
Received: 20 October 2017 Revised: 16 January 2018 Accepted: 5 March 2018

DOI: 10.1002/eco.1974
R E S E A R CH AR T I C L E
Use of satellite leaf area index estimating evapotranspiration
and gross assimilation for Australian ecosystems

Rong Gan1,2 | Yongqiang Zhang2 | Hao Shi1 | Yuting Yang2 | Derek Eamus1,3 |

Lei Cheng2 | Francis H.S. Chiew2 | Qiang Yu1
1School of Life Sciences, University of

Technology Sydney, Ultimo, NSW 2007,

Australia

2CSIRO Land and Water, GPO Box 1700,

ACTON, Canberra 2601, Australia

3Plant Biology and Climate Change Cluster,

University of Technology Sydney, PO Box

123, Broadway, Ultimo, NSW 2007, Australia

Correspondence

Yongqiang Zhang, CSIRO Land and Water,

Clunies Ross Street, Canberra 2601, Australia.

Email: yongqiang.zhang@csiro.au
Ecohydrology. 2018;11:e1974.
https://doi.org/10.1002/eco.1974
Abstract

Accurate quantification of terrestrial evapotranspiration and ecosystem productivity is

of significant merit to better understand and predict the response of ecosystem

energy, water, and carbon budgets under climate change. Existing diagnostic models

have different focus on either water or carbon flux estimates with various model

complexity and uncertainties induced by distinct representation of the coupling

between water and carbon processes. Here, we propose a diagnostic model to

estimate evapotranspiration and gross primary production that is based on biophysical

mechanism yet simple for practical use. This is done by coupling the carbon and water

fluxes via canopy conductance used in the Penman–Monteith–Leuning equation

(named as PML_V2 model). The PML_V2 model takes Moderate Resolution Imaging

Spectrometer leaf area index and meteorological variables as inputs. The model was

tested against evapotranspiration and gross primary production observations at 9

eddy‐covariance sites in Australia, which are spread across wide climate conditions

and ecosystems. Results indicate that the simulated evapotranspiration and gross

primary production by the PML_V2 model are in good agreement with the

measurements at 8‐day timescale, indicated by the cross site Nash–Sutcliffe efficiency

being 0.70 and 0.66, R2 being 0.80 and 0.75, and root mean square error being

0.96 mm d−1 and 1.14 μmol m−2 s−1 for evapotranspiration and gross primary

production, respectively. As the PML_V2 model only requires readily available climate

and Moderate Resolution Imaging Spectrometer vegetation dynamics data and has

few parameters, it can potentially be applied to estimate evapotranspiration and

carbon assimilation simultaneously at long‐term and large spatial scales.
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1 | INTRODUCTION

The critical biophysical link between terrestrial water and carbon cycle

is stomatal aperture. At leaf level, it not only regulates water vapour dif-

fusion from leaves to the atmosphere (transpiration) but also controls

plant fixation of carbon dioxide (CO2) from the atmosphere through

photosynthesis (carbon assimilation) simultaneously (Baldocchi,

Luxmoore, & Hatfield, 1991). At ecosystems level, evapotranspiration
wileyonlinelibrary.com/journal/e
(ET) and gross primary production (GPP) play vital roles in determining

the global water and carbon balance (Beer et al., 2010; Jasechko et al.,

2013). The degree of stomatal control on these water and carbon fluxes

is quantified by bulk stomatal conductance (i.e., canopy conductance),

estimate of which yet remains a major challenge for accurate estimate

of ET and GPP (Kelliher, Leuning, Raupach, & Schulze, 1995).

Over decades, coupled carbon‐water models based on diverse

structure and parameterization schemes have been developed to
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estimate canopy conductance (Gc) for such purpose. They can roughly

be classified into two groups. One is the “top‐down” method, which

utilizes observed water and carbon exchanges to deduce Gc directly

(Baldocchi et al., 1991; Granier, Biron, & Lemoine, 2000; Stewart,

1988; Yebra, Van Dijk, Leuning, & Guerschman, 2015; Yebra, Van Dijk,

Leuning, Huete, & Guerschman, 2013). Due to the lack of consideration

regarding the interrelated water and carbon processes, these models

have difficulties in interpreting the underlying mechanism and uncer-

tainties in predictions. The other one is “bottom‐up” upscaling

approach, which usually integrates individual leaf stomatal response to

environmental and physiological controlling factors up to canopy scale

(Bonan, Oleson, Fisher, Lasslop, & Reichstein, 2012; Bonan, Williams,

Fisher, & Oleson, 2014; Cox, Huntingford, & Harding, 1998; Dai et al.,

2004; Running & Coughlan, 1988; Sellers, 1997; Tuzet, Perrier, &

Leuning, 2003; Wang et al., 2011). Models developed in this way tend

to imply mechanistic equations to represent water loss and carbon fixa-

tion interactively from leaves to canopy, from stand to regional scales.

Although these process‐based models are widely used, the relatively

high complexity turns out to impede general application, and the perfor-

mance can vary greatly across spatiotemporal scales (Bonan et al., 2014;

De Kauwe et al., 2015; Morales et al., 2005; Wang et al., 2011). There-

fore, credible and feasible modelling scheme of water and carbon fluxes

is still highly required, and representation of a practical yet biophysically

based Gc model remains elusive.

Numerous models have been developed to estimate ET

(Bastiaanssen, Menenti, et al., 1998; Bastiaanssen, Pelgrum, et al.,

1998; Cleugh, Leuning, Mu, & Running, 2007; Guerschman et al.,

2009; Leuning, Zhang, Rajaud, Cleugh, & Tu, 2008; Long & Singh,

2012; McVicar & Jupp, 2002; Mu, Heinsch, Zhao, & Running, 2007;

Norman, Kustas, & Humes, 1995; Yang, Long, & Shang, 2013; Zhang,

Chiew, Zhang, & Li, 2009) and GPP (Hu et al., 2017; Ma et al., 2014;

Running et al., 2004; Yang, Donohue, McVicar, & Roderick, 2015;

Yebra et al., 2015) from stand to regional and global scale during the

past few decades. On the one hand, the Penman–Monteith (PM)

equation (Monteith, 1965)‐based ET models have been proven as

biophysically solid, which is often applied in combination with land

surface information (e.g., radiation and vegetation) derived from

remotely sensed imageries (Cleugh et al., 2007; Leuning et al., 2008;

Mallick et al., 2015; Morillas et al., 2013; Mu, Zhao, & Running,

2011; Zhang et al., 2017; Zhang et al., 2016). However, carbon flux

and the corresponding stomatal response are usually neglected in

these models, which could induce uncertainties regardless of structure

and conductance formulation (Liu, Wu, & Wang, 2017). On the other

hand, to couple carbon and water fluxes, biochemical photosynthesis

models (Collatz, Ball, Grivet, & Berry, 1991; Farquhar & von

Caemmerer, 1892) are commonly incorporated into stomatal

conductance (gs) models (e.g., Ball–Berry model; Ball, Woodrow, &

Berry, 1987; Collatz et al., 1991; Jarvis, 1976; Leuning, 1995; Medlyn

et al., 2011; Stewart, 1988; Tuzet et al., 2003) to obtain Gc and thereby

simulate ET and GPP in earth system schemes (Bonan et al., 2012;

Kowalczyk, Wang, & Law, 2006; Sellers et al., 1996). Additionally,

there are also models that implies empirical carbon uptake function

together with conductance models, where GPP is calculated by simply

multiplying light use efficiency with environmental constraints

(Hu et al., 2017; Liu et al., 2017). These coupled model structure can
vary greatly according to the principles applied to conceptualize the

canopy structural (e.g., big‐leaf or multilayer) and physiology (e.g.,

sunlit and shaded) properties, as well as the photosynthesis model

used to estimate assimilation rate (Wang & Dickinson, 2012; Zhu

et al., 2016). As a result, evaluation of the model uncertainty in ET

and GPP estimates remains difficult and application problematic.

Recognizing the relative advantages of satellite‐based PM model

in estimating ET and the common employment of photosynthesis

model in combination with gs model, this study therefore explores

the possibility of developing a relatively simple yet physiologically

based model that couples water and carbon flux into Gc to calculate

ET and GPP simultaneously. The coupled model should be easily

applicable using readily available environmental variables as model

inputs only and have few parameters that are easy to be parameterized,

yet maintain basic physiological fundamentals. To achieve this, a

Ball–Berry gs model developed by Yu, Goudriaan, and Wang (2001)

and Yu, Zhang, Liu, and Shi (2004) and a hyperbola assimilation

formula by Thornley (1976) is incorporated and integrated to derive

a novel Gc model, which is then introduced into a remotely sensed

data‐based PM model (Leuning et al., 2008; Zhang et al., 2016; Zhang

et al., 2017). In this way, GPP can be calculated as canopy assimilation,

and ET can be calculated from PM equation, respectively. The objectives

of this study are as follows:

1. Upscaling the assimilation and gs model to obtain the coupled Gc

model that is then introduced to the PM equation;

2. Applying this simple coupled model together with remotely

sensed leaf area index (LAI) to simulate ET and GPP; and

3. Using carbon and water flux observations at flux towers to test

the model performance.
2 | MODEL DEVELOPMENT

2.1 | PML model and canopy conductance

The two main components of terrestrial ET are transpiration from veg-

etation canopy (Et) and evaporation from soil surface (Es). Among the

satellite‐based ET models (Cleugh et al., 2007; Leuning et al., 2008;

Mu et al., 2007, 2011), the Penman–Monteith–Leuning (PML) model

(Leuning et al., 2008) has routinely been used to estimate terrestrial

ET and its components as a process‐based approach (Zhang et al.,

2017, 2016; Zhou, Zhang, Vaze, Lane, & Xu, 2015). Hence, the PML

model is used in this study as the prototype to develop a coupled

water and carbon model. In the PML model, Ec and Es are explicitly

accounted for in the form of latent heat flux (λE) following:

λE ¼ λEc þ λEs; (1)

λEc ¼ εQA;c þ ρcp=γð ÞDaGa

εþ 1þ Ga=Gc
; (2)

λEs ¼ fεQA;s

εþ 1
; (3)
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where λ is the latent heat of evaporation (MJ kg−1), QA is the total

available energy (W m−2), which is partitioned into canopy (QA,c), and

soil (QA,s) available energy according to τ = exp(−kA·LAI), where

τ = QA,s/QA, kA is extinction coefficient of QA and LAI is leaf area index

derived from satellite imageries (Fisher, Tu, & Baldocchi, 2008;

Leuning et al., 2008). In this model, transpiration is calculated by apply-

ing the PM equation exclusively to the canopy (Equation 2), where ε is

the ratio of slope of the curve relating saturation water vapour pres-

sure to temperature (Δ, kPa °C
−1) over the psychrometric constant (γ,

kPa °C
−1), ρ is the air density (kg m−3), Da is the water vapour pressure

deficit (VPD) of the air (kPa), Ga is the aerodynamic conductance (m s
−1), which is estimated following Leuning et al. (2008), and Gc is the

canopy conductance to water vapour (m s−1).

Yet no carbon flux is explicitly taken into account in the PML

model, the parameter Gc in Equation 2 provides the vital connection

between plant biophysical process (i.e., stomatal control) and the envi-

ronmental variables (e.g., solar radiation and humidity; Hirose, 2005;

Kelliher et al., 1995; Leuning et al., 2008), which can be calculated as

Gc ¼
gs;max

kQ
ln

Qh þQ50

Q50 exp −kQLAIð Þ þ Q50

� �
1

1þ Da=D50
; (4)

where gs,max is the maximum stomatal conductance of the leaves at the

top of the canopy (m s−1), Qh is the photosynthetically active radiation

(PAR; W m−2), kQ is the extinction coefficient of PAR, Q50, and D50 are

the canopy absorbed PAR (W m−2) and VPD (kPa) when gs = gs,max/2,

respectively. This formulation of Gc is integrated from leaf level stoma-

tal response to PAR only, with the carbon flux neglected and other

environmental conditions assumed optimal. Detailed deduction of

Equation 4 can be found in Kelliher et al. (1995) and Leuning et al.

(2008).

Soil evaporation (Es) in Equation 3 is calculated by reducing the

Priestley–Taylor equilibrium evaporation (Priestley & Taylor, 1972)

with a soil evaporation coefficient f that reflects the influence of water

limitation on evaporation. A relatively robust formula developed by

Zhang et al. (2010) is adopted in this study to estimate f as a variable

controlled by precipitation and equilibrium evaporation (Fisher et al.,

2008; Morillas et al., 2013; Zhang et al., 2010), which is expressed as

fZhang ¼ min
∑i
i−nPi

∑i
i−nEeq;s;i

;1

( )
; (5)

where n is the length of the “time lag” used to balance soil water con-

tent after precipitation, Pi is precipitation in the ith day (mm d−1), Eeq.s.i

is the equilibrium Es (mm d−1). For each of the ith day in the time series,
TABLE 1 Details of seven parameters in the PML_V2 model

Parameter
symbol Definition

α Initial slope of the light response curve to assimilation rate (i.e.,

ƞ Initial slope of the CO2 response curve to assimilation rate (i.e.,

m Stomatal conductance coefficient

Vm,25 Notional maximum catalytic capacity of Rubisco per unit leaf ar

D0 Water vapour pressure deficit of the air

kQ Extinction coefficient of PAR

kA Extinction coefficient of available energy
f is calculated as the accumulative proportion of precipitation to soil

evaporative demand of the previous n days (Zhang et al., 2010).

Because f is insensitive to variations in n, after a sensitivity analysis,

n = 32 days is given in Equation 5 in this study.

2.2 | Coupled canopy conductance model

As mentioned above, carbon assimilation is not considered in

Equation 4 for calculating the key parameter Gc. To estimate the

closely coupled water and carbon fluxes, this study tries to formulate

a novel Gc model that maintains biophysical meanings yet based on

simple modelling framework for practical benefit. Following the

upscaling principles, our canopy level Gc model is elaborated from leaf

level gs model and is given as follows:

Gc ¼ ∫
LAI
0 gsdl ¼ m

P1
k P2 þ P4ð Þ kLAIþ ln

P2 þ P3 þ P4
P2 þ P3 exp kLAIð Þ þ P4

� �
1

1þ D=D0
;

(6)

where GPP is calculated as

GPP ¼ Ac;g ¼ P1Ca

k P2 þ P4ð Þ kLAIþ ln
P2 þ P3 þ P4

P2 þ P3 exp kLAIð Þ þ P4

� �
: (7)

Detailed description of the Gc model and definition of each vari-

able are illustrated in Appendix A.

Hence, a coupled Gc formula is obtained. This model can therefore

be used to replace the original Gc equation (Equation 4) in the PML

model to simulate ET, and GPP can be calculated by implementing

Equation 7. The advantage of this coupled water and carbon PM

model is that it requires routine environmental variables only for ET

and GPP simulation and has a few free parameters that maintain the

physiological significances of stomatal response and assimilation pro-

cess. Owing to the capacity of estimating ecosystem carbon fixation

and water loss at the same time, this model is herein named as

PML_V2 model. A summary of the seven parameters in this model is

given in Table 1.
3 | DATA AND METHODS

3.1 | Eddy covariance observations

The eddy covariance observations of energy, carbon, and water

exchange have been widely used to interpret terrestrial ecosystem

processes. The OzFlux (http://www.ozflux.org.au/) is part of the

AustralianTerrestrial Ecosystem Research Network and the global flux
Unit
Allowed
range

quantum efficiency) μmol CO2 (μmol PAR)−1 0.01–0.07

carboxylation efficiency) μmol m−2 s−1 (μmol m−2 s−1)−1 0.01–0.07

unitless 2–20

ea at 25 °C μmol m−2 s−1 10–120

kPa 0.5–1.5

unitless 0.1–1

unitless 0.5–0.8

http://www.ozflux.org.au/
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network (https://fluxnet.ornl.gov/). Within Australian continent,

OzFlux provides continuous micrometeorological measurements of

over 30 flux sites that cover most Australian climate range and ecosys-

tem types (Isaac et al., 2016). This provides us the excellent data set

for model development and testing for the distinct Australian

ecosystems.

Observations of water and carbon flux at nine flux sites in OzFlux

network were used to evaluate the proposed PML_V2 model

(Figure 1). The following criteria were used to filter available flux sites

and measurements: (a) The flux site should have more than 2 years of

continuous observations (since 2000), (b) observations of low confi-

dence were excluded, and the reliable data should be more than 80%

within each year at each site, (c) half‐hourly observations of each var-

iable were filtered to obtain daytime measurements only and further

processed to obtain daily observations, and (d) the flux sites with sat-

isfactory energy balance closure were selected, where the net radia-

tion (Rn), soil heat flux (G), λE, and sensible heat flux (H) were used

to calculate the energy balance ratio EBR = (λE + H)/(Rn − G), and

the sites with overall EBR value greater than 70% were treated as sat-

isfactory (Wilson et al., 2002). Night time observations were elimi-

nated using the incoming shortwave radiation (Rs) greater than

20 W m−2 to avoid micrometeorological and instrument uncertainties

(Ershadi, McCabe, Evans, Chaney, & Wood, 2014; Isaac et al., 2016).

Daytime GPP was calculated as the difference of observed net ecosys-

tem exchange and daytime ecosystem respiration (Rd), where Rd is
FIGURE 1 The International Geosphere–Biosphere Programme (IGBP) lan
sites used in this study. Remote sensing land cover data were downloaded f
estimated from observed night time ecosystem respiration (Bruhn

et al., 2011; Papale et al., 2006; Reichstein et al., 2005; Shi et al.,

2014). The GPP calculated from this algorithm was used as the

observed GPPobs for model use. The daily data set is further aggre-

gated to obtain 8‐day average values in accordance with the temporal

resolution of remote sensed LAI (Hu et al., 2017; Papale & Valentini,

2003; Shi et al., 2014).

In total, nine Australian flux sites with 45 site‐years (482 site‐

months) of in situ eddy covariance measurements were selected at last

for further analysis. These sites represent a wide range of Australian

climate regions from tropical to temperate and across five different

plant functional types, including three savannas, one woody savanna,

two grasslands (GRA), one open shrub land (OSH), and two evergreen

broadleaf forests. Site details are presented in Table 2.

In situ eddy covariance energy flux data were eliminated when

λE observations were negative and ||Rn − G| − |H + λE|| > 250 W m−2

to ensure the surface energy balance closure (Cleugh et al., 2007;

Leuning et al., 2008; Wilson et al., 2002). Consequently, the

observed λE is used in the parameterization and evaluation of the

PML_V2 model.
3.2 | Remotely sensed data

Remotely sensed LAI with the temporal resolution of 8 days and the

spatial resolution of 1 km was acquired from Moderate Resolution
d cover type classification across Australia and locations of the nine flux
rom Moderate Resolution Imaging Spectrometer MCD12Q1 product

https://fluxnet.ornl.gov/
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Imaging Spectroradiometer (MODIS) products (MOD15A2; http://

daac.ornl.gov). At each flux site, LAI data lie in the 3 km × 3 km centred

grid matrix according to the flux coordinates was selected to obtain

LAI time series. The 3 km × 3 km centred grid data are used to reduce

the mismatch between the course MODIS pixels and the footprint size

of the flux sites (Shi et al., 2014). The 8‐day data were processed

through quality control, interpolation, and filtering using the TIMESAT

tool (Jönsson & Eklundh, 2004) to obtain high quality LAI for model

use (Zhang & Wegehenkel, 2006).

Additionally, remote sensed ET from MOD16A2 and GPP from

MOD17A2, with 8‐day temporal resolution were downloaded from

the Numerical Terradynamic Simulation Group (NTSG; http://www.

ntsg.umt.edu), which were then extracted at each flux site for compar-

ison with the PML_V2 modelled results.

3.3 | Evaluation of model performance

The global optimization method—genetic algorithm—in MATLAB®

(The MathWorks, Inc.) was used to calibrate the PML_V2 model

parameters at each flux site. A multi‐objective cost function (Fcost)

was set‐up to maximize the sum of the Nash–Sutcliffe efficiency

(NSE) between simulated and observed ET and GPP as

Fcost ¼ NSEET þ NSEGPP; (8)

NSEET ¼ 1−
∑N
i¼1 ETsim;i−ETobs;i

�� ��2
∑N
i¼1 ETobs;i− �ETobs

�� ��2 ; (9)

NSEGPP ¼ 1−
∑N
i¼1 GPPsim;i−GPPobs;i

�� ��2
∑N
i¼1 GPPobs;i− �GPPobs

�� ��2 ; (10)

where subscripts obs and sim represent observation and simulation,

respectively, N is the length of the 8‐day time series at each site. Thus,

estimates of ET and GPP using PML_V2 were evaluated using the NSE

of 8‐day ET and GPP, respectively. At each flux site, the four

parameters are optimized by maximizing the grand cost function Fcost

(Equations 8–10).

In addition to NSE, we also used the standard metrics for

evaluating model performance, namely, the linear regression slope,

the coefficient of determination (R2), and the root mean square error

(RMSE), as given below:

R2 ¼ ∑N
i¼1 Xsim;i−�Xsim

� �
Xobs;i−�Xobs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1 Xsim;i−�Xsim

� �2
∑
N

i¼1
Xobs;i−�Xobs

� �2s
0
BBBB@

1
CCCCA

2

; (11)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N
i¼1 Xsim;i−Xobs;i

� �r
; (12)

where X represents the evaluated variable, either ET or GPP in this

study. Higher slope, NSE and R2, and lower RMSE indicates good

model performance.

Two experiments were set to evaluate the ability of the model in

estimating ET and GPP. First, the PML_V2 model was calibrated at

http://daac.ornl.gov
http://daac.ornl.gov
http://www.ntsg.umt.edu
http://www.ntsg.umt.edu
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each flux site using all available data individually. In this way, model

performance and parameter variability are examined across sites. Second,

the available data at each flux site were split into two equal parts, and

each of the half data set was used to calibrate the model in turn. The

predicted ET and GPP from the validation period was then accumulated

to obtain continuous time series at each site as predictions. This

experiment tests the robustness of the model in predicting ET and GPP.
4 | RESULTS

4.1 | Sensitivity analysis

Among the seven parameters (Table 1), previous studies have shown

that D0, kQ, and kA are insensitive parameters to estimate ET in the

PML model (Leuning et al., 2008; Zhang, Chiew, Zhang, Leuning, &

Cleugh, 2008). Similarly, we conducted a sensitivity analysis for all

the parameters in the PML_V2 model. With all of the seven parame-

ters optimized, the values ranged between 0.50–1.5 for D0, 0.10–

0.82 for kQ, and 0.50–0.80 for kA across the nine sites. However, when

given D0 = 0.7, kQ = 0.6, and kA = 0.7 as constants, we yield identical

estimates for the rest four parameters (α, ƞ, m, and Vm,25) and the sta-

tistics of simulated ET and GPP (data not shown). Thus, a similar con-

clusion was drawn that performance of the PML_V2 model is relatively

insensitive to variations in D0, kQ, and kA. Therefore, all the following

results are presented with only the free parameters: α, ƞ, m, and

Vm,25 optimized in this study. Additionally, as the model is relatively

insensitive to variations in the atmospheric CO2 concentration and

the observation is not readily available, Ca is given as 380 μmol mol
−1 despite the value can vary in reality. Because water and carbon

fluxes are coupled via Gc (Section 2.2), the sensitivity of Gc to varia-

tions in α, ƞ, m, and Vm,25 is herein examined as shown in Figure 2.

As can be seen from Figure 2, lower α results in a lower Gc and so

does ƞ. With α or ƞ increasing to its upper limit (i.e., 0.07), the sensitiv-

ity of Gc to these two parameters reduces to a smaller degree than that

of their lower limits. However, it is not the case for m, where Gc shows

an equal variation degree within the allowed limits. As for Vm,25, varia-

tion in Gc within lower Vm,25 values (below 70 μmol m−2 s−1) is much

higher than that of larger Vm,25 range (70–120 μmol m−2 s−1). Hence,

the model performance is likely to be relatively sensitive in variations

of the parameters ƞ and m but less so in α and Vm,25. Further model
FIGURE 2 Response of Gc to (a) α, (b) ƞ, (c) m, (d) Vm,25 . Except w
Vm,25 = 50 μmol m−2 s−1. Rs = 500 W m−2, PAR is assumed to be 0.45Rs, D
−1, and kA = kQ = 0.6. LAI = leaf area index
experiment indicates that the parameterized values of ƞ and m show

a larger variation across biomes, which means that they are key param-

eters that control ET and GPP estimates in this model.
4.2 | Parameterization

For individual parameterization at each flux site, the optimized values

of the four parameters are presented in Table 3. All of the parameters

vary within a wide range across sites in general. The initial slopes of

the assimilation response curves to light (α) and CO2 (ƞ) ranged

between 0.05–0.07 (μmol CO2 [μmol PAR]−1) and 0.013–0.063

(μmol m−2 s−1 [μmol m−2 s−1]−1), respectively. Although α shows a rel-

atively small variation among nine sites (average 0.067 μmol CO2

[μmol PAR]−1), smaller ƞ values were detected at two forest sites

(about 0.015 μmol m−2 s−1 [μmol m−2 s−1]−1) when compared with that

of the nonforest sites in general (between 0.013–0.063 μmol m−2 s−1

[μmol m−2 s−1]−1). Besides, stomatal conductance coefficient (m)

ranged from 5.75 to 20 across all biomes. In addition, Vm,25 also varied

considerably from 34 μmol m−2 s−1 at DaP to 120 μmol m−2 s−1 at five

different sites (Das, Dry, ASM, Tum, andWom). However, no clear pat-

tern was observed for the difference in m and Vm,25 values across

biomes.
4.3 | Model calibration

Site‐specific parameterization results are used to evaluate the model

performance with the parameters α, ƞ, m, and Vm,25 optimized.

Figure 3 presents the statistics of simulated ET and GPP at 8‐day tem-

poral resolution when compared with observations. It can be seen that

the model performs well in simulating both ET and GPP. Collectively,

the model explains 80% and 71% of variations in ET and GPP, respec-

tively, with the average NSE values at 0.71 for ET and 0.63 for GPP

across biomes. This indicates a reasonably high degree of estimating

water and carbon fluxes using the PML_V2 model. This is further evi-

dent from a large linear regression slope and lower RMSE values

(Figure 3). Additionally, the PML_V2 model performed slightly better

in 8‐day ET estimates than GPP. On average, the model explains 9%

higher of ET variation than that of GPP, yet with a much smaller differ-

ence in NSE (about 0.07). The lower slopes of GPP indicate that the

algorithm tends to underestimate GPP by 20–40% across sites.
hen varied, parameter values are α = 0.04, ƞ = 0.03, m = 10, and
= 1 kPa, D0 = 0.7 kPa, Pa = 100 kPa, Tair = 25°C, Ca = 380 μmol mol



TABLE 3 Optimized parameter values of the PML_V2 model at nine
Australian flux sites

Site
name PFT

Optimized parameter values

α ƞ m Vm,25

ASM OSH 0.07 0.026 5.7 120

Ade SA 0.07 0.063 13.4 36

DaP GRA 0.07 0.013 9.75 34

Das SA 0.07 0.024 12.2 120

Dry SA 0.07 0.020 8.6 120

How WSA 0.07 0.028 16.5 108

Stp GRA 0.07 0.022 20 82

Tum EBF 0.06 0.014 14.7 120

Wom EBF 0.05 0.015 12.6 120

Parameter range 0.01–0.07 0.01–0.07 2–20 10–100

aThe model is calibrated by maximizing NSEET + NSEGPP using all available
data at each site independently.

GAN ET AL. 7 of 15
Except general good performance, the model can successfully

capture seasonal variation in ET andGPP aswell. The observed and sim-

ulated 8‐day time series ET andGPP are presented in Figures 4 and 5 for

each of the nine study sites, respectively. Result in Figure 4 indicates

that the model is capable of reproducing seasonal pattern in actual ET;

yet a slightly better performance can be found during higher precipita-

tion periods when compared with that of lower precipitation periods

for most sites. The higher consistency between simulated and observed

ET is detected for forest sites (Tum and Wom) than nonforest sites

throughout the year, especially during lower precipitation periods.

Additionally, the PML_V2 model could also reproduce reasonably good

temporal dynamics for GPP (Figure 5). Using observed GPP as bench-

mark, the best model performance was found at the grassland site
FIGURE 3 Statistics of model performance at 8‐day time scale for ET
optimization using all available data at each site. Nash–Sutcliffe efficiency
root mean square error (RMSE) of simulation against observation for both
DaP (NSE = 0.85), followed by the forest site Wom (0.79) and two

savanna sites Das (R2 = 0.74) and Ade (R2 = 0.73). However, the least

satisfactory model performance is at the grassland site Stp (R2 = 0.59).

The seasonal variation in GPP is tend to be overestimated during lower

GPP periodswherewater availability (precipitation) is limited, especially

for nonforest biomes (savanna, OSH and GRA).

4.4 | Model validation

Time series derived from the half‐split validation experiment

(Section 3.3) were used to evaluate the model robustness of predicting

ET and GPP. For each of the nine sites, we split the data into half and

used each half data for calibration and the remaining half for validation

in turn. Thereby, the ET and GPP predictions during each of the half

validation period are yield by applying the model with optimized

parameters obtained from calibration period. Because the two param-

eter sets yield for each site are very close to those optimized with all

data at the same site in general, the two half predictions are merged

into a full time series at each site to evaluate model performance.

Collectively, the cross site average NSE, R2 and slope are 0.70,

0.80, and 0.97 for 8‐day ET and 0.61, 0.71, and 0.54 for 8‐day GPP,

respectively. RMSE is 0.95 mm d−1 for ET and 1.02 μmol m−2 s−1

or GPP across sites (data not shown). This result is very close to that

of calibration (Figure 3). Figure 6 presents the model performance deg-

radation from calibration to validation, as indicated by the statistical

difference between the two at each site. As can be seen that there is

only slight degradation found in both ET and GPP. NSE and R2 of

8‐day ET were nearly identical with that of model calibration, with

the maximum difference of NSE found at Ade and Das; yet the overall

RMSE increased less than 0.1 mm d−1. Additionally, despite the minor

degradation in R2 value for 8‐day GPP at most sites, maximum
and GPP estimates. The parameters are derived from independent
(NSE), coefficient of determination (R2), linear regression slope, and
ET and GPP are presented



FIGURE 4 Time series of 8‐day average ET and precipitation in mm d−1 at nine flux sites. Observed ET is derived from flux tower measurements.
Simulated ET is yielded from PML_V2 with four parameters optimized at each site independently (Table 3)

FIGURE 5 Time series of 8‐day average GPP in μmol m−2 s−1 at nine flux site. Observed GPP is derived from flux tower measurements.
Simulated GPP is yielded from PML_V2 with four parameters optimized at each site independently (Table 3)
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decrease in NSE is found at ASM and Tum (0.05), followed by Ade

(0.03) and Stp (0.02), and RMSE increased less than 0.12 μmol m−2 s
−1 for all sites, which indicate a marginal degradation in general. Note

that a better validation is detected for GPP at Stp in terms of R2 and

for ET at Tum in terms of RMSE; yet the difference is minor. This is

caused by optimizing the Equation 8–10, where the optimal solution

is achieved by compromising NSE between GPP and ET. When the

ET validation increases, the GPP validation depredates to obtain better

overall results. The overall results imply that the PML_V2 model is of

high robustness in predicting both ET and GPP.
5 | DISCUSSION

5.1 | Model parameters

The values of the optimized parameters were comparable with previ-

ous studies. The average quantum efficiency α yield from PML_V2

(0.067 μmol CO2 [μmol PAR]−1) is consistent with the values inYu et al.

(2004). Results with the four parameters calibrated show that α is

clearly different between forest and nonforest sites. Lower α values

(about 0.58 μmol CO2 [μmol PAR]−1) in site Tum and Wom indicate



FIGURE 6 Degradation of model performance from calibration to validation at each of the nine sites. Statistics shown are the difference of R2,
Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE) as validation minus calibration, with the black and shaded symbols
representing the values of ET and GPP, respectively
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the heterogeneity in the radiation response in these energy‐limited

ecosystems, whereas higher α (0.070 μmol CO2 (μmol PAR)−1) at other

sites represents a roughly similar pattern of light response among

savanna, shrubs and grassland for their patchy vegetation cover. The

estimated carboxylation efficiency ƞ is generally lower in forest sites

(about 0.015 μmol m−2 s−1 [μmol m−2 s−1]−1) and higher at nonforest

sites (vary from 0.013 to 0.63 μmol m−2 s−1 [μmol m−2 s−1]−1). This

implies that the woody ecosystem is relatively insensitive response

to changes in CO2 concentration than herbaceous ones. Meanwhile,

the stomatal conductance coefficient m shows a wide variation across

biomes, which all fall into the optimal range. In addition, smaller Vm,25

values were found in Ade, DaP, and Stp with all the rest sites having

larger Vm,25 values. As canopy conductance became insensitive at high

Vm,25 values (Figure 2), this could be a result of the fixed a and b given

as a constants under 25and 41 °C in the model as mentioned above.

In the PML_V2 model, α was calibrated as a constant whereas in

reality, it could change with water availability, being higher in the wet

season but lower in the dry season as higher water availability usually

induces higher quantum efficiency (Eamus et al., 2013). Further study

is required to obtain α that varies against water factors such as precip-

itation or soil water content, to improve model performance in the dry

season. Besides, we introduced a notional catalytic capacity Vm,25 into

the model, which is different from the commonly used maximum car-

boxylation rate Vc,max; yet a similar optimal range was given for optimi-

zation (Bonan et al., 2012; Kattge & Knorr, 2007). Although Vm,25 has

been adjusted to temperature accordingly, it should be noted that the

obtained values are different from those of Vc,max. However, the model

performance is relatively insensitive to variations of this parameter

at 8‐day temporal scale despite the leaf level internal control of con-

ductance to photosynthesis (Chen, Liu, Cihlar, & Goulden, 1999).
5.2 | Comparison with MODIS products and other
studies

The MODIS products are widely used to map global ET and GPP and

compare with modelled results. We hereby conducted a brief
comparison of the predicted results using PML_V2 model with that

derived from MODIS product. MODIS ET (MOD15A2; ETMODIS) and

GPP (MOD17A2; GPPMODIS) time series was extracted and processed

at the nine study sites. The predicted ET and GPP from PML_V2 model

was compared with ETMODIS and GPPMODIS at 8‐day scale against

observations as shown in Figure 7. As expected, MODIS products per-

form worse than PML_V2 model in general. Despite negative NSE

values of MODIS (set to zero in Figure 7a,d), the average R2 yield from

MODIS products across sites is 0.68 for ET and 0.51 for GPP, which

explains 12% and 22% less variations in ET and GPP when compared

with PML_V2 model, respectively. Moreover, the RMSE values of

PML_V2 are clearly lower than that of MODIS. Specifically, ETMODIS

tends to underestimate actual ET at nonforest sites (i.e., Ade, Das,

Dry, How, ASM, and Stp), especially during low precipitation periods,

but overestimates at forests (i.e., Tum and Wom) throughout the study

period (data not shown). This suggests that it is hard to satisfactorily

use the globally parameterized two MODIS products for Australian

biomes, where the proposed PML_V2 model is of high reliability and

robustness in ET and GPP estimate.

In addition, we also compared our modelled results with other two

coupled models at sites where available, namely, How and Tum which

are commonly used in the literature. Only the site‐specific parameter-

ization performance is used for fair comparison as given inTable 4. On

average, the R2 and RMSE of ET are better or about the same with that

obtained by Hu et al. (2017) and Yebra et al. (2013), and GPP is closely

comparable or better than the simulation yield by Hu et al. (2017) and

Yebra et al. (2015) using their coupled model. This gives us confidence

that the PML_V2 model proposed here is relatively simple yet reliable

to estimate ET and GPP.
5.3 | Model uncertainty

The advantage of the PML_V2 model is, as described in the Equation 6,

inclusion of both energy and carbon responses in a simple coupled for-

mulation, which keeps the biological energy‐driven mechanism and

includes CO2 as an independent environmental constraint (Kelliher



TABLE 4 PML_V2 performance in prediction mode compared with the published at two flux sites How and Tum, in terms of the coefficient of
determination (R2) and root mean square error (RMSE)

Reference
Temporal
period Temporal resolution

How Tum

ET ET GPP GPP ET ET GPP GPP

R2
RMSE
mm d−1 R2

RMSE
μmol m−2 s−1 R2

RMSE
mm d−1 R2

RMSE
μmol m−2 s−1

This study 2001–2012 8 days 0.76 1.01 0.75 1.04 0.84 0.84 0.81 1.09

Yebra et al. (2015, 2013) 2001–2006 16 days (ET)8 days (GPP) 0.79 0.14 0.76 1.17 0.68 0.52 0.53 1.85

Hu et al. (2017) 2001–2006 8 days 0.67 0.90 0.57 1.79 0.85 0.84 0.78 2.43

FIGURE 7 Statistic comparison of PML_V2 model (in validation mode) and MODIS products at nine Australian flux sites. Nash–Sutcliffe
efficiency (NSE), R2, and root mean square error (RMSE) are given for ET (a–c) as black and GPP (d–f) as shaded symbols, respectively. For
visualization, the negative NSE values of MODIS products in (a) and (d) are set to zero indicating poor model performance
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et al., 1995; Thornley, 1976, 1998a). Compared with the eddy covari-

ance observations, the PML_V2 model yields satisfactory estimates of

ET and GPP in general (Figures 3 and 4), with slightly better perfor-

mance for ET than GPP detected (Figures 3 and 5). This could be a

result of the following factors. First, available energy is the foremost

environmental driving variable triggering stomatal activities, rather

than CO2 concentration. The PML_V2 model kept the energy‐driven

response of stomata to multiple environmental variables, yet the pho-

tosynthesis model was introduced. This induces a lower model sensi-

tivity of simulating ET with the energy driven Gc formula, in which

GPP was calculated as a relatively weak carbon constrain. Second,

regarding the two components of ET, transpiration through stomata

in the PML_V2 model depends on canopy interaction with the atmo-

sphere, whereas soil evaporation is not related to stomatal behaviour.

The uncertainty of estimated transpiration from the carbon constraint

is mitigated by evaluating total ET as the sum of transpiration and soil

evaporation. Third, GPP is controlled not only by PAR and temperature

but also other environmental factors such as soil moisture (Cleverly,

Eamus, Luo, et al., 2016; Eamus et al., 2013) and atmospheric CO2
concentration (Donohue, Roderick, McVicar, & Farquhar, 2013), which

is not explicitly considered in the present PML_V2 model due to model

simplicity and data availability concern. However, among the nine flux

sites used in our study, seven of which are located in warm and arid

environments where the ecosystems are water limited (Figures 4 and

5). Vegetation in these ecosystems relies on water availability and

may have developed deep root system to support growth during rela-

tively short dry period. This can be an explanation for less satisfactory

model performance at the nonforest sites, where high GPP periods are

underestimated by PML_V2. However, when precipitation remains

extremely low, GPP is again water limited during long dry periods;

yet the model lacks the water constraint in calculating GPP during

these periods. Additionally, these warm and dry ecosystems are sensi-

tive to variations in CO2 concentration, yet which value is given as

380 μmol mol−1 across sites. As the study period is relatively short, this

is a fair assumption but not for long‐term pattern. The model perfor-

mance is likely to be improved by introducing other environmental

constraints such as precipitation and soil moisture into the model. At

specific sites, the model well captured the GPP variation throughout
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the study period at evergreen broadleaf forests sites (i.e., Tum and

Wom) but less so at OSH (ASM) and GRA (Stp and DaP) sites during

both peak and low GPP periods. Considering the fact that the peaks

at ASM and Stp were real (Cleverly et al., 2013; Eamus et al., 2013)

and contribute greatly to the global carbon sink anomaly (Cleverly,

Eamus, Restrepo Coupe, et al., 2016; Poulter et al., 2014), the less sat-

isfactory model performance on high and low GPP values can be

explained as a result of using NSE as the objective function to parame-

terize the PML_V2 model (Equations 8–10). NSE could induce subopti-

mal solutions when the data set contains extremely large values. For

ASM, with only 2 years data available, extreme high GPP observations

at the beginning of 2011 can cause large uncertainties in model perfor-

mance, thus bring large bias for GPP peaks in wet season and minima in

dry season (Figure 5). For Stp and DaP, extreme low GPP observations

occur repeatedly each year and, hence, jeopardize the overall model

performance. Additionally, the photosynthesis principles adopted in

PML_V2 model are relatively simple and empirical (rectangular hyper-

bola), which generally accounts for C3 rather than C4 species. Despite

there is a fair difference between C3 and C4 assimilation process, and

some of the nonforest sites are partly C4 grass dominated, the model

fails to distinguish this difference thus lead to poor results at these

sites. Further investigation is required to test how and to what level

would the biological process influence modelled ET and GPP.

It is also noted that we adopted the big‐leaf scaling‐up method to

obtain canopy level carbon uptake and conductance, which could

induce uncertainty in estimating ET and GPP due to scaling effect. In

fact, there is a diffuse difference of radiation between sunlit and

shaded leaves, which means that the water vapour flux and assimila-

tion rate can vary greatly between the these two type of leaves, and

the effect is detectable at canopy level (Irmak et al., 2008; Zhang,

Liu, Xu, Cai, & Li, 2011). This difference is neglected in the big‐leaf

approach thus bring uncertainty for simulating ET and GPP. The can-

opy heterogeneity at both horizontal and vertical direction also means

the bulk canopy conductance, and assimilation is not simply the sum of

the leaf level water loss and carbon gain. However, differentiating sun-

lit and shade leaves will bring more complex model structure and more

parameters, which definitely influences model parameterization and

applicability.
6 | CONCLUSIONS

This study developed a coupled PML_V2 model to estimate evapo-

transpiration and carbon assimilation using a relatively simple structure

while retaining reasonable biophysical significance. The model was

examined against observations from nine flux sites that cover a wide

range of climate and biome types in Australia. The model performed

well in both ET and GPP simulation at 8‐day temporal scale. Sensitivity

analysis and validation experiment as well as comparison with other

modelled results further demonstrate that the proposed PML_V2

model is good for estimating ecosystem water and carbon fluxes. This

is an ongoing study. We are testing its performance in other parts of

world and integrating the PML_V2 model into catchment hydrological

modelling for broader ecological and hydrological applications from

catchment to region.
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APPENDIX A

The canopy conductance Gc in the PML_V2 model is deduced from

stomatal conductance as follows:

The widely used Ball–Berry gs model (Ball et al., 1987) was devel-

oped from leaf gas exchange experiments as

gs ¼ g0 þm
Anhs
Cs

; (A1)

where g0 is the value of gs at the light compensation point (mol m−2 s−1),

m is stomatal conductance coefficient, Cs is leaf surface CO2 concen-

tration (μmol mol−1), hs is relative humidity, and An is net assimilation

rate (μmol m−2 s−1). As stomata response to leaf surface VPD (Ds)

rather than hs, Leuning (1995) replaced hs in Equation A1 with a

hyperbolic constrain of Ds to gs and gave

gs ¼ g0 þm
An

Cs−ΓÞ 1þ Ds=D0ð Þ;ð (A2)

in which Γ is CO2 compensation concentration (μmol mol−1) and D0 is

a parameter that represents the sensitivity of gs to Ds. Note that

above mentioned gs models (Equations A1 and A2) simulate stomatal

conductance to carbon flux, and the stomatal conductance to water

vapour can be approximated as 1.6 times of that to carbon flux

(Medlyn et al., 2011; Yebra et al., 2015).

To obtain gs according to Equations A1 or A2, the biochemical

photosynthesis model developed by Farquhar, von Caemmener, and

Berry (1980) is commonly implemented to calculate An, in which the

rate of CO2 uptake is limited either by Rubisco activity (Jc), electron

transport (Je), or exportation or utilization capacity of photosynthetic

products (Js; Collatz et al., 1991). Although this method is widely used,

parameters of this model are difficult to obtain, and the description of

the underlying processes remains elusive (Thornley, 1998b).

On the aware of practicability of the model, we therefore intend

to develop a simple and coupled Gc model based on gross photosyn-

thesis and stomatal response. According to Yu, Goudriaan, and Wang

(2001), considering the fact that gs increases immediately with light

incidence, An should be replaced by gross assimilation rate (Ag,

μmol m−2 s−1) and use Cs instead of Cs−Γ in Equation A2. Additionally,

Ag and go goes to zero in dark, Ds, and Cs can be approximated using Da

and Ca, respectively; Yu et al. (2004) suggests that gs can be written as

a function of Ag, Ca, and Da at leaf level as

gs ¼ m
Ag

Ca 1þ Da=D0ð Þ; (A3)

in which Ca is the atmospheric CO2 concentration, the gross assimila-

tion Ag is calculated following Thornley (1976) as a rectangular hyper-

bola function to both PAR and Ca as

Ag ¼ AmαIηCa

AmαIþ AmηCa þ αIηCa
; (A4)

where α is the initial slope of the light response curve to assimilation

rate (i.e., quantum efficiency; μmol CO2 [μmol PAR]−1), η is the initial

slope of the CO2 response curve to assimilation rate (i.e., carboxyla-

tion efficiency; μmol m−2 s−1 [μmol m−2 s−1]−1), I is the incident flux
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of PAR (μmol m−2 s−1), which is converted from PAR to photon flux

assuming 4.6 μmol photons per Joule (Oleson et al., 2010), and Am

is the maximum photosynthetic rate obtained when both I and Ca

are saturating (μmol m−2 s−1).

Values of the light and carbon saturated rate of photosynthesis

(Am) are sensitive to species and can be reached either by Rubisco‐

limited Jc, electron‐limited Je, or transport‐capacity‐limited Js in the

Farquhar model (Farquhar & Sharkey, 1982), with the other

environmental factors (e.g., water status) are assumed optimal

(Thornley, 1998b). Given that the three limitation rates of assimilation

(Jc, Je, and Js) are all directly or indirectly related to the maximum cat-

alytic capacity of Rubisco (Vc,max), we simplify the photosynthesis

model by using a notional capacity Vm, to represent Am in Equation A4.

As Vm is a kinetic parameter needs to be adjusted to temperature,

it can be described by the equation (Campbell & Norman, 1998; Katul,

Ellsworth, & Lai, 2000; Katul, Manzoni, Palmroth, & Oren, 2010):

Vm ¼ Vm;25 exp a T−25ð Þ½ �
1þ exp b T−41ð Þ½ � ; (A5)

where Vm,25 is the value of Vm when T = 25 °C, T (°C) is temperature,

a and b are temperature coefficients given as 0.031 and 0.115,

respectively (Campbell & Norman, 1998). Note that the Vm introduced

here is different from those used as Vc,max. At this point, Equation A3

can be rewritten into

gs ¼ m
VmαIη

VmαIþ VmηCa þ αIηCa

1
1þ D=D0

: (A6)
On the canopy scale, we can hence calculate gross assimilation

rate (Ac,g) from Equation A4 and canopy conductance (Gc) from

Equation A6 following the integration principle. The light extinction

law I = I0 exp (−kl) is adopted here to obtain

Ac;g ¼ ∫
LAI
0 Agdl ¼ VmαηCa

k Vmαþ αηCað Þ
kLAIþ ln

αVm þ αηCað ÞI0 þ ηVmCa

αVm þ αηCað ÞI0 exp −kLAIð Þ þ VmηCa

� �
;

(A7)

where I0 is the flux density of PAR at the top of the canopy

(μmol m−2 s−1), l is the unit leaf area (m2 m−2), and k = kQ is the extinction

coefficient. To simplify, we have

P1 ¼ VmαI0η; P2 ¼ VmαI0; P3 ¼ VmηCa; P4 ¼ αI0ηCa: (A8)

As a result, canopy gross assimilation rate or ecosystem GPP is

simplified as

GPP ¼ Ac;g ¼ P1Ca

k P2 þ P4ð Þ kLAIþ ln
P2 þ P3 þ P4

P2 þ P3 exp kLAIð Þ þ P4

� �
: (A9)

Furthermore, by integrating Equation A6 up to canopy level, one

can obtain the following new Gc model:

Gc ¼ ∫
LAI
0 gsdl ¼ m

P1
k P2 þ P4ð Þ

kLAIþ ln
P2 þ P3 þ P4

P2 þ P3 exp kLAIð Þ þ P4

� �
1

1þ D=D0
:

(A10)


