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a b s t r a c t

Water vapor flux and carbon dioxide (CO2) exchange in croplands are crucial to water and carbon cycle
research as well as to global warming evaluation. In this study, a standard three-layer feed-forward back
propagation neural network technique associated with the Bayesian technique of automatic relevance
determination (ARD) was employed to investigate water vapor and CO2 exchange between the canopy
of summer maize and atmosphere in responses to variations of environmental and physiological factors.
These factors, namely the photosynthetically active radiation (PAR), air temperature (T), vapor pressure
deficient (VPD), leaf-area index (LAI), soil water content in root zone (W), and friction velocity (U*), were
used as inputs in neural network analysis. Results showed that PAR, VPD, T and LAI were the primary
factors regulating both water vapor and CO fluxes with VPD and W more critical to water vapor flux
ropland

utomatic relevance determination
2

and PAR and T more crucial to CO2 exchange. Furthermore, two time variables “day of the year (DOY)”
and “time of the day (TOD)” could also improve the simulation results of neural network analysis. The
important factors identified by the neural network technique used in this study were in the order of
PAR > T > VPD > LAI > U* > TOD for water vapor flux and in the order of VPD > W > LAI > T > PAR > DOY for
CO2 exchange. This study suggests that neural network technique associated with ARD could be a useful

tant
tool for identifying impor

. Introduction

Responses of water vapor flux and carbon dioxide (CO2)
xchange between cropland and atmosphere to environmental reg-
lations are important to global warming and terrestrial carbon
nd water cycle researches. Generally, the eddy-covariance flux
easurements and process-based biophysical models (Schelde et

l., 1997; Baldocchi and Wilson, 2001) are used to quantify water
apor flux and CO2 exchange at different space and time scales
n biosphere and to identify the primary environmental factors

hat govern the seasonal patterns of such flux and exchange. These

easurements and models have provided useful insights into the
esearch subject. However, the major limitation of these models
s that many specific parameters for the selected response func-

∗ Corresponding author. Tel.: +86 10 64856515; fax: +86 02 9514 4142.
∗∗ Co-corresponding author. Tel: +1 386 312 2320; fax: +1 386 329 4125/4329.
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factors regulating water vapor and CO2 fluxes in terrestrial ecosystem.
© 2009 Elsevier B.V. All rights reserved.

tions must be optimized or be defined with detailed physiological
data at a species level (Wijk and Bouten, 1999). In addition, exten-
sive process-related data including evaporation, photosynthesis,
transport of nutrients and carbon, plant growth, CO2 fixation, etc.
must often be defined in such models (Baldocchi and Wilson, 2001;
Wijk et al., 2002). These complex data requirements make it diffi-
cult to apply the models (Amthor, 1994; Lek et al., 1996; Lek and
Guegan, 1999). Therefore, a need exists to apply a new approach in
such modeling researches. To this end, the artificial neural network
(ANN) technique was employed to circumvent the obstacles in this
study.

The ANN is a powerful tool for the purpose of this study
since it can process information in a non-linear manner (Bruntz,
1989; Beale and Jackson, 1990; Raiche, 1991), enable completely

unconstrained optimization and estimate input–output responses
(Kosko, 1992; Demuth and Beale, 1995; Schulz and Härtling, 2003).
This property makes the ANN a promising method for ecological
and environmental modeling. Some example applications of the
ANN in ecological and environmental sciences were reported in

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:ouyangy@ufl.edu
mailto:yuq@igsnrr.ac.cn
dx.doi.org/10.1016/j.ecolmodel.2009.11.007
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arly 1990s (Bolte, 1989; Zhuang and Engel, 1990; Muttiah and
ngel, 1991; Chao and Anderson, 1994) and have since gained
ncreasing popularity (Brey et al., 1996; Scardi, 1996; Francl and
anigrahi, 1997; Giske et al., 1998; Tjoelker et al., 1999; Werner
nd Obachb, 2001; Dekker et al., 2001; Wijk et al., 2002; Moisen
nd Frescino, 2002; Dedecker et al., 2004). Most of these studies
howed that ANN has high accuracy in ecological modeling as com-
ared to those classical methods (Lek et al., 1996; Huntingford and
ox, 1997).

Recently, great attentions have been given to design, test and
pply models for computing rates of biosphere–atmosphere trace
as exchange for better understanding on how trace gas fluxes may
espond to environmental perturbations. Since these responses
re the highly non-linear processes, several attempts have been
evoted to probing the ANN’s capacity in modeling trace gas fluxes

n ecosystem. Wijk and Bouten (1999) applied ANN to simulate
ater vapor and CO2 fluxes in coniferous forest ecosystems by using
minimal set of input variables. These authors found that ANN
odels could predict water vapor and CO2 fluxes independently of

ree species and without the need for detailed physiological or site-
pecific information. More recently, Ryan et al. (2004) used ANN
o simulate nitrous oxide emissions from an intensive grassland
cosystem as a function of six input variables (e.g., daily rainfall,
oil moisture content, temperature, and soil nitrate). They demon-
trated that the ANN model was a potential useful tool to simulate
omplex biological systems in soils without the need of complex
arameters as have been used in the traditional models such as
echanistic models. These modeling studies have provided very

aluable insights into complex biological systems. However, the
apability of ANN in modeling water vapor and CO2 fluxes between
he cropland and the atmosphere has not yet been investigated.
urthermore, no effort has been devoted to identifying and ranking
he impacts of the key input variables upon these fluxes.

The goal of this study was to investigate environmental and
hysiological constraints on water vapor and CO2 fluxes in a
ummer maize field in North China Plain, using both the field mea-
urements and the ANN technique. The specific objective was to
dentify the relatively important input variables or factors regu-
ating water vapor and CO2 fluxes from the maize field using the
ayesian technique of automatic relevance determination (ARD)
ssociated with the ANN analysis. As an algorithm for training ANN
ithin the Bayesian framework, application of the ARD technique
ould eliminate the need for detailed physiological information

uch as light interception, soil water and nutrient contents, photo-
ynthesis, and stomatal conductance characteristics. A successful
pplication of the ARD technique would also lead to an improve-
ent in ANN modeling for agricultural water and carbon cycle

esearch, especially in the semi-arid area.

. Material and methods
.1. Study site and data collection

The experimental site was located at the Yucheng Experimental
tation (36◦57′N, 116◦36′E, 20 m ASL) in North China Plain, Shan-
ong province, China, which is a semi-humid area with a monsoon

able 1
haracteristics and physical parameters of soil profiles at Yucheng Station.

Soil layer
depth (cm)

Soil texture Bulk density
(g cm−3)

Total nitrogen
(g kg−1)

Organic
(g kg−1)

0–20 Sandy loam 1.28 0.64 9.56
20–65 Sandy loam 1.39 0.36 5.3
65–97 Medium loam 1.4 0.21 2.66
97–104 Light clay 1.42 0.17 2.32

104–150 Sandy clay loam 1.39 0.17 1.86
ing 221 (2010) 575–581

climate. Mean annual precipitation, temperature, and solar radia-
tion at the station over the past three decades are 528 mm, 13.1 ◦C,
and 5225 MJ m−2, respectively. Winter wheat-summer maize rota-
tion is the conventional culture system practiced in this region.
Generally, winter wheat, Gaoyou No. 503, is sown at the rate of
150 kg ha−1 with 20 cm wide per row by hand. Maize, Yandan No.
21, is sown at a rate of 60 kg ha−1 per plot after the winter wheat
growth season. The growth season for winter wheat is from early
December to mid-June and for maize is from early-June to later
September.

The experimental site used in this study has loamy soil and is rich
with nutrients and organic matter (Table 1). The eddy-covariance
system, mounted at 2 m above the canopy, was used in this study.
This system consisted of a three-axis sonic anemometer (model
CSAT3, Campbell Sci., Logan, UT) for measuring wind speed and
sonic virtual temperature, an open path, infrared absorption gas
analyzer (CS-7500, Campbell Scientific Inc.) for measuring water
vapor flux and CO2 concentrations, and a suite of software (Logger-
net 2.0) for real-time and post processing analysis. The fluxes were
measured using a data logger (model CR23X, Campbell Sci., Logan,
UT) for a 10 min interval and then averaged to a 30 min interval.
Correction for density effects was conducted to the water vapor
flux.

The above-canopy net radiation was measured with net
radiometers (CNR-1, Kipp & Zonen Inc., Saskatoon, Saskatchewan,
Canada). Incident photosynthetically active radiation (PAR) was
measured with radiation sensors (LI-190SZ, LI-COR Inc., Lincoln,
NE). Air temperature and relative humidity were measured with
a thermistor and capacitive RH sensor probe (model HMP45C,
Vaisala, Helsinki, Finland). Wind speed was measured with cup
anemometers (034A-L and 014A, R.M. Young Co., Traverse, MI,
USA). Two soil heat flux plates (model HFT-3, Campbell Scien-
tific Inc.) were embedded inter-rows and inter-plants at a depth
of 0.05 m to determine heat fluxes. Soil temperature was mea-
sured with copper–constantan thermocouples. Soil water content
was measured with time-domain reflectometry sensors (CS-615,
Campbell Scientific Inc.) at the soil depth of 0.05, 0.20, and 0.50 m.
Rainfall was measured at 0.7 m above the ground with a tipping
bucket (TE525MM, Campbell Scientific Inc.). Irrigation and fertil-
izer were applied with same frequency and amount as the local
farmland. Leaf-area index was measured with an electronic leaf-
area meter (LAI-2000, LI-COR, Lincoln, NE) every 5 d throughout
the crop growth season.

2.2. Data processing

Experimental data collected during the summer maize growth
period, which began from the day of sowing (day of year or DOY
165) to harvest (DOY275) in 2003, were used for the ANN analy-
sis. All 30-min eddy-covariance measurement data were validated
vigorously for anomalous turbulence and for sensor malfunction

(Hollinger et al., 1995; Falge et al., 2001a). About 5.67% of the
missing data due to instrument maintenance and calibration was
removed. About 0.06%, 0.48%, and 0.73% of unreasonable data for
CO2 flux (FCO2 ), latent heat flux (LE), and sensible heat flux (Hs),
respectively, were discarded. About 3.06% and 3.41% of soil heat flux

matter Wilting
coefficient

Field capacity
(m3 m−3)

Saturated water
content (m3 m−3)

pH

0.08 0.29 0.4 8.26
0.08 0.33 0.41 8.33
0.28 0.37 0.42 8.52
0.28 0.37 0.44 8.53
0.28 0.37 0.46 8.55
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Fig. 1. Measured nighttime CO2 flux (Fc) vs. nighttime turbulence (U*).

ata recorded inter- or intra-row were eliminated because of mal-
unction of the sensors and supporting equipment. Measurements
ithin 24 h after a rain event were removed from the database as
ell because the sensor optics obscured (Wilson and Baldocchi,

000).
Nighttime fluxes are normally underestimated by the eddy-

ovariance system during the stable condition because the CO2
torage in the layer is below the eddy flux system (Villalobos, 1997).
n this study, a wind friction velocity (U*) threshold (U* > 0.12 m s−1)

as determined (Falge et al., 2001b; Anthoni et al., 2004) and
ux measurements when U* was smaller than the threshold were
emoved from the data set to minimize problems related to insuf-
cient turbulent mixing (Fig. 1).

Energy closure, expressed as Rn − G = Hs + LE, where Rn (W m−2),
s the net radiation and G (W m−2) is the soil heat flux, and LE and
s are latent and sensible heat fluxes density (W m−2) on a 30 min
asis, respectively. The LE is associated with evaporation of water
t the surface and subsequent condensation of water vapor in the
roposphere and therefore is used as an indicator of water vapor
ux. Linear regression indicated that the agreement between the
um of the turbulent fluxes (LE + Hs) and the available energy (Ra)
as generally good (Fig. 2).

In an ANN analysis, the training set is a set of data used for
earning, which is to fit the parameters (i.e., weights) of the classi-
er. The validating set is a set of data used to tune the parameters

f a classifier. The testing set is a set of data used only to assess the
erformance (generalization) of a fully specified classifier (Ripley,
996).

ig. 2. Half-hourly sums of LE + Hs against available energy (Rn − G) during the
ummer maize growth period.
ing 221 (2010) 575–581 577

2.3. Input variables selection

The optimal selection of input variables is always crucial in ANN-
based modeling. A basic understanding of the governing system
for the outputs is required for an appropriate set of input variables
during initial ANN development. In our study, crop surface water
vapor and CO2 exchange were taken as outputs. Temporal vari-
ations of these two variables are controlled by meteor-biological
driving forces such as solar radiation, wind speed, air tempera-
ture, humidity, soil moisture, temperature, and biological processes
(Kaimal, 1972; Anderson et al., 1986; Jarvis et al., 1997; Baldocchi,
1997). Solar radiation is known as a primary energy source for all
of the physiological functions of vegetations. Of which, about 50%
of the energy, defined as photosynthetically active radiation (PAR),
is absorbed by plants for their growth. It is assumed that PAR is
a major parameter controlling many biological and physical pro-
cesses related to the evolution of plant canopies, agricultural and
environmental fields (López et al., 2001). Furthermore, many of
the exchange processes between the vegetation canopies and the
atmosphere, as well as dry matter yield, are regulated by photo-
synthesis, which is related to the amount of absorbed PAR (Hanan
and Bégué, 1995; Li et al., 1997). Therefore, PAR is the most likely
input candidate in constructing an ANN model for modeling water
and carbon exchange between the crop and the atmosphere. Air
temperature (T) is another critical factor for canopy photosynthesis,
development, growth and biomass partition of the crop. In addition,
when modeling mass and energy transfer process, the environ-
mental driving factors such as temperature, photosynthesis, and
evapotranspiration should also be included.

Vapor pressure deficit (VPD) is the difference between the actual
water vapor pressure and the saturation of water vapor pressure at
a particular temperature, which has been proved to have a simple
nearly straight-line relationship to the rate of evapotranspiration
and other measures of evaporation. VPD is being used to predict
crop water needs especially in some commercial irrigation systems.
The impacts of VPD will serve as a basis in building a monitoring
model for the amount of water requirement and the rate of CO2
assimilation.

Wind speed above the crop canopy is important for determin-
ing the formation and transfer of momentum, heat, and moisture
processes. As a major turbulence driving force in the CO2 and water
vapor exchange processes, wind speed and its direction, influenced
by the circumfluence of the planetary boundary layer and the condi-
tion of underlying vegetation, changed dramatically over time, but
its friction velocity varied in the rhythm that it becomes high dur-
ing the day and low during the night. Consequently, wind friction
velocity (U*) was selected as an input for the ANN model.

Soil water content (W) in the root zone controls crop water
use, soil aeration conditions, and CO2 production from respirations,
which makes it highly correlated with field-scale heat flux and
CO2 transport. Therefore, soil water content associated with water
vapor flux and CO2 exchange between the crop and the atmosphere
should be included in the ANN modeling.

Information on leaf-area index (LAI) is paramount since it
determines the population of biologically active material that is
exchanging gas and energy with the atmosphere (Baldocchi and
Meyers, 1998). Since it is highly related to a variety of canopy
processes, such as water interception, evapotranspiration, pho-
tosynthesis, etc., LAI is used as a key parameter for global and
regional models of biosphere/atmosphere exchange. LAI will be
included preferentially in constructing ANN model for depicting

the exchange of water vapor and CO2 between crop field surface
and atmosphere. It should be noted that all these input variables
mentioned above have different distribution patterns with time
scales. Two time factors “day of year” (DOY) and “time of day” (TOD,
expressed in digital form) should be included in the ANN analysis
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achieved the best simulation results were selected plus two time
variables “DOY” or “TOD” as the new inputs for the network to
re-establish the model. By checking the modeling results, the pos-
sibilities of DOY or TOD in improving the results of neural networks
could be determined.

Table 2
Results for the automatic relevance determination (ARD).

Input Hyperparameter

Fca LEb

PAR 0.97120 1.08686
LAI 5.00055 0.93179
T 1.76553 1.00712
VPD 1.92014 0.56611
ig. 3. Topology of a three-layer feed-forward neural network. Redrawn after Lek
t al. (1996).

Wijk and Bouten, 1999) for better predictions of water vapor and
O2 fluxes.

.4. ANN model development

A feed-forward back propagation neural network with an input
ayer, hidden layer and output layer was employed for a general
on-linear mapping between the driving meteorological variables
nd the measured water vapor and CO2 fluxes. The number of input
nd output nodes corresponded to the number of input and output
ariables, while the number of the hidden nodes depended on the
omplexity of the relations between input and output variables.
opology of a three-layer feed-forward neural network (Lek et al.,
996) used in our study was shown in Fig. 3. Determination of the
umber of the hidden nodes is not an easy task because using a

arger number of hidden nodes can potentially improve the accu-
acy and convergence of the neural network at the cost of increasing
he computational time. In this study, the optimal number of hidden
eurons has been determined empirically as the minimum num-
er of neurons for which estimation performance on a testing set

s satisfied. The activation function used in the neural network was
sigmoidal function:

(x) = log sig(x) = 1
(1 + e−x)

(1)

As mentioned above, six input parameters, namely the pho-
osynthetically active radiation (PAR), air temperature (T), vapor
ressure deficient (VPD), leaf-area index (LAI), soil water content

n root zone (W), and friction velocity (U*), were used in this study.
ach parameter had 1742 data points. These data were randomly
ivided into three data sets (i.e., training, validating, and testing
ets) using the function “rand” the ANN package of the MATLAB.
he percentages (i.e., 70% for training, 20% for testing, and 10% for
alidating) used in this study are based on the literature reports
Matthew et al., 2004).

To minimize the training time by eliminating the possibility of
eaching the saturation regions of the sigmoid transfer function
uring training, both the input and output values were linearly
caled to lie within the range between 0 and 1 using:

scaled = (x − xmin)
(xmax − xmin)

(2)
here xmax and xmin are the maximum and minimum recorded
alues for each input variable, respectively.

An appropriate structure for the back propagation algorithm,
ncluding the number of hidden layers and the number of nodes in
he hidden layer, is selected with a trial-and-error process. Train-
ing 221 (2010) 575–581

ing of the network was accomplished by presenting the network
with the extracted training and testing data sets from which the
network could learn from and calibrate itself. Once the optimal
net architecture was found, the network was applied to the whole
data set for obtaining an indication of the general fit of the model
to the data. The network was then applied to validate the accu-
racy of predicting water vapor and CO2 fluxes using the validation
data set. The optimization method used in the validation phase was
the Levenberg–Marquardt method (Marquardt, 1963; Demuth and
Beale, 1995), which minimizes the total sum of squared errors (SSE)
between measured and modeled values by tuning the ANN param-
eters (e.g., scaling factors and inter-neuron connection weights).
All these computations were accomplished using Neural Network
Toolbox 2.0 in Matlab (Ver.6.5).

2.5. Inputs ranking using ARD

Previous studies have shown that ANN was well suited for
simulation of water and carbon exchange between biosphere and
atmosphere (Wijk and Bouten, 1999). However, no information was
provided on: (1) What were the key factors that regulate water
and carbon fluxes? (2) How many key factors were needed to effi-
ciently encode information for surface-atmosphere flux exchange?
(3) What were the states of the key factors for which input combi-
nations were most relevant to the water vapor and carbon fluxes?
With the aim to answer these questions, we applied the Bayesian
technique of automatic relevance determination (ARD) in this study
to identify and rank the relative importance of different input vari-
ables in responses to the water vapor and CO2 fluxes from the
summer maize field. The ARD technique selects the most relevant
input parameters and discards those that do not contribute signifi-
cantly to the dynamics of a system being modeled. In this method, a
hyperparameter is associated with each input. The hyperparameter
for an input corresponds to an inverse variance of the weights on
connections from that input, and represents the relevance of that
input to the task of predicting the measured output. Thus, the small-
est hyperparameter will indicate the input which accounts for the
largest part of the variability and hence is the most relevant input,
and the hyperparameter with the next increase in value indicates
the next most relevant input and so on (López et al., 2001). Detailed
illustrations of the ARD technique for input variable ranking can be
found in Neal (1992, 1996) and MacKay (1992, 1994, 1995).

Two steps were adopted when constructing the ANN models
for simulating water vapor and CO2 fluxes. In the first step, six
meteor-biological driving variables (e.g., PAR, T, and LAI) along with
two time variables “DOY” and “TOD” were used as inputs to build
the model. In the second step, the variable combinations which
U* 8.76210 1.54045
W 17.56479 0.69038
Random 1406.01692 73,173.12907

a Fc represents CO2 flux.
b LE represents latent heat flux.
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Table 3
Results of ANN approximations for CO2 flux (Fc).

Model Input variables Topology structure Slope of the linear regression Intercept of the linear regression R2 RMSE

1 PAR, T 2-5-1 0.5040 −0.0902 0.5038 0.2860
2 PAR, T, VPD 3-5-1 0.6706 −0.0568 0.6596 0.2754
3 PAR, T, VPD, LAI 4-7-1 0.8942 −0.0219 0.8951 0.1750
4 PAR, T, VPD, LAI, U* 5-9-1 0.9113 −0.0240 0.9054 0.1684
5 PAR, T, VPD, LAI, U*, W 6-9-1 0.8991 −0.0238 0.8974 0.1738
6 PAR, T, VPD, LAI, U*, TOD 6-9-1 0.9141 −0.0201 0.9102 0.1642
7 PAR, T, VPD, LAI, U*, DOY 6-9-1 0.9072 −0.0218 0.9062 0.1669

Table 4
Results of the ANN approximations for water vapor flux (LE).

Model Input variables Topology structure Slope of the linear regression Intercept of the linear regression R2 RMSE

8 VPD, W 2-5-1 0.4933 44.51 0.4989 46.35
9 VPD, W, LAI 3-7-1 0.5832 36.48 0.5957 44.94

10 VPD, W, LAI, T 4-7-1 0.6155 33.79 0.6259 44.61
11 VPD, W, LAI, T, PAR 5-8-1 0.9153 7.779 0.9153 26.11

3

i
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t
t
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12 VPD, W, LAI, T, PAR,U* 6-8-1 0.9359
13 VPD, W, LAI, T, PAR,DOY 6-8-1 0.9422
14 VPD, W, LAI, T, PAR,TOD 6-8-1 0.9282

. Results and discussion

During the processes of neural modeling, the ARD technique was
mplemented to determine which input variables are most relevant
o water vapor and CO2 fluxes. Responses of fluxes to input variables
ere given in Table 2. This table shows that the artificial random

nput variable had the largest hyperparameter value, indicating
hat this variable was highly un-relevant to the CO2 exchange, while
he input variable PAR had the smallest hyperparameter value, sig-
ifying that this variable was mostly correlated to CO2 exchange.

he relevant order for the rest of input variables in response to CO2
xchange was in the following order: T > VPD > LAI > U*. It should
e noted that the variable W, the least relevance to CO2 exchange,
ould be excluded from the neural network model since the inclu-
ion of this variable might lead to a slight degradation of the model

ig. 4. Comparison of the ANN approximations with stepwise linear regressions for CO2

egressions for CO2 flux; (c) ANN approximations for water vapor flux; (d) stepwise linea
5.547 0.9352 23.09
5.185 0.9373 22.48
6.489 0.9314 23.22

fitness. Table 2 further reveals that the variable VPD was most rel-
evant to water vapor flux. The relevant order for the rest of input
variables in response to water vapor flux was in the following order:
W > LAI > T > PAR > U*. It should be emphasized that the variable U*,
a least relevant input variable, could be removed in case of a worse
model fitness.

Tables 3 and 4 show the statistics obtained with the ANN model
for estimating half-hourly water vapor flux and CO2 exchange
between the crop canopy surface and atmosphere. The fitness of
the ANN models was evaluated based on the regression analysis of

estimated versus measured values, in terms of the intercept and
slope of the linear fit and the determination coefficient, R2. Root
mean square error (RMSE) was also provided in the table. During
the ANN training, several numerical experiments were conducted
to find the combination of number of hidden nodes that gave the

and water vapor fluxes. (a) ANN approximations for CO2 flux; (b) stepwise linear
r regressions for water vapor flux.
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reatest fitness in predicting the validation data set. As the num-
er of hidden nodes increased, the R2 value for water vapor and
O2 fluxes increased until the number of hidden units reached the
alues of 8 and 9, respectively. For values higher than 8 and 9, the
umber of hidden units did not seem to improve the estimates for
he LE and Fc.

As shown in Tables 3 and 4, simulation results for water vapor
nd CO2 fluxes were improved after combining DOY or TOD with
he meteor-biological variables. Among several different inputs
ombinations, the combinations of “PAR–T–VPD–LAI–U*–TOD” and
VPD–W–LAI–T–PAR–DOY” were the optimum topology for Fc
nd LE, respectively, because they had the highest R2 and the
owest RMSE. Furthermore, the input variables PAR, T and VPD
ould enhance the performance of the neural network analysis
or both carbon and water vapor fluxes although their relevance
rders were different in water vapor flux and CO2 exchange
imulations.

A successful description of ecological processes requires an
ppropriate definition of the control structure (i.e., selection of sys-
em output, input and disturbance variables) and an efficient model
n which the design, analysis and evaluation can be carried out.
hus, the confidence in the obtained results depends on the validity
f the control structure and of the model used. For fluxes exchange
rocess under the regulation of climatic control and environmental
actors, the standard linear regression methods is typically used to
elate an outcome (or dependent variable or response) to several
ndependent variables. To evaluate the use of the stepwise regres-
ion in fluxes data analysis, we compared the performance of the
eural networks and predictions of standard methods from statis-
ics (Fig. 4). Results showed that the ANN approximation predicted
he correlation for CO2 flux and water vapor flux well as compared
o those of the stepwise regression method, especially for CO2 flux.
he determination coefficient (R2) had significantly increased from
.57 to 0.94.

In this study, we presented an attractive approach which enables
olution of highly non-linear and noisy black-box modeling prob-
ems with reference to the position or ordination of the inputs by
ntroducing the neural network technique associated with ARD. It

ust be stressed, however, that we cannot deduce information
bout the possible errors of the model, like in statistical models.
xcept for the generalization error, i.e. the RSME over all test inputs,
eural networks have not much to offer for measuring the qual-

ty of the net prediction. In particular, when there is only a small
umber of measurements available, a typical situation in ecology,

t is essential to have some information how reliable the network
rediction is (Werner and Obachb, 2001).

. Conclusions

In this study, a Bayesian technique of automatic relevance
etermination (ARD) and a three-layer feed-forward back prop-
gation neural network was employed to predict responses of
ater vapor and CO2 exchange between a summer maize field and

he atmosphere to environmental variables. The simulation results
emonstrated that the VPD and W had most influential effects on
urface water vapor flux, while the PAR and T were the key physical
riving factors for CO2 flux. Model performance could be improved
hen TOD and DOY were included as the input variables. Our study

hows that the combinations of PAR–T–VPD–LAI–U* with TOD and

PD–W–LAI–T–PAR with DOY yielded the optimum topology for Fc
nd LE, respectively. With the ARD feature selection scheme, input
ariables for surface fluxes exchange could be ranked in the order
f their relevance. The Bayesian neural network offers a promis-
ng and viable alternative for cropland water and carbon fluxes

odeling.
ing 221 (2010) 575–581
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