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Abstract. Groundwater-dependent vegetation (GDV) is useful as an indicator of watertable depth andwater availability in
north-westernChina.Nitrogen (N) is an essential limiting resource for growthofGDV.Toelucidatehow leafNallocation and
partitioning influence photosynthesis andphotosyntheticN-use efficiency (PNUE), three typicalGDVspecieswere selected,
and their photosynthesis, leaf N allocation and partitioning were investigated in the Taklamakan Desert. The results showed
thatKarelinia caspica (Pall.) Less. andPeganumharmalaL. had lower leafNcontent, and allocated a lower fraction of leafN
to photosynthesis. However, they were more efficient in photosynthetic N partitioning among photosynthetic components.
They partitioned a higher fraction of the photosynthetic N to carboxylation and showed higher PNUE, whereas Alhagi
sparsifolia Shap. partitioned a higher fraction of the photosynthetic N to light-harvesting components. For K. caspica and
P. harmala, the higher fraction of leafNwas allocated to carboxylation andbioenergetics,which led to a highermaximumnet
photosynthetic rate, and therefore to ahigherPNUE,water-use efficiency (WUE), respiration efficiency (RE) and soon. In the
desert, N andwater are limiting resources;K. caspica andP. harmala can benefit from the increased PNUE andWUE. These
physiological advantages and their higher leaf-area ratio (LAR) may contribute to their higher resource-capture ability.
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Introduction

Indigenous vegetation at the southern margin of the Taklamakan
Desert in Xinjiang, north-western China, located in the central
part of Eurasian Continent, is dominated by a few perennial
phraetophytes, such as A. sparsifolia, K. caspica and P. harmala
(Bruelheide et al. 2003). These desert plants mainly depend on
groundwater for sustenance (Zhu et al. 2009). They are typical
components of GDV, and must have access to groundwater to
maintain their growth and function (Eamus et al. 2006).Although
water is essential for plant growth, N availability has also been
determined as a critical factor limiting plant growth in arid regions
(Noy-Meir 1973; Gutierrez and Whitford 1987).

Leaves accumulate most of N in the plant, and about half
the total leaf N is used for photosynthetic activities (Poorter
and Evans 1998). Many studies have indicated that leaf N
content correlates strongly with photosynthetic capacity
(Kazda et al. 2000; Erley et al. 2007), with most of the leaf N
being allocated to the photosynthetic apparatus (Evans 1989).
Leaf N also influences PNUE significantly; PNUE increases with

the increase in leaf N content and decreases after reaching the
highest value at an intermediate leaf N content (Hikosaka and
Terashima 1995).

The fraction of the total leaf N allocated to the photosynthetic
apparatus is a factor that influences PNUE (Onoda et al. 2004;
Feng et al. 2007). Deciduous species and species with a high
specific leaf area (SLA) often allocate a higher fraction of leaf N
to the photosynthetic apparatus and have a higher PNUE than
do evergreen (Takashima et al. 2004) and low-SLA (Warren et al.
2006) species, respectively. Partitioning of the photosynthetic
N among different photosynthetic apparatus (carboxylation,
bioenergetics and light-harvesting components) may also
differ among species (Hikosaka et al. 1998), contributing to
the differences in PNUE. Studying leaf N and N-allocation
and -partitioning patterns in GDV species is important to
understand how GDV adapt to environments where N limits
growth.

A trade-off between leaf N allocation to photosynthesis and
cell walls is another factor influencing PNUE that has been
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documented (Onoda et al. 2004). Leaf N can be allocated to
N-based defensive compounds such as alkaloids and cyanogenic
glycosides or to cell walls, contributing to chemical and physical
defence against natural enemies (Burns et al. 2002). Cellwalls are
an important N sink (Lambers and Poorter 1992), with 5–10% of
primary-wall mass being protein (Loomis 1997). Cyanogenic
glycosides can account for up to 15% of total leaf N in some
Eucalyptus trees, and the accumulation of cyanogenic glycosides
is associated with a reduction in net assimilation rate (NAR) at a
constant leaf N (Goodger et al. 2006).

Nitrogen is an essential limiting resource for GDV growth,
especially in the desert regions. To evaluate leaf photosynthetic
response to environmental change, N allocation and PNUE in
GDV, and elucidate how N content and N allocation in leaves
influence leaf photosynthesis and PNUE, three typical GDV
species, namely A. sparsifolia, K. caspica and P. harmala,
were selected for the present study, and their leaf
photosynthesis and N allocation were investigated at the
southern fringe of the Taklamakan Desert. Particular attention
was paid to the physiological and ecological significance of N
allocation and partitioning.

Materials and methods
Study sites
The present studywas carried out in the foreland of the river oasis
of Qira (Cele; 37�0303200N, 80�3505400E, 1350m asl), located at
the southern fringe of the Taklamakan Desert, Xinjiang–Uighur
Autonomous Region, north-western China. The climate of this
region is extremely arid, with an annual precipitation of 40mm
(maximum inMay and July) and an annual potential evaporation
of ~2600mm (Xia et al. 1993). Maximum temperatures reach
42�C in summer, andminimum temperatures are as low as�24�C
in winter (a climate diagram is presented in Thomas et al.
2000). The water source for plants is groundwater, which is
recharged by melting snow from the Kunlun Mountains. In
our study, the groundwater depth was 8.5m. The soil pH was
7.88, and the concentrations of soil organic matter, active N,
active phosphorus and active potassium were 2.34 g kg–1,
24.07mg kg–1, 2.05mg kg–1 and 150.27mg kg–1, respectively.

Plant material
Alhagi sparsifolia, K. caspica and P. harmala, the three species
chosen for the study, are predominant perennial plants that are
typical components of GDV, and were in the same stage of
growing. A. sparsifolia is a C3 herbaceous, deep-rooted,
thorny herb plant up to 1–1.5m tall, P. harmala is a C3 grass
of ~0.5–1-m height and K. caspica is a spiny, perennial herb and
a C3 grass of ~1.0-m height, with few and big leaves. The study
plants are described in more detail by Thomas et al. (2000).

Measurements
On sunny days, between 1000 hours and 1300 hours local
time, in July 2009 and 2010, eight mature leaves that were
exposed to sun were chosen for observation per each plant
(24 replicate plants were used in total). From July to August,
the measurements were repeated six to eight times on the same
individual per species (i.e. observations were taken on 6–8
different days). To avoid additional variation, we conducted

the photosynthetic measurements always on the same leaves,
if possible. Photosynthetic response to intercellular CO2

concentration (Ci) and photosynthetic photon flux density
(PPFD) were determined on the youngest fully expanded
leaves (the third or fourth south-facing leaf counted from top)
with a Li-6400 Portable Photosynthesis System (Li-Cor, Lincoln,
NE, USA). Under 380mmolmol–1 CO2, photosynthetic rate (Pn)
was measured at 2000, 1500, 1000, 800, 600, 400, 300, 250, 200,
150, 100, 50, 20 and 0mmolm–2 s–1 PPFD. Apparent quantum
yield (AQY) and saturatedPPFDwerederived from thePn–PPFD
curve. Under saturated PPFD, Pn was measured at 380, 300, 260,
220, 180, 140, 110, 80, 50 and 0mmolmol–1 CO2 in the reference
chamber. Relative humidity of the air in leaf chamber was
controlled at 25% and leaf temperature at 25�C. Stomatal
conductance (Gs), Pn and Ci were recorded when the sample
leaf was balanced for 200 s under each PPFD and CO2

step. Photosynthesis measured at 380mmolmol–1 CO2 and
2000mmolm–2 s–1 PPFD was the maximum photosynthetic
rate (Pmax) in the present study. Afterwards, light- and CO2-
saturated photosynthetic rate (Pmax

0) was detected after 500 s
under 2000mmolm–2 s–1 PPFD and 1500mmolmol–1 CO2. Prior
to the measurement, sample leaf was illuminated with saturated
PPFD provided by the light-emitting diodes for 10–30min to
achieve fully photosynthetic induction. No photoinhibition
occurred during the measurements.

The aboveground parts of each sample plant were harvested
after the measurement of photosynthesis. Leaf area was
determined with a SHY-150 leaf-area meter (Harbin Optical
Instrument Factory, Harbin, China). Plant parts were oven-
dried for 48 h at 60�C. Leaf mass fraction (LMF) and LAR
were calculated as the ratios of leaf mass and leaf area,
respectively, to the total aboveground mass. The Pn–Ci curve
was fitted with a linear equation (Pn = kCi + i) within
50–200mmolmol–1 Ci. Maximum carboxylation rate (Vcmax)
and dark respiration rate (Rd) were calculated according to
Farquhar and Sharkey (1982), as follows:

Vcmax ¼ k½Ci þ Kcð1þ O=KoÞ�2=½G*þ Kcð1þ O=KoÞ� and

ð1Þ

Rd ¼VcmaxðCi�G�Þ=½CiþKcð1þO=KcÞ��ðkCiþ iÞ; ð2Þ
where Kc and Ko are the Michaelis–Menten constants of
Rubisco for carboxylation and oxidation, respectively; '* is
the CO2 compensation point; O is the intercellular oxygen
concentration, close to 210mmolmol–1. Kc, Ko and '* are
temperature dependent. Maximum electron transport rate
(Jmax) was calculated according to Loustau et al. (1999), as
follows:

Jmax ¼ ½4ðPmax
0 þ RdÞðCi þ 2G�Þ�=ðCi � G�Þ ð3Þ

Leaf discs with a definite area were taken from each sample
leaf and oven-dried at 60�C for 48 h. SLA was calculated as the
ratio of leaf area to leaf mass. Leaf N and carbon contents
were determined with a Kjeldahl apparatus (BUCHI Auto
Kjeldahl Unit K-370, BUCHI Labortechnik AG, Switzerland)
and by H2SO4/K2Cr2O7 oxidisation–FeSO4 titration method,
respectively. The measurements were performed by the
Biogeochemistry Laboratory of Xinjiang Institute of Ecology
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andGeography,ChineseAcademyofSciences. Leaf construction
cost (CC) was calculated according to McDowell (2002). Leaf
chlorophyll content (Chl) was measured by chemical methods
(acetone extraction) (Lichtenthaler and Wellburn 1983). The
same leaf of each sample plant was used if possible for
measurements of photosynthesis, SLA, Chl, the content of
carbon and N (NA). In this way, differences among the leaves
of the same plant could be avoided when the relationships among
variables were analysed.

The fractions of the total leafN allocated to carboxylation (PC,
g g–1), bioenergetics (PB, g g

–1) and light-harvesting components
(PL, g g

–1) of the photosynthetic apparatus were calculated as
follows:

PC ¼ Vcmax=ð6:25VcrNAÞ; ð4Þ

PB ¼ Jmax=ð8:06JmcNAÞ and ð5Þ

PL ¼ CC=ðNMCBÞ; ð6Þ
where CC is leaf Chl concentration, NM is mass-based leaf N
content. Vcr, Jmc and CB are constants (Niinemets and Tenhunen
1997). The fractions of leaf N allocated to both carboxylation
and bioenergetics (PC+B, g g

–1) and to all components of the
photosynthetic apparatus (PT, g g

–1) were calculated as the sum
of PC and PB and the sum of PC, PB and PL, respectively. N
contents in carboxylation (NC), bioenergetics(NB), carboxylation
and bioenergetics (NC+B), light-harvesting components (NL) and
all components of the photosynthetic apparatus (NP) were
calculated as the products of NA and PC, PB, PC+B, PL and
PT, respectively.The fractions of thephotosyntheticNpartitioned

to carboxylation, bioenergetics and light-harvesting components
were indicated by NC/NP, NB/NP and NL/NP, respectively.
Photosynthetic-use efficiency of the photosynthetic N was
indicated by Pmax/NP.

Statistical analyses
The differences among species were analysed with a one-way
ANOVA, and a post hoc test (Duncan test) was conducted if
the differences were significant. A one-way ANCOVAwas used
to detect the differences in correlation between each pair of
variables among the three GDV species and the results are
presented in Figs 1–3. Species was used as a fixed factor and
variables indicated by y-axis and x-axis in each panel were
used as dependent variables and a covariates, respectively. All
analyses were carried out using SPSS13.0 (SPSS Inc., Chicago,
IL, USA).

Results

Karelinia caspica and P. harmala had significantly higher PC,
PC+B, NC, NC+B, Pmax, AQY, Vcmax, NC/NP, NB/NP, PNUE,
Pmax/NP, LMF, LAR and SLA than did A. sparsifolia
(Table 1). K. caspica had also a higher Jmax, but the difference
between P. harmala and A. sparsifolia was not significant
(Table 1). A. sparsifolia had higher PL, PT, NL, NP, NA, Chl
and NL/NP, with the differences between A. sparsifolia and
K. caspica and P. harmala being significant. The higher PC of
K. caspica and P. harmala contributed to their higher NC, NC+B

and PC+B. A. sparsifolia had significantly higher Chl and NA,
leading to higherPL andNL, thus increasing itsPT andNP to levels
exceeding those in K. caspica and P. harmala (Table 1).
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Fig. 1. (a–c)Maximumcarboxylation rate (Vcmax), (d–f)maximumelectron transport rate (Jmax) and (g–i) light-saturatedphotosynthetic rate (Pmax) as a function
ofN content in carboxylation (NC), bioenergetics (NB) and both carboxylation and bioenergetics (NC+B) ofKarelinia caspica (stars),Peganumharmala (squares)
and Alhagi sparsifolia (circles) growing at the southern fringe of the Taklamakan Desert. Lines fitted for all three species are given.
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With the increase of NC, NB and NC+B, Vcmax, Jmax and Pmax

increased linearly (Fig. 1). The significant correlations between
Vcmax–NB and Jmax–NC resulted from the significant association
betweenVcmax and Jmax (data not shown).With the increase ofGs

and Rd, Pmax also increased significantly (Fig. 2a, b). K. caspica
and P. harmala had a significantly higher Pmax at the same value
of Gs or Rd according to the results of ANCOVA, thus showing
higher RE and WUE. With the increase of Pmax, PC, PC+B, NC,
NB and NC+B, PNUE increased significantly (Fig. 3). Leaf CC
increased significantly with a decrease in SLA (Fig. 2c). The
differences in CC (P = 0.325) and SLA (P = 0.216) among
A. sparsifolia and K. caspica and P. harmala were not
significant (Fig. 2c).

Discussion

In thepresentstudy, theaverage leafNcontent (39.45� 2.57mg/g)
in the three plant species studied was higher than the average
leaf N content of 214 kinds (24.45� 8.1mg/g) in a typical desert
and desertification region of northern China (Li et al. 2010). The
southern fringe of the Taklamakan Desert is an extremely arid
zone, and the leaf N content of the plants is higher in this region.

This conclusion further confirmed the hypothesis that leaf N
content was relatively higher under the arid desert environment
(Aerts 1996). The average leaf N content of the three species was
basically the same as the average leaf N content (>30mg/g)
reported by Skujins (1981) in the arid desert region, thus
supporting their results. But Killingbeck and Whitford (1996)
reported that the average leafNcontent of 78 specieswas between
22.0mg/g and 30.0mg/g in the arid desert region. The differences
might be due to different regions, species or numbers of the
samples.

Karelinia caspica and P. harmala had lower leaf N content
than did A. sparsifolia, and the difference was significant. These
two species allocated a lower fraction of leaf N to photosynthesis
(lower in PT andNP) than did A. sparsifolia. The lower PT was in
accord with their higher SLA, which regulated N allocation to
photosynthesis through influencing N allocation to cell walls
(Onoda et al. 2004). Partitioning of the photosynthetic N among
carboxylation, bioenergetics and light-harvesting components
was significantly different among the species (Hikosaka et al.
1998).K. caspica and P. harmala partitioned a higher fraction of
thephotosyntheticN to carboxylation components andhadhigher
PC andNC/NP,whereasA. sparsifoliapartitioned a higher fraction
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of the photosynthetic N to light-harvesting components and had
higher PL and NL/NP. K. caspica and P. harmala were more
efficient in photosynthetic N partitioning, as indicated by their
higher Pmax/NP. Their higher PC contributed greatly to their
higher Pmax, leading to higher NC and NC+B, which correlated
significantlywithVcmax, Jmax andPmax. For the three species,Pmax

correlated significantly with PC, Vcmax and Jmax, respectively
(data not shown). It has been reported that photosynthetic N
partitioning influences photosynthesis (Poorter and Evans 1998).
The differences in Gs and Ci among the three species were not
significant, indicating that the stomata had no decisive effect on
thehigherPmaxofK. caspica andP.harmala, although the latter is
positively correlated with Gs. In addition, the relatively lower Ci

ofK. caspica andP.harmala showed that theyhad ahigher ability
to use intercellular CO2, which was related to their higher
biochemical capacity for photosynthesis (Vcmax and Jmax),
again confirming the importance of their higher PC.

Karelinia caspica and P. harmala had a higher
PNUE. McDowell (2002) attributed the higher PNUE to the
lower N content. With the decrease of NA, PNUE increases
(Hikosaka and Terashima 1995). K. caspica and P. harmala
were lower in NA than was A. sparsifolia, but the relationship
between PNUE and NA was not significant in the present study
(data not shown). Niinemets et al. (2003) attributed the higher
PNUE to the higher Pmax. Furthermore, the difference in PNUE
between K. caspica and P. harmala and A. sparsifolia could be

further attributed to the difference in photosynthetic N
partitioning in the present study. The higher PC led to higher
NC,NC+B, and therefore higherPmax and PNUE inK. caspica and
P. harmala. The lowerPC ofA. sparsifolia enhanced the negative
effect of its relatively higher NA on PNUE. Similarly, in
Chenopodium album, higher N allocation to Rubisco
contributed to its higher PNUE (Hikosaka et al. 1998).

Karelinia caspica andP. harmala had also a higherWUE than
did A. sparsifolia, breaking the trade-off between PNUE and
WUE. This is consistent with the results from other species (Ewe
and Sternberg 2003). McDowell (2002) attributed the higher
WUE of some species to their higher Pmax. Feng (2008)
considered that the higher PC was the ultimate reason for the
higher PNUE andWUE. It was demonstrated in the present study
that the higher PC was also the reason for the higher PNUE and
WUEofK. caspica andP. harmala. It has been found that PNUE,
WUE (Sobrado 1991) and N allocation to photosynthesis
(Takashima et al. 2004) are higher in deciduous species than
in evergreen species, also indicating the importance of N
allocation in determining PNUE and WUE.

ForK. caspica andP. harmala, the higherPmax, AQY, PNUE,
WUE, RE and LAR may contribute to their higher resource-
capture ability. The higher LAR was due to their higher LMF
and SLA. The higher values of the physiological variables
of K. caspica and P. harmala were derived from their higher
PC. For some species, Pmax is positively correlated with NAR

Table 1. Means� s.d. of the measured variables on the three species growing at the southern fringe of the
Taklamakan Desert

F-values are from the one-way ANOVA (n= 8). Within a row, means followed by the same letter are not
significantly different from each other at P = 0.05, as analysed by a post hoc test after Duncan. See text for

definitions of variables. *P< 0.05, **P< 0.01, ***P< 0.001

Variable Karelinia caspica Peganum harmala Alhagi sparsifolia F-value

AQY (mol mol–1) 0.038 ± 0.003a 0.034 ± 0.004a 0.029 ± 0.002b 3.625*
Pmax (mmol m–2 s–1) 11.7 ± 2.3a 9.5 ± 3.0a 6.9 ± 1.3b 12.724**
Jmax (mmol m–2 s–1) 105.2 ± 10.1a 94.8 ± 7.5b 87.8 ± 6.3b 5.615*
Vcmax (mmol m–2 s–1) 62.5 ± 3.7a 38.7 ± 4.6b 30.8 ± 2.5c 10.082**
PC (g g–1) 0.23 ± 0.04a 0.11 ± 0.03b 0.07 ± 0.02c 5.579***
PB (g g–1) 0.04 ± 0.003 0.03 ± 0.003 0.03 ± 0.002 3.832
PC+B (g g–1) 0.27 ± 0.05a 0.15 ± 0.03b 0.10 ± 0.02c 6.215***
PL (g g–1) 0.10 ± 0.02c 0.17 ± 0.02b 0.28 ± 0.04a 8.232**
PT (g g–1) 0.35 ± 0.03b 0.32 ± 0.05b 0.40 ± 0.05a 5.253**
NC (g m–2) 0.48 ± 0.04a 0.31 ± 0.02b 0.23 ± 0.03c 12.325***
NB (g m–2) 0.08 ± 0.005 0.08 ± 0.003 0.07 ± 0.005 2.323
NC+B (g m–2) 0.50 ± 0.03a 0.39 ± 0.02b 0.31 ± 0.03c 14.536***
NL (g m–2) 0.43 ± 0.02b 0.56 ± 0.03b 0.97 ± 0.02a 8.752***
NP (g m–2) 0.89 ± 0.06b 0.96 ± 0.05b 1.27 ± 0.07a 5.672**
NC/NP 0.54 ± 0.04a 0.32 ± 0.05b 0.18 ± 0.07c 10.517***
NB/NP 0.09 ± 0.01a 0.08 ± 0.01a 0.06 ± 0.01b 4.265*
NL/NP 0.37 ± 0.02c 0.58 ± 0.04b 0.76 ± 0.05a 13.360***
NA (g m–2) 2.07 ± 0.10c 2.81 ± 0.09b 3.33 ± 0.13a 9.226**
NM (mg g–1) 31.75 ± 2.03c 40.80 ± 2.45b 45.79 ± 3.24a 9.128**
PNUE (mmol g–1 s–1) 9.50 ± 0.93a 8.89 ± 0.75a 5.82 ± 0.28b 6.054**
Pmax/NP (mmol g–1 s–1) 13.15 ± 1.55a 9.86 ± 1.24b 5.43 ± 1.15c 4.835***
Gs (mol m–2 s–1) 0.27 ± 0.02 0.26 ± 0.02 0.24 ± 0.03 3.324
Ci (mmol mol–1) 210.5 ± 7.2 230.6 ± 5.5 237.8 ± 7.0 4.458
Chl (mmol m–2) 0.24 ± 0.04b 0.22 ± 0.03b 0.46 ± 0.05a 5.725**
LMF (g g–1) 0.65 ± 0.03a 0.58 ± 0.04a 0.35 ± 0.03b 16.535***
LAR (cm2 g–1) 97.5 ± 5.8a 88.7 ± 7.5a 58.5 ± 5.5b 10.336**
SLA (cm2 g–1) 153.4 ± 18.3a 145.2 ± 22.7b 137.5 ± 17.8c 2.415**
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(Feng et al. 2007). Pattison et al. (1998) reported that, in some
species, growth rate is positively related toPmax. The higherNAR
and LAR can theoretically result in a higher growth rate of some
species (Shipley 2006), being consistent with growth
observations in the field. Thus, a higher growth rate is very
important for the survival of GDV species at the southern
fringe of the Taklamakan Desert. The higher AQY indicated
that K. caspica and P. harmala had higher PNUE, which is
important for seedling establishment and growth. Species with
high PNUE usually have a high growth rate (Schieving and
Poorter 1999). At the southern fringe of the Taklamakan
Desert, N and water are limiting resources for GDV species.
K. caspica and P. harmala can benefit from the increased PNUE
and WUE.

In conclusion, the higher PC ofK. caspica and P. harmala led
to higher NC and NC+B, which further led to higher Pmax by
increasing Vcmax and Jmax, and therefore to higher PNUE, WUE,
AQY and RE. K. caspica and P. harmala had a significantly
higher Pmax at the same value of Rd according to the results of
ANCOVA, thus increasing Vcmax and Jmax, and leading to higher
RE. These physiological advantages and the higher LAR of
K. caspica and P. harmala may contribute to their higher
resource-capture ability. Therefore, K. caspica and P. harmala
can consist of the dominant communities together with
A. sparsifolia at the southern fringe of the Taklamakan Desert.
A. sparsifolia has lower PC and PNUE but it is a leguminous
plants. The leguminous plants can fix N2 from the air. So this
species is still a part of the dominant communities of the desert.
However, the ecophysiological features found in K. caspica,
P. harmala and A. sparsifolia should not be extrapolated
simply to other plant species, and other factors may also be
important in explaining these phenomena. Further comparative
studies on awide range ofGDVspecies in other desert regions are
necessary to fully assess the general validity of the N-allocation
and -partitioning patterns found in GDV species.
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