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Spatial–temporal modelling of environmental systems such as agriculture, forestry, and water resources
requires high resolution input data. Assembling and summarizing this data in the appropriate format for
model input often requires a series of spatial analyses which can be extremely time-consuming, espe-
cially when many large data sets are involved. In this paper we investigated the ability of high-perfor-
mance computing techniques to improve the efficiency of spatial analysis for model data assembly.
We implemented an array-based algorithm to calculate summary statistics for long time-series daily grid
climate data sets for 11,575 climate–soil zones across the Australian wheat-growing regions for input
into a crop simulation model. We developed a zonal statistics algorithm using Python’s Numpy module
then parallelized it and processed it using a shared memory, multi-processor system. We assessed algo-
rithm performance with a varying number of CPU cores, and assessed the influence of load balancing on
the efficiency of parallel processing. Compared with traditional desktop GIS software, the serial and par-
allel (32 cores) implementation achieved about 180 and 1440 times speed-up, respectively. We also
found that the most efficient computation occurred when not all of the available CPU cores were used,
and the chunk size of jobs also had an important influence on computing efficiency. The algorithm and
the parallel processing scheme provides a useful approach to address computing challenges posed by
spatial analysis of numerous large data sets for large scale environmental modelling.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Process-based environmental models such as those that esti-
mate the growth of agricultural crops, forest stands, or water re-
sources typically require high spatial and temporal resolution
input data (Van Wesemael et al., 2010). One of the seemingly foun-
dational laws of environmental modelling is that this data is rarely
in exactly the right format and resolution required by the model.
For example, the study units are irregular agro-ecological or cli-
mate/soil zones (Devendra and Thomas, 2002; Fischer et al.,
2002), while the input data are usually site data from station
observation or grid data from spatial interpolation. As a result, a
significant amount of pre-processing is often required to summa-
rize and assemble data prior to running the model. This can be
computationally demanding and time-consuming. Traditional
Geographic Information Systems (GIS) are yet to widely embrace
the shift in computer technology to multi-core processors (Bryan,
ll rights reserved.

s, Waite Campus, Urrbrae, SA
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2012). Hence, the efficiency of data processing within GIS software
has largely ceased to increase over the past decade following the
limitations on computer processor clock speed (Dongarra et al.,
2007). Although some GIS vendors have proposed some batch
methods, we found that the capacity still cannot meet the require-
ments of our application. So we developed a customized algorithm
using high-performance computing (HPC) to increase the efficiency
of data pre-processing.

In this application, we focused on the assembly of high spatial
and temporal resolution climate data to simulate agricultural sys-
tems. Variation in climate across both time and space significantly
influence crop growth in agricultural systems (Hansen and Jones,
2000; Luo et al., 2003; Reidsma et al., 2009). Understanding how
spatial–temporal variation of climate impacts agricultural systems
is of critical importance for agricultural decision-making (Over-
peck et al., 2011). Process-based crop models are a common way
to study agricultural systems at regional or national scales and
usually need a complete and accurate source of climate data across
the whole landscape (Bryan et al., 2010, 2011; Safir et al., 2008;
Zhao et al., in press). Interpolating station-based climate records
to raster layers is a common practice to overcome the deficiencies
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of observational data at the regional scale (Jeffrey et al., 2001;
Thornton et al., 2009). However, coupling this kind of spatial data
with agricultural systems models needs a series of intensive spatial
analyses, which has impeded the application of agricultural sys-
tems models to large areas at high spatial resolution, despite the
fact that the computing resources are more readily available today
(Finley et al., 2012).

The purpose of this study was to prepare climate data for the
Agricultural Production Systems sIMulator (APSIM), a process-
based agricultural systems model (Keating et al., 2003; Wang
et al., 2009), to simulate wheat productivity under various man-
agement practices across Australia’s wheat-growing regions. To
achieve this it was necessary to extract and summarize 122 years
of daily gridded climate data for 11,575 climate–soil zones. A zonal
statistics algorithm, commonly found with raster GIS, was devel-
oped in Python’s Numpy module to calculate summary statistics
on the raster climate data layers for each zone. We parallelized this
algorithm and assessed its performance under a varying number of
CPU cores. We also assessed the efficiency of parallel computing
with different job scheduling and load balancing approaches to
identify the most efficient high-performance computing strategy.
The utility of these techniques for data assembly and summary
for input into environmental models is discussed.

2. Climate–soil zones and climate data

The study area forms a crescent-shaped area from the northeast
coast of Queensland around the south of the continent to the west
coast of Western Australia (Fig. 1). The study area includes a
100 km buffer around the actual areas sown to wheat in 2006
(ABARE, 2006; Marinoni et al., 2012). The whole study area was di-
vided into 11,575 climate–soil zones (CS zones) with relatively
homogenous climate and soil properties. Using zones as basic
Fig. 1. Climate–soil zones. Each zone is
modelling units instead of grid cells enables us to reduce the com-
puting load of the agricultural systems modelling yet still capture
the major biophysical variation in soils and climate.

APSIM requires five key climate characteristics including mini-
mum temperature, maximum temperature, radiation, rainfall, and
evaporation. A set of spatially extrapolated raster layers of daily
historical climate for Australia have been produced by the Austra-
lian Bureau of Meteorology (BOM). The pixel values are an interpo-
lated representation of roughly 4600 station-based daily records.
The processes and methods for producing this data can be found
in Jeffrey et al. (2001). The data sets containing 122 years of daily
historical climate data, from 1889 to 2010, were stored in NetCDF
format files. Thus, a total of 222,790 (44,558 � 5) data sets needed
to be manipulated and converted into APSIM input data format.

Climate data can be attributed to CS zones through various
means such as assigning values from the nearest meteorological
station record. However, due to the irregular shape of the zones
and of the spatial arrangement of stations, we judged that the best
way to assemble representative climate data for each zone was to
summarize the interpolated grid data. We calculated the mean of
grid cell values within CS zones as input in APSIM.

3. Algorithm and parallel processing

3.1. Design and implementation

The zonal statistics algorithm developed in this study aggre-
gates continuous values in one raster for each zone in another ras-
ter, and computes the statistics (Fig. 2). The algorithm takes as
input two raster data sets, namely zones and values, which share
the same resolution and extent. Similar algorithms can be found
in many raster GIS. Initially, we undertook the spatial analyses
using a combination of ArcGIS tools in batch processing: Make Net-
demonstrated by one unique color.



Fig. 2. Schematic of spatial statistics of the grid climate data for CS zones. Left is the format of APSIM climate data. In the middle part of the figure, the top map is the climate–
soil zones, the middle map is the grid climate data, and the bottom one is the statistic results. Right part of the figure is the corresponding data of this study.
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CDF Raster Layer, Resample, and zonal Statistics as Table. However, as
it took about 180 s to process one data set (which, by extrapola-
tion, would take 464 days to complete all the data sets), this meth-
od was impractical.

We first converted the polygon format CS zone data to raster
format at 0.01� resolution. This resolution was chosen to maintain
the smallest CS zone (1.83 km2). We then developed a new algo-
Fig. 3. Algorithm for zonal statistics.

Fig. 4. Code for embedding zonal statis
rithm which imports the CS zones and climate data into Numpy ar-
rays (Jones et al., 2001), and then applies a sequence of operations
including resampling the 0.05� resolution climate data to match
the 0.01� resolution CS zone data, aggregating climate values
belonging to each zone, and computing the statistics (Fig. 3). We
implemented all the operations with the Python programming lan-
guage (Van Rossum and Python Community, 2012) and the Num-
py, netCDF4 (netCDF4, 2011), GDAL (GDAL, 2012), and Python
Imaging Library (PIL, Lundh and Ellis, 2012) packages. NetCDF4
and GDAL were used to import climate and zones data into Numpy
arrays. We resampled the climate data using the nearest neighbour
method with the resize function from PIL. The aggregation opera-
tion was implemented with Numpy’s bincount function using the
zones array as input data and climate data array as weights.

To quantify the performance of our application we used a
shared memory multi-processor server with four Intel(R) Xeon(R)
X7560 @ CPUs and shared 512G Random Access Memory (RAM)
and running Microsoft Windows Server 2008 R2. Each CPU had 8
cores with 2.27 GHz clock speed and 24 Mb L3 cache. All the oper-
ations were conducted in main memory.

3.2. Parallel processing

To summarise the climate grid layers more efficiently, we accel-
erated the processing through parallelization. Parallel processing
carries out multiple operations or tasks simultaneously using
tic algorithm into Parallel Python.
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multiple processors or cores. Processing long time-series grid data
can be achieved through single-instruction, multiple-data parallel-
ism (SIMD).

We implemented the parallelism with the Parallel Python (PP)
package, which provides a mechanism for parallel execution of Py-
thon code on SMP (systems with multiple processors or cores) and
clusters (computers connected via network) through process level
parallelism (Vitalii, 2011). To implement this algorithm, we firstly
read the zones data into a Numpy array and masked out the no-
data values (Fig. 4). As all the climate data share the same zones,
we assigned the zone-array in the master process. We built the
parallelism in program loops and dynamically assigned the tasks
to workers (processes). A job server was created and the number
of workers specified. The master process distributed the zones ar-
ray and climate data path to the workers. The workers executed
Fig. 5. Total compute time (a), speed-up ratio (b), median (with minimum and maximu
data set and (d) with different number of active workers and job chunk sizes. All graph
the algorithm and computed the statistics concurrently. The mas-
ter process collated summary climate information and processing
statistics from the workers.

3.3. Job scheduling and load balancing

In this study, the parallel compute time was mainly consumed
by data exchange and synchronization between master and worker
processes and the computation of zonal statistics by workers. Par-
allel Python implements a dynamic job allocation mechanism that
automatically allocates new jobs to idle workers or workers who
have completed previous jobs. If the job allocation time is longer
than job execution time, the power of active workers cannot be
fully exploited. Hence, increasing the chunk size of parallel process-
ing by combining many smaller jobs into fewer larger jobs may im-
m) number of concurrently running workers (c), and variation in compute time per
s reflect indices from processing a single year of data (1825 climate data layers).
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prove computing efficiency. To investigate the effects of job chunk
size on processing performance, we set four different job chunk
sizes and assessed their efficiencies with respect to compute time,
speed-up ratio, and concurrently running workers (see Section 4,
Results).

3.4. Evaluation of compute time and concurrency

The run time of a program is the time between the start and end
of programme execution on all participating processors. The run
time of a parallel program depends on many factors, such as the
architecture of the execution platform, the compiler and operating
system, the parallel programming environment, and the depen-
dencies between the computations (Rauber and Rünger, 2010). A
standard measure of parallel program performance is its reduction
of the execution time on the specific platform (Rauber and Rünger,
2010).

To quantify the performance benefits of parallelization we pro-
cessed climate data for a single year (1825 data sets) on a varying
number of CPU cores (1,2, . . .,32). Using data on the start and end
time for each individual worker process and the overall master
process we calculated the variation in computing efficiency using
four main metrics. We calculated the overall compute time and
speed-up ratio. The speed-up ratio indicates the reduction in exe-
cution time and is calculated as S(n) = TS/Tn, where TS is the run
time using one core and Tn is the run time using n cores. We also
calculated the number of truly concurrent running processes under
different chunk sizes polled at 0.1 s intervals over each run period
and report the median, minimum, and maximum number. Lastly,
we examined the variation in time taken to process a single data
set with different numbers of workers and chunk sizes.
4. Results

Processing a single year of data (1825 data sets) using our zonal
statistics algorithm took 1884.15 s for a single worker, or roughly
one second per climate data set (Fig. 5a). The improvement was
significant compared with 180 s per data set for desktop GIS pro-
cessing. Run time decreased further with an increasing number
of active workers up to around nine cores (228 s for 1825 jobs), be-
yond which performance degraded. A larger chunk size achieved
greater processing efficiency, especially when less than 20 active
workers were used. When more than 20 workers were active, there
was little difference in processing efficiency of chunk sizes larger
than a single job. The compute time increased when more than
10 active workers were engaged, no matter how big the chunk size
(Fig. 5b).

The maximum concurrently running workers was eight for jobs
with a chunk size of 1, no matter how many active workers were
set. With chunk sizes of 20 and 30, the number of concurrently
running workers almost keeps pace with the number of active
workers (Fig. 5c). The compute time of processing one data set
with a job chunk size of 1 did not increase when the number of ac-
tive workers increased. Both the average and variance in process-
ing time per data set increased significantly when the job chunk
size was increased to 20 and 30 (Fig. 5d).
5. Discussion and conclusion

With the development of open source software and program-
ming languages that are operating system independent and very
flexible, it becomes possible to develop tailored spatial analysis
algorithms for applications involving expensive computation. In
this paper, we developed and implemented a Python-based serial
and parallel version of a zonal statistics algorithm commonly
found in many off-the-shelf GIS packages. This method is useful
for model data processing and assembly especially when the study
units are irregular zones. Although the algorithm was developed
for zonal statistics, it can easily adapt to other applications like sta-
tistical or regression-based downscaling of GCM data, calculation
of statistics for stochastic climate generators, interpolation of cli-
mate data surfaces from point-based records. In the parallel ver-
sion of the algorithm, most of the data exchanges and operations
were conducted in memory which decreased the compute time
substantially. With the optimal configuration of nine workers
and chunk size of 30 jobs, the entire climate data base could be
processed within 8 h whilst desktop GIS software needs about
464 days – 1440 times faster.

Several factors affected the performance of parallel processing.
Increasing chunk size improved load balancing and processing effi-
ciency. This is consistent with the theoretical prediction that too
much time consumed in data exchange and synchronization will
decrease the performance. If the execution time of a single job is
shorter than the time needed in scheduling and coordinating jobs,
some workers will sit idle. Aggregating individual climate grid data
processing jobs into large chunk sizes can improve the utilization
ratio of active workers and cut down job allocation time. However,
increasing the chunk size too much degrades performance because
the large chunks reduce the ability to balance computational loads
and the total compute time will depend on the slowest worker and
time taken for the last job to complete. Overall, parallel program-
ming in shared memory systems requires a wise choice of job
chunk size and active workers to optimize the computing
efficiency.

The concerns over the impact of climate variability and climate
change on crop productivity have stimulated comprehensive re-
search on the sustainability of current agricultural systems. So
far, many large scale applications of agricultural models have been
restricted by the availability and quality of the spatial input data.
The serial and parallel version of the zonal statistics algorithm
implemented in this paper exemplifies how large scale spatial
computation can be dramatically accelerated by optimally utilizing
open source software tools and readily available computing re-
sources. The improved computation efficiency supports large scale,
high resolution spatio-temporal modelling of environmental
systems.
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