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A B S T R A C T

The rainfed cropland belt in Australia is of great importance to the world grain market but has the highest
climate variability of all such regions globally. However, the spatial-temporal impacts of climate variability on
crops during different crop growth stages across broadacre farming systems are largely unknown. This study
aims to quantify the contributions of climate and Land Surface Temperature (LST) variations to the variability of
the Enhanced Vegetation Index (EVI) by using remote sensing methods. The datasets were analyzed at an 8-day
time-scale across the rainfed cropland of eastern Australia. First, we found that EVI values were more variable
during the crop reproductive growth stages than at any other crop life stage within a calendar year, but
nevertheless had the highest correlation with crop grain yield (t ha−1). Second, climate factors and LST during
the crop reproductive growth stages showed the largest variability and followed a typical east-west gradient of
rainfall and a north-south temperature gradient across the study area during the crop growing season. Last, we
identified two critical 8-day periods, beginning on day of the year (DoY) 257 and 289, as the key ‘windows’ of
crop growth variation that arose from the variability in climate and LST. Our results show that the sum of the
variability of the climate components within these two 8-day ‘windows’ explained>88% of the variability in
the EVI, with LST being the dominant factor. This study offers a fresh understanding of the spatial-temporal
climate-crop relationships in rainfed cropland and can serve as an early warning system for agricultural adap-
tation in broadacre rainfed cropping practices in Australia and worldwide.

1. Introduction

As the world’s fourth largest agriculture exporter, Australia, whose
crop production accounts for over 13% of its export revenue (ABARES,
2017), has greatly influenced the world grain market in recent decades
(Hamblin, 2009; Lawrence et al., 2013). Due to the interactions of three
oceans, the Australian climate has the greatest variability among in-
habited continents (Cleverly et al., 2016; Ma et al., 2016; Stokes and
Howden, 2010; Xie et al., 2016). Rainfall, air temperature and solar
radiation are direct growth-defining and limiting factors of broadacre
crops (Yu et al., 2001), and their variability poses risks to Australian
crop production in terms of reductions in harvest area (Cohn et al.,
2016) and grain yield (Barlow et al., 2015; Zheng et al., 2012) as well as
changes to the dates that define the crop growing season (Zheng et al.,

2012). Recent studies have shown that Australian croplands, which are
mostly characterized by a broadacre rainfed planting system, are vul-
nerable in grain production to current climate variability (Field et al.,
2014; Tripathi et al., 2016). While the projected growth of the global
human population necessitates an increased crop yield (Godfray et al.,
2010; Hochman et al., 2017), growth in annual grain yield in Australia
has stalled since 1990, which is majorly caused by the changing climate
(Hochman et al., 2017). Thus, it is necessary to quantify the impacts of
climate variability on crop growth and to take measures to enhance the
development of agricultural early warning systems.

Climate-crop relationships have been intensively researched in re-
cent decades. Based on a recent study, climate variation is responsible
for approximately one-third (∼32–39%) of global variation in crop
yield (Ray et al., 2015). In Australia, climate variation in the state of
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New South Wales (NSW) accounted for 31–47% of inter-annual wheat
yield from 1922 to 2000 (Wang et al., 2015a). The results of crop si-
mulations (Asseng et al., 2011) have indicated that variations of 2 °C of
the average temperature during the crop growing season can cause up
to a 50% reduction in grain production in Australian croplands. Under
projected future climate scenarios, wheat yield will decrease by ap-
proximately 25% because of the predicted increase of temperature in
southeastern Australia in future decades (Anwar et al., 2007). In most
previous studies, the approaches of climate-crop relationship can be
divided into two major types: observational and statistical models, and
crop simulation techniques. The observational and statistical models
have been based on data collected from administrative boundaries,
which do not reflect the crop-growing process and do not explicitly
reflect the spatial relationships identified. Although crop simulation
techniques can precisely reconstruct the growth cycles of crops using
parameter pre-setting, it is labor intensive to spatially up-scale the si-
mulations from the field plot to ecosystem or regional scales
(Rosenzweig et al., 2013). This is due to the fact that crop simulation
needs considerable efforts in data collection and parameter calibration
to overcome its limitations in spatial heterogeneity.

These limitations in spatial up-scaling can be overcome by in-
troducing remote sensing detection methods (Reed et al., 1994;
Sakamoto et al., 2005) or by combining crop models with satellite
observations (Ma et al., 2008; Moulin et al., 1998). Satellite radiometric
observations offer the advantage of multiple spatial, temporal and
spectral resolutions and the data are from real-time observations
(Eamus et al., 2016), which can characterize the full profile of the ve-
getation growth cycle. Remote sensing methods that have been utilized
for crop-climate relationships often focus on estimating the cropland
area (Biradar et al., 2009; Potgieter et al., 2011; Wardlow and Egbert,
2008) and detecting vegetation green-up and green-fade dates (Guo
et al., 2016; Sakamoto et al., 2013). However, every stage of the crop
growth cycle can impact the final crop yield. Currently, there is little
knowledge about the different responses of crop performance to re-
gional climate variability at each growth stage.

Understanding the impacts of climate on crop growth over its life
span can help farmers and agricultural departments make timely deci-
sions in response to climate variability and reduce potential losses in
yield (Rabbinge, 2007) in broadacre rainfed cropping systems in Aus-
tralia and worldwide. Thus, there is a need to illustrate the relationships
between variations in several climate factors and crop growth
throughout all crop growth stages and to identify the most sensitive
‘windows’, that is, the time segments of crop-growth that are most
sensitive to climate variability.

Vegetation Indexes (VIs) are widely used remote indicators that
characterize the status of land surface vegetation as well as the bio-
physical properties on global and regional scales (Karnieli et al., 2010;
Wan et al., 2004). The VIs measure the ‘greenness’ of the canopy and
monitor vegetation growth and health at various spatial scales (Huete
et al., 2002; Ma et al., 2015). The Enhanced Vegetation Index (EVI)
used in this study is an optimized VI that can effectively reduce soil
background and atmospheric effects (Huete et al., 2002; Huete, 2012;
Suepa, 2013).

Rainfall, air temperature and radiation influence crop canopy
greenness by directly and indirectly controlling crop transpiration and
photosynthesis (Calzadilla et al., 2013; Eamus et al., 2016) within the
soil-plant-atmosphere continuum. Both the vegetative growth and re-
productive growth stages of crops are dependent on and affected by
these factors. The direct effects of variations in these factors on crop
growth can be dominant during different growth stages. However, the
proportion of the indirect effects of the complex interactions among
these factors (Yu et al., 2014) on crops cannot be explained without a
comprehensive indicator of the crop water and heat status. The radia-
tive canopy temperature, (the Land Surface Temperature (LST)), is
designed to measure the physical processes of the ground surface en-
ergy and water balance (Li et al., 2013) and reflects the water and heat

status of vegetation and soil. In most cases, a high LST indicates defi-
cient soil moisture and a high canopy heat stress (Karnieli et al., 2010).
Thus, we introduced LST as a potentially crop-limiting climate com-
ponent to describe the indirect impacts of rainfall, air temperature and
solar radiation on crop growth.

This study investigated regional inter-annual variations in climate-
crop growth relationships by incorporating MODIS land cover maps,
time-series Enhanced Vegetation Index (EVI) and Land Surface
Temperature (LST) products, ground meteorological station data and in-
situ trial data across the rainfed cropland belt in NSW during the period
from 2001 to 2013. An 8-day time-scale is applied as this is the at-
tainable time step for the satellite that provides the data to produce
MODIS EVI and LST. The objectives of this study are to: (1) identify the
seasonality, trends and variability for EVI and each climate component
during the crop growing season; (2) evaluate the individual and col-
lective impacts of climate and LST variability on crops at the pixel and
regional levels; and (3) investigate the relative contribution of the
variability of each climate component to variation in crop growth
during each 8-day time segment.

2. Materials and methods

2.1. Study area

The land cover map used in this study was obtained from the
Dynamic Land Cover Dataset (DLCD) for Australia (http://www.ga.gov.
au/) developed by Geoscience Australia. This dataset is based on an
analysis of a 16-day MODIS EVI composite at a 250-m resolution during
2000–2008 (Lymburner et al., 2010). The dataset distinguishes rainfed
cropland from irrigated cropland in Australia and shows a high degree
of consistency (93%) with extensive independent field-based in-
vestigations.

Australian rainfed croplands (Fig. 1a) extend over 24.6 million
hectares in a crescent around eastern, southern and western Australia
and produce approximately 22.9 million tons of grain per year (www.
abares.gov.au, 2013). Wheat is the major agriculture commodity across
the rainfed cropland belt in Australia (Hochman et al., 2017). The NSW
cropland belt (Fig. 1b) stretches across the drier western face of the
Australian Great Dividing Range. It accounts for 27.5% of the wheat
planted area in Australia and 27% of the total wheat production of the
nation (www.abares.gov.au, 2013–14), which makes NSW the second-
highest wheat producing state in Australia. The NSW wheat belt
(Fig. 1c) has an average elevation of 287.8 m and a gradient of 50 to
750 m from west to east. The annual wheat production during the
period from 2003 to 2014 varied between 2.48 and 10.49 million tons,
and the yield varied by approximately 5-fold (0.62–2.75 t ha−1) (www.
abares.gov.au, 2013–14). Historically, wheat production in NSW has
shown vulnerability to climate variability due to high exposure to water
and heat stresses (Wang et al., 2015b). The mean annual air tempera-
ture and rainfall across the entire cropland belt of NSW vary between
12 and 20 °C and 250–800 mm, respectively, highlighting the sig-
nificant spatial variation in climate conditions and revealing the com-
plexity of modelling crop yields across broad spatial extents.

2.2. Data processing

2.2.1. Meteorological data and study sites
The meteorological station-based observational data from the

Scientific Information for Land Owners (SILO) patched point dataset
(http://www.bom.gov.au/silo/) for NSW were collected, and we ex-
tracted 161 study sites that were identified as being located in rainfed
cropland pixels; both their ground meteorological data and spatially
observed data were available. These sites are evenly distributed across
our study area (Fig. 1b). As climate-driving parameters, daily rainfall
(Rain), maximum air temperature (Tmax), minimum air temperature
(Tmin), and solar radiation (Radn) from 2000 to 2014 were extracted for
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each site. We then up-scaled them to an 8-day time series to remove
outliers and noise as well as to match the temporal resolution with
remote sensing datasets. We averaged the 8-day Rain, Tmax, Tmin and
Radn from the 161 sites to represent the generalized climate patterns of
the time series across the NSW wheat belt.

2.2.2. Remote sensing and in-situ datasets
Approximately 14 years (February 2000–December 2014) of 16-day

Terra-MODIS EVI data (MOD13A1) at a spatial resolution of 500 m and
of 8-day Terra-MODIS LST (MOD11A2_day) with a 1000-m resolution
were obtained online from the NASA Land Processes Distributed Active
Archive Center (LP DAAC). The original data were then filtered based
on the Quality Control layers along with the MOD13A1 and
MOD11A2_day data. To unify the spatial and temporal resolutions of
these 2 remote sensing datasets, the EVI values were interpolated and
filled to achieve an 8-day series using the spline method, and the LST
were resampled to a 500-m spatial resolution (Broich et al., 2015).
Time-series profiles of the 500 m EVI and LST for the selected 161
cropland pixels were then extracted.

The integrated EVI (iEVI) has been widely used to represent vege-
tation productivity (Ma et al., 2015; Ponce Campos et al., 2013), which
refers to the area under the EVI curve in a growing season. Here, we
used iEVI to illustrate the spatial variation of accumulated aboveground
biomass during the growing season. The iEVI and average climate
conditions during the crop growing season at each selected pixel were
calculated and interpolated using the inverse distance weighting (IDW)
interpolation method over the study area.

The in-situ wheat trial (2005–2013) datasets were obtained from the
Grains Research and Development Corporation (GRDC) National
Variety Trials (NVT), Australia (http://www.nvtonline.com.au/). The

sowing date, harvest date, and actual yield of separate groups of wheat
trials for each year from 2005 to 2013 were recorded. There were 117
trial sites collected in total, and they were evenly distributed across the
NSW croplands.

2.2.3. Phenology metrics detection
We discriminated the green-up (start of season, SOS), green-fade

(end of season, EOS) and peak dates (peak of season, POS) of the
growing season from the 8-day MODIS EVI time series profile using the
following rules: (i) daily EVIs were reconstructed by using the Polyfit-
Maximum method (Cong et al., 2013; Piao et al., 2006) with a degree of
9; (ii) the inflection point of the maximum of the second derivative
during winter (from May to August) was identified as the SOS (Gong
et al., 2015), while another inflection point during summer (from No-
vember to the end of year) was identified as the EOS; and (iii) the POS
was identified as the date with the maximum EVI value during the
growing season (Ma et al., 2013).

As for cropland, we assumed that the start of season (SOS), end of
season (EOS) and peak of season (POS) dates were the leaf emergence,
crop harvest and crop heading dates observed from remote sensing,
respectively (Sakamoto et al., 2005). The length of the growing season
(LOS) in this paper was defined as the difference between the SOS and
EOS. The growing season (GS) was divided into the two stages of ve-
getation growth (VG) and reproductive growth (RG) by the POS date.

2.3. Methodology

2.3.1. Variability indicator
Mathematically, in the time series profile of EVI, technological im-

provements in farming practices (inter-annual trend), phenology

Fig. 1. Spatial distribution of the NSW rainfed cropland belt and locations of selected testing pixels. The green areas are the gridded rainfed cropland belts across Australia (a) and NSW
(b); (c) elevation map of the NSW rainfed cropland belt. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(seasonality, the time of turning points in crop growth and develop-
ment), the vegetation variation caused by climate variability (inter-
annual variation), and the system observational errors are subject to
trend, seasonal, anomaly and noise components (Shumway and Stoffer,
2010), respectively. Here, the noise component can be reduced by
unifying the temporal and spatial scale of EVI and LST. We assumed the
technology in farming practices was at an average level from 2001 to
2013 and adopted a standardized anomaly (Sa-s) to represent the inter-
annual variability of EVI, and similarly to each of the other variable.

′ = −x x x x( )/d y d y d d, , (1)

xd,y is a single element of a time-series variable X; x′ is the anomaly
value of each variable at the dth 8-day time point in the yth year; and x
is the mean value at the dth 8-day time point throughout the period
from 2001 to 2013. The time series sequence of Sa-s excluded the
seasonality of the original data sequence without collinearity with the
other variables. The 8-day Sa-s values of Rain, Tmax, Tmin, Radn, LST
and EVI for the 161 selected points during 2001–2013 were calculated.

2.3.2. Thermal time reference
Converting the time reference from normal calendar time to thermal

time allows to make an average consideration of crops in similar phe-
nological stages among different years, and to remove the effects of
spatial heterogeneity (Duveiller et al., 2013a,b). The thermal time
theory is based on the time taken of plant growth and development,

depending on temperature (Atwell, 1999). Therefore, thermal time (tt)
over a particular time period from t1 to t2 can be expressed as cumu-
lated heat units (in growing degree days) (Duveiller et al., 2013a,b;
Franch et al., 2015; Skakun et al., 2017):
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In this case, the minimum (Tmin) and maximum (Tmax) air temperature
are based on a daily time step. The base (Tbase) temperature for winter
wheat was set to 0 °C, and thestarting date t1 was arbitrarily fixed to 1st
January of each year from year 2001 to 2013. If the average daily air
temperature of Tmax and Tmin is below Tbase, it would be replaced by
Tbase, and no growing degree days are accumulated. Thermal time of
EVI profiles were then calculated for each year but having irregularly
sampled time series. To make them comparable, a regular sampling
steps of 100 growing degree days were thereafter linearly interpolated
(Duveiller et al., 2013a).

2.3.3. Relative importance approach
To elucidate the unique correlation between a single climate com-

ponent Sa-s and EVI Sa-s without interference from other variables, we
applied the partial correlation method (Chevan and Sutherland, 1991)
by controlling the variance of the other 4 climate components. The
package ‘relaimpo’ in R (Grömping, 2006) was applied to calculate the

Fig. 2. Variation and trend of the average seasonal EVI pro-
file in the NSW rainfed cropland belt from 2001 to 2013 and
correlations of the 8-day EVIs with observed annual grain
yield. (a) Black dots: average EVI values for all of the testing
points from 2001 to 2013; green solid line: fitted EVI curve;
blue solid line: second derivative; POS: peak of season
(heading date); SOS: start of season (leaf emergence date);
EOS: end of season (harvest date). (b) One standard deviation
(Sd in %) of the 13-year period. (c) Blue dashed line with
circle solid dots: EVI trends at each 8-day time point from
2001 to 2013. Black solid line with triangular solid dots:
correlations between the 8-day EVIs and annual grain yield at
117 trial sites. X-axis of (a)–(c): Date (Day of the Year). (d)
green solid line: 13 years mean EVI in the time reference of
thermal time (growing degree days, °C). grey dashed lines:
single-year means of EVI from 2001 to 2013. (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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ranks of the climate components for each 8-day time segment in terms
of their unique contribution to EVI variation. Their unique contribu-
tions were then rescaled to sum to R2, the total proportion of EVI
variance explained by climate variability, as the relative contribution of
the climate components. The individual and accumulated relative
contributions of the selected climate variable Sa-s to the EVI Sa-s in the
growing season both across study area and at each testing pixel were
then calculated.

In this paper, data processing and statistical analysis were per-
formed in the R computation environment, and related packages were
obtained from The Comprehensive R Archive Network (http://cran.r-
prject.org).

3. Results

3.1. Crop growth seasonality and variability across the NSW wheat belt
from 2001 to 2013

3.1.1. Crop growth seasonality and variability
The average annual EVI curve shown in Fig. 2a represents the sea-

sonality of vegetation growth across the cropland belt from 2001 to
2013 in NSW. The profile and magnitude of the curve and EVI varia-
tions are important indicators of vegetation growth. From the average
EVI seasonality shown in Fig. 2a, it is apparent that there is only one
major growing season across the study area from leaf emergence (start
of season; SOS date) at Day of the Year (DoY) 156, which has an EVI
value of 0.206, to harvest (end of season; EOS date) at DoY326, which
has an EVI value of 0.177. The length of the growing season (LOS) was
170 days, with a maximum EVI value (peak of season; POS) of 0.373 at
DoY 246. This indicates that the lengths of vegetative growth (VG) and
reproductive growth (RG) were 90 and 80 days, respectively. The actual
growing season of winter wheat planted in eastern Australia (Bowden
et al., 2008) matches this EVI curve well. At the same time, Fig. 2d
shows that the 13 years average EVI profile in thermal time reference,
winter crop across the study area appear at 3000 °C degree days and
end of senescence at 5500 °C. All the single-year EVI growing season
start and end within 500° days with our average fixed growing season.
The only differences are the shape and amplitude of the curves.

As Fig. 2b shows, the variation of EVI in the growing season was
significantly larger than in the non-growing season, especially during

the reproductive growth period, with a Sd of 16.7% at DoY 153 near
EOS, 18.2% at DoY 249 near POS, and 19.3% at DoY 257, and the Sd
was greater than 20% for the consecutive 8-day time segments from
DoY 265 to DoY 313.

3.1.2. The key 8-day time segment of the crop growth cycle
To decide which 8-day segment of EVI in the crop growing season

had the strongest correlation with annual yield, we used the Pearson
correlation method to analyze the 8-day EVIs and observed wheat grain
yield (t ha−1) in NSW at the 117 ground trial sites from 2005 to 2013
for which observational data were available. The 8-day EVIs were po-
sitively correlated with the wheat yield throughout the growing season,
particularly during the reproductive growth stage (Fig. 2c). The cor-
relation coefficient at the 8-day time segment, start from DoY 153,
immediately before leaf emergence was 0.16, and it increased to 0.47
after the heading date (POS) at DoY 249. It increased significantly
during the rest of RG and reached its peak at DoY 289, with a value of
0.76. This indicates that the larger the EVI value at DoY 289, the higher
the annual yield, and vice versa.

The slope of EVI at each 8-day time segment from 2001 to 2013
fluctuated notably during the growing season (Fig. 2c). The slopes were
positive during the vegetative growth (VG) phase, but negative during
the reproductive phase (RG). Thus, vegetation greenness increased
during VG, but decreased during RG. During RG, the trend value
dropped by 0.001 each year following POS and then dropped greatest
by 0.003 each year at the 8-day time segment, from DoY 257.

As EVI at DoY257 also has a high correlation of 0.56 with annual
yield, we identified the two critical 8-day time segments, beginning
from DoY257 and DoY 289, as the key 8-day ‘windows’ during the re-
motely sensed crop growth cycle.

3.2. Climate and LST seasonality and variability across the NSW wheat-belt
in growing season

3.2.1. Climate and LST seasonality and variability
The overall annual climate and LST seasonality patterns (Table 1,

Fig. 3) across the NSW wheat belt showed the typical characteristics of
a temperate sub-humid climatic zone: warm in the crop pre-growing
season (pre-GS) and reproductive phase (RG) and cool in the crop ve-
getative phase (VG), with moderate rainfall throughout the year. The

Table 1
Seasonal climate and LST conditions each year across the rainfed cropland in NSW. (For interpretation of the references to color in this table, the reader is referred to the web version of
this article.)

*Pre-GS was calculated as the period from the first day of the year to Start of Season (SOS) at day 156. Sd is one standard deviation in each crop growth stage from 2001 to 2013. Red,
yellow and green correspond to the order of the variable values from high to low among the pre-growing season (Pre-GS), vegetative growth phase (VG) and reproductive growth phase
(RG).
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Fig. 3. Growing season climate and LST seasonality as well as
their variability and trend at each 8-day time segment from
2001 to 2013 across the NSW cropland belt. (a) Rainfall; (b)
maximum air temperature; (c) minimum air temperature; (d)
land surface temperature; (e) solar radiation. Black solid
curves: seasonality (primary y-axis). Error bars: one standard
deviation (Sd). Blue solid curves: trends at each 8-day time
segment over 13 years (second y-axis). Black horizontal dash
line: 0 line (second y-axis). X-axis: Date (Day of Year). (For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. Spatial variations of the 13-year average iEVI as well as growing season climate and LST conditions. (a) iEVI; (b) rainfall; (c) radiation; (d) maximum air temperature; (e) land
surface temperature; (f) minimum air temperature.
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average rainfall (Rain) during the VG and RG was 114.1 and 99.5 mm,
respectively, across the study area, and in pre-GS, the average was
182.4, with a moderately even distribution throughout the crop
growing season. The ranges of the average daily Tmax, Tmin, Radn, and
LST (canopy temperature) throughout the GS were 30.1–15.3 °C,
14.8–3.1 °C, 25.9–9.2 MJ m−2, and 39.4–13.7 °C, respectively. The Sd
values of Tmax, LST and Radn in RG were mostly higher than those
during the VG phase (Fig. 3), while the variability of Tmin was larger at
the beginning and end of the GS relative to the middle stages of the GS.
The variability of rain was irregular throughout the GS and peaked at
the 8-day time segment from DoY 289, with a Sd of 159%. The Sd
provided in Table 1 shows the overall climate and LST variability at a
broader time-scale. All of the Sds in the RG phase were much larger
than those of the pre-GS and VG phases (Table 1). The variability of the
climate and LST in the VG was the lowest. LST showed the largest
variability among all climate components, especially during the RG
(Table 1).

During the 32nd 8-day period, near the heading date (DoY249), all
of the heat factors, Tmax, Tmin, LST and Radn, showed an increasing
trend from 2001 to 2013 (Fig. 3), with slopes of 0.26 °C y−1,
0.02 °C y−1, 0.11 °C y−1 and 0.12 MJ m−2 y−1, respectively. The EVI
started to decrease at this time point (Fig. 2), with a decreasing rate of
0.001 y−1. At the critical 8-day time segment from DoY 257, Tmin and
LST showed decreasing trends, with annual rates of 0.02 °C y−1 and
0.18 °C y−1. Meanwhile, Radn and Tmax showed increasing trends, with
annual rates of 0.14 MJ/m2/yr and 0.18 °C y−1, respectively. At the
other critical 8-day time segment from DoY 289, Tmax and Tmin had the
same trends as at the 8-day segment from DoY 257. However, LST had
an increasing trend, with a rate of 0.11 °C y−1, and Radn had a de-
creasing trend, with a rate of 0.01 MJ m−2 y−1.

3.2.2. Spatial variation of the 13-year average iEVI and climate conditions
The average annual iEVI across the NSW cropland belt ranged from

3.84 to 9.96 (Fig. 4). The iEVI in the southeastern part of the study area
was almost twice as large compared with the upper northern part, with
an average value of 8.9 in the southeast and 4.8 in the upper north part
of the NSW wheat belt.

Correspondence was observed for the spatial distribution of rainfall
in the southern part, but not in the northern part, of study area. The
average annual rainfall during the GS ranged from 123.2 mm in the
west to 320.6 mm in the east and displayed a typical E-W spatial gra-
dient that was distributed based on the pixels’ distance to the coast. The
growing season Radn, Tmax, LST and Tmin followed a similar N-S tem-
perature spatial gradient distribution pattern, which was higher in the
north and lower in the southeast. Their range differences were
3.5 MJ m−2, 7.6 °C, 11.5 °C, 5.9 °C, respectively.

3.3. Contributions of climate and LST variability to crop growth variation
over the GS

3.3.1. Individual impacts of climate and LST on EVI variation at a regional
scale

Fig. 5 shows the partial correlations at an 8-day time-scale during
the growing season across the entire study area. The correlation was
statistically significant when its r value was greater than +0.553 or
lower than −0.553 (Plant, 2012).

Generally, inter-annual variability of EVI was positively correlated
with Rain, Tmin, and Radn and negatively correlated with Tmax and LST.
The correlation of the inter-annual variability and Sa-s between rain
and EVI steadily increased throughout the crop growing season. The
correlation of Tmax-EVI and Tmin-EVI in the crop growing season
showed inverse patterns. The amplitude of the absolute values of the
Tmax-EVI correlation coefficients was larger than those of Tmin-EVI. The
correlation coefficients of the 8-day LST-EVI in the vegetative growth
phase (VG) were more moderate and smaller in terms of absolute values
than those during the reproductive growth phase (RG) and reached

−0.97 at the 8-day time segment from DoY 289. The highest point of
the Radn-EVI correlation coefficient was also at that segment, with a
value of 0.78.

As shown in Fig. 5, more significant and marginally significant
correlations between the 8-day EVI Sa-s and climate and LST Sa-s were
observed during the RG than during the VG. At the critical 8-day time
segment from DoY 257, in Section 3.1.2 we identified that rain was
significantly and positively correlated with EVI, while it was sig-
nificantly and negatively correlated with LST. At another critical 8-day
segment from DoY 289, LST-EVI and Radn-EVI showed significant di-
vergent correlations. The Tmax-EVI correlations were significant and
negative twice during the VG and 3 times during the RG.

3.3.2. Accumulated relative contributions of the climate variability to the
EVI variability

Fig. 6 shows the contributions of the inter-annual climate variation
to variations in EVI at the 8-day time scale during the growing season
(GS). The total effects of climate variation showed an increasing trend
throughout the GS and accounted for 83.3% at the 8-day time segment
from DoY 169 during the VG and 97.1% at the segment from DoY 289
during the RG on EVI Sa-s across the NSW croplands belt. At the critical
time segment from DoY 257, the total climatic contribution increased
from 47.6% from the previous 8-day time segment to 88.3%, while the
EVI value dropped sharply by 0.003 each year (Fig. 2c).

In the rainfed NSW cropland belt, the proportion of rain Sa-s to the
total climate contributions peaked at the 8-day time segment from DoY
169, which was the tillering stage of the vegetative growth phase (VG),
with a value of 50.6%, and then declined steadily throughout the VG
and increased moderately during the reproductive growth phase (RG).
At the critical 8-day window from DoY 257, it accounted for 21.8% of
the variation in the EVI. The proportion of the LST variation among the
total climate contribution increased from the VG to the RG and ac-
counted for 65.8% at the critical 8-day window from DoY 289. It was
more than half of the total climate contribution at that time segment.
During the RG, the LST was the single most important climate factor
that affected EVI variability in 9 out of 10 8-day time segments across
the NSW cropland belt.

Tmin explained a large proportion of the impact of climate variation
on the change in EVI immediately before peak of the season date (POS),
the corresponding crop heading date. It reached its peak at the 8-day
time segment from DoY 233, with a value of 46.5%. The contribution of
Tmax variation to the EVI Sa-s was larger during the RG than the VG, but
more moderate than the LST Sa-s. It peaked at the 8-day time segment
from DoY 265, with a value of 37.3%. Radn Sa-s affected the EVI Sa-s
steadily from approximately 10% to 20% throughout the GS across the
study area.

3.3.3. Spatial distribution of the climate and LST variability contributions to
EVI variation

The individual and accumulated contributions of climate and LST
Sa-s to EVI Sa-s at every selected pixel during the GS were demonstrated
in Fig. 7. The inter-annual total climate variability at the 8-day time
scale caused EVI variations from 5.94% to 42.09% across the study area
from 2001 to 2013. The total effects were higher in the north and
southwestern parts of the NSW wheat belt relative to the middle parts.

Variation in LST was the most important climate factor influencing
variation in EVI. The contribution ranged from 3.24% to 34.47% across
the cropland belt in NSW. The spatial distribution was largest in the
northern and southwestern parts of the study area. The relative im-
portance of the total variability of total rain was smaller, with a max-
imum contribution of 3.57% to EVI variation, and its importance was
larger in the western and middle parts of the NSW wheat belt. The
importance of variation in Radn that caused variability in EVI was
largest on the eastern parts of the cropland belt, with a range from 0.2%
to 3.27%. The contribution range of Tmax was 0.28% to 10.27%, with a
gradual trend from east to west. The effects of Tmin Sa-s ranged from
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Fig. 5. Partial correlations between standardized anomalies
(Sa-s) of 8-day EVI and individual climate components in the
growing seasons from 2001 to 2013. (a) rainfall; (b) max-
imum air temperature and minimum air temperature; (c) land
surface temperature; (d) radiation. Horizontal dash lines:
significance threshold where p = 0.05. *: p < 0.1, marginal
significant. **: p < 0.05, significant. X-axis: Date (Day of the
Year).

Fig. 6. Individual and accumulated contributions of the climate and LST variability to the variation of EVI at the 8-day time scale in the growing season over 13 years. Stacked bars:
individual contributions; black curve: accumulated contribution; brown dashed line: trend of accumulated contribution. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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0.08% to 4.08% for EVI Sa-s across the study area, and they were
greater in the relatively cooler areas of the southeastern and middle
parts of the study area.

4. Discussion

4.1. Ability of the MODIS EVI profile to represent rainfed cropland
productivity in Australia

The start and end dates of the growth season (SOS and EOS) of
winter crops are relatively fixed compared to the considerable varia-
bility observed in native grasses and shrubs (Bowden et al., 2008). SOS
and EOS are not merely determined by climate because human

Fig. 7. Spatial distributions of the contributions of climate and LST standard anomalies (Sa-s) to EVI Sa-s in the growing season across the NSW cropland belts. Number in brackets: counts
of tested pixels for which their attributes were in the corresponding range, and 161 pixels in total were tested.

Fig. 8. Scatterplots between the actual yield and iEVI for 117 trial sites and their linear regression lines. **: p value < 0.001.
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management and farmers’ experience can largely control them. Al-
though there is sowing date guidance offered based on rainfall (Keating
et al., 2002), farmers still sow even if rainfall does not reach the re-
quired levels during June to avoid heat stress in the following summer.
Variations in the timing of the different growth stages are thereafter
largely affected by climate variability, especially in broadacre rainfed
cropping systems. The EVI profile in thermal time reference has shown
the relatively fixed growing season across the NSW wheat belt, we
could measure the relative contributions of climate variation to crop
growth variability at every 8-day time segment.

The MODIS EVI-fitted GS in this study starts at DoY 156 in early
June ends at DoY 326 in late November, with a length of 170 days. The
average peak of season (POS) date occurs at DoY 246 in September,
with an EVI value of 0.373. This phenology matches well with the
observed wheat life cycle in eastern Australia (Bowden et al., 2008).
Based on observations of 117 trials, the average sowing and harvest
dates across the NSW wheat belt are DoY 145 (± 1.5 days) and DoY
326 (± 1.2 days), respectively. There could be an allowance of 11 days
for seeds to establish from the sowing date to the leaf emergence date
(SOS, DoY156). The average harvest date had the same date with the
MODIS EVI derived end of season (EOS) date, DoY 326. Meanwhile, the
iEVI was significantly and linearly correlated with the in-situ grain yield
among the trials each year as well as among all sites (Fig. 8). The
overall R2 was 0.755, while the relationship best fit the 11 trials in year
2009, with an R2 of 0.940. These results not only indicate that wheat is
the largest major winter crop planted across the NSW cropland but also
indicate that the MODIS EVI is capable of monitoring the winter wheat
growth cycle in broadacre rainfed cropping systems.

The ability of the MODIS EVI to capture information related to crop
growth and development has also been tested (Bolton and Friedl, 2013)
in the central United States. The authors concluded that MODIS pro-
ducts have good potential applications for agricultural monitoring in
areas with large field sizes, as is the case in Australian wheat cropping
in NSW. The MODIS-derived average annual time-series profile of the
EVI (Fig. 2a) reflects the actual crop growth conditions across the NSW
wheat belt. Over the entire crop life span, the correlation coefficient
between EVIs and the actual yield peaks at the 8-day time segment from
DoY 289, with a value of 0.76 (Fig. 2c). Thus, the stability and range of
EVI values at this critical time segment had the highest direct correla-
tion and ensured an annual attainable yield.

4.2. Impacts of climate and LST variability on the variation of the EVI in
key crop growth stages

The trend of EVI values at every 8-day segment can be explained not
only by the delayed/advance of the growing season but also by the
technological improvement that modifies wheat crop traits as well as
the interference of weather extremes on crop radiometric reflection.
From 2001 to 2013, farmers improved the biomass of wheat crops
during vegetative growth phase (VG) across the NSW cropland belt, but
neglected the importance of plant biomass accumulation during the
reproductive growth phase (RG) (Fig. 2c). The sharpest drop of EVI at
the 8-day time segment from DoY 257 made it the most sensitive to
climate variability during this period.

The relative importance of the proportion of rain, Tmax, Tmin, Radn
and LST Sa-s to EVI Sa-s reached its peak at the 8-day time segments
from DoY 169 (VG), DoY 265 (RG), DoY 233 (VG), DoY 217 (VG), and
DoY 289 (RG), respectively (Fig. 6), across the NSW wheat belt during
2001–2013. In the semi-arid rain-fed environment, the lack of rainfall
and resultant water stress is inevitably one of the most serious climatic
limiting factors to crop establishment and development (Asseng et al.,
2011), especially around the tilling stage (the 8-day time segment from
DoY 169, where Rain is the most important climate factor) during VG.
However, during RG, heat stress is more evident because temperature
has a relatively higher base during this phase, which is sometimes
higher than the optimum wheat growth air temperature of 23 °C (www.

agric.wa.gov.au). The cropland maximum air temperature and canopy
temperature reached>30 °C during the RG (Fig. 3) across the study
area. In particular, fluctuations of Tmax and LST during a sensitive stage
of crop development, such as the grain growth stage (the 8-day time
segment from DoY289), can significantly reduce grain yield due to their
direct effects on leaf photosynthesis, grain number and grain mass
(Talukder et al., 2014), while a continuous period of extremely high
temperatures can result in physiological damage and almost total yield
loss (Asseng et al., 2011; Lobell et al., 2012). At the critical 8-day
segments from DoY 257 and 289, identified in this study (part 3.1.2),
which corresponded to the wheat flowering and grain growth stages,
respectively, the impacts of heat variation outweighed the impact of
variation in rainfall on EVI by more than twofold.

During RG, variation of LST was the most important factor that
contributed to variation of EVI. LST, the canopy temperature, quantifies
the combined indirect effects of air temperature, radiation and effective
rainfall within the soil-plant-atmosphere continuum. A higher LST re-
flects lower latent heat flux from the canopy, which indicates lower
canopy evapotranspiration and higher heat stress conditions (Li et al.,
2010). The remotely sensed estimation of surface temperature has
proven to be a well suited ground canopy temperature indicator in
large-scale crop monitoring (Karnieli et al., 2010; Sandholt et al.,
2002). It simultaneously measures the comprehensive water and heat
stress conditions caused by interactions among climatic driving factors.
Thus, the impacts of the LST variation on the variation of the EVI in-
creased in the hotter northern and drier southwestern parts of the NSW
wheat belt.

5. Conclusions

In this study, we quantified the spatio-temporal impacts of variation
in climate and land surface temperature (LST) on the variation of crop
EVI at key crop growth stages. The standard anomaly method was
adopted to indicate the variability of all variables at an 8-day time
scale. We found that a single major crop growing season (GS), occurred
in the second half of the year across the NSW wheat belt during
2001–2013. Two critical 8-day time segments, beginning from DoY 257
and 289, were identified as the key ‘windows’ during the winter crop
GS, that is, the variation in climate during these 8-day time segments
exerted a greater impact on the grain yield than during any other
periods during the GS.

Our results show that the total climate variation during the two 8-
day ‘windows’ contributed more than 88% of the variability in EVI, of
which the LST accounted for more than half. Therefore, more attention
should be paid to the LST during implementation of large-scale rainfed
cropland monitoring. As such, once an association model (i.e. linear
regression model) among LST, EVI and annual grain yield is built-up
(Kumar, 1998), we could estimate and predict grain yield during these
two key 8-day “windows” (approximately one month) before the crop is
harvested. Spatially, the total contribution of climate variation during
the GS accounted for up to 42% of the variability in the EVI, especially
in the northern and southwestern regions of the NSW wheat belt. As an
index that integrates the indirect effects of the complex interactions
among all the climate-driving factors on crop growth, the LST is the first
dominant climate component that affects the variability of the EVI
across those regions.

The limitation of this study was the limited years (13 years) of data,
which could cause over-fitted models in the analysis. Because the time
period from 2001 to 2013 was the period that saw a shift from extreme
drought to flood at a surprising speed (Dijk et al., 2013), the shift was
typically significant. We thereafter targeted this specific period of time
and evaluated the relationship between climate and crop growth in
variability. This study also narrowed the analyze time slot from annual
to 8-days, which is the attainable temporal scale by MODIS EVI and
LST, to make it possible investigating the diverse crop-climate re-
lationship over the crop life span. However, in consideration of the
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comparison of the model performance among this time period
(2001–2013) and other years before and after, we will adopt additional
datasets to expand the number of sample years and build the best fit
model in the future.
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