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Accurate estimation of carbon fluxes across space and time is of great importance for quantifying global carbon
balances. Current production efficiency models for calculation of gross primary production (GPP) depend on es-
timates of light-use-efficiency (LUE) obtained from look-up tables based on biome type and coarse-resolution
meteorological inputs that can introduce uncertainties. Plant function is especially difficult to parameterize in
the savanna biomedue to the presence of varyingmixtures ofmultiple plant functional types (PFTs)with distinct
phenologies and responses to environmental factors. The objective of this study was to find a simple and robust
method to accurately up-scale savannaGPP from local, eddy covariance (EC) flux towerGPPmeasures to regional
scales utilizing entirely remote sensing oservations. Here we assessed seasonal patterns of Moderate Resolution
Imaging Spectroradiometer (MODIS) vegetation products with seasonal EC tower GPP (GPPEC) at four sites along
an ecological rainfall gradient (the North Australian Tropical Transect, NATT) encompassing tropical wet to dry
savannas.
The enhanced vegetation index (EVI) tracked the seasonal variations of GPPEC well at both site- and cross-site
levels (R2 = 0.84). The EVI relationship with GPPEC was further strengthened through coupling with ecosystem
light-use-efficiency (eLUE), defined as the ratio of GPP to photosynthetically active radiation (PAR). Two savanna
landscape eLUEmodels, driven by top-of-canopy incident PAR (PARTOC) or top-of-atmosphere incident PAR
(PARTOA) were parameterized and investigated. GPP predicted using the eLUE models correlated well with
GPPEC, with R2 of 0.85 (RMSE = 0.76 g C m−2 d−1) and 0.88 (RMSE = 0.70 g C m−2 d−1) for PARTOC and
PARTOA, respectively, and were significantly improved compared to the MOD17 GPP product (R2 = 0.58,
RMSE = 1.43 g C m−2 d−1). The eLUE model also minimized the seasonal hysteresis observed between green-
up and brown-down in GPPEC and MODIS satellite product relationships, resulting in a consistent estimation
of GPP across phenophases. The eLUE model effectively integrated the effects of variations in canopy photosyn-
thetic capacity and environmental stress on photosynthesis, thus simplifying the up-scaling of carbon fluxes
from tower to regional scale. The results from this study demonstrated that region-wide savanna GPP can be ac-
curately estimated entirely with remote sensing observations without dependency on coarse-resolution ground
meteorology or estimation of light-use-efficiency parameters.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Measurement of landscape carbonfluxes is essential in global change
studies (Baldocchi et al., 2001) but remains a challenge in the field,
and Climate Change Cluster,
ustralia. Tel.:+61 2 95144084.
resulting in a scarcity of measurements available to validate and assess
uncertainties in models and satellite products. By observing broad-
scale patterns of ecosystem functioning, remote sensing can comple-
ment the restricted coverage affordedbyeddy covariance (EC)measure-
ments of gross primary production (GPP). Remote sensing estimates of
GPP primarily utilize two technical approaches: (1) process models
based on the light-use-efficiency (LUE) concept (Running et al., 2004;
Xiao, Zhang, Hollinger, Aber, & Moore, 2005), and (2) empirical models
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based on relationships betweenflux tower estimates of GPP and satellite
spectral vegetation indices (VIs) (Gitelson et al., 2006; Huete et al., 2006;
Rahman, Sims, Cordove, & El-Marsri, 2005; Sims et al., 2008).

The LUE concept was first proposed by Monteith (1972) to estimate
GPP by defining the amount of carbon fixed through photosynthesis as
proportional to the solar energy absorbed by the plant. LUE is the energy
conversion coefficient that can be defined as either the ratio of GPP to
incident photosynthetic active radiation (PAR) or absorbed photosyn-
thetic active radiation (APAR) (Gower et al., 1999), with APAR as the
product of PAR and the fraction of absorbed photosynthetically-active
radiation (fAPAR) (Monteith, 1972; Running et al., 2004). LUE models
defined from APAR have been widely adopted to estimate GPP globally
with the use of fAPAR and LUE (ε) (Monteith, 1972):

GPP ¼ ε � fAPAR � PAR ð1Þ

The MODIS GPP product (MOD17) is based on the LUE concept
and provides the first operational and near-real-time calculation of
global GPP (Running et al., 2004; Zhao, Heinsch, Nemani, & Running,
2005). The MOD17 algorithm for calculating daily GPP is expressed as
(Running et al., 2004):

GPP ¼ εmax � 0:45� SWrad � fAPAR � f VPDð Þ � f Tminð Þ ð2Þ

where εmax is the maximal light-use-efficiency, which is biome specific
and obtained from a look-up table; SWrad is short-wave downward
solar radiation, of which 45% is assumed to be PAR; f(VPD) and f(Tmin)
are the reduction scalars for water stress and low temperature, respec-
tively (Running et al., 2004).

A major limitation of current LUE-based production efficiency
models is that there are no direct measurements of LUE available at
landscape scales. LUE is very difficult to parameterize since it varies sig-
nificantly among vegetation types (Kergoat, Lafont, Arneth, Le Dantec, &
Saugier, 2008; Turner et al., 2003), across seasons and phenophases
(Jenkins et al., 2007; Sims et al., 2006), and under different types of envi-
ronmental stress (Ruimy, Jarvis, Baldocchi, & Saugier, 1995). Consequent-
ly,maximal LUE values have to be specified for a limited number of biome
types and then down-regulated by environmental stress scalars derived
from coarse resolution, interpolated meteorological inputs (Heinsch
et al., 2006; Zhao et al., 2005), which contribute uncertainties in output
GPP (Heinsch et al., 2006; Sjöström et al., 2013; Yuan et al., 2010). Some
studies reported that LUE models, when properly parameterized with
site-level meteorological measurements, can provide good estimates of
flux tower derived GPP (Kanniah, Beringer, Hutley, Tapper, & Zhu, 2009;
Turner et al., 2003), while other studies found only moderately accurate
estimates (Sjöström et al., 2013).

The MODIS GPP product has limited accuracy in estimating GPP of
savannas (Jin et al., 2013; Kanniah et al., 2009; Sjöström et al., 2013),
which are defined aswoodland communitieswith a conspicuous peren-
nial or annual graminoid substrata, with varying proportions of trees,
shrubs and graminoids that form a structural continuum (Walker &
Gillison, 1982). Across African savanna flux tower sites, Sjöström et al.
(2013) reported MODIS GPP to underestimate tower-GPP over dry
sites in the Sahel region due to uncertainties in the meteorological
drivers and fAPAR data and underestimation of εmax. At a woodland
savanna site in Botswana, Jin et al. (2013) reported the MODIS GPP
product to be substantially lower than tower-GPP during the green-up
phase and higher than tower-GPP during the brown-down phase.

Kanniah et al. (2009) confirmed the usefulness of the MODIS GPP
product for studying carbon dynamics at a northern Australian savanna
site, yet important limitations were found due to the lack of representa-
tion of soil moisture in the MODIS GPP algorithm. These validation
efforts of MOD17 GPP product at African and Australian savannas sug-
gest a need to consider the limitations of current LUE based methodol-
ogies to estimate savanna GPP (Kanniah et al., 2009; Sjöström et al.,
2013). Although it may be possible to improve the MODIS GPP product
across global savannas by incorporation of a soil moisture term and
using better quality meteorological data, it is also worthwhile to con-
sider alternative methods for accurate and consistent remote sensing
estimation of global GPP without dependency on numerous inputs
(Sims et al., 2008).

Glenn, Huete, Nagler, and Nelson (2008) suggested that remote
sensing is more suitable as a scaling tool when ground data are avail-
able, rather than for solving complicated physical models. Remote sens-
ing can greatly simplify the up-scaling of ecosystem processes, such as
photosynthesis and evapotranspiration, from an expansive network of
flux towers to larger landscape units and to regional or even global
scales (Glenn et al., 2008). As top-of-canopymeasurements, flux towers
do not require knowledge of LAI or details of canopy architecture to es-
timate fluxes (Baldocchi et al., 2001; Glenn et al., 2008).Meanwhile, the
measurement footprint of flux towers partially overlaps the pixel size of
daily-return satellites (e.g., 250m forMODIS).With the fast evolving re-
gional and global flux networks (e.g., FLUXNET, AmeriFlux, AsiaFlux,
and OzFlux) and ongoing space-borne sensors (e.g., MODIS, MERIS,
and VIIRS), enormous opportunities now exist to develop more robust
and consistent methods for scaling of carbon fluxes across biomes,
seasons, and extreme dry to wet years through better coupling of
these two independent sources of observations (Huete et al., 2008).

The spatial extension of tower measured carbon fluxes using satel-
lite spectral VIs have been investigated across a wide range of natural
and agricultural ecosystems. For example,Wylie et al. (2003) reported a
strong relationship between NDVI and daytime CO2 flux in a sagebrush-
steppe. Over North America, Rahman et al. (2005) found that EVI can
provide reasonably accurate estimates of GPP Sims et al. (2006) further
concluded EVI relationships with tower-GPP to be better than that with
MOD17 GPP when data from winter periods of inactive photosynthesis
were excluded. In Amazonia, Huete et al. (2006) observed a consistent
linear relationship between MODIS EVI and tower GPP in both primary
forest and converted pasture such that MODIS EVI did not saturate over
the high foliage densities of tropical rainforests. Huete et al. (2008) fur-
ther extended this study to three distinct Monsoon Asia tropical forest
sites and found similar linear relationships between EVI and tower
GPP, potentially offering opportunities for region-wide extension of car-
bon fluxes across the heterogeneous canopies of Southeast Asia. Over
Scandinavian forest sites, Olofsson et al. (2008) reported strong correla-
tions between EVI and GPP, while NDVI exhibited saturation in areas
with high foliage density. Across African savannas, Sjöström et al.
(2011) found EVI to track the seasonal dynamics of tower GPP more
closely than MOD17 GPP. More recently, Ma et al. (2013) observed
good convergence between MODIS EVI and tower GPP across north
Australian mesic and xeric savannas, confirming the potential to link
these two independent sources of observations for better understand-
ing of savanna carbon dynamics.

Other studies have investigated coupling EVI with satellite retrieved
land surface variables for improved predictions of tower derived GPP.
For example, Sims et al. (2008) used a Temperature and Greenness
(T-G)model, based on EVI and land surface temperature (LST), and sub-
stantially improved the correlation between predicted and tower
derived GPP across North America compared with MOD17 GPP or EVI
alone. Gitelson et al. (2006) found that a Greenness and Radiation
(G-R) model, coupling canopy chlorophyll content with PAR, provided
a more robust estimation of crop GPP. Peng, Gitelson, and Sakamoto
(2013) applied the G-R model to estimate GPP using chlorophyll-related
VIs (VIchl), such as NDVI, EVI, and the wide dynamic range vegetation
index (WDRVI), and found high accuracies in GPP estimations over irri-
gated and rain fed croplands. Wu et al. (2009) also found a tight rela-
tionship between canopy total chlorophyll content and GPP/PAR,
thereby providing new ways to estimate GPP from chlorophyll-related
spectral indices.

From a resource-use-efficiency perspective, the coupling of VIchl and
PAR for the estimation of GPP implies that VIchl is essentially a measure
of LUE defined and based on PAR. To distinguish the LUE (ε) based on
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APAR from LUE based on PAR,we define the former as ε (i.e., GPP/APAR)
and the latter as ecosystem light-use-efficiency (eLUE). eLUE can be
computed and modelled as:

eLUE ¼ GPP
PAR

¼ fAPAR � ε ¼ f VIchlð Þ ð3Þ

where f(VIchl) can be calibrated by regression with flux tower derived
eLUE against VIchl. eLUE (GPP/PAR) differs from ε (GPP/APAR) in that
it combines the biological drivers of photosynthesis (fAPAR) with net
photosynthetic efficiency (ε) resulting from environmental stress and
leaf age phenology. The benefit of using eLUE in up-scaling of GPP is
that eLUE does not require partitioning of plant functioning into both
fAPAR and ε terms, thus simplifying remote sensing based estimates
of vegetation productivity. This reduces associated scaling uncertainties
introduced by coarse resolution meteorological inputs and the need
to define biome specific εmax values in mixed plant functional types
(C3 trees and C4 grasses) savannas.

The objectives of this study were (1) to assess seasonal synchronies
and performances of various satellite vegetation products and models
for tracking seasonal variations in GPPEC along an ecological rainfall
gradient encompassing northern Australia mesic to xeric savannas;
(2) to examine the use of ecosystem light-use-efficiency (eLUE) frame-
work for up-scaling tower derived GPP to regional scales from entirely
remote sensing observations; and (3) to assess scale issues for extrapo-
lating tower GPP across biologic phenophases, including green-up and
brown-down periods.

2. Methods

2.1. Study area

This study focused on a sub-continental scale ecological rainfall gra-
dient of more than 1100 km, which is known as the North Australian
Tropical Transect (NATT) (Koch, Vitousek, Steffen, & Walker, 1995)
(Fig. 1). The NATT was conceptualized in the mid-1990s as part of the
International Geosphere Biosphere Programme (IGBP) (Koch et al.,
1995). Together with the Kalahari transect in southern Africa and the
SALT (Savanne à Long Terme) transect in West Africa, these three tran-
sects have been used extensively in the study of global savannas
(Walker, Steffen, Canadell, & Ingram, 1999).

Carbon flux measurements from four EC flux tower sites located
along the NATT transect were used (Fig. 1 & Table 1), including three
mesic Eucalypt woodland sites: Howard Springs, Adelaide Rivers, and
Daly River (Beringer et al., 2011) and a xeric Acacia woodland site: Ti
Tree (Cleverly et al., 2013; Eamus et al., 2013). These sites are part
of OzFlux (Australian and New Zealand Flux Research and Monitoring
Network) under TERN (Australian Terrestrial Ecosystem Research
Network). These sites represent the twomost common savanna classes
present in Australia, namely Eucalyptus (and closely-related Corymbia)
woodland and Acacia woodland.

2.2. Eddy covariance tower derived GPP (GPPEC)

The original Level 3 OzFlux data were pre-processed to ensure con-
sistency among sites and reduce the uncertainties in computed fluxes,
including general quality control assessment, removal of outliers, and
correction for low turbulence periods. A second-order Fourier regres-
sion was fitted to nighttime net ecosystem exchange (NEE) time series,
which is assumed to be representative of ecosystem respiration (Reco),
using the method proposed by Richardson and Hollinger (2005):

Reco ¼ f 0 þ s1 � sin Dπð Þ þ c1 � cos Dπð Þ þ s2 � sin 2� Dπð Þ þ c2
� cos 2� Dπð Þ þ ε ð4Þ
where f0, s1, c1, s2 and c2 are Fourier fitted coefficients,Dπ=DOY× 360/
365 (DOY: Day of Year), and ε is the regression residuals. We used this
method due to its minimal use of environmental covariates to compute
Reco (Richardson & Hollinger, 2005). GPP were then derived as GPP =
Reco−NEE. As the intent of this studywas to obtain a reliable time series
of GPP observations to comparewith satellite observations, we comput-
ed 8-day average GPP to match the temporal resolution of MODIS
products.

2.3. Meteorological and soil moisture data

Half-hourly values of air temperature (Ta, °C), precipitation, short-
wave incoming solar radiation (SWin, W m−2), and volumetric soil
water content (SWC, %) measured at 10 cm depth were obtained from
the flux tower sites. As with the fluxes, half-hourly measurements
were then aggregated to 8-day for comparisonwith satellite observations.

2.4. Satellite data

2.4.1. MODIS surface reflectances and vegetation indices
Approximately 13.5 years (February 2000–July 2013) of 8-day

500 m Surface Reflectance product (MOD09A1, Collection 5, tiles h30v10
and h30v11) (Vermote, Saleous, N. Z., & Justice, 2002) were obtained
through the online Data Pool at the NASA Land Processes Distributed
Active Archive Centre (LP DAAC), USGS/Earth Resources Observation
and Science (EROS) Centre, Sioux Falls, South Dakota (https://lpdaac.
usgs.gov/data_access). A 3 × 3 MOD09A1 500 m pixel window
(2.25 km2) was used to extract reflectances time series to match the
footprint of EC towers and to compute the vegetation indices. Within
the extracted reflectance time series, we selected data satisfying all of
the following conditions based on the 16-bit QC (500 m state flags)
and 32-bit QC (500 m reflectance band quality) layers provided along
with MOD09A1: (1) corrected product produced at ideal quality all
bands; (2) highest quality for band 1–7; (3) atmospheric correction
performed; (4) adjacency correction performed; (5) MOD35 cloud
flag indicated “clear”; (6) no cloud-shadow was detected; (7) low or
average aerosol quantities.

NDVI and EVI are widely used as proxies of canopy “greenness”, an
integrative composite property of green leaf area, green foliage cover,
structure, and leaf chlorophyll content (Myneni & Williams, 1994). VIs
are robust and seamless biophysical measures, computed identically
across all pixels in time and space regardless of biome type, land cover
condition, and soil type (Huete & Glenn, 2011). EVI was used as an
optimized version of NDVI that effectively reduces soil background
influences and atmospheric noise variations (Huete et al., 2002). The
equations defining NDVI (Rouse et al., 1973) and EVI are:

NDVI ¼ ρnir−ρred

ρnir þ ρred

EVI ¼ 2:5
ρnir−ρred

ρnir þ 6ρred−7:5ρblue þ 1

ð5Þ

where ρnir, ρred and ρblue are reflectances of the near infrared (841–
876 nm), red (620–670 nm), and blue (459–479 nm) bands of the
MODIS sensor, respectively. Hereafter we will refer NDVI and EVI
derived from MOD09A1 reflectances specifically as NDVIMOD09 and
EVIMOD09, respectively.

2.4.2. MODIS GPP product (GPPMOD17)
We used the global 1-km 8-day MODIS GPP product (MOD17A2,

Collection 055, tiles h30v10 and h30v11) from January 2000 through
December 2012 obtained from NASA LP DAAC and USGS EROS repos-
itory (https://lpdaac.usgs.gov/data_access) (Running et al., 2004). The
algorithm calculates daily GPP as a function of incoming solar radiation,
conversion coefficients, and environmental stresses (Running et al.,
2004). We used a 1 km2 window to extract MOD17A2 GPP time series

https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
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Table 1
Summary of EC flux tower sites in the NATT study area.

Site Longitude
(°E)

Latitude
(°S)

Elevation
(m)

Vegetation Type Overstorey Understorey Canopy
Height (m) a

Soil a MAP ± σ
(mm) b

Howard
Springs

131.150 12.495 64 Eucalypt Woodlands Eucalyptus miniata,
Erythrophleum chlorostachys,
Terminalia ferdinandiana

Sorghum spp. 18.9 red kandosol 1722 ± 341

Adelaide
Rivers

131.118 13.077 90 Tropical Eucalypt
Woodlands

E. tectifica, Planchonia careya,
Buchanania obovata

Sorghum spp. 12.5 yellow hydrosol 1692 ± 373

Daly River 131.383 14.159 52 Eucalypt Woodlands T. grandiflora, E. tetrodonta,
E. latifolia

Sorghum spp.,
Heteropogon triticeus

16.4 red kandosol 1295 ± 334

Ti Tree 133.249 22.283 606 Acacia Woodlands C. opaca, E. victrix,
Acacia aneura

Psydrax latifolia,
Thyridolepsis michelliana,
Eragrostis eriopoda,
Eriachne pulchella

6.5 red kandosol 443 ± 222

a Cited from OzFluxWeb site: www.OzFlux.org.au
b MAP = mean annual precipitation, calculated using Australian Bureau of Meteorology gridded rainfall data for each site using data of 12 hydrological years (2000.07.01–2012.06.30)

(Jones, Wang, & Fawcett, 2009). To calculate the annual rainfall, we used hydrological year defined from July 1 to following June 30, instead of calendar year.
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for each flux tower. We used the QA layers embedded in the MOD17A2
product to select data satisfying all the following: (1) MODLAND_QC
bits indicate good quality; (2) detectors apparently fine for up to 50%
of channels 1, 2; (3) no significant clouds present (clear).

2.4.3. MODIS LAI/fAPAR products (LAIMOD15 and fAPARMOD15)
For comparison, we also obtained MODIS 8-day global 1-km LAI/

fAPAR product (MOD15A2, Collection 5, tiles h30v10 and h30v11)
from February 2000 to May 2013 (Myneni et al., 2002) through NASA
LP DAAC and USGS EROS repository (https://lpdaac.usgs.gov/data_
access). The main algorithm for retrieval of LAI/fAPAR is based on a
biome specific lookup table (LUT), which is generated using a three-
dimensional radiative transfer (RT) model or using vegetation indices
when the main algorithm failed (Myneni et al., 2002). For each field
site, a 1 km2windowwas applied to obtain the LAIMOD15 and fAPARMOD15

time series.Within the extracted time series, we selected the data satis-
fying all of the following conditions (1) main (RT) algorithm used, best
results possible (no saturation); (2) significant clouds not present
(clear); (3) no or low atmospheric aerosol.

2.4.4. MODIS LST product, daytime (LSTMOD11)
We obtained 1-km 8-day MODIS global land surface temperature

(LST) product (MOD11A2, Collection 5, tiles h30v10 and h30v11) from
NASA LP DAAC and USGS EROS repository (https://lpdaac.usgs.gov/
data_access). The MOD11 LST product was generated based on the gen-
eralized split-window algorithm (Wan & Dozier, 1996). At each flux
tower site, we applied a 1 km2 window to obtain the daytime LSTMOD11

time series. We selected the LSTMOD11 observations satisfying all the fol-
lowing conditions: (1) LST produced with good quality; (2) good data
quality of L1B in 7 TIR (thermal infrared) bands; (3) average emissivity
error ≤ 0.02; (4) average LST error ≤ 2 K.

2.5. Variations of EVI-based GPP models

We compared the performances of two variations of widely used
EVI-based GPP models, namely the T-G (Temperature and Greenness)
model (Sims et al., 2008) and G-R (Greenness and Radiation) model
(Gitelson et al., 2006).

2.5.1. Temperature–Greenness model
The T-G model was formulated as (Sims et al., 2008):

GPP∝EVIscaled � LSTscaled ð6Þ

where the EVIscaled was calculated following Sims et al. (2008):

EVIscaled ¼ EVI−0:1 ð7Þ
The LSTscaled can be computed as (Sims et al., 2008):

LSTscaled ¼ min LST=30ð Þ; 2:5− 0:05� LSTð Þð Þ½ � ð8Þ

LSTscaled sets GPP to zero when LST is less than zero and thus defines
the inactive winter period (Sims et al., 2008). LSTscaled also accounts for
low temperature limitations to photosynthesis when LST is between 0
and 30 °C, as well as accounts for high temperature and high VPD stress
in sites that exceed LST values of 30 °C (Sims et al., 2008).

2.5.2. Greenness–Radiation model
The G-R model was formulated as (Gitelson et al., 2006; Peng et al.,

2013):

GPP∝VIchl � PARTOC ð9Þ

where VIchl is the chlorophyll-related spectral index. We used EVI as
VIchl following Wu, Chen, and Huang (2011). PARTOC is the tower
measured PAR incident at the top-of-canopy (MJ m−2 d−1), computed
as 50% of the tower measured shortwave incoming radiation (MJ m−2

d−1) following Papaioannou et al. (1993).
PARTOC can be obtained at flux tower sites but not across the entire

region. Therefore, in addition to the original G-R model driven by
PARTOC, we also proposed a modified version by replacing PARTOC with
PAR incident at the top-of-atmosphere (PARTOA) to extrapolate beyond
the tower footprint. The modified G-R model was formulated as:

GPP∝EVI� PARTOA ð10Þ

where PARTOA (MJ m−2 d−1) was computed as the 40% of top-of-
atmosphere incoming solar radiation (RTOA, MJ m−2 d−1) following
Monteith and Unsworth (2013). RTOA, also known as extraterrestrial
radiation, is the amount of global horizontal radiation that a location
on Earth would receive if there was no atmosphere or clouds (i.e., in
outer space). The RTOA can be computed from Earth-Sun geometry:

RTOA ¼ S0
π

r0
r

� �2
H sinϕ sinδþ sinH cosϕ cosδð Þ ð11Þ

where S0 is solar constant (1366Wm−2 or 118.02 MJ m2 d−1); r is the
Earth-Sun distance; r0 is the mean Earth-Sun distance; H is sun hour
angle at sunset; is latitude (°); and δ is solar declination (°).

The PARTOA used in this study is essentially similar to potential PAR
(PARpotential, the maximal PAR when atmospheric gases and aerosols
are minimal) proposed by Gitelson et al. (2012), as both replace site-
basedmeasures of PARTOC to estimate GPP based on solely remote sens-
ing data and reduce the uncertainties associated with high frequency

https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
http://www.OzFlux.org.au
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fluctuations of PARTOC that result in noise and which do not affect plant
photosynthesis (Gitelson et al., 2012; Peng et al., 2013). It should be
noted that the computation of PARpotential requires long term PARTOC

measurements for calibration purposes (Gitelson et al., 2012; Peng
et al., 2013), being modelled using 6S (Second Simulation of a Satellite
Signal in the Solar Spectrum) radiative transfer code (Kotchenova &
Vermote, 2007; Vermote et al., 1997), or modelled from a look-up
table method (Lyapustin, 2003). In contrast, the computation of PARTOA
only requires several readily available variables such as date and lati-
tude, thereby eliminating the need for long-term PARTOCmeasurements
or use of more complicated algorithms, thus the modified G-R model
facilitates the extension from flux tower to regional scales.

2.6. Ecosystem light-use-efficiency model

Traditional LUE models require separate estimation of fAPAR and ε
to compute GPP. However, the coupling of EVI × PARTOC (Eq. (9)) for es-
timating GPP implies that EVI can be more explicitly used as a measure
of ecosystem light-use-efficiency (eLUE), defined as the ratio between
GPP and PARTOC:

eLUETOC ¼ GPP
PARTOC

¼ f EVIð Þ ð12Þ

where eLUETOC (g C MJ−1) was computed for each site using 8-d aver-
age GPP (g C m−2 d−1) and 8-d average PARTOC (MJ m−2 d−1); f(EVI)
was obtained through the regression of eLUETOC against EVI. Once the
eLUETOC was estimated, an eLUE model for predicting GPP driven by
PARTOC was formulated as:

GPP ¼ eLUETOC � PARTOC ð13Þ

Similarly, the eLUE can also be defined as the ratio between GPP and
PARTOA:

eLUETOA ¼ GPP
PARTOA

¼ f EVIð Þ ð14Þ

where eLUETOA (g C MJ−1) was computed for each site using 8-d aver-
age GPP (g C m−2 d−1) and 8-d average PARTOA (MJ m−2 d−1); f(EVI)
was obtained through the regression of eLUETOA against EVI. Once
eLUETOA was estimated, an eLUE model for predicting GPP driven by
PARTOA can be formulated as:

GPP ¼ eLUETOA � PARTOA ð15Þ

To establish the relationship between eLUE and EVI (i.e., to calibrate
the eLUE model) and provide independent validation, the dataset from
all four NATT sites (354 samples)were first randomized and then divid-
ed equally into two subsets, namely calibration dataset (177 samples)
and validation dataset (177 samples) respectively. The GPPMOD17 dataset
was also divided into calibration and validation subsets only for com-
parison with the other three EVI-based GPP models.

2.7. Data analysis and statistics

Due to data gaps in satellite observations and EC tower measure-
ments, an immediate comparison of the correlations between satellite
indices/products and GPPEC may result in biased conclusions due to
different subsets of observations. For example, the proportion of 8-day
gaps across four NATT sites in LAIMOD09, GPPMOD17, EVIMOD09 and
GPPEC were 22%, 16%, 12% and 21% respectively. To achieve a more
valid comparison of the performances of satellite indices in tracking
seasonal variations in GPPEC, we removed tower observations corre-
sponding to satellite index or PARmeasurements missing for a particu-
lar site-date. Thus, comparisons among all satellite indices as well as
variations of EVI-based GPP models were based on exactly the same
subset of GPPEC measurements across 4 EC flux tower sites (total of
354, 8-day samples).

To assess the performances for up-scaling the tower derived GPP
across biological phenophases, the dataset of each site was further di-
vided into two subsets, namely the green-up phase subset and brown-
down phase subset. The green-up phase was defined as the period
fromminimumGPP preceding the growing season to the peak (maximal
GPP), and the brown-down phase was defined as the subsequent
period from peak to minimum GPP (i.e., following the cessation canopy
greening).

We used three tests to compare the predictions of satellite indices/
products to GPPEC. First, the coefficient of determination (R2) was com-
puted using the ordinary least-squares (OLS) algorithm to measure the
variance of GPPEC that is explained by the satellite indices/products.
Second, the analysis of covariance (ANCOVA)wasused to test the signif-
icance of the differences in linear regression slope and intercept be-
tween regression models. Third, we calculated the root mean squared
error (RMSE) between measured and modelled GPP values to assess
the model accuracy:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

Obs−Predð Þ2
n

s
ð16Þ

where Obs is the tower measured GPP, Pred is the satellite estimated
GPP.

We computed the coefficient of variation (CV) for quantifying the
inter-annual variations in GPP. The CV can be computed as:

CV ¼ σ
μj j � 100 ð17Þ

where σ is standard deviation of annual GPP (g C m−2 yr−1), |μ| is
the absolute value of the mean annual GPP (g C m−2 yr−1).

In this analysis, partial correlation analysis was applied to assess the
degree of association between independent and dependent variables
while controlling for the effect of another independent variable. Data
processing, statistical analysis and visualization were performed in R
scientific computation environment (version 3.0.2, R Core Team, 2013)
and associated packages contributed by user community (http://cran.
r-project.org).

3. Results

3.1. Seasonal and inter-annual variations in meteorology and GPPEC

The seasonal and inter-annual dynamics in EC tower derived GPP
(GPPEC) and meteorological variables at four NATT flux tower sites are
shown in Fig. 2. Rainfall was highly seasonal with distinct wet and dry
seasons (Fig. 2). The intra-annual distribution of rainfall was more ran-
dom at the southern, xeric site (Ti Tree), resulting in a rainfall pulse-
driven vegetation growth patterns (Fig. 2D). Air temperature at these
tropical savanna sites was generally above 10 °C year round (Fig. 2).
Seasonal peak values in GPPEC decreased from more than 9.25 g C
m−2 d−1 at themost northern, humid Eucalyptwoodland site (Howard
Springs) to 4.89 g C m−2 d−1 at the most southern, xeric Acaciawood-
land site (Ti Tree) (Fig. 2). Overall, GPPEC followed rainfall most closely
with GPPEC larger in the wet season than dry season (Fig. 2).

3.2. Comparison of satellite products and models in tracking tower GPP

The scatter plots betweenMODIS vegetation products and GPPEC for
each of the four NATT flux tower sites are shown in Fig. 3. fAPARMOD15

http://cran.r-project.org
http://cran.r-project.org
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Fig. 2. Seasonal dynamics and inter-annual variations of EC tower derived 8-day averaged GPP (GPPEC, g Cm−2 d−1), photosynthetically active radiation at top-of-canopy (PARTOC,Wm−2)
and at top-of-atmosphere (PARTOA, W m−2), air temperature (Ta, °C), and daily precipitation (mm d−1) at four flux tower sites. (A) Howard Springs (Eucalypt woodland); (B) Adelaide
River (Eucalypt woodland); (C) Daly River (Eucalypt woodland); (D) Ti Tree (Acaciawoodland).
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and GPPMOD17 were only moderately correlated with GPPEC, with R2

values of GPPMOD17 less than 0.40 at three of the four sites (Fig. 3B–C;
Table 2). Overall, NDVIMOD09 relationships with GPPEC were equivalent
to or a slight improvement to those of fPARMOD15 (Fig. 3D, Table 2). In
contrast, LAIMOD15 and EVIMOD09 were much more strongly correlated
with GPPEC, with R2 values between 0.60 and 0.90 (Fig. 3A, E; Table 2).
EVIMOD09 was slightly more stable with R2 larger than 0.66 across all
individual sites (Fig. 3E; Table 2).

A cross-site analysis showed that NDVIMOD09, fAPARMOD15 and
GPPMOD17 could explain 77% (F1, 352 = 1197, p b 0.0001), 72% (F1, 352 =
919.8, p b 0.0001) and 58% (F1, 352 = 491.2, p b 0.0001) of seasonal
variations in GPPEC, respectively (Fig. 4B–D; Table 2). In comparison,
LAIMOD15 and EVIMOD09 explained 80% (F1, 352 = 1412, p b 0.0001) and
84%(F1, 352= 1871,pb 0.0001)of seasonal variations inGPPEC, respective-
ly (Fig. 4A, E; Table 2). Overall, the EVIMOD09 and LAIMOD15 products were
the best satellite measures for both individual-site and cross-site esti-
mations of GPPEC, thus for regional scaling along the NATT study area,
we continued our analysis using the slightly better performing EVIMOD09.

The coupling of EVIwith LSTscaled in the T-Gmodel resulted in no im-
provement in correlations with GPPEC compared to only EVIMOD09 at all
sites (cf. Figs. 3E and 5A). In contrast, coupling of EVI with PARTOC in the
G-R model improved correlations at Adelaide River (R2 = 0.86, F1, 41 =
245, p b 0.0001) and Ti Tree sites (R2= 0.79, F1, 85= 317.2, p b 0.0001)
(cf. Figs. 3E and 5B) relative to EVIMOD09 alone. The coupling of EVI with

image of Fig.�2


260 X. Ma et al. / Remote Sensing of Environment 154 (2014) 253–271

image of Fig.�3


Table 2
Summary of the coefficients of determination (R2) between EC tower derived GPP versus
MOD15A2 LAI/fAPAR, MOD09A1 NDVI/EVI, MOD17A2 GPP and the products of EVI and
scaled-LST, tower measured PAR (PARTOC), and top-of-atmosphere PAR (PARTOA) at four
NATT sites. The highest R2 for each site or for cross-sites was highlighted in bold.

Predictor Cross-sites Howard
Springs

Adelaide
River

Daly
River

Ti Tree

LAIMOD15 0.80 0.59 0.90 0.69 0.77
fAPARMOD15 0.72 0.38 0.79 0.63 0.52
GPPMOD17 0.58 0.38 0.69 0.37 0.32
NDVIMOD09 0.77 0.58 0.77 0.70 0.47
EVIMOD09 0.84 0.74 0.83 0.78 0.66
EVI × LSTscaled 0.81 0.70 0.78 0.69 0.65
EVI × PARTOC 0.85 0.69 0.86 0.75 0.79
EVI × PARTOA 0.87 0.78 0.89 0.80 0.80
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PARTOA resulted in further improvements at all sites, with R2 values
ranging between 0.78 and 0.89 over the different savanna vegetation
classes and climatic conditions (cf. Figs. 3E and 5C).

In the cross-site analyses, the T-G model decreased the R2 to 0.81
(F1, 352 = 1482, p b 0.0001) compared with EVIMOD09 alone (cf. Figs. 4E
and 6A), while the G-Rmodels improved the R2 to 0.85 (F1, 352 = 1964,
p b 0.0001) and 0.87 (R2 = 0.87, F1, 352 = 2276, p b 0.0001) for PARTOC
and PARTOA respectively (cf. Figs. 4E and 6B, C).

3.3. Disentangling the confounding effect of rainfall and soil moisture
content on the relationships between GPP and PARTOA

We found that coupling EVIMOD09 and PARTOA provided the best
model of GPPEC prediction across all NATT sites. However, PARTOA was
also positively correlated with rainfall (R = 0.42, p b 0.001) and soil
water content (SWC) (R = 0.40, p b 0.001) across all four sites. Since
rainfall and SWC, which are primary environmental drivers of savanna
photosynthesis, were both positively correlated with GPPEC (R = 0.52
and 0.69 respectively, p b 0.001), PARTOA may be providing surrogate
information on rainfall and SWC seasonality. To disentangle the
confounding effect of rainfall and SWC and to determinewhether incor-
poration of PARTOA can provide independent and additive predictive
ability for predicting GPPEC relative to rainfall and SWC, we conducted
a partial correlation analysis to assess the degree of association between
PARTOA and GPPEC, while controlling the effect of rainfall and SWC. Re-
sults showed that when the effect of rainfall was held constant, PARTOA

and GPPEC remained significantly correlated (R = 0.40, p b 0.001), al-
though the correlationwasweaker than the simple correlation between
PARTOA and GPPEC (R = 0.54, p b 0.001).

We also found that SWC alone could explain 48% of the variance in
seasonal GPPEC variation across all four NATT sites (p b 0.001), while
adding PARTOA increased R2 to 0.57 (p b 0.001). Partial correlation anal-
ysis showed that when the effect of SWCwas held constant, PARTOA and
GPPEC were still significantly and positively correlated (R = 0.40,
p b 0.001). These results show that PARTOA provides independent and
additive information for predicting savanna GPPEC relative to rainfall
and SWC across the four NATT sites.

Finally, we ran an analysis to assess the predictive power of multiple
regression models for predicting GPPEC using EVI, PARTOA and SWC
across the NATT sites (Table 3). The model using only EVIMOD09 has
the highest uncertainty (R2 = 0.84, p b 0.0001, RMSE = 0.82 g C m−2

d−1), while adding SWC increased model performance (R2 = 0.87,
p b 0.0001, RMSE= 0.76 g C m−2 d−1), and with further incorporation
of PARTOA provided the best GPPEC predictive power (R2 = 0.88,
p b 0.0001, RMSE = 0.74 g C m−2 d−1) (Table 3). Because EVIMOD09

already expressed a part of the information of SWC (correlation coeffi-
cient between EVIMOD09 and SWC was 0.56, p b 0.0001), and to keep
Fig. 3. Individual site relationships between satellite indices and EC tower GPP at 8-d time scal
(GPPMOD17); (D)MOD09A1NDVI (NDVIMOD09); (E)MOD09A1 EVI (EVIMOD09). The red dashed l
confidence intervals (grey shaded area).
our model based entirely remote sensing data, we decided not to in-
clude SWC into our regional GPP model.

3.4. eLUE models for up-scaling tower GPP

We examined the use of EVIMOD09 as a measure of eLUE (defined as
GPP/PAR) and analyzed the direct relationships between eLUE and
EVIMOD09 using PARTOC (eLUETOC) and PARTOA (eLUETOA). Fig. 7 presents
the cross-site relationships between eLUE and EVIMOD09 for calibration
and validation datasets, respectively. The regression coefficients and
predictive errors are summarized in Table 4. Overall, EVIMOD09 correlat-
ed strongly with both eLUETOC (R2 = 0.84, F1, 175 = 902.7, p b 0.0001,
RMSE = 0.0733 g C m−2 MJ−1) and eLUETOA (R2 = 0.81, F1, 175 =
1003, p b 0.0001, RMSE = 0.0534 g C m−2 MJ−1) in the calibration
dataset (Fig. 7, Table 4). Likewise in the validation dataset, EVIMOD09

showed a strong correlation with eLUETOC (R2 = 0.84, F1, 175 = 894.3,
p b 0.0001, RMSE = 0.0753 g C m−2 MJ−1) and eLUETOA (R2 = 0.85,
F1, 175 = 1003, p b 0.0001, RMSE = 0.0500 g C m−2 MJ−1) (Fig. 7,
Table 4), suggesting that spatial and seasonal variations in eLUE can
be captured by EVIMOD09 across the four NATT sites.

The cross-site linear regression model for calculation of eLUETOC
using EVIMOD09 was obtained from the calibration dataset as:

eLUETOC ¼ 1:78� EVIMOD09−dð Þ ð18Þ

where d (0.08) is an offset to subtract the contribution of soil background
and adjust EVIMOD09 to zero when GPP is 0 g C m−2 d−1 as estimated
through inversion of the cross-site GPPEC ~ EVIMOD09 linear regression
model. The cross-site linear regression model for calculation of eLUETOA
using EVIMOD09 was similarly obtained from the calibration dataset as:

eLUETOA ¼ 1:17� EVIMOD09−dð Þ þ 0:03 ð19Þ

Consequently, amodel for calculatingGPP using eLUETOC and PARTOC

was constructed in the sense of the eLUE concept as:

GPP ¼ 1:78� EVIMOD09−0:08½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{eLUETOC

�PARTOC
ð20Þ

Similarly, amodel for calculatingGPP using eLUETOA and PARTOAwas
constructed as:

GPP ¼ 1:17� EVIMOD09−0:08ð Þ½ � þ 0:03�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{eLUETOA

�PARTOA
ð21Þ

Eqs. (20) and (21) represent two models of savanna landscape GPP
that use either PARTOC or PARTOA in combination with EVIMOD09 param-
eterized eLUE asmodel input. Hereafter wewill refer Eqs. (20) and (21)
as eLUETOC and eLUETOA models, respectively.

Fig. 8 presents the cross-site relationships between GPPEC and GPP
predicted from the eLUE models for the calibration and validation
datasets. For comparison,we also present theGPPMOD17 andGPP simulat-
ed from the EVIMOD09 alone (GPPEVI). The model for calculating GPPEVI,
i.e., GPPEVI = (EVIMOD09 − 0.08) × 18.6, was derived from the linear re-
gression between GPPEC and EVIMOD09 using the calibration dataset.

Overall, the eLUETOC and eLUETOAmodels demonstrated better perfor-
mance in predicting GPPEC than GPPMOD17 or GPPEVI (Fig. 8; Table 5). In
the validation dataset, the R2 between GPPEC and GPP predicted using
the eLUETOC model (GPPeLUE-TOC) was 0.85 (F1, 175 = 1017, p b 0.0001,
RMSE = 0.76 g C m−2 d−1) (Fig. 8C; Table 5). The correlation between
GPPEC and GPP predicted using the eLUETOA model (GPPeLUE-TOA) was
stronger than with the eLUETOC model (R2 = 0.88, F1, 175 = 1297,
es. (A) MOD15A2 LAI (LAIMOD15); (B) MOD15A2 fAPAR (fAPARMOD15); (C) MOD17A2 GPP
ine on panel (C) is the 1:1 symmetric line. The blue solid line is the regression linewith 95%



Fig. 4.Cross-site comparisons of satellite indices and EC towermeasured GPP across four NATT sites. (A)MOD15A2 LAI (LAIMOD15); (B)MOD15A2 fAPAR (fAPARMOD15); (C)MOD17A2GPP
(GPPMOD17); (D)MOD09A1NDVI (NDVIMOD09); (E)MOD09A1 EVI (EVIMOD09). All p b 0.0001. All satellite indices are 8-d temporal resolution. The blue solid line is the regression linewith
95% confidence intervals (grey shaded area).
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p b 0.0001, RMSE=0.70 g Cm−2 d−1) (Fig. 8D; Table 5). The GPPmodel
based on EVIMOD09 alone also performed well for the validation dataset
(R2= 0.85, F1, 175= 978.6, p b 0.0001, RMSE=0.78 g Cm−2 d−1), sug-
gesting that EVIMOD09, as a measure of eLUE, can explain a large propor-
tion of variations in GPPEC (Fig. 8B; Table 5). In contrast, the predictive
power of GPPMOD17 to GPPEC was weak and with lower accuracy
(R2 = 0.58, F1, 175 = 240, p b 0.0001, RMSE = 1.43 g C m−2 d−1;
Fig. 8A; Table 5).

Fig. 9 presents a comparison of time series among satellite and tower
derived GPP (GPPeLUE-TOC, GPPeLUE-TOA, GPPMOD17 and GPPEC) at the four
flux tower sites. Both GPPeLUE-TOC and GPPeLUE-TOAmatched the seasonal
progression of GPPEC quitewell (Fig. 9). At the Howard Springs and Daly
River sites (Eucalyptus woodlands), GPPeLUE-TOA overestimated GPPEC
during the dry season in some, but not all years (Fig. 9A-C). GPPMOD17
tended to underestimate productivity during the late dry season
to early wet season, except in the Acaciawoodland (Ti Tree) where un-
derestimation occurred during the wet season (Fig. 9). The Acacia
woodland was also distinct among the NATT sites with GPPeLUE and
GPPMOD17 failing to capture the largest and smallest values of GPPEC
(Fig. 9E).

3.5. Extension of tower GPP across biologic phenophases

Fig. 10 presents the site-level relationships between satellite derived
GPP and GPPEC during green-up and brown-down phenophases across
the four NATT sites. Phenophase stage showed distinct relationships
between satellite derived GPP and GPPEC at the different NATT sites
(Fig. 10). At Howard Springs, the slope of the GPPEC ~ GPPMOD17

image of Fig.�4


Fig. 5. Site-level relationships between EC towermeasured GPP and products of EVI with satellite derived or towermeasuredmeteorological variables. The blue solid line is the regression
linewith 95% confidence intervals (grey shadedarea). LSTscaled is scaledMODIS daytime land surface temperature (MOD11). PARTOC and PARTOA are PAR incident at top-of-canopy and top-
of-atmosphere respectively.
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relationship during the green-up phase was not significantly different
(F1, 103 =0.296, p = 0.588) from the slope during the brown-down
phase; however, therewas a very strongoffset bias from the1:1 symme-
try line, in which the intercept of the green-up relationships (3.20) was
significantly larger (F1, 103 = 64.04, p b 0.001) than the intercept of the
relationship during brown-down (1.29) (Fig. 10A). At Daly River, the in-
tercept during green-up (2.47) was also significantly larger (F1, 115 =
8.13, p b 0.001) than in brown-down (1.48), although the slope was
not significantly different between phenophases (F1, 115 = 2.54, p =
0.114) (Fig. 10A). At Adelaide River, the green-up slopewas significantly
smaller than the brown-down slope (F1, 40 = 4.54, p = 0.040)
(Fig. 10A), while the difference between phenophase responses
(i.e., the slope of the GPPEC ~ GPPMOD17 relationship) was most pro-
nounced at the Ti Tree site (F1, 85 = 18.92, p b 0.001) (Fig. 10A).

Phenophase-dependent bias was reduced in the GPPEC ~ GPPEVI
relationships, but remained significant at Howard Springs (F1, 103 =
7.42, p = 0.008), Daly River (F1, 115 = 8.08, p = 0.005), and Ti Tree
(F1, 85 = 5.03, p = 0.024), while phenophase slopes were not signifi-
cantly different at Adelaide River (F1, 40 = 2.52, p = 0.121) (Fig. 10B).

Phenophase differences were reduced further, but not removed
altogether, by use of the eLUE models (Fig. 10C, D). In the GPPEC ~
GPPeLUE-TOC relationships, phenophase-dependent slopes were not
significantly different at Adelaide River (F1, 40 = 0.73, p = 0.400) and
Ti Tree (F1, 85 = 0.75, p = 0.389), but differences in slope remained at
Howard Springs (F1, 103 = 10.27, p = 0.002) and Daly River (F1, 115 =
14.91, p b .001) (Fig. 10C). In the GPPEC ~ GPPeLUE-TOA relationships,
the phenophase slopes were significantly different at Daly River
(F1, 115 = 6.30, p = 0.005) and Howard Springs (F1, 103 = 4.94,
p = 0.029) sites, while only marginally significant at Adelaide
River (F1, 40 = 4.14, p = 0.049) and Ti Tree (F1, 85 = 3.57, p =
0.069) sites (Fig. 10D).

3.6. Biogeographic patterns of savanna GPP over the NATT study area

Fig. 11 illustrates the strong precipitation controls on the spatial and
temporal biogeographic patterns of savanna GPP simulated using the
eLUETOA model (Eq. (21)) over the NATT study area. Mean annual GPP
decreased from 1400 g C m−2 yr−1 to less than 400 g C m−2 yr−1

from the northern humid region to southern xeric region (Fig. 11A). As-
sociated with decreasing mean annual GPP, inter-annual variation in
GPP, quantified as the coefficient of variation (CV) of GPP, was generally
less than 10% over most northern humid forests and woodlands but
increased to more than 30% over the southern xeric grassland and
Acacia woodland (Fig. 11B).

Fig. 11 also shows a comparison of biogeographic patterns of savan-
na GPP between wet (January–March) and dry (July–September)
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Fig. 6. Cross-site comparisons of scaled temperature and radiation products of EVI and EC tower measured GPP (GPPEC) across four NATT sites. All p b 0.0001. All satellite indices are 8-d
temporal resolution. The blue solid line is the regression line with 95% confidence intervals (grey shaded area). LSTscaled is scaled MODIS daytime land surface temperature (MOD11).
PARTOC and PARTOA are PAR incident at top-of-canopy and top-of-atmosphere respectively.
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seasons. Fromnorth to south, themean daily GPP during thewet season
decreased by 66% from more than 6 g C m−2 d−1 in the coastal, humid
region dominated by Eucalyptus forests andwoodlands to less than2 g C
m−2 d−1 over the southern, xeric areas, where hummock grasslands
and Acacia woodlands and shrublands were the dominant vegetation
types (Fig. 11C). However, during the dry season, GPP was small with
little spatial variability across the NATT (Fig. 11D). Region-wide mean
daily GPP during the wet season (2.94 ± 1.44 g C m−2 d−1) was al-
most 2 times larger than the mean daily GPP in the dry season (1.48 ±
0.61 g C m−2 d−1), reflecting the large impacts of seasonal rainfall dis-
tribution on savanna GPP.
4. Discussion

4.1. Tracking EC tower derived GPP with satellite observations

We found that amongfive satellite vegetation products, EVI correlated
best to EC flux tower derived GPP (GPPEC) across the four mesic-to-xeric
NATT sites (R2 = 0.84; Fig. 4E). This was further improved by coupling
EVI with PARTOC (R2 = 0.85; Fig. 6B) or PARTOA (R2 = 0.87; Fig. 6C),
Table 3
Results of multiple regression models using EVIMOD09, PARTOA, and SWC for predicting
GPPEC across four NATT sites. The unit of the RMSE is in g C m−2 d−1. F is the F-value, df
is the degrees of freedom, p is the p-value.

Models R2 F df p RMSE

GPPEC = f(EVIMOD09) 0.84 1763 1, 332 b 0.0001 0.82
GPPEC = f(EVIMOD09, SWC) 0.87 1062 2, 331 b 0.0001 0.76
GPPEC = f(EVIMOD09 × PARTOA) 0.86 2155 1, 332 b 0.0001 0.79
GPPEC = f(EVIMOD09 × PARTOA, SWC) 0.88 1242 2, 331 b 0.0001 0.74
enabling EVI to be used as a measure of eLUE (GPP/PAR). Two savanna
landscape eLUE models parameterized with EVI and driven by PARTOC

or PARTOA, were further analyzed (the eLUETOC and eLUETOA models,
respectively) for estimation of GPP. The eLUE models resulted in
improved GPP predictions across the mesic and xeric savanna sites,
suggesting that region-wide GPP can be predicted with reasonable
accuracy from entirely satellite remote sensing observations without
dependence on interpolated ground meteorology.

We found that GPPMOD17was onlymoderately correlatedwithGPPEC
(R2 = 0.58; Fig. 4C). All other satellite products (except fAPARMOD15 at
Howard Springs) showed much better performances than GPPMOD17 in
tracking GPPEC. As fAPARMOD15 was better correlated to GPPEC than
GPPMOD17 (cf. Fig. 3B and C), the introduction of meteorological inputs
into GPPMOD17 degraded the correlation between GPPMOD17 and GPPEC,
demonstrating some of the difficulties in accurate estimations of LUE
at landscape scales (Kanniah et al., 2009; Sjöström et al., 2013).

Coupling EVI with temperature and radiation measures showed
mixed results in predicting savanna GPP. There were no improvements
in using the Temperature-Greenness (T-G) model (EVIscaled × LSTscaled)
for predicting GPP compared with using EVI alone over the NATT study
area (cf. Figs. 3E and 5A). This may be due to temperature not being
a limiting factor or significant driver of photosynthesis in tropical
savannas (Cleverly et al., 2013; Kanniah et al., 2009; Leuning, Cleugh,
Zegelin, & Hughes, 2005), or that LSTscaled was not an appropriate surro-
gate measure for radiation. In contrast, we found significant improve-
ments when the Greenness-Radiation (G-R) models (EVI × PAR) were
used for predicting GPPEC relative to EVI alone (cf. Figs. 3E–5B and C),
reflecting the importance of the quantity (absorbed) of radiation as a
critical driver of savanna vegetation productivity (Kanniah, Beringer, &
Hutley, 2013a,2013b; Whitley et al., 2011).

Although we didn’t find any improvement in GPP estimates using
the T-G model over this tropical study area, it is likely that a
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Fig. 7. Cross-site relationships between EVI and eLUE for calibration and validation datasets respectively across four NATT sites. (A) EVI and eLUETOC; (B) EVI and eLUETOA. The blue solid
line is the regression linewith 95% confidence intervals (grey shaded area). eLUETOC=GPPEC/PARTOC, and eLUETOA=GPPEC/PARTOA. PARTOC and PARTOA are PAR incident at top-of-canopy
and top-of-atmosphere respectively.
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temperature factorwould be important in regionswhere temperature is
limiting photosynthesis. In this study, we found that incorporating a
temperature scalar (LST), although shown toworkwell in temperate re-
gions (e.g., Sims et al., 2008; Wu et al., 2012), decreased model perfor-
mance in this tropical study where vegetation species are well
adapted to the warm environment (e.g., C4 grasses dominate the
understorey in tropical savannas). Consequently, future studies are
needed to develop a generalized framework that can be applied consis-
tently across wider climatic conditions through optimized parameteri-
zations of environmental factors.

We found that coupling EVI with PARTOA resulted in better predic-
tions of GPP than by coupling EVI with PARTOC (cf. Fig. 5B and C). This
was unexpected as tower measured PARTOC theoretically should inte-
grate diurnal and seasonal variations in local weather conditions. How-
ever, other studies conducted over cropland and grassland flux tower
sites have also found that coupling EVI with potential PAR (maximal
value of PARTOC) provided better accuracy in predicting GPP than cou-
pling EVI with PARTOC (Gitelson et al., 2012; Peng et al., 2013; Rossini
et al., 2014). Gitelson et al. (2012) attributed the better performance
of PARpotential insteadof actual PARTOC to saturation of GPP versus PARTOC

at their soybean cropland, noting that a decrease in PARTOC may not
correspond to a decrease in GPP. Over northern Australian savannas,
Kanniah et al. (2013a, 2013b) found that the negative effect of decreases
in PARTOC due to wet season cloud cover on rates of photosynthesis
Table 4
Summary of regression coefficients and RMSE between eLUE and MODIS EVI across four
NATT sites, for calibration and validation datasets, respectively. The analysis was based
on the 8-d temporal resolution time series. The unit of the RMSE is in g C MJ−1. F is the
F-value, df is the degrees of freedom, p is the p-value.

Dataset eLUETOC = β0 + β1 × EVI

β0 β1 R2 F df p RMSE

Calibration 0.0000 1.7771 0.84 902.7 1, 175 b0.0001 0.0733
Validation −0.0176 1.8628 0.84 894.3 1, 175 b0.0001 0.0753

Dataset eLUETOA = β0 + β1 × EVI

β0 β1 R2 F df p RMSE

Calibration 0.0303 1.1732 0.81 743 1, 175 b0.0001 0.0534
Validation 0.0046 1.2731 0.85 1003 1, 175 b0.0001 0.0500
were partly compensated by enhanced ε due to the increased propor-
tion of diffuse radiation. Therefore, multiplying EVI by PARTOA may
mimic PARpotential and better approximate radiation controls on GPP.
4.2. Phenophase impacts on the up-scaling of GPP across seasons

Large discrepancies in the relationship between GPPMOD17 and
GPPEC, and smaller but significant differences in the relationships be-
tween GPPEVI and GPPEC, were found between green-up and brown-
down phenophases at all NATT study sites, particularly at the xeric Ti
Tree site (Fig. 10). Phenophase relationships differed in their intercepts
and slopes, and they also showed strongnonlinearities during thebrown-
down phase (Fig. 10). By contrast, the phenophase-dependencies were
minimized with the use of eLUE models in the up-scaling of GPP, such
that the inclusion of PAR greatly reduced seasonal hysteresis at the
Adelaide River and Ti Tree sites (Fig. 10D).

This reduction of phenologic hysteresis in the eLUEmodelwas partly
attributed to the differing light conditions encountered between the
green-up and brown-down phases. For example, during the green-up
at Ti Tree (Nov 2010–Feb 2011), mean PARTOC and PARTOA were
12.82 MJ m−2 d−1 and 16.61 MJ m−2 d−1 respectively. In contrast,
mean PARTOC and PARTOA during brown-down (March to July 2011)
were 9.11 MJ m−2 d−1 and 11.11 MJ m−2 d−1. This represented a
29% and 33% reduction in PARTOC and PARTOA, respectively, during the
brown-down phase resulting in different radiation environments across
phenophases. Therefore, equal values of EVI in green-up and brown-
down phases resulted in differing GPP values due to differences in radi-
ation (duration and intensity). Such differences in seasonal light condi-
tions across phenophases were largely normalized in eLUE (GPP/PAR).

The use of eLUE, and in particular PARTOA, may also correct for pho-
toperiod effects on photosynthetic capacity. In a recent study, Bauerle
et al. (2012) reported that photoperiod explained more seasonal varia-
tion in photosynthetic capacity across 23 tree species than temperature.
They also suggested that photoperiod-associated declines in photosyn-
thetic capacity could limit autumn carbon gain in forests, even under fa-
vorable autumn conditions (Bauerle et al., 2012). Since photoperiod
(day length) is near-linearly correlated with PARTOA (R2 = 0.95,
F1,4352, p b 0.0001) across the four NATT sites, its incorporation in an
eLUE model may potentially correct for photoperiod effects on
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Fig. 8. Cross-site relationships between EC tower derived GPP (GPPEC) and MOD17A2 GPP (GPPMOD17), GPP simulated using EVI alone (GPPEVI), and GPP simulated using eLUE models
(GPPeLUE-TOC and GPPeLUE-TOA). The blue solid line is the regression line with 95% confidence intervals (grey shaded area). The grey dashed line is the 1:1 symmetric line.
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photosynthetic capacity. However, further analysis is required to assess
the extent to which there is a response of photosynthetic capacity to
variations in photoperiod in tropical savannas.

Moisture stress during the brown-down phenophase may also
explain some of the residual seasonal hysteresis on the GPPEC ~
GPPeLUE-TOA relationship. Across the NATT EC flux tower sites, rainfall
typically ends in March-April, resulting in the development of large
vapor pressure deficits (VPD) and decreased soil moisture content
from April through to September (Eamus et al., 2013), coincident with
the brown-down phase of GPP at these sites. Whereas declines in
GPPEC arise rapidly from stomatal closure during the brown-down
phase, chlorophyll degradation and/or the loss of LAI are slower process-
es that take place at longer time scales (Huemmrich, Privette,Mukelabai,
Myneni, & Knyazikhin, 2005; Jenkins et al., 2007;Ma et al., 2013). Future
studies are needed to investigate whether the phenophase dependency
of GPP could be further reduced by accounting for the rapid declines in
photosynthesis associated with stomatal closure.

Despite the differences in green-up and brown-down phase rela-
tionships, EVI explained 66% of the variations in GPPEC at the Ti Tree
site, while incorporation of PARTOC and PARTOA (i.e., the eLUE models)
increased the R2 from 0.66 to 0.79 and 0.80 respectively. This suggested
that the eLUE models are able to provide reasonable estimates of GPP
at the southern xeric savannas where both species composition
and climatic conditions are quite different from the northern mesic
savannas.

In addition to the use of an eLUE model, we investigated other ways
to adjust the phenophase dependency and found that by fitting separate
models for green-up and brown-down, the phenophase impacts can be
reduced to the same degree as the site-level eLUE model. For example,
EVIMOD09 andGPPEC exhibited strong linear relationships during the
green-up phase but strong non-linear relationships during the brown-
down phase at Ti Tree site (Fig. 10-B4). Thus, by fitting a linear model
for green-up phase and a non-linear model (2nd order polynomial)
for the brown-down phase, respectively, we found that the hysteresis
in theGPPEC~EVIMOD09 relationshipwaswell compensated andwas bet-
ter matched to GPPEC than using a single EVI model fitted using data
from entire growing season (R2 increased from 0.69 to 0.86,
p b 0.0001, RMSE decreased from 0.57 to 0.38 g C m−2 d−1). However,
the process of separating phenophases and fitting different models is
complex and not easily accomplished. In addition, we found that
when data from all four sites were pooled together, fitting separate
models didn’t show improvement as much as using the eLUE model,
hence adjusting GPPEC~EVIMOD09 hysteresis in this way would be site-
dependent. Therefore, the eLUEmodel provided a simple and consistent
way to reduce the phenophase dependency and facilitate an effective
extension from flux tower to regional scale.
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Table 5
Summary of the regression and error analyses between satellite estimated GPP and EC
tower derived GPP across four NATT sites using calibration and validation datasets respec-
tively. The satellite estimated GPP include: MOD17A2 GPP (GPPMOD17), GPP simulated
using EVI alone (GPPEVI), GPP simulated by eLUETOC model (Eq. (20)) (GPPeLUE-TOC), and
GPP simulated using eLUTTOA model (Eq. (21)) (GPPeLUE-TOA). The analysis was based on
the time series of 8-d temporal resolution. The unit of the RMSE is in g C m−2 d−1. F is
the F-value, df is the degree of freedom, p is the p-value.

Dataset GPPEC = β0 + β1 × GPPMOD17

β0 β1 R2 F df p RMSE

Calibration 1.2018 0.7454 0.58 240.8 1,175 b0.0001 1.4249
Validation 0.9968 0.7863 0.58 240 1,175 b0.0001 1.4274

Dataset GPPEC = β0 + β1 × GPPEVI

β0 β1 R2 F Df p RMSE

Calibration 0.0000 1.0000 0.83 873.6 1,175 b0.0001 0.7802
Validation −0.2636 1.0735 0.85 978.6 1,175 b0.0001 0.7766

Dataset GPPEC = β0 + β1 × GPPeLUE-TOC

β0 β1 R2 F df p RMSE

Calibration 0.1159 0.9593 0.84 924.1 1, 175 b0.0001 0.7659
Validation −0.1411 1.0208 0.85 1017 1, 175 b0.0001 0.7576

Dataset GPPEC = β0 + β1 × GPPeLUE-TOA

β0 β1 R2 F df p RMSE

Calibration 0.0771 0.9731 0.85 999.9 1, 175 b0.0001 0.7388
Validation −0.3198 1.0649 0.88 1297 1, 175 b0.0001 0.6982
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4.3. EVI as a measure of ecosystem light-use-efficiency (eLUE)

It was encouraging to see that coupling EVIwith the radiation driver,
PAR, provided a better estimation of GPP across all study sites.With GPP
defined as the product of ε, fAPAR, and PAR (Monteith, 1972), the cou-
pling of EVI with eLUE (or GPP/PAR) translates the EVI, a greenness
index, to a function of the product of fAPAR and ε, as:

GPP
PAR

¼ eLUE � f EVIð Þ ¼ fAPAR � ε ð22Þ

Historically, linear relationships between VIs and fAPAR have been
well documented through theoretical analyses (Carlson & Ripley,
1997), field measurements (Gamon et al., 1995; Fensholt, Sandholt, &
Rasmussen, 2004), and radiative transfer simulations (Carlson & Ripley,
1997; Myneni & Williams, 1994). However, if EVI only represents
fAPAR, then one cannot explain the strong relationship between EVI
and eLUE, unless (1) the temporal variations in ε are very small, or
(2) the temporal variations in fAPAR and ε are synchronized. However,
it is well established that ε varies widely across seasons (Jenkins et al.,
2007; Sims et al., 2006) and under different types of environmental
stress (Ruimy et al., 1995). Furthermore, previous studies have shown
that savanna ecosystems in northern Australia utilize radiation more ef-
ficiently in the wet season than in the dry season and thus ε exhibits
strong seasonality across these sites (Eamus & Cole, 1997; Eamus
et al., 2013; Fordyce, Duff, & Eamus, 1995; Kanniah et al., 2009). These
studies argue against the first hypothesis that temporal variations in ε
are very small, and hence this cannot explain the strong correlation
between eLUE and EVI.

The alternative explanation is that the temporal variations in fAPAR
and ε are synchronized and hence both are correlated with EVI. In
support of this explanation, Sims et al. (2006) reported that ε derived
from nine flux towers in North America was strongly correlated to EVI
(R2= 0.76). Similarly,Wu et al. (2012) reported amoderate correlation
between EVI and tower ε in temperate and boreal forests of North
America. By contrast in evergreen forests, such relationships were
weaker than in deciduous forests, or absent in an evergreen oak forest
(Goerner, Reichstein, & Rambal, 2009). Thus, wemay infer that the cor-
relation between eLUE and EVI was likely due to the synchronization
between fAPAR and ε in the ecosystems that the seasonal variations in
landscape photosynthesis are primarily driven by dynamics in LAI of de-
ciduous species and/or annual species.

fAPAR (indicated by LAI) and ε in northern Australian savannas
exhibit similar phenological patterns (Kanniah et al., 2009; Whitley
et al., 2011). In Australian tropical savannas, the primary determi-
nants of seasonal variations in leaf area index, light interception
and ecosystem gas exchange are the dynamics of the understorey
grasses and forbs, which respond to intra-annual rainfall distribution
(Cleverly et al., 2013; Eamus et al., 2013; Hutley, Grady, & Eamus,
2001; O'Grady et al., 2009). In addition, environmental conditions also
become favorable for photosynthesis (high soil moisture, low VPD) fol-
lowing the onset of the wet season, thus the ε of both C3 trees and C4
grasses is larger in the wet season than the dry season (Eamus, 1999;
Eamus & Cole, 1997; Fordyce et al., 1995; O'Grady et al., 2009; Prior,
Eamus, & Duff, 1997). Consequently, fAPAR and ε displayed similar
phenological patterns in response to changes in environmental fac-
tors across north Australian savannas (Kanniah et al., 2009;
O'Grady, Chen, Eamus, & Hutley, 2000; Williams, Myers, Muller,
Duff, & Eamus, 1997).

In summary, the tight correlation between eLUE and EVI can be
attributed to the fact that EVI is not only related to light absorption
capacity (fAPAR), but also integrates the effects of phenological
stage and environmental stress on photosynthetic efficiency (ε). Al-
though we could derive fAPAR and ε separately, from a remote sens-
ing perspective these ecosystem variables cannot be directly
measured by current satellite sensors. Therefore, EVI tends to be a
good composite measure that simplifies the up-scaling of carbon
fluxes from flux tower to regional scale. The savanna biome consists
of multiple plant functional types (PFTs), including differences in
fundamental physiology (C3 versus C4 and nitrogen-fixing versus
non-fixing) that are difficult to parameterize. Furthermore, the frac-
tions of tree (C3) and grass (C4) contributing to ecosystem-scale C
fluxes vary across space and time and each PFT has its own unique
relationships with environmental factors (Scholes & Archer, 1997).
The eLUE model framework presented here represents a substantial
improvement to the current MODIS GPP product for tropical sa-
vannas, an ecosystem that covers one eighth of the global land area
(Scholes & Archer, 1997) and contributes approximately 30% of ter-
restrial ecosystem GPP (House & Hall, 2001).

5. Conclusions

Measurement of landscape carbon fluxes is an essential task in glob-
al change studies, yet current production efficiency models parameter-
ize LUE using coarse resolution, interpolated meteorology, which
introduces uncertainties that may reduce the confidence in estimated
primary production. In searching for a simple GPPmodel based entirely
on satellite remote sensing observations, we found that MODIS EVI had
the strongest cross-site relationshipswith EC tower derivedGPP at both
mesic and xeric north Australian savannas. This was further improved
by coupling EVI with PARTOC or PARTOA and using EVI as a measure of
eLUE (GPP/PAR). Two simple savanna landscape GPP models based on
eLUEs parameterized using EVI and driven by PARTOC or PARTOA were
further analyzed, and GPP simulated using these eLUE models agreed
wellwith EC tower derived GPP across all sites.We also found strong bi-
ological phenophase dependencies of satellite GPP versus tower GPP re-
lationships across green-up and brown-down periods. These
dependencies were most pronounced in the MOD17 GPP product, and
were considerably reduced by the use of the eLUEmodels. These results
suggest that region-wide savanna GPP can be estimated accurately
using entirely satellite remote sensing observationswithout dependen-
cies on interpolated ground meteorology or estimation of ε.

Approaches in estimating GPP from remote sensing datasets fall into
two technical pathways: LUE-based processmodels andVI-based empir-
ical models. From our analyses, we suggest that replacing LUE (GPP/



Fig. 9. Time series comparison between MOD17A2 GPP (GPPMOD17), GPP simulated using eLUETOC model (GPPeLUE-TOC, Eq. (20)), simulated using eLUETOA model (GPPeLUE-TOA, Eq. (21)),
and EC tower derived GPP (GPPEC) across four NATT sites during 2000–2013. All data are at 8-d temporal resolution.
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APAR)with eLUE (GPP/PAR),which is parameterized using readily avail-
able MODIS EVI, results in convergence of these two pathways. The con-
vergence yielded simple yet reliable estimates of savanna landscape GPP
based entirely on satellite remote sensing observations (through the use
of PARTOA), which has potential to be applied over large scales for better
assessment of region-wide savanna carbon dynamics in a truly spatially
continuous way.
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Fig. 10. Site-level relationships between satellite estimated GPP and EC tower derived GPP (GPPEC) for green-up and brown-down phases across four NATT sites. (A1–A4) MODIS GPP
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Fig. 11. Biogeographic patterns of GPP over the NATT study area during 2000–2013. (1)Mean annual GPP (g Cm−2 yr−1); (B) coefficient of variance (CV, %) of annual GPP; (C)Mean daily
GPP (g Cm−2 d−1) during thewet season (January–March); (D)mean daily GPP (g Cm−2 d−1) during the dry season (July–September). TheGPPwas simulated using the eLUETOAmodel
driven by PARTOA (Eq. (21)).
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