were extracted from the data of temperature and CO$_2$ fluxes measured at Yucheng and Lhasa. The IMFs corresponding to low frequency (lower than 0.02 Hz) components were shown to be the main components for those variables. Hilbert transform was applied to these IMF components, then the Hilbert-Huang spectra and the marginal spectra of these data were obtained.

The climate in Tibet is unique for its high solar radiation and low CO$_2$ partial pressure. As solar radiation and CO$_2$ supply energy and carbon for photosynthesis, respectively, the importance of their influence on photosynthesis and thereby the productivity of vegetation is very different from that in low plains. The comparative analysis of temperature and CO$_2$ fluxes in Tibetan Plain and in North China Plain illustrated that the characteristic frequencies corresponding to T_1, F_1, T_2 and F_2 are 0.05 Hz, 0.03 Hz, 0.014 Hz and 0.005 Hz, respectively.

References

Progress in Natural Science Vol. 16 No. 10 2006 www.tandf.co.uk/journals 1071

