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Abstract

Climate change threatens global wheat production and food security, including the

wheat industry in Australia. Many studies have examined the impacts of changes in

local climate on wheat yield per hectare, but there has been no assessment of

changes in land area available for production due to changing climate. It is also

unclear how total wheat production would change under future climate when

autonomous adaptation options are adopted. We applied species distribution models

to investigate future changes in areas climatically suitable for growing wheat in Aus-

tralia. A crop model was used to assess wheat yield per hectare in these areas. Our

results show that there is an overall tendency for a decrease in the areas suitable

for growing wheat and a decline in the yield of the northeast Australian wheat belt.

This results in reduced national wheat production although future climate change

may benefit South Australia and Victoria. These projected outcomes infer that simi-

lar wheat-growing regions of the globe might also experience decreases in wheat

production. Some cropping adaptation measures increase wheat yield per hectare

and provide significant mitigation of the negative effects of climate change on

national wheat production by 2041–2060. However, any positive effects will be

insufficient to prevent a likely decline in production under a high CO2 emission sce-

nario by 2081–2100 due to increasing losses in suitable wheat-growing areas.

Therefore, additional adaptation strategies along with investment in wheat
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production are needed to maintain Australian agricultural production and enhance

global food security. This scenario analysis provides a foundation towards under-

standing changes in Australia’s wheat cropping systems, which will assist in develop-

ing adaptation strategies to mitigate climate change impacts on global wheat

production.
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1 | INTRODUCTION

Global demand for agricultural products has been increased due to a

growing human population, rising incomes, and changing patterns of

food preferences and consumption (Grundy et al., 2016; Keating,

Herrero, Carberry, Gardner, & Cole, 2014; Wheeler & Von Braun,

2013). However, global climate change has significantly affected crop

growth and development, altered crop cultivation patterns and

potentially suitable planting areas, and has even resulted in consider-

able reductions in the production of major crops (e.g. wheat, rice

and maize) (Balkovi�c et al., 2014; Liu, Folberth, et al., 2013). There-

fore, climate change poses a great threat to global food production

and security (Wheeler & Von Braun, 2013). However, there is a high

uncertainty in future climate impacts in different regions of the

globe (IPCC, 2013). These uncertainties, together with the rising

food demand and mounting production challenges, make it urgent to

promptly re-evaluate global agricultural capacity under future climate

conditions.

Australia is a significant contributor in the world food market

(FAOSTAT, 2014). During the past few decades, Australian agricul-

tural productivity has increased despite a drying and warmer climate

(Godden, Batterham, & Drynan, 1998), largely as a result of

improved crop cultivars, and crop management including fertilizers

and water conservation. About 65% of Australia’s agricultural pro-

duction is exported (Grundy et al., 2016). As one of the top five

wheat exporting countries in the world, Australia accounts for 11%

of global wheat trades during 2015 (Workman, 2017), its exports

can compensate for wheat production fluctuations in other regions

of the world and can potentially affect global wheat availability and

global food security (Qureshi, Hanjra, & Ward, 2013).

The climate of Australia is changing with temperature increasing

by approximately 0.8°C since 1960 with more heat waves, fewer

frosts and an increase in the intensity of droughts (Cleugh, Smith,

Battaglia, & Graham, 2011). Recent climate projections for Australia

show annual mean temperature increasing by approximately

1.4–2.7°C for RCP4.5 and 2.8–5.1°C for RCP8.5 by 2080–2099, with

a possible decrease in spring and winter rainfall (CSIRO & BoM,

2015). The combined effects of changing and uneven distribution of

seasonal rainfall, and increasing temperatures could exacerbate the

Australian wheat industry’s current vulnerabilities and pose a chal-

lenge for export markets (Lawrence, Richards, & Lyons, 2013). For

example, Australia’s wheat is almost entirely grown under rain-fed

conditions and previous assessments of climate change impacts have

demonstrated that a substantial decrease in productivity can be

attributed to reductions in growing season rainfall (Anwar et al.,

2015; Ludwig & Asseng, 2006). However, increasing atmospheric

carbon dioxide (CO2) concentrations could enhance photosynthetic

production and water use efficiency in crops, especially if nutrients

are not limiting crop growth (Fitzgerald et al., 2016; Urban, Sheffield,

& Lobell, 2015). For example, some previous crop modelling studies

show that negative effects of increased temperatures on wheat yield

are partially offset by the positive effects of higher CO2 concentra-

tions (Fitzgerald et al., 2016; Ludwig & Asseng, 2006; O’Leary et al.,

2015; Wang, Liu, Asseng, Macadam, Yang, & Yu, 2017). Comprehen-

sive assessment of the impacts of climate change on Australia’s

wheat industry requires the consideration of both climatic effects

and the effects of CO2 increases, and the interactions between

them.

The distribution of crops across the landscape depends on local

climatic conditions (e.g. temperature and rainfall) as well as soil prop-

erties, terrain and competing land use (e.g. urban areas). Climate is

an important factor in determining crop planting area and climate

change may affect the spatial distribution of crops. It has been

shown that in higher latitudes, higher temperatures could result in

crop growing regions expanding as the growing season lengthens

and crop yields rise (Ramirez-Cabral, Kumar, & Taylor, 2016; Schmid-

huber & Tubiello, 2007). In China, for example, the northern limits of

cropping systems have shifted north with global warming and con-

tributed an additional 2.2% to national production of major crops

(Yang et al., 2015). In the Southern Hemisphere, future climatic con-

ditions are less favourable for crop cultivation due to heat and lack

of water (Ramirez-Cabral et al., 2016). Surprisingly, despite the

importance of Australia’s wheat to world trade and potential impacts

from climate change, there is limited understanding of how the cli-

mate suitability for wheat may change across Australia’s wheat belt

(O’Leary et al., 2011). However, species distribution models (SDMs)

(Elith & Leathwick, 2009), which represent the association between

species’ occurrence and environmental, climatic and geographical

predictors, can be applied to address this problem (Evangelista,

Young, & Burnett, 2013; Keenan, Maria Serra, Lloret, Ninyerola, &

Sabate, 2011; Liu, White, Newell, & Griffioen, 2013). For example,

Bunn, L€aderach, Rivera, and Kirschke (2015) have used SDMs to
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project coffee production on a global level and found that climate

change will reduce the global area suitable for coffee by about 50%

across emission scenarios. These statistical models have shown that

aspects of rainfall and temperature are important predictors for

many ecological processes and are being increasingly employed for

projecting impacts of climate change (Evangelista et al., 2013; Sha-

bani, Kumar, & Solhjouy-Fard, 2016). For example, water stress is

the main factor limiting the geographic distribution of common bean

at a global scale (Ramirez-Cabral et al., 2016).

Assessments of climatic suitability of different regions for crop

growth under climate change could inform local and global initiatives

to develop adaptive strategies that can minimize negative impacts

and address food security (He & Zhou, 2016; Ramirez-Cabral et al.,

2016). Numerous studies have already shown a net increase in wheat

productivity with climate change and suitable adaptation options

implemented (Liu et al., 2017; Mart�ın, Olesen, & Porter, 2014; Van

Rees et al., 2014; Waongo, Laux, & Kunstmann, 2015). The primary

adaptation measures arise from managing soil water more efficiently

during the growing season by selecting cultivar, sowing time and den-

sity and fertilizer supply and timing (Ghahramani et al., 2015). Of

these adaption strategies, variation in the sowing date and switching

to alternative existing slower-maturing cultivars could be considered

“autonomous adaptation” (Ding et al., 2016; Hasegawa et al., 2013),

implemented by farmers without any exogenous input (e.g. policy

intervention). Previous studies show that autonomous adaptations

have the potential to benefit farmers in soil conservation and water

management and are likely to improve agriculture in Australia

(Ghahramani et al., 2015; Richards, Hunt, Kirkegaard, & Passioura,

2014; Van Rees et al., 2014). However, the productivity gains from

the management strategies that are best for current climate condi-

tions may not necessarily be robust to future climate conditions,

which suggests that it is worthwhile examining adaptation techniques

under projected future scenarios (Ghahramani et al., 2015).

We assessed climate-related changes in wheat production

between 1961–2000 and 2041–2060 (hereafter “2050s”) and 2081–

2100 (hereafter “2090s”) in the major wheat-producing states of

Australia (New South Wales [NSW], Queensland [QLD], Victoria

[VIC], South Australia [SA], Western Australia [WA]). We excluded

Tasmania in our study because Tasmania is dominant by mountains

and wheat-growing area is very small (about 0.06% of Australian

wheat area in 2005–2014, http://www.abs.gov.au/Agriculture). In

contrast to most previous studies in Australia, we explicitly account

for both changes in the area of cropland climatically suitable for

growing wheat and changes in yields per hectare. We used local-

scale climate scenarios based on statistically downscaled data from

11 skill-selected Global Climate Models (GCMs) from the Coupled

Model Intercomparison Project Phase 5 (CMIP5) multi-model ensem-

ble (Taylor, Stouffer, & Meehl, 2012) and two Representative Con-

centration Pathways (RCP4.5 and RCP8.5) (Moss et al., 2010).

Firstly, we used SDMs to assess changes in land area (km2) of Aus-

tralia climatically suitable for growing wheat for each climate sce-

nario. We then employed the APSIM crop simulation model

(Holzworth et al., 2014) to simulate impacts of climate change on

wheat yields per hectare. We combined the results of the SDMs and

APSIM analysis to assess climate-related changes in Australian wheat

production. Finally, we ran APSIM simulations with different adapta-

tion options including variation in the sowing date and switching to

slower-maturing cultivars to investigate the effects of adaptation on

future changes in national production.

2 | MATERIALS AND METHODS

APSIM (the Agricultural Production Systems Simulator) version 7.7

(http://www.apsim.info/) was used to model the impacts of climate

change on grain yield. The simulation of wheat yield was performed

for the 654 APSOIL wheat sites (Figure S1a), where detailed soil

profile data are available from the Australian Soil Resource

Information Systems (http://www.asris.csiro.au/mapping/hyperdocs/

APSRU/). Each soil file in APSIM model contains information

including soil description, soil classification, site, region, latitude,

longitude and data source, including the owner, project and experi-

ment from which the data were derived (Dalgliesh, Wockner, &

Peake, 2006). Each soil also has soil attributes including pH value

(pH), layer depth (Thick), bulk density, saturated water content (SAT),

drained upper limit and crop specified lower limit.

The APSIM simulations required downscaled daily temperature,

rainfall and solar radiation data as inputs. The monthly data from

which these daily data were derived were available for both RCP4.5

and RCP8.5 from 28 GCMs (Table S1) contributing to the Coupled

Model Intercomparison Project Phase 5 (CMIP5) of the World Cli-

mate Research Programme (Taylor et al., 2012). Each of these GCMs

simulates different future climate conditions for Australia for a speci-

fic RCP. We used output from multiple GCMs to sample this uncer-

tainty. However, we disregarded GCMs that had inferior simulations

of observed spatial patterns of climatological mean temperature and

rainfall across Australia’s wheat belt on the assumption that these

would have inferior simulation of future climate changes. We used

Taylor’s diagram (Figure S2) to assess GCMs. Specifically, we used

skill scores according to Equation (1) defined in Taylor’s method

(Taylor, 2001) to identify the relatively satisfactory GCMs in simulat-

ing the climatological temperature and rainfall over the Australian

wheat belt (Wang, Liu, Asseng, Macadam, & Yu, 2015). Of the 28

GCMs with sufficient data for the analysis, 11 achieved a skill score

in Taylor’s diagram >0.8 for both annual mean daily minimum, daily

maximum temperature and more than 0.4 for rainfall. These were

selected for use in this study.

S ¼ 4ð1þ RÞ2
ððrf=rrÞ þ ðrr=rfÞÞ2ð1þ R0Þ2

; (1)

where S is the skill score. R is the spatial correlation coefficient in

climatological mean values between the simulations and observa-

tions. R0 is the maximum correlation coefficient attainable (here we

use .999). rf and rr are the standard deviations of the simulated and

observed spatial patterns in climatological means, respectively.
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RCP4.5 and RCP8.5 simulations of the 11 skill-selected GCMs

were downscaled for 8022 meteorological observing sites in Aus-

tralia (Figure S1b) using the statistical downscaling and bias-correc-

tion method of Liu and Zuo (2012). This method differs from many

other statistical downscaling methods that require data involving

atmospheric circulation or sea surface temperature as predictors, in

that it uses GCM monthly climate data and historical observed data

for the variables of interest. It can therefore be easily applied univer-

sally if a reliable daily historical climate record is available. Briefly,

monthly GCM output data (solar radiation, rainfall, daily maximum

and minimum temperature) from each GCM were interpolated to the

observed sites using an inverse distance-weighted method. Biases

were then corrected using a transfer function derived from the inter-

polated GCM data and observed data for the sites. Daily climate

data for each site for 1900–2100 were generated by a modified

stochastic weather generator (WGEN) (Richardson & Wright, 1984)

with parameters derived from the bias-corrected monthly data. Data

for 1961–2000 were then used as a baseline climate against which

to compare results for the future climate periods 2041–2060

(2050s) and 2081–2100 (2090s).

The use of different SDMs has been demonstrated to be an

effective approach to improve the estimation of modelling through

ensemble forecast techniques (Keenan et al., 2011). We used multi-

ple SDMs to assess land climatically suitable for wheat cropping.

Using a weighted ensemble mean of SDMs instead of a single model

our analysis provided more robust and reliable assessment than pre-

vious studies using only one predictive SDM (Bunn et al., 2015; He

& Zhou, 2016; Ramirez-Cabral et al., 2016). We used 10 SDMs

(Table S2) within the Biomod library (Thuiller, 2003; Thuiller, Lafour-

cade, Engler, & Ara�ujo, 2009) programmed in R software (R-Core-

Team, 2016) to create statistical relationships between the wheat

occurrence records and observed values of 21 environmental

variables, including multi-year means of 11 climatic factors, six

soil-related factors, three topographical factors and one land cover

factor, to constrain the model to existing cropland (Table 1). Spatial

data for the 11 climate variables averaged over 1961–2000 were

interpolated from observations at 8,022 weather stations using the

inverse distance weighing method across Australia. All spatial layers

for predictors were rescaled to a resolution of 30 arc-seconds

(~1 km 9 1 km) using the R package “raster” (https://cran.r-project.

org/web/packages/raster/raster.pdf).

In this study, we used 654 APSOIL data points (outlined above)

as current climatically suitable sites for growing wheat. A range of

environmental variables, including climate variables for these sites,

were used as input of SDMs to evaluate the effect of climate change

on current wheat-growing areas. It is difficult to directly compare

our SDM-predicted areas with previous studies due to different

input data and model parameterizations with different SDMs. For

example, how the outputs of global-scaled climate models are down-

scaled and whether input data (such as crop, soil, topographic and

land cover) determining crop suitability are available across the

region. We considered soil variables and land cover as predictors in

determining crop suitability as they may have strengthened model

predictions (Stanton, Pearson, Horning, Ersts, & Res�it Akc�akaya,
2012). These environmental variables, however, were not considered

in other previous studies probably due to lack of specific data (Evan-

gelista et al., 2013; Ramirez-Cabral et al., 2016).

To calibrate and evaluate the SDMs, values of the 21 environ-

mental values were extracted from the spatial layers for a set of

5,830 sites for which the presence and absence of wheat for recent

climate conditions is known. This set of sites comprised 654 sites in

the APSOIL (Dalgliesh et al., 2006) database for which wheat is indi-

cated as being present (Figure S1a), and 5,176 sites outside Aus-

tralia’s grain belts (https://grdc.com.au/About-Us/GRDC-Agroec

ological-Zones), for which wheat is assumed to be absent. Each of

SDMs was calibrated using data from a random selection of 80% of

these 5,830 sites, with data for the remaining 20% of sites reserved

for model evaluation. To sample uncertainties in model parameter

values due to sampling of available data for training, the training and

evaluation processes were repeated 10 times for each of 10 SDMs

with a different random selection of sites.

The relative performance of the 100 combinations (10 SDMs

with 10 replicates) and parameter value sets was evaluated using the

True Skill Statistic (TSS) to compare predicted and observed wheat

TABLE 1 List of 21 environmental predictors for SDMs used in
this study

Variable Abbrev. Units

Annual mean temperature MT °C

Mean diurnal range MDR °C

Max temperature of warmest month MTWM °C

Min temperature of coldest month MTCM °C

Temperature range (MTWM-MTCW) TR °C

Isothermality (MDR/TR) (9100) TS %

Frost days (daily minimum temperature < 2°C) FD days

Heat days (daily maximum temperature > 30°C) HD days

Annual cumulative rainfall CP mm

Rainfall of wettest month PWM mm

Rainfall of driest month PDM mm

Total nitrogen 0–30 cma NTO %

Total phosphorus 0–30 cma PTO %

Clay content percentage 0–30 cmb CLY %

Bulk density 0–30 cmb BD Mg/m3

pH (Calcium chloride 1:5) 0–30 cmb pH

Plant available water capacity 0–1 mb PAWC mm

Land coverc LC

Altitude ALT m

Aspect ASP °

Slope SLP

aSee http://www.clw.csiro.au/aclep/soilandlandscapegrid/ViewData-Quic

kView.html.
bSee http://www.asris.csiro.au/themes/NationalGrids.html.
cSee http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_

19b3b236-e0aa-d2fb-e053-10a3070af790/Dynamic+Land+Cover+Data

set+Version+2.
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presence at the validation sites. We retained the 90 SDM set ups that

gave TSS > 0.7, eliminating all 10 set ups of a single poorly performing

SDM (Figure S3). In subsequent analysis, results for each SDM set up

were weighted according to TSS score; TSS-weighted results proved

to have higher predictive power than results from unweighted SDM

set ups, or even using the best set up (Keenan et al., 2011). Strong TSS

evaluations, the area under the curve statistic of the receiver operating

characteristic (AUC) and Kappa statistic evaluations (Figure S3), lead us

to conclude that the weighted ensemble mean for current climate con-

ditions had strong model performance and predictability on wheat

suitability across Australia’s wheat belt (Figure S3).

To analyse spatial changes in the climatic suitability for wheat

for each RCP, we applied the 90 skill-selected SDM set ups to

downscaled climate data for each of the 11 GCMs. The SDMs out-

put suitability values between 0 and 1 at each grid cell. To obtain

the best estimate of the absence or presence of wheat for the cur-

rent, 2050s and 2090s time periods we first calculated the TSS-

weighted means of the binary outputs from each of the 90 SDM set

ups for each GCM. We then calculated an unweighted mean of the

11 GCM results and used a threshold (0.5) for the ensemble-mean

value to determine the absence or presence of wheat. Change maps

for the GCMs ensemble were produced by comparing the ensemble-

mean absence/presence data between current and future time peri-

ods and differentiating areas of gain, loss and stable climate suitabil-

ity (Evangelista et al., 2013).

However, the SDM-predicted area suitable for wheat not only

covered actual wheat-growing areas, but also included areas used

for nature conservation, forestry, water storage and urban

development (Figure S4). We therefore applied observed areas of

wheat planting from Australian Bureau of Statistics (ABS) Agricultural

Commodities (2005–2014) (http://www.abs.gov.au/Agriculture) to

correct the SDMs-predicted areas.

a ¼ Awheat base

ASDMs base
: (2)

Awheat fu ¼ a� ASDMs fu; (3)

where Awheat_base is the area of wheat based on ABS observations, a

proxy for area of cropland where wheat was sown. ASDMs_base is the

SDM-predicted area suitable for growing wheat under current cli-

mate conditions. ASDMs_fu is the SDM-predicted area for the future

climate and Awheat_fu is the corrected area for growing wheat.

The simulations of wheat yield per hectare used location-suitable

cultivars, using existing APSIM-Wheat cultivar parameters for

degree-day responses as well as cultivar sensitivity to vernalization

and photoperiod for various crop growth stages. The only difference

between the simulated cultivars was in phenological response, and

all other physiological parameters were the same between cultivars

(Chenu, Deihimfard, & Chapman, 2013; Ghahramani et al., 2015). In

this study, we selected reference cultivars (Table S3) which are suit-

able for each location based on the crop variety sowing guide for

each State in Australia (e.g., https://www.dpi.nsw.gov.au/agriculture/

broadacre-crops/guides/publications/winter-crop-variety-sowing-

guide). In addition, we considered the crop response to the elevated

atmospheric CO2 concentration in APSIM using an empirical equa-

tion as a function of calendar year (Liu et al., 2017; Wang, Liu,

Asseng, Macadam, & Yu, 2017). For RCP4.5 scenario, the atmo-

spheric CO2 concentration was calculated by:

½CO2�year ¼650:18þ 0:000075326 � y � 0:16276
0:00022299 � ð727:97=y2Þ � 0:00018747

� ðy � 2045Þ3:
(4)

For RCP8.5, it was fitted by:

½CO2�year ¼1;034:3þ 267:78 � 1:6188 � y
4:0143 þ ð53:342=y5:2822Þ þ 21:746

� y � 2010
100

� �3

þ100:65 � y � 1911
100

� �3

:

(5)

To investigate climate change adaptation, we performed APSIM

simulations sowing slow-maturing cultivars that require more thermal

time to mature. As the commencement of each phenological stage is

mainly determined by thermal time (TT) accumulation calculated as

degree days (°C d) in APSIM, we increased TT during the vegetative

growth period to generate longer season types.

DTT ¼ s� DT �DTF: (6)

where DT (°C) is the increased maximum value for mean temperature

for each GCM scenario. Days To Flowering (DTF) is the length of

the period from sowing to flowering for current climate conditions. s

(=0, 0.2, 0.4, 0.8, 1.0) is used generate a series of different possible

genotypes with different TT. As an additional adaptation, for the

baseline and each projected future climate, the sowing windows

were progressively varied by 10-day increments from a maximum

40 days earlier to 40 days later than the reference dates. A factorial

simulation experiment was conducted in which the factors were cli-

mate (2 scenarios 9 11 GCMs), sites (654) and adaptation options (9

sowing offsets 9 5 s (=0, 0.2, 0.4, 0.8, 1.0)). These simulations were

carried out to maximize the long-term average yield for each loca-

tion 9 cultivar (increased TT) 9 sowing date 9 climate.

3 | RESULTS

3.1 | Projected future climate change during wheat-
growing season

To present the range in projected future climate, mean changes

across the selected 11 GCMs in mean temperature and rainfall dur-

ing the wheat-growing season (April–November) for both RCPs were

computed across each state and Australia. All GCMs agreed on a

future temperature rise and, consistent with greater greenhouse

forcing of the climate system and a close link between regional and

global warming, RCP8.5 had higher temperature increases than

RCP4.5. For example, between 1961–2000 and 2081–2100, the

ensemble-mean temperature increase for the Australian wheat belt

was 2.1°C for RCP4.5 and 3.9°C for RCP8.5 (Figure 1a). The highest

increase for temperature was located in NSW, with the regionally
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averaged ensemble-mean increase in 1.9°C for RCP4.5 and 3.1°C for

RCP8.5. The lowest projected increase was found in VIC, 1.7°C for

RCP4.5 and 2.8°C for RCP8.5.

Changes in projected changes in growing season rainfall varied

with GCM, with some GCMs simulating increases in rainfall and

some simulating decreases. However, most of the GCMs projected

decreases and the ensemble-mean changes in rainfall for the differ-

ent regions considered were almost entirely decreases. Between

1961–2000 and 2081–2100, the ensemble-mean growing season

rainfall change for the Australian wheat belt showed a similar

decrease in 7.4% for RCP4.5 and a decrease in 7.5% for RCP8.5

probably because GCMs with increases and decreases were can-

celling each other out (Figure 1b). The largest ensemble-mean

decrease in rainfall, 11.0% for RCP4.5 and 17.4% for RCP8.5, was

found in WA (Figure 1b). The smallest decrease, 1.2% and 1.3% for

RCP4.5 and RCP8.5, respectively, was located in NSW.

These climate projection results were generally consistent with

recent climate projections for Australia produced by CSIRO and the

Australian Bureau of Meteorology (2015) (CSIRO & BoM, 2015).

3.2 | Projected climate suitability for wheat

The most important variable for wheat distribution was the rainfall

of the wettest month, followed by annual cumulative rainfall and

maximum temperature of the warmest month (Figure S5), which

was consistent with the fact that crop distribution is mainly con-

strained by water conditions in this largely semi-arid environment

(Chenu et al., 2013; Evangelista et al., 2013). A summary of the

future changes in climatically suitable areas simulated by the multi-

GCM, multi-SDM ensemble is shown in Figure 2a (refer to Figures

S6–S9 for each GCM and RCP at different time periods). The

SDM-predicted areas suitable for wheat tended to shrink from the

north with increased forcing of the climate system. The shifts were

more pronounced under RCP8.5 than under RCP4.5 and more pro-

nounced for the 2090s than for the 2050s. By the 2090s, the

results showed areas suitable for growing wheat retreating in the

northern part of the east Australian wheat belt and, to a lesser

extent, in Western Australia, particularly under RCP8.5. In contrast,

some southerly higher latitude areas not currently climatically

(a)

(b)

F IGURE 1 Projected changes in wheat-
growing season (April–November) (a) mean
temperature (b) rainfall from 11 CMIP5
GCMs in Australia and five different states
for RCP4.5 and RCP8.5 by 2050s (2041–
2060) and 2090s (2081–2100) compared
to 1961–2000. Box boundaries indicate
the 25th and 75th percentiles across
GCMs, whiskers below and above the box
indicate the 10th and 90th percentiles. The
black lines and crosshairs within each box
indicate the multi-model median and mean,
respectively [Colour figure can be viewed
at wileyonlinelibrary.com]
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suitable for wheat growth (e.g. in southwest Victoria) would

become suitable.

The SDM-predicted areas for wheat under the current climate

overestimated observed wheat planting areas (Figure S4), so we

corrected state and national SDM-predicted areas to obtain absolute

values of cropland area suitable for wheat under future climate

change (Table 2). The GCM ensemble-mean total wheat area over

Australia was projected to decrease from 12.85 million hectares

(a)

(b)

F IGURE 2 (a) Projected spatial changes in SDMs-predicted wheat suitable area from an ensemble mean of 11 CMIP5 GCMs. Changes are
for RCP4.5 and RCP8.5 for 2050s (2041–2060) and 2090s (2081–2100) compared to baseline (1961–2000). Grey=no change (unsuitable),
Blue = areas becoming suitable, Red = areas becoming unsuitable, Green = no change (suitable); red and green areas together make up the
suitable area for 1961–2000. (b) Projected changes in wheat climate suitability in Australia and five different states for different scenarios.
Box boundaries indicate the 25th and 75th percentiles across GCMs, whiskers below and above the box indicate the 10th and 90th
percentiles. The black lines and crosshairs within each box indicate the multi-model median and mean, respectively [Colour figure can be
viewed at wileyonlinelibrary.com]
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(Mha) for 1961–2000 to 12.29 Mha by the 2050s and 12.14 Mha

by the 2090s for RCP4.5 and to 11.83 Mha by the 2050s and

10.99 Mha by the 2090s for RCP8.5. Figure 2b showed the pro-

jected relative changes in SDM-predicted area climatically suitable

for growing wheat from 11 GCMs in Australia and five states. Our

results showed that the largest ensemble-mean decrease in simu-

lated wheat climate suitability was found in Queensland, especially

under the high-emission RCP8.5 scenario, with a loss of up to 69.3%

of climate suitability, followed by NSW. In contrast, South Australia

and Victoria were projected to experience increases in climate suit-

ability, and a small increase occurred in WA for most of scenarios

except RCP8.5 which had a 15% decrease by the 2090s.

3.3 | Projected change in yield per hectare with
and without adaptation options

APSIM simulations driven with climate data downscaled from the 11

GCMs and accounting for increasing atmospheric CO2 concentra-

tions were used to evaluate future changes in wheat yield per hec-

tare at 654 representative sites (Figure S1a). Figure 3 shows the

percentage changes in yields averaged across all sites and sites in

specific Australian states. The results for all sites across Australia

showed multi-model mean wheat yields decreasing by the 2050s

under RCP4.5, with a greater decrease occurring by the 2090s (Fig-

ure 3). However, corresponding results for RCP8.5 showed less yield

decrease because RCP8.5 was consistent with greater CO2 concen-

trations but associated increases in temperature would counteract

the smaller positive impacts from elevated CO2. Results for individ-

ual Australian states varied. Queensland experienced the most signif-

icant reductions in yield, with all GCMs showing decreases even for

RCP8.5 by the 2090s. In contrast, multi-GCM mean yields showed a

tendency to increase in Victoria, except for RCP4.5 for the 2090s.

Using APSIM, we assessed the effect of autonomous adaptation

on yields per hectare when the sowing date was shifted to earlier in

the year and a longer season cultivar was used with respect to our

cultivar-sowing date reference (Ghahramani et al., 2015; Van Rees

et al., 2014). Overall, the maximum yield was realized by bringing

forward the wheat sowing date by approximately 11–18 days, and

using a cultivar with a longer growth period (Figure S10). The magni-

tude of adaptation required differed between states. Sowing date

was shifted the most in WA compared with other states. The results

of APSIM simulations with optimum adaptation of sowing dates and

TABLE 2 Multi-GCM mean (minimum and maximum range over 11 GCMs) of projected corrected area suitable for growing wheat (million
hectare) under RCP4.5 and RCP8.5 for 2050s (2041–2060) and 2090s (2081–2100) in Australia and five different states. The SDMs-predicted
area climatically suitable for growing wheat under current climate was adjusted to 3.70, 0.81, 1.56, 2.12, 4.66 and 12.85 million hectare for NSW,
QLD, VIC, SA, WA and AUS, respectively, which were based on ABS observed annual mean data (2005–2014, http://www.abs.gov.au/Agriculture)

States

RCP4.5 RCP8.5

2050s 2090s 2050s 2090s

NSW 3.65 (2.96–4.19) 3.47 (2.72–4.38) 3.42 (2.96–4.19) 3.09 (1.95–4.27)

QLD 0.42 (0.20–0.75) 0.41 (0.18–1.07) 0.35 (0.21–0.64) 0.15 (0.08–0.32)

VIC 1.70 (1.60–1.93) 1.76 (1.59–1.88) 1.72 (1.53–1.95) 1.92 (1.57–2.17)

SA 2.33 (1.99–2.63) 2.27 (1.84–2.76) 2.30 (1.90–2.48) 2.51 (1.71–3.61)

WA 4.77 (4.38–5.20) 4.86 (4.20–5.70) 4.75 (4.25–5.53) 4.22 (3.24–5.27)

AUS 12.29 (10.84–13.38) 12.14 (9.98–14.67) 11.83 (10.08–13.28) 10.99 (8.28–13.72)

F IGURE 3 Projected changes in
APSIM-simulated wheat yield per hectare
from 11 CMIP5 GCMs. Changes averaged
across all sites in Australia and in five
different states for RCP4.5 and RCP8.5 for
2050s (2041–2060) and 2090s (2081–
2100) compared to 1961–2000.
Box boundaries indicate the 25th and 75th
percentiles across GCMs, whiskers below
and above the box indicate the 10th and
90th percentiles. The black lines and
crosshairs within each box indicate the
multi-model median and mean,
respectively. Black rectangles represent
multi-model mean values from simulations
with optimum adaptation [Colour figure
can be viewed at wileyonlinelibrary.com]
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cultivar selection to maximize yield showed general improvement for

Australian wheat yields. Multi-GCM mean changes are shown in Fig-

ure 3. The whole-of-Australia multi-GCM mean data for the 2050s

showed an increase in 8.8% for RCP4.5 and an increase in 10.7% for

RCP8.5. For the 2090s, yield changes increased 4.2% and 9.0% for

RCP4.5 and RCP8.5, respectively. The simulated adaptations are

more than compensated for the negative impact of climate change

on yields.

3.4 | Projected national wheat production change

We combined the results of the SDMs analysis of areas climatically

suitable for growing wheat with the APSIM simulated yields per hec-

tare to assess changes in Australian wheat production. When these

corrected areas were combined with APSIM-simulated yields per

hectare, there was an overall decline in Australian wheat production

in response to future climate change without adaptation. Multi-GCM

mean results showed national wheat production decreasing by 6.7%

by the 2050s and 7.4% by the 2090s under RCP4.5, decline by 9.1%

by the 2050s and 15.5% by the 2090s under RCP8.5 (Figure 4). The

magnitude of decrease in production increased with greenhouse

forcing of the climate system. However, our results showed that

when autonomous adaptations were used, Australia’s wheat produc-

tion increased by 1.6%–4.1% by the 2050s for the two RCPs (Fig-

ure 4). Therefore, on mid-century time scales, changing sowing dates

and selecting optimal cultivars were, according to our simulations,

effective ways to maximize wheat production in the face of climate

change. In contrast, in the longer term (2090s), these adaptations

were insufficient to increase national wheat production, and may not

fully offset the adverse impact of climate change under RCP8.5.

Under this scenario, by the 2090s, less growing area offset any

increase in yield due to CO2 fertilization and adaptations.

4 | DISCUSSION

Our analysis shows an overall tendency for the climatic suitability

for wheat to decrease under future climate change, which concurs

with results of other recent studies showing that Australia gradually

loses suitability for crop growth (Grundy et al., 2016; Ramirez-Cabral

et al., 2016). However, the magnitude of the changes depends on

how climate change will affect local conditions and is therefore sub-

ject to a high degree of uncertainty related to GCM-based climate

projections. It is noteworthy that nearly all of Australia’s wheat

depends on rainfall, particularly the amount of seasonal rainfall. The

prediction of current wheat suitability further verified that seasonal

rainfall and temperature are important variables for Australia (Fig-

ure S4). Australia is likely to experience longer periods of drought

and more intense rainfall extremes, and these projected changes are

anticipated to increase substantially with greenhouse gas emissions

and time (Alexander & Arblaster, 2017). Despite varying degrees of

uncertainty, national-scale climate change impacts on suitable areas

for wheat provide useful information on shifts in production zones,

which will be pivotal for developing early warning systems and adap-

tive strategies (e.g. guiding the focus of national wheat breeding pro-

grammes seeking to develop better-adapted crop cultivars) as well as

informing policy-makers about locating infrastructure for access of

production regions to road, ports and markets (Cleugh et al., 2011).

The major factors affecting the productivity of rain-fed cropping

systems include crop cultivar, agronomic management, climate and

soil properties (Anwar et al., 2015). Our analyses of simulated wheat

yield applied up to 654 soil sites and provided a comprehensive

evaluation of climate change impacts across the whole Australian

wheat belt. Wheat yield changes depended on climate conditions

between states. Overall, wheat yield would benefit from future cli-

mate change in cool areas (Victoria) and suffer in warm regions espe-

cially in QLD. This is consistent with earlier studies in Victoria

F IGURE 4 Projected changes in Australian wheat production from
11 CMIP5 GCMs. Changes are for RCP4.5 and RCP8.5 for 2050s
(2041–2060) and 2090s (2081–2100) compared to 1961–2000.
Box boundaries indicate the 25th and 75th percentiles across GCMs,
whiskers below and above the box indicate the 10th and 90th
percentiles. The red lines and black crosshairs within each box indicate
the multi-model median and mean, respectively. Black rectangles
represent multi-model mean values from simulations with optimum
adaptation [Colour figure can be viewed at wileyonlinelibrary.com]
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showing beneficial effects on wheat productivity in the southern

parts of the state out to 2070 (O’Leary et al., 2011) and supports

the idea that cooler areas may be able to increase the production

and export of wheat. Our present results in Australia are also in

accordance with a recent global wheat productivity study (Balkovi�c

et al., 2014) that showed that global warming will result in higher

yield only in colder climates. However, in many rain-fed production

systems, such as in parts of Central Asia and North America, the

potential negative impacts of temperature cannot be fully offset by

increased rainfall (Balkovi�c et al., 2014).

Our results also concur with recent studies based on experimen-

tal and modelling approaches that concluded that CO2 fertilization

will significantly affect the future yield of wheat crops in the semi-

arid Australian environment (Fitzgerald et al., 2016; O’Leary et al.,

2015). Without the increase in CO2 concentration, simulated wheat

yield would decrease remarkably for two RCPs in eastern Australia

(Wang, Liu, Asseng, Macadam, Yang, & Yu, 2017). Global wheat pro-

duction with CO2 fertilization was approximately 20% and 35%

higher by 2050s and 2090s, respectively, compared to estimates that

assumed climate change without CO2 fertilization (Balkovi�c et al.,

2014). However, in almost all Australian states, the negative effects

of increased temperatures and reduction in rainfall on wheat are not

fully compensated for by the positive effects of increased CO2 con-

centrations (Hochman, Gobbett, & Horan, 2017). This highlights the

need for adaptation plans to cope with climate change. Across all

states, our simulated results show that sowing a slow development

cultivar earlier than current practice should be an effective manage-

ment adaptation to increase grain yield. Recent evaluations of adapt-

ing to climate change in wheat farming systems indicate that there

will be a greater opportunity to increase productivity of the Aus-

tralian wheat belt, mostly because of elevated atmospheric CO2 con-

centrations resulting in increased water use (Ghahramani et al.,

2015). Earlier sowing is currently being promoted by many farmers

as a method to adapt to climate change by shifting the wheat-grow-

ing season to a wetter and cooler part of the year to increase water

use efficiency. Switching to a long-season cultivar is also a promising

adaptation option. These slower developing (in present climate) culti-

vars have a theoretical yield advantage over faster-maturing cultivars

as they have a long growth cycle that resists the shortening of the

growing season as the temperature rises (Mart�ın et al., 2014; Wang

& Connor, 1996). Although they have been suggested as an effective

adaptation to mitigate climate change, they must be managed well

to flower at the optimum time, avoid frosts on one hand and later

heat extremes during flowering (Barlow, Christy, O’Leary, Riffkin, &

Nuttall, 2015; Van Rees et al., 2014; Zheng, Chenu, Fernanda Drec-

cer, & Chapman, 2012), and avoid the possibility of producing high

biomass crops unable to complete grain filling owing to lack of water

during the reproductive stages of growth.

The wheat-growing regions of the world have been categorized

into 17 Mega Environments (MEs) based on different agro-climatolo-

gical parameters by the international wheat-breeding network facili-

tated by the International Maize and Wheat Improvement Center

(CIMMYT) (Gbegbelegbe et al., 2017). These agro-ecological zones

are the target breeding areas that represent various environmental

conditions. The wheat crop in Australia is almost entirely contained

within rain-fed ME4 that is relevant to northern Africa, Chile and

the north-east to Argentina (http://aciar.gov.au/files/mn-158/s3_5-

australia.html). Therefore, the methods used here can be applied to

those similar wheat-growing areas in CIMMYT, which will offer the

possibility of re-evaluating global agricultural capacity under future

climate conditions.

Climate change impact assessment in our study provides an

overview which gains an understanding of the impacts in Australian

wheat production today and into the future through adapting Aus-

tralia’s wheat cropping systems. Our results show that autonomous

adaptation measures will remain important for enhanced wheat yield

and provide significant mitigation of the negative effects of climate

change on national wheat production in the near future. From such

research, there have been many lessons for rain-fed cropping

regions. For example, there are also decreasing spatial trends in cer-

eal production in Ethiopia due to changes in rainfall and temperature

and therefore the ability to adapt to climate change will be critical

for Ethiopia’s agricultural system (Evangelista et al., 2013). Rurinda

et al. (2015) suggested that there will be no effective farm manage-

ment options that can avoid yield losses due to climate change in

southern Africa towards the end of the 21st century, and thus trans-

forming current cropping systems was required to offset the nega-

tive impacts of future climate change.

Our study has not investigated all adaptation options

comprehensively. Instead, we focused our analysis of adaptation on

productivity (yield per hectare) and did not consider all the possible

non-climatic factors that impact the area of cropland suitable for

growing wheat. It is conceivable that switching to cultivars that are

more resistant to heat and drought stress may also slow the retreat

of wheat-growing areas in the northern Australian wheat belt.

Accounting for the beneficial impact of CO2 increases on water use

efficiency could also affect changes in areas of cropland suitability

for growing wheat. In addition, the rate at which farmers will adapt

to changing climatic conditions is highly uncertain. Therefore, the

autonomous approach should be combined with non-autonomous

adaptation strategies, such as targeted advances in crop breeding,

agronomy, soil water conservation and seasonal climate forecasting

(Ainsworth et al., 2008). However, as the first step our study only

focused on the effects of autonomous adaptation measures to cli-

mate change. Future work needs to be concentrated on interactions

between genotypes, environments and management to mitigate

adverse impacts from climate extreme events (e.g. drought and heat

stress) and climate variability.

Another limitation of our methodology is that we only provide

simulation results from one crop model. These shortcoming may be

overcome to some extent by comparing results from several crop

growth models, which use the same combination of climate, soil,

management and other input data (Martre et al., 2015). The wheat

pilot study of the recent agricultural model inter-comparison and

improvement project (AgMIP) has examined (and narrowed) differ-

ences between results from different crop models through
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systematic model inter-comparison. It found considerable variation in

projected impacts among crop models due to differences in model

structures and parameter values (Asseng et al., 2013; Rosenzweig

et al., 2013). It is not surprising that the sheer complexity of agricul-

tural systems is difficult to reproduce accurately in numerical models

(Wheeler & Von Braun, 2013). It is also worth noting that the effects

of economic feedbacks and risk profiles were not considered

because of their complexity across the diverse Australian continent.

Furthermore, the incorporation of such technological progress and

socio-economic feedback would require much more comprehensive

model capacity. Even the most sophisticated models may not have

all the critical factors covered so continued field and laboratory

experimentation as well as social and economic analysis to further

develop modelling is essential.

Increasing Australian wheat production is essential to meet

increasing national and international demand and maintain Australia’s

contribution to global food security. Understanding the possible

impact of climate change and adaptation options for Australian food

production is essential to inform public debate and policy-makers to

maintain wheat exports and contribute to the global wheat market.

We believe that the results of this study can help local government,

industry leaders and farmers to make effective adapted agricultural

management decisions today while anticipating future climate

change impacts. The maps of wheat suitability provide insights and

guidance on where wheat is likely to suffer the most and the least

under future climate change. However, maintaining future produc-

tion gains will require more improved use of technologies and prac-

tices beyond autonomous adaptation to cope with climate change.

For example, Mart�ın et al. (2014) found that genetic modification

regarding wheat crop development exhibited the greatest sensitivity

to climate change and larger potential for improvement in Europe.

New wheat cultivars might provide more drought and heat resis-

tance against droughts and warming conditions. Results from the

modelling of crops with different thermal time requirements will

assist selection of promising genotypes based on multiple-target

breeding programmes.

Timely and effective adaptation will likely bring opportunities

and significant national benefits for Australia (Ghahramani et al.,

2015). Yet, it is unclear whether national total wheat production

would remain unchanged or increase with future climate change

when adaptation strategies are adopted. To attempt to answer this

question, we applied SDMs to investigate future changes in areas cli-

matically suitable for growing wheat in Australia. A crop model was

then used to assess wheat yield per hectare change in these areas

under future climate change. We concluded that the climatically suit-

able areas for wheat are likely to decrease, especially in the north-

eastern Australian wheat belt under large greenhouse forcing of the

climate system, such as under RCP8.5 in the 2090s. Higher latitudes

should become more suitable than at present, and will continue to

be highly suitable for producing wheat. Our crop model simulation

results without adaptation are consistent with earlier simulation

studies that showed likely wheat yield decreases of 2.0%–6.0% in

Australia from comparable scenarios. Though an analysis using a mix

of field experiments and a range of suitable crop models would be

necessary to confirm these results, CO2 fertilization and adaptive

management appear to provide significant mitigation of the negative

effects of climate change in the middle 21st century. However, these

positive effects would result in limited improvement for national pro-

duction of wheat in the late 21st century. It is likely that decreased

suitable Australian wheat-growing areas under RCP8.5 in the late

21st century will exceed yield response even considering autono-

mous adaptation to maximize yield.
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