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Global climate models (GCMs) are useful tools for assessing climate change
impacts on temperature and rainfall. Although climate data from various GCMs
have been increasingly used in climate change impact studies, GCMs configura-
tions and module characteristics vary from one to another. Therefore, it is crucial
to assess different GCMs to confirm the extent to which they can reproduce the
observed temperature and rainfall. Rather than assessing the interdependence of
each GCM, the purpose of this study is to compare the capacity of four different
multi-model ensemble (MME) methods (random forest [RF], support vector
machine [SVM], Bayesian model averaging [BMA] and the arithmetic ensemble
mean [EM]) in reproducing observed monthly rainfall and temperature. Of these
four methods, the RF and SVM demonstrated a significant improvement over EM
and BMA in terms of performance criteria. The relative importance of each GCM
based on the RF ensemble in reproducing rainfall and temperature could also be
ranked. We compared the GCMs importance and Taylor skill score and found that
their correlation was 0.95 for temperature and 0.54 for rainfall. Our results also
demonstrated that the number of GCMs ensemble simulations could be reduced
from 33 to 25 in RF model while maintaining predictive error less than 2%. Having
such a representative subset of simulations could reduce computational costs for
climate impact modelling and maintain the quality of ensemble at the same time.
We conclude that machine learning MME could be efficient and useful with
improved accuracy in reproducing historical climate variables.
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1 | INTRODUCTION

The Coupled Model Intercomparison Project phase
5 (CMIP5) multi-model data set (Taylor et al., 2012) con-
tains output from more than 40 different global climate
models (GCMs). Not only does this data set facilitate com-
prehensive GCM diagnoses, validation and inter-comparison
for historical periods, it provides opportunities to explore
projected future changes in climate conditions. Indeed, the
CMIP5 data set is the basis of global and regional climate
projections presented in the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC) (IPCC,
2013). However, because the structural differences in the ini-
tialization and the mathematical parameterizations of various
physical processes vary largely from one GCM to another,
climate change projections (e.g., rainfall and temperature)
produced by GCMs are often uncertain, with different
GCMs simulating different climate changes for the same
forcing of the climate system, and this uncertainty cascades
to downstream impact studies (Zhuang et al., 2016).

For the last few years, researchers have been proposing
numerous techniques to tackle the uncertainty in climate
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projections. A promising way to assess the uncertainty is
through working with multi-model ensembles (MME),
which have the potential to reduce uncertainties in present-
day simulations and to improve confidence in some aspects
of future climate projections. Recently, various types of
ensemble methods have been developed and utilized to
enhance the quality of prediction. Generally, ensemble
methods can be divided into two groups: a simple composite
method where each model is weighted equally regardless of
the simulation skill, and a weighted ensemble in which a dif-
ferent weight is applied based on its simulation skill (Oh and
Suh, 2016). The multi-model ensemble mean (EM) is the
most common and widely used approach. There is some evi-
dence that the “mean model” result, obtained by averaging
over the ensemble of models, provides an overall best com-
parison to observations for climatological mean fields if the
simulation data used in the ensemble are produced indepen-
dently (Lambert and Boer, 2001). However, different model
development groups share ideas for parameterizations and
even sections of model code (model components), so this
makes us suspect that each of these models provides a
dependent estimate of future climate change. In fact, there is
extensive replication of model code in the CMIP5 GCMs,
especially within institutions but also in some cases between
institutions (Sanderson et al., 2015b). Therefore, ignoring
the dependence of GCMs might result in a false model con-
sensus, poor accuracy and poor estimation of uncertainty
(Herger et al., 2017). In addition, the EM approach is clearly
not appropriate for all types of evaluation, as multi-model
mean data sets have significantly less spatial and temporal
variance than data sets from individual models or from
observations.

Numerous studies have demonstrated that a weighted
ensemble method, which is based on the simulation skills of
the models and sometimes also accounts for dependence
between different models (Sanderson et al., 2015a; Leduc
et al., 2016; Annan and Hargreaves, 2017), can have better
projection skills than the ensembles with equal weighting
(Bishop and Abramowitz, 2013; Oh and Suh, 2016; Wang
et al., 2016a). Recently, several different means of weighting
different climate models in an ensemble have been devel-
oped. For example, Bishop and Abramowitz (2013) derived
weights that explicitly account for model dependence
defined using covariance of model errors. They concluded
that such a weighing scheme based on the correlation of
model errors outperformed the simple model mean. Sander-
son et al. (2015a) developed a novel approach to weight
models by taking the model observation distance matrix as a
measure of model performance and interdependence. Bayes-
ian model averaging (BMA) (Raftery et al., 2005; Yang
et al., 2012a) has been widely used to combine climate fore-
casts from individual models and characterize the uncer-
tainty caused by model structure (Madadgar and
Moradkhani, 2014). In this approach a priori weights for

each model (often equal weights) is given, and then the
weights are updated based on model agreement with obser-
vations, which are able to improve both uncertainty estima-
tion and prediction (Wallach et al., 2016). However, model
weighting is not a standard procedure in climate modelling.
It is acknowledged by the latest Intergovernmental Panel on
Climate Change (IPCC) report (IPCC, 2013) that the climate
community does not know how to weight models to deter-
mine the best estimate of future climate change (Wallach
et al., 2016). The performance of climate models varies from
variable to variable and region to region among different
aspects of climate system (Kerkhoff et al., 2015; Qi et al.,
2016) and how to quantify model skill and derive models
weights as well as use the best way to combine model results
is difficult to determine and still controversial (Wallach
et al., 2016).

Recently, state-of-the-art machine learning (ML) tech-
niques have become appealing in a wide variety of climate
change research or prediction problems. ML turns out to be
especially suitable because of its key advantage of investi-
gating nonlinear and hierarchical relationships between the
predictors and the response using an ensemble leaning
approach. Acharya et al. (2014) employed extreme learning
machine on seven GCMs to make an MME-based estimation
of the northeast monsoon rainfall over south peninsular
India. They found that extreme learning machine can capture
these seasonal rainfall extremes reasonably well compared to
the other MME methods (e.g., simple arithmetic mean). Sim-
ilarly, Kumar et al. (2012) used artificial neural network
(ANN) to develop MME system to forecast summer mon-
soon rainfall and concluded such method has a higher skill
than individual GCM projection and the simple EM. Tao
et al. (2018) developed residual-based bagging tree (RBT)
model to correct biases between GCMs simulations and
observations. They found that RBT approach performed bet-
ter in reducing biases when compared with the raw EM, the
EM with simple additive bias correction and the single best
model. ML has also been applied in climate projections to
statistically downscale monthly temperature and rainfall with
different input (predictive) variables (Salcedo-Sanz et al.,
2016; Sarhadi et al., 2016; Vu et al., 2016).

GCM uncertainties and biases are the two major obsta-
cles for realistic assessments of climate change impacts. Bias
correction techniques including mean and/or variance-based
method, quantile mapping and transfer function are very
popular and have been widely used to reduce model bias in
climate modelling (Ines and Hansen, 2006; Wang et al.,
2016b). However, bias correction is mainly able to correct
some GCM systematic biases, but insufficient in correction
of non-stationary GCM biases and inter-GCM uncertainties.
Using ML for ensemble of multiple GCMs is evidently able
to reduce the GCM uncertainties (Kumar et al., 2012;
Acharya et al., 2014).
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There are numerous promising approaches such as ANN
(Acharya et al., 2014), extreme ML (Deo and Şahin, 2015),
supervised principal component analysis (Sarhadi et al.,
2017), relevance vector machine (Okkan and Inan, 2015)
which are used to develop MME approach and statistical
downscaling. In this study, we consider two different ML
approaches, random forest (RF) and support vector machine
(SVM) as statistically based models, in a problem of MMEs
of CMIP5-based GCMs to reproduce observed monthly rain-
fall and temperature. RF and SVM have been widely used in
handling nonlinear and hierarchical relationships between
the predictors and the responses. These two methods work
well with few parameters and are easy to implement. For
instance, SVM has been successfully applied in some recent
cases such as managing nonlinear meteorological events
(Salcedo-Sanz et al., 2016; Sarhadi et al., 2017). On the
other hand, RF and SVM have been proven to perform better
compared to other ML techniques in some agriculture-
related areas. For example, Were et al. (2015) found that
SVM had lower RMSE and high R2 values in predicting soil
organic carbon stock than ANN in eastern Africa. Wang
et al. (2018) reported that the RF model outperformed the
boosted regression tree model regardless of input features,
expressed by larger R2 and smaller prediction errors in quan-
tifying soil properties in eastern Australia. To our knowl-
edge, no previous study has applied RF and SVM in the
multiple GCMs ensemble evaluation. In addition, although a
plethora of works has discussed the application of ML in
rainfall and temperature prediction, as far as we know, there
has been no published work to date on calibrating and vali-
dating ensemble models to reproduce the observed historical
climate data using these two ML approaches.

The main objective of this study is to test whether
employing ML techniques (RF and SVM) to develop MME
could perform better in reproducing historical monthly tem-
perature and rainfall than traditional approaches (EM and
BMA). We are endeavouring to provide a robust and accu-
rate multi-GCMs ensemble approach to reproduce rainfall
and temperature in Australia. We also compared the impor-
tance of each GCM based on the RF with its Taylor skill
score. The ranked GCMs would be used to test how the
number of ensemble size affects model prediction. This
study will provide a possibility for using ML method to con-
duct MME and enhance the existing forecast skills of GCMs
ensemble, and it is likely to project more accurate future cli-
mate change using these calibrated ML models. This paper
is organized in four sections. The introduction is followed
by methodology in section 2, which describes the data and
study area and includes a description of the four techniques
that are used in the study, as well as the forecast verification
metrics that are employed to evaluate the generated predic-
tions. Results and discussion are elaborated in section 3, and
finally, the summary and conclusion are provided in
section 4.

2 | MATERIAL AND METHODS

2.1 | The study area and climate data

We used 108 weather stations based on the recently released
Australian Climate Observations Reference Network-Surface
Air Temperature data set (ACORN-SAT; Trewin, 2013),
which are available in the SILO (Scientific Information for
Land Owners) patched point data set (PPD). As the
ACORN-SAT data set extends from 1910 to the present with
60 locations having data for the full post-1910 period, to
maintain the consistency of existing databases with long-
term climate data, daily temperature and rainfall data during
1900–2016 for these 108 meteorological sites across
Australia were extracted from the SILO PPD (Jeffrey et al.,
2001; http://www.longpaddock.qld.gov.au/silo/ppd/index.
php; see Figure S1, Supporting Information).

This study used an ensemble of 33 CMIP5 GCMs. These
models and their respective modelling centres are listed in
Table S1. We examined gridded monthly surface air temper-
ature and total monthly rainfall data. These gridded monthly
data were spatially downscaled to each of 108 weather sta-
tions. The spatial interpolation was achieved by using an
inverse distance-weighted (IDW) interpolation method in
this study. The IDW interpolation method was used to com-
pute rainfall and temperature values for each weather station
based on its distance to the geographical centres of the four
nearest GCM grid cells (Liu and Zuo, 2012),

Si=
X4
k=1

1
di,k

� �3 X4
k=1

1
di,k

� �3
 !−1

Pk

2
4

3
5, ð1Þ

where Si is the downscaled site-specific GCM projection at
site i, Pk is the GCM projection at the cell k, di,k is the dis-
tance between site i and the centre of cell k.

2.2 | Multi-model ensembles mean

The multi-model EM method is defined as

S tð Þ= 1
N

XN
i=n

Pn tð Þ, ð2Þ

where S(t) is an EM for time t, N is the total number of
GCMs and Pn(t) is the projection of the nth GCM for time t.

2.3 | Bayesian model averaging

BMA has been widely employed as an effective way of cor-
recting under-dispersion in ensemble forecasts (Yang et al.,
2012a; Wang et al., 2014). BMA is a standard statistical pro-
cedure for combining predictive distribution from different
sources and provides a way of combining statistical models
at the same time calibrating them using a training data set
(Raftery et al., 2005; Yang et al., 2012a). The output of
BMA is a weighted average of probability density functions
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(PDFs) which are centred on the bias-corrected forecast. The
BMA weights reflect the relative contributions of the com-
ponent models to the prediction over the training samples
and can be used to assess the usefulness of each ensemble
member. In the case of a variable y to be forecast on the
basis of training data yT using K models M1,…, Mk, the fore-
cast PDF p(y| yT) can be given by

p yjyT� �
=
XK
k=1

p yjMk,yT
� �

p MkjyT
� �

, ð3Þ

where p(y|Mk,y
T) is the forecast PDF based on model Mk

alone; K is the number of models; p(Mk|y
T) is the posterior

probability of model Mk being correct given the training data
and indicates how well the model Mk represents the training
data. The total sum of the posterior model probabilities is

one, that is
PK

k=1p MkjyTð Þ=1, and they can thus be treated
as weights. The detailed information on BMA can be
referred to Raftery et al. (2005) and Hoeting et al. (1999),
which have shown how to estimate weight for each model
Mk in BMA. In the present study, BMA analysis was con-
ducted via the “BMS”-package of R software (Zeugner and
Feldkircher, 2015; https://cran.r-project.org/web/packages/
BMS/BMS.pdf).

2.4 | Random forest

RF was first developed by Breiman (2001) and is a very
flexible and powerful tree-based ensemble method in order
to improve the regression accuracy. Initially, RF modelling
draws bootstrap samples (63%) with replacement from the
entire sample population in the training set to grow each
tree. The bootstrap sampling leads to RF less sensitive to
over-fitting in comparison to decision trees (Heung et al.,
2014). Therefore, RF contains not a single standard regres-
sion tree but many regression trees, like a forest. Unlike
most common methods based on ML, RF only needs two
parameters to be tuned for generating a prediction model:
(a) the number of regression trees to grow in the forest
(ntree), (b) the number of randomly selected evidential fea-
tures at each node (mtry). By default, the random subset size
is the square root of the number of the entire predictors
for model. The RF analysis is a nonparametric algorithm
that can handle nonlinear and additive relationships and is
used to rank the relative importance of each predictor vari-
able in controlling the response variable. Variable impor-
tance is based on the regression prediction error of the
out-of-bag, also called the OOB, which is left out of the
bootstrap samples (37%). It is computed as a function of
change prediction error by permuting with input variable
and expressed using mean decrease in accuracy (Heung
et al., 2014). In error estimation, the OOB sample is pre-
dicted by the respective trees and by aggregating the pre-
dictions, the mean square error (MSEOOB) is calculated
using Equation (3),

MSEOOB=
1
n

Xn
i=1

Oi− P̂iOOB
� �2

, ð4Þ

where P̂iOOB is the average of all OOB predictions across all
trees.

In the current study, in order to optimize two parameters
of ntree and mtry, a number of experiments were conducted
using different combinations of ntree and mtry. The range of
number of ntree was set between 500 and 1,300 at intervals
of 200 for temperature (ntree ranging from 100 to 1,000 at a
step length of 200 for rainfall), and the number of selected
evidential features mtry was between 5 and 20 at 1 intervals
for temperature (mtry ranging from 1 to 15 at a step length of
1 for rainfall). To save computing time, the training data
were partitioned into threefolds for cross validations and the
error rates for each of the three cross-validation partitions
were aggregated into a mean error rate. Three replicates of
the threefold cross validation were conducted. The final
model (optimal model) was selected when the prediction
error was lowest. Figures S2 and S3 showed the process of
tuning parameters for RF using grid research method to
determine the optimal parameters that produce the minimum
forecasting error (Kuhn, 2008). The optimal value for mtry

and ntree for both rainfall and temperature can be found in
Table S2. In short, RF had optimal mtry between [12, 18],
ntree between [900, 1,300] for monthly temperature. For
monthly rainfall, optimal mtry was between [7, 15], and ntree
was between [500900].

2.5 | Support vector machine

SVM analysis is another popular supervised ML tool for
classification and regression, proposed by Cortes and Vap-
nik (1995). There are many successful applications of SVM
in image segmentation, object detection, image classifica-
tion, handwriting recognition, text and hypertext categoriza-
tion, and applications in the biological and other sciences.
SVM uses hyperplanes to divide all of the data into different
classes optimally. It has a better learning capability and
smaller prediction errors than many other methods (Chen
et al., 2010; Sarhadi et al., 2016; Hou et al., 2017).

For a given observation sample set of N input and out-
put data,

D= x1,y1ð Þ, x2,y2ð Þ,…, xN ,yNð Þf g2RK ×R: ð5Þ
It is assumed that a regression function is expressed as

F= f jf xið Þ=wT*xi+b,w2RK� �
, ð6Þ

where w is the unit normal vector to the hyperplane, b is the
distance from the origin to the hyperplane and xi is the ith
input vector. Essentially, SVM follows an idea of maximal
margin that allows treating SVM regression as a convex
optimization problem. SVM is a useful technique which pro-
vides the user with high flexibility in terms of distribution of
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underlying variables, relationship between independent and
dependent variables.

The function used to predict new values depends only on
the support vectors,

f xð Þ=
XN
n=1

αn−α*n
� �

k Xn,Xð Þ+b, ð7Þ

where k(Xn, X) is the kernel function. In general, there are
four types of kernel functions commonly seen in SVMs.

• Linear: <x, x0 >.
• Polynomial: (γ < x, x0 > + C)d, The most common

degree is d = 2 (quadratic), since larger degrees tend to
overfit. As one problem with the polynomial kernel is that
it may suffer from numerical instability: when <x, x0 >
+ c<1, K < x, x0 > = (<x, x0 > + c)d tends to zero
with increasing d, whereas when <x, x0 > + c > 1, K <
x, x0 > = (<x, x0 > + c)d tends to infinity.

• Radial basis function kernel: exp−γ x−x0j j2 , γ must be
greater than 0.

• Sigmoid: tanh(γ < x, x
0
> + r), where r < 0.

As the relationship in our case is nonlinear, we select
radial basis function (RBF) as the kernel model for SVM in
the following experimental test. SVM RBF kernel needs two
parameters to be tuned including penalty (cost) that controls
the trade-off between margin and training errors, and the
kernel width (sigma) that controls the degree of nonlinearity
of the model (Naghibi et al., 2017). The regression problem
can be solved by a standard quadratic programming form to
obtain the optimal solution.

Similarly, in order to optimize two parameters of cost
and sigma, a number of experiments were conducted using
different combinations of cost and sigma. The number of
cost was set between 4, 8, 16, 32 and 64 for temperature and
rainfall. The range of number of sigma was set between
0.005 and 0.05 at intervals of 0.005. In the current study,
three replicates of the threefold cross validation were used to
select the optimal parameters of SVM. Figures S4 and S5
showed the process of tuning parameters for SVM using grid
research method to determine the optimal parameters that
produce the minimum forecasting error. The optimal value
for cost and sigma for both rainfall and temperature can be
found in Table S2. In short, SVM had an optimal cost value
between [8, 32], and the value of sigma between [0.065,
0.070] for monthly temperature. The value of cost was
between [4, 8] and sigma was between [0.035, 0.050] for
monthly rainfall.

2.6 | Model evaluation

We used a random 90% of climate data including 108 sites
over 1900–2016 for training (“calibration data set”) and the
remaining 10% was used as the “validation data set” to

validate the prediction of historical monthly rainfall and tem-
perature. This process ensured that the calibration and vali-
dation data are independent but sampled from the same
overall population of data. To assess the accuracy of the pre-
diction versus observations, two statistical indices were con-
sidered: regression coefficients of the coefficient of
determination (R2) measuring the percentage of variation
explained by each model; the root-mean-square error
(RMSE) measuring the overall accuracy of the prediction,

R2=

Pn
i=1

Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1

Oi−O
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i=1
Pi−P
� �2s

0
BBBB@

1
CCCCA

2

, ð8Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

Pi−Oið Þ2,
s

ð9Þ

where Pi and Oi are the predicted and observed monthly
rainfall and temperature; n is the number of samples; P and
O are the means for the predicted and observed rainfall and
temperature; a good model will have and R2 close to 1 and
RMSE of almost 0.

3 | RESULTS AND DISCUSSION

3.1 | Model performance

The 90% of data sets were selected as training data in our
study because we would like to include more data to estab-
lish the relationship between GCMs and observed climate
data. In previous literatures, the proportion of training data
can range from 60 to 95% (Deo and Şahin, 2015; Vu et al.,
2016; Hou et al., 2017). Therefore, 90% was within the
range when we designed the study. However, we used differ-
ent training and testing data set to test whether they have
impacts on BMA and EM results in our study. The results
show that different data set for validation had a small change
in R2 and RMSE (Table S3).

To assess the improvement of RF and SVM based
MME, we compared their performance against EM and
BMA. As shown in Figure 1, specifically, two evaluation
parameters R2 and RMSE were used to evaluate model accu-
racy in reproducing monthly temperature. We also added
values of two statistical indicators for the individual GCM
models. It was clear to see that MME techniques improved
model performance in reproducing monthly temperature
compared to each single GCM, despite the fact that the sim-
ulations of the individual model varied considerably. This
result was consistent with SVM providing the best agree-
ment with observations in all cases with R2 being no lower
than 0.96 (Figure 1). RF’s performance was ranked as the
second with R2 varying between 0.92 and 0.96. By contrast,
EM and BMA achieved R2 in the average of 0.89 and 0.91
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across the months, respectively. Our results also demon-
strated that SVM had the smallest predictive error with the
RMSE of 0.82 �C on average. Meanwhile, the RMSE
(1.08 �C) produced by RF were only little bit higher than the
SVM. Although EM was simple, quick and its predictive error
was less than individual GCMs, the overall accuracy of EM
did not outperform two ML techniques. SVM did show a
superior performance in every aspect, which showed its
advantage in handling the nonlinear relationship between
observations and GCMs simulations. Table 1 shows the differ-
ence between two statistical indices estimated from two ML
methods and their estimated values from EM and BMA. On
average across the months, RF had an improvement of 6.5 and
4.2% for R2 while RMSE decreased by 30.6 and 23.2% com-
pared to EM and BMA, respectively. The predictive power of
SVM increased most by 9.1 and 6.7% for R2 compared to EM
and BMA, respectively. RMSE produced by SVM was lower
than EM and BMA by 47.1 and 41.3%, respectively.

Similarly, we tested these four methods on monthly rain-
fall. Although SVM had better performance than other three

methods (Figure 2) and MME outperformed the individual
GCMs, the overall predictive accuracy for rainfall was less
satisfactory than temperature. The main reason was likely to
be the high variability in rainfall, which introduced much
challenges to accurately simulate rainfall (Yang et al.,
2012b). In summary, SVM had the best performance with
R2 being between 0.45 and 0.67 in each month and the
results were relatively satisfactory. RF was the second place
with R2 varying between 0.42 and 0.62. By contrast, EM
achieved R2 only between the range of 0.15 and 0.49 and the
R2 of BMA ranged between 0.22 and 0.53. SVM had an
average increase of 106.8 and 69.7% for R2 compared to EM
and BMA across the months, respectively (Table 1). The
predictive errors RMSE decreased by 25.4 and 19.2% com-
pared with EM and BMA, respectively. However, the perfor-
mance of RF did not improve as much as that of SVM.

Overall, for monthly rainfall, the ensemble SVM simula-
tions showed the best performance, followed by RF and
EM. This result coincided with what we have achieved when
employing a MME for monthly temperature. Our study

FIGURE 1 Summary statistics of the predictive quality of simple arithmetic mean (EM), BMA, RF and SVM together with 33 GCMs for monthly
temperature for testing data sets; the coefficient of determination (R2) and RMSE were used to evaluate model accuracy [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 The relative changes (%) between two statistical indicators estimated from two ML methods (RF and SVM) and their estimated values from
simple arithmetic mean (EM) and BMA in reproducing observed monthly temperature (rainfall in parentheses)

Compared to EM Compared to BMA

R2 RMSE R2 RMSE

RF SVM RF SVM RF SVM RF SVM

Jan 5.5 (28.2) 9.4 (30.7) −24.1 (−19.4) −45.5 (−20.1) 4.0 (18.4) 7.8 (20.7) −18.9 (−10.8) −41.8 (−11.6)

Feb 6.5 (35.9) 10.4 (45.7) −24.5 (−16.6) −43.8 (−20.9) 4.3 (29.5) 8.1 (38.8) −18.0 (−12.4) −39.1 (−16.9)

Mar 6.8 (35.5) 9.9 (46.7) −28.8 (−16.7) −46.6 (−21.0) 3.7 (24.5) 6.7 (34.7) −19.4 (−9.6) −39.5 (−14.2)

Apr 6.2 (172.4) 9.2 (188.9) −27.6 (−18.0) −45.9 (−19.6) 3.5 (94.1) 6.5 (105.8) −19.1 (−13.5) −39.6 (−15.2)

May 8.6 (150.6) 11.5 (186.1) −35.5 (−23.2) −52.3 (−28.6) 4.9 (80.4) 7.7 (106.0) −25.3 (−14.2) −44.7 (−20.3)

Jun 10.0 (123.8) 13.0 (169.6) −39.3 (−22.7) −54.5 (−31.5) 5.8 (79.2) 8.6 (115.9) −27.5 (−14.6) −45.7 (−24.3)

Jul 9.7 (50.7) 11.2 (65.2) −43.9 (−25.1) −52.7 (−32.3) 5.9 (36.9) 7.3 (50.2) −32.4 (−14.9) −43.0 (−23.0)

Aug 8.2 (45.9) 10.0 (60.2) −38.8 (−23.3) −50.8 (−29.9) 5.2 (32.3) 7.0 (45.3) −29.2 (−14.4) −43.0 (−21.8)

Sep 4.9 (71.5) 6.5 (85.7) −31.1 (−22.7) −43.9 (−27.7) 4.0 (48.3) 5.6 (60.5) −26.4 (−17.1) −40.1 (−22.5)

Oct 3.8 (132.8) 5.6 (160.8) −26.6 (−23.9) −43.7 (−30.5) 3.0 (89.7) 4.8 (112.5) −22.7 (−18.7) −40.8 (−25.8)

Nov 3.7 (132.8) 6.1 (158.7) −23.3 (−18.3) −43.1 (−22.5) 3.0 (74.9) 5.4 (94.4) −19.9 (−14.5) −40.6 (−18.9)

Dec 3.8 (78.9) 6.0 (82.7) −24.1 (−17.8) −41.8 (−20.1) 2.9 (48.7) 5.1 (51.9) −19.2 (−13.0) −38.0 (−15.5)

Average 6.5 (88.3) 9.1 (106.8) −30.6 (−20.6) −47.1 (−25.4) 4.2 (54.7) 6.7 (69.7) −23.2 (−14.0) −41.3 (−19.2)

FIGURE 2 Summary statistics of the predictive quality of simple arithmetic mean (EM), BMA, RF and SVM together with 33 GCMs for monthly rainfall
for testing data sets; the coefficient of determination (R2) and RMSE were used to evaluate model accuracy [Colour figure can be viewed at
wileyonlinelibrary.com]
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aimed at developing an integrated multi-GCM-based ML
method to reproduce monthly rainfall and temperature. We
have evaluated the capability of two ML methods by investi-
gating the relationship between the observation and ensem-
ble simulations. MME outperformed the individual models
in our study, which was consistent with previous studies
(Robertson et al., 2004; Tebaldi and Knutti, 2007; Chiyuan
et al., 2014; Zhuang et al., 2016). Furthermore, our results
showed that MME performed better in reproducing monthly
temperature than rainfall. The SVM simulations had lower
RMSE than the EM ensemble for both temperature and rain-
fall, which suggested that the simulation of SVM was more
similar to the observation data. However, RF’s performance
was a little bit weaker than SVM. With the help of the

Kernel function, a nonlinear regression can be transformed
into a linear regression in a hyper space for SVM. Unlike a
general linear regression, SVM tries to identify the hyper-
plane based on the support vectors. Those support vectors
are with a tolerated range beside the hyperplane. In other
words, such a way is to minimize the error of the objective
function of SVM. RF regression identifies the best tree by
building a set of decision trees and aggregates the votes of
each of its component trees, giving not only an estimate of
how this new example should be classified, but also an esti-
mate of the algorithm’s certainty of the guess. RF is an
ensemble learning method that produces and combines
numerous decision trees. However, EM tries to take consid-
eration of every data point in average, which can be weak

TABLE 2 The averaged relative importance of the 33 GCMs derived from RF in reproducing historical monthly rainfall and temperature. Taylor skill score
was considered to rank the GCM model. The results were shown in decreasing order of RF importance for temperature and rainfall, respectively. The bold
number indicated the top 11 GCMs in Taylor skill score, the bold italic number represented GCMs ranked in the middle (12–22) and the remaining were
ranked at the bottom. Standard deviation for the importance and skill score of each GCM across the 12 months were shown in bracket

Temperature Rainfall

GCM Importance Score GCM Importance Score

CM2 99.30 (±1.78) 0.92 (±0.01) ECE 89.31 (±15.16) 0.45 (±0.10)

BC2 87.57 (±9.21) 0.91 (±0.02) CN1 74.31 (±29.25) 0.43 (±0.06)

IP2 87.45 (±7.65) 0.90 (±0.02) MR3 72.94 (±27.32) 0.39 (±0.05)

MI2 85.24 (±6.09) 0.91 (±0.02) IP2 69.31 (±27.94) 0.26 (±0.05)

FIO 81.48 (±13.66) 0.91 (±0.01) CE2 68.73 (±13.79) 0.40 (±0.08)

IP1 76.09 (±16.16) 0.89 (±0.03) GF3 67.48 (±19.43) 0.39 (±0.08)

MI4 75.38 (±12.66) 0.90 (±0.02) CM2 62.09 (±13.55) 0.33 (±0.07)

MI3 74.76 (±14.26) 0.89 (±0.02) GF2 61.95 (±23.97) 0.35 (±0.09)

Ha5 73.27 (±12.92) 0.90 (±0.02) MI2 59.60 (±24.50) 0.43 (±0.08)

ECE 72.94 (±17.92) 0.88 (±0.05) IP3 59.38 (±23.70) 0.36 (±0.08)

CM3 72.47 (±13.40) 0.90 (±0.02) CSI 58.45 (±16.92) 0.36 (±0.04)

MR3 71.51 (±16.86) 0.88 (±0.05) IP1 56.02 (±18.77) 0.24 (±0.12)

MP1 70.59 (±8.79) 0.90 (±0.03) MP2 52.64 (±28.04) 0.37 (±0.06)

MP2 68.18 (±11.95) 0.90 (±0.02) CE1 52.45 (±18.06) 0.39 (±0.07)

CSI 63.22 (±12.98) 0.89 (±0.02) CCS 52.39 (±23.00) 0.39 (±0.08)

CCS 60.65 (±6.96) 0.89 (±0.03) CM3 51.38 (±15.20) 0.30 (±0.07)

BC1 60.16 (±26.11) 0.89 (±0.03) MP1 50.63 (±14.79) 0.35 (±0.11)

CE2 60.07 (±7.65) 0.89 (±0.03) GE1 49.31 (±23.47) 0.40 (±0.07)

CE1 58.00 (±10.83) 0.89 (±0.03) GF4 49.11 (±16.08) 0.35 (±0.08)

GE3 56.51 (±17.19) 0.88 (±0.02) BC2 48.62 (±14.01) 0.35 (±0.06)

CaE 56.31 (±13.34) 0.88 (±0.02) GE2 48.61 (±25.37) 0.40 (±0.09)

GE2 53.17 (±14.99) 0.88 (±0.03) Ha5 45.40 (±22.40) 0.32 (±0.06)

NE2 53.08 (±14.19) 0.88 (±0.02) NE1 44.88 (±31.27) 0.35 (±0.08)

GE1 50.26 (±14.47) 0.88 (±0.03) INC 43.75 (±18.05) 0.31 (±0.08)

GF2 49.52 (±12.60) 0.87 (±0.05) NE2 42.34 (±30.24) 0.36 (±0.06)

NE1 48.78 (±12.58) 0.88 (±0.03) BC1 39.01 (±21.09) 0.35 (±0.08)

BNU 48.59 (±16.12) 0.88 (±0.03) CE5 37.83 (±18.83) 0.34 (±0.06)

IP3 44.56 (±27.46) 0.87 (±0.02) FIO 37.59 (±19.73) 0.30 (±0.07)

CN1 39.00 (±10.88) 0.86 (±0.03) MI3 36.51 (±14.60) 0.34 (±0.10)

INC 37.92 (±28.34) 0.87 (±0.02) GE3 33.29 (±17.71) 0.31 (±0.09)

CE5 33.04 (±15.08) 0.85 (±0.05) BNU 30.30 (±26.98) 0.26 (±0.07)

GF3 15.16 (±11.24) 0.83 (±0.08) MI4 30.22 (±23.19) 0.33 (±0.10)

GF4 10.31 (±12.78) 0.83 (±0.07) CaE 25.34 (±27.52) 0.26 (±0.10)
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and less useful in predicting the sudden changes (e.g., data
with large variability).

3.2 | Relative importance of GCMs

Although both RF and SVM are “black box” approaches,
RF is able to provide the relative importance of each predic-
tor in model training. In the RF model, the performance of
each GCM was evaluated automatically based on their rela-
tive importance using the increased percentage of mean
square error when each GCM was held in OOB. More spe-
cifically, the significance of each GCM represented as the
mean decrease in accuracy. The relative importance of
GCMs indicated which GCM was more important for the
ensemble simulations. We calculated the mean importance
of each GCM in ensemble simulations of monthly tempera-
ture (rainfall) for the purpose of discriminating least impor-
tant GCMs (Figure S6). The models were ranked based on
the relative importance (Table 2). The results suggested that
some GCMs were more important in the RF model for repro-
duction of temperature including CM2, BC2, IP2, MI2 and
FIO (top five) than the others (Table 2). By contrast, ECE,
CN1, MR3, IP2 and CE2 ranked as the top five GCMs in
reproducing rainfall, which showed that IP2 was the only
model to rank in the top five for both temperature and rain-
fall simulations.

Traditionally, to evaluate the multiple aspects of the per-
formances of GCMs, the Taylor diagram and skill scores
(Taylor, 2001) are commonly employed. The Taylor dia-
gram is a 2D plot that concisely summarizes how well a pat-
tern matches the observation in terms of their correlations
and the ratio of their variances. In the present study, we used
Taylor skill scores calculated as the Equation (10) to mea-
sure the differences between observed temperature (rainfall)
and GCMs simulated ones,

S=
4 1+Rð Þ2

σf
σr

+
σr
σf

� �2

1+R0ð Þ2
, ð10Þ

where S is the skill score. R is the spatial correlation coeffi-
cient in climatological mean values between the simulations
and observations. R0 is the maximum correlation coefficient
attainable (here we use 0.999). σf and σr are the standard
deviations of the simulated and observed spatial patterns in
climatological means, respectively.

The higher skill scores indicate the higher performance of
GCM projections. Figure 3 shows the relationship between
the GCMs importance and Taylor skill score for temperature
and rainfall. The relative importance of GCMs for tempera-
ture were highly related with Taylor score (r = 0.95), which
indicated high concordance for these two evaluation methods.
Table 2 showed that 9 out of top 11 GCMs were consistent
for both evaluation methods in temperature. However, the
correlation coefficient r for rainfall was low with 0.54. Only

6 out of top 11 GCMs were consistent in rainfall for both
evaluation methods.

3.3 | Ensemble size analysis

The model importance was an interesting outcome of the RF
ensemble. Most of the GCMs never occupied the first three
positions (Figure S6), which indicated that they were likely to
be less important. This aspect offered the opportunity of
selecting a subset of suitable GCMs that maintains certain key
properties from the full ensemble (Mendlik and Gobiet, 2016;
Herger et al., 2017). To analyse the relationship between the
number of models in an ensemble and the RMSE of subsets,
we employed the GCM ranking derived from the RF to create
different MMEs of size N (5, 10, 15, 20, 25 and 30). For each
N, the RMSE was calculated using observed data and the RF
ensemble simulations. Figure 4 displays that the RMSE for
each N decreased with the increasing number of important cli-
mate models used for monthly temperature and rainfall. As we
can find, for ensemble size 5–10, the RMSE of the perfor-
mance decreased rapidly for temperature in each month
(Figure 4a). This was because the top five important GCMs
had less information than the full model ensemble. Interest-
ingly, the performance results varied little with N when N was
more than 25, especially for monthly rainfall.

To compare the RMSE of the different ensemble sizes
with the full ensemble, a relative change in magnitude of
RMSE was calculated by using the difference between each
ensemble size and all 33 model runs as Equation (11),

ΔRMSE %ð Þ= RMSEN−RMSE33

RMSE33
×100, ð11Þ

where N represented 5, 10, 15, 20, 25 and 30.

FIGURE 3 The correlation between the GCMs importance derived from
the RF model and Taylor skill scores for temperature and rainfall [Colour
figure can be viewed at wileyonlinelibrary.com]
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For a small ensemble size (e.g., N = 5), ΔRMSE was
large (12% for rainfall and 23% for temperature). However,
ΔRMSE decreased when more models were included until it
reached a small difference (Figure 5). That was, ΔRMSE
reduced by less than 2% when N was 25 for both tempera-
ture and rainfall. The question of how many simulations to
actually select from the ensemble for different applications
still remains and there is no unique and best solution to
address this issue (Mendlik and Gobiet, 2016). However,
our study provided some information for how to obtain an
efficient number of simulations based on its importance. The

use of GCMs importance as a criterion to select GCMs
would make the ensemble model maintain its performance
(RMSE in an acceptable range) and at the same time reduce
the computational burden of downstream modelling that uses
GCM outputs, such as regional climate modelling or impacts
modelling.

4 | CONCLUSIONS

This study focused on developing improved MME schemes
for the prediction of historical monthly rainfall and tempera-
ture in Australia. For this purpose, two ML methods namely
RF and SVM were applied to rainfall and temperature data
from 33 CMIP5 GCMs to develop more robust ensemble-
based results. The performance of ML methods was com-
pared with the traditional MME technique (e.g., EM and
BMA) in terms of two skill metrics (e.g., R2 and RMSE).
The importance of individual GCMs from RF was also
examined and compared with Taylor skill scores. In sum-
mary, the major findings of this study are:

1. The MMEs (SVM, RF, BMA and EM) obtained better
results than any individual model for reproducing
monthly temperature and rainfall. Of these four ensem-
ble simulations, the SVM simulations performed better
than RF, BMA and EM, which provided the most com-
parable results to the observations. In addition, MME
worked less perfectly in reproducing rainfall than tem-
perature, which might be due to the more stochastic
nature of rainfall occurrence and magnitude.

2. The GCMs importance was assigned according to its
performance in the RF ensemble simulations and it had
a strong correlation with classic Taylor skill score in

FIGURE 4 How the number of GCMs in an ensemble affects errors estimates. The RMSE of the RF ensemble simulations for reproducing monthly
temperature and rainfall were calculated at different size of the CMIP5 subset. We selected 5, 10, 15, 20, 25, 30 of top-ranking GCMs derived from the RF
model as benchmarks, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 The relative change of RMSE for different size of the CMIP5
subset compared with full number of GCMs using the RF ensemble
simulations [Colour figure can be viewed at wileyonlinelibrary.com]
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temperature and rainfall, which showed a consistency in
assessing model performance for both methods.

3. The RMSE of the RF ensemble declined with an
increase number of ensemble members. However, the
relative RMSE had a small decrease when the number of
ensemble size was beyond 25. The smaller ensembles
would reduce computational time when driving down-
stream models, such as regional climate models, com-
pared to the full ensemble.

In summary, ML MME outperformed conventional MME
and individual climate models, as demonstrated in the present
study. Thus it has potential to be used in developing near/
long-term scenarios of regional climate change for the future
compared to traditional MME. In addition, it is worth noting
that ranking ensemble members through a process-based
analysis of RF model output is beneficial for understanding
whether the models are adding value to the ensemble. It is
suggested that more ML MME should be applied and tested
for regional climate models, hydrological models or crop
models in order to construct more reliable results in MME
projections.
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