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Abstract
The exchange of carbon and water in the ecosystem is influenced not only by weather and climatic perturbations but also by 
vegetation dynamics. The relationship between carbon and water exchange and environment in agro-ecosystem across dif-
ferent temporal scales is not very often been quantified. Spectral analysis of eddy covariance measurements can identify the 
interactions between environmental and biological factors at multi-temporal scales. Here, we used a new method, ensemble 
empirical mode decomposition (EEMD), to study the temporal covariance between ecosystem exchange of carbon dioxide 
(NEE), latent heat flux (LE) and environmental factors in a winter wheat cropping system located at the North China Plain. 
The results showed that the NEE, LE and environmental factors can be decomposed into 12 significant quasi-period oscilla-
tions on various time-scales i.e. hourly, diurnal, weekly and seasonal timescales. Variance of NEE in diurnal, hourly, seasonal, 
weekly scale was 58.9, 29.6, 4.7, 0.6%, respectively. Variance of LE in diurnal, hourly, seasonal, weekly scale was 55.2, 
15.5, 5.1, 1.8%, respectively. The largest of variance contribution is at diurnal time-scale from net radiation (Rn), wind speed 
(μ) and vapor pressure deficit (VPD) due to daily rhythms in solar radiation. The soil water content varied significantly at a 
relatively longer time-scale i.e. weekly and seasonal scale. Large variance contribution of ambient temperature (T) (63.4%) 
and VPD (33.6%) is in trend term due to the significant increasing seasonal trend from winter to summer. The correlation 
analysis indicated that NEE and LE was correlated highly with net radiation (Rn) at all time-scale, as well as with VPD, 
ambient temperature (T), and wind speed (μ) in diurnal scale and with soil water in seasonal time-scales. This implied that 
solar radiation contributed the main variation of carbon and water in short time-scale, i.e. hourly and diurnal. Soil water 
variation strongly correlated with the seasonal variation of NEE and LE. Furthermore, seasonal signals of NEE and LE 
synchronized with LAI, which indicated that carbon dioxide and water flux are also regulated by LAI in seasonal time-scale. 
The quantification of the variation explained by carbon and water fluxes and environmental factors across different temporal 
scales using EEMD improved the understanding of carbon and water process in a cropping system.
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Introduction

The exchange of carbon and water between vegetation and 
atmosphere is influenced by many environmental variables 
such as temperature, sunlight and wind with different mag-
nitude at diurnal, monthly, seasonal, and inter-annual scales 
(Baldocchi et al. 2001; Katul et al. 2001; Katul and Par-
lange 1995). Examining the variation of environmental vari-
ables and how they drive the exchange of water and carbon 
between vegetation and atmosphere may provide insights 
not only for understanding of the role of climate in the ter-
restrial carbon and water cycle but also for the improvement 
of land-surface model prediction (Dietze et al. 2011; Stoy 
et al. 2009; Wang et al. 2011).
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The relationship between ecosystem carbon and water 
exchange and environmental factors in different temporal 
scales have been identified by spectral analysis methods 
(Stoy et al. 2005; Vargas et al. 2010, 2011). These stud-
ies revealed that environmental controllers of ecosystem 
carbon and water exchange varied across temporal scales 
as well as biome types (Stoy et al. 2009). The carbon and 
water flux in ecosystems demonstrated a unique aspect in 
three appropriate ranges of time scales: turbulent time scale, 
meteorological time scales and seasonal to inter-annual time 
scales (Katul et al. 2001; Katul and Parlange 1995; Katul 
et al. 2007). At the sub-hourly and sub-daily scale, varia-
tions of ecosystem carbon and water exchange were largely 
controlled by the responses of photosynthesis and stomata 
conductance due to temporal variation in solar radiation and 
vapor pressure (Baldocchi et al. 2001). At meteorological 
scales, synoptic weather events such as high and low pres-
sure drive the weekly or seasonal variation of ecosystem 
fluxes. At annual or inter-annual scale, ecosystem carbon 
and water was regulated by long circulation activities such as 
ENSO (El Nino-Southern Oscillation) and monsoon (Hong 
et al. 2010). Previous studies of multi-temporal scale put 
major focuses on natural vegetation but less on crops in an 
agro-ecosystem. The agriculture ecosystem is intervened by 
human activities such as irrigation, fertilization and farming 
managements (i.e. weeding and pest-control). Understand-
ing the temporal variability of the meteorological factors 
and their impacts on agriculture carbon and water exchange 
is a challenge when considering these human disturbances.

Despite the importance of temporal variability in car-
bon and water exchange, it is still unclear on how physical, 
biotic factors and management influence carbon and water in 
farming system across different temporal scales, especially 
because of the lack of quantitative studies on this topic. 
Therefore, in this study, we use a spectral analysis method 
(EEMD, ensemble empirical mode decomposition) to exam-
ine the relationship between carbon and water exchange and 
their environmental and biotic factors at multi-temporal 
scales in winter wheat at the North China Plain. We try to 
address following scientific questions: (1) which temporal 
scales are the most dominant for variation contribution in 
carbon and water exchange for winter wheat in the North 
China Plain? Is the feature of spectrum of carbon and water 
fluxes in agriculture ecosystem similar to other types of 
nature vegetation? (2) Which biophysical and biotic factors 
control winter wheat carbon and water exchange at which 
specific temporal scales? The carbon and water exchange 
in agriculture ecosystem is an important part of the terres-
trial ecosystem carbon and water cycle. Understanding the 
mechanisms of carbon and water exchange in farmland is 
useful for improving carbon and water management.

Previous studies have used Fourier Transform (Baldocchi 
et al. 2001), Wavelet Transform (Katul et al. 2007; Stoy et al. 

2007) to examine the periodic features of carbon and water 
fluxes in nature vegetation. For example, Baldocchi et al. 
(2001) applied Fourier transform to identify the character-
istics of the power spectra of flux of carbon dioxide, water 
vapor and sensible heat and meteorological variables in a 
broad-leaved deciduous forest. However, Fourier transform 
may be only appropriate for the stationary signals which 
the frequency content does not change with time. In recent 
years, the Wavelet transform was more often applied to iden-
tify temporal multi-scale characteristics of mass and energy 
flux in soil plant atmosphere continuum (Katul et al. 2001; 
Katul and Parlange 1995; Katul et al. 2007; Qin et al. 2008; 
Stoy et al. 2005; Vargas et al. 2010). Compared with the 
Fourier transform, Wavelet transform can provide temporal/
spatial resolution for non-stationary signals with the adjust-
able frequency dependent window functions called mother 
wavelets. However, the underling basis of Fourier transform 
and wavelet transform is not adaptive so sometimes misleads 
us to interpret intermittent and non-stationary data incor-
rectly (Hong et al. 2010). As some researchers pointed out 
that successful application in wavelet transforms for fre-
quency-time information in several cases is not sufficient in 
resolving the intra-wave frequency modulation (Huang et al. 
1998). To overcome the shortage, empirical mode decom-
position (EMD) (Huang et al. 1998) has been developed to 
analyze the non-stationary or non-linear signals like the flux 
data measured by the eddy covariance observation systems. 
On the basis of the EMD, to avoid the effect of the possi-
ble intermittent noise in the original data (Wu and Huang 
2009) added a white noise series to the data series to pro-
vide relatively uniform high frequency extreme distribution 
to facilitate EMD, which was called the EEMD. Based on 
advantages of intuitive, direct and adaptive properties, EMD 
and EEMD were broadly applied in analysis of geophysical 
(Wang et al. 2012), meteorological (Qian et al. 2009) and 
tower data (Barnhart et al. 2012; Hong et al. 2010). Thus, in 
this study EEMD was used to assess interactions of multiple 
variables across multi-temporal scales in a farmland. Conse-
quently in this study, we used EEMD to explore the drivers 
of carbon and water fluxes at multiple temporal scales using 
flux observations from a flux towers on winter wheat in the 
North China Plain.

Materials and Methods

The Study Site and Data

Field experiments have been conducted to monitor the energy 
and water cycles at Yucheng comprehensive experimental sta-
tion (36°57′N, 116°36′E, and 23.4 m elevation) in the North 
China Plain. It is located at Shandong province in the mid-
dle and lower reaches of the Yellow River alluvial plain and 
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characterized by continental monsoon climate. Long-term 
meteorological records indicate a mean annual air of 13.1 °C, 
mean annual precipitation sum of 528 mm and mean annual 
solar radiation of 5525 MJ m−2, respectively. The dominant 
soil type is silty loam with an average density of 1.28 g cm−3. 
Organic matter content of soil is about 1.12% and the pH is 
7.9–8.0. The agriculture managements during the observation 
in this study are showed in the Table 1.

The eddy covariance observation system and microclimate 
gradient measurement were placed in the center of farmland. 
The eddy covariance system was used to measure the concen-
tration of CO2, sensible and latent heat fluxes with the help of 
a fast response infrared gas analyzer (LI7500, LI-COR Inc.) 
and a three dimension sonic anemometer (CSAT3, Camp-
bell Scientific Inc.). Data were recorded with a data-logger 
(CR23X CSI) and the sampling frequency was 20 Hz for all 
channel and the average values were calculated and recorded 
every 30 min. Microclimate gradient measurement system 
consisted of anemometers (mode AR-100, Vector Instru-
ment, UK) and psychrometers (model HMP-45C, Vaisala, 
Finland) at height of 2.2 and 3.4 m average. Soil tempera-
ture transducers were placed at the depths of soil surface, 
10 and 30 cm. Soil moisture sensors were installed at 10 cm 
and 30 cm depths and soil moisture was monitored with time 
domain reflectometry (TDR). Solar radiation, net radiation, 
air pressure and precipitation were measured at an interval of 
30 min. All sensors used in the experiment were calibrated 
strictly. The leaf area of winter wheat was measured weekly 
during the growing season. More details about the data will 
be found at Li et al. (2006). The missing data because of the 
malfunction of instruments or power failure were filled using 
the linear interpolation when the gaps are less than 2 h and 
using mean diurnal variation method when the gaps are longer 
than 2 h. The data including flux of CO2 (NEE), latent energy 
(LE), and sensible energy (H) and meteorological variables 
[air temperature (T), net irradiation (Rn), wind speed (μ), 
vapor pressure deficit (VPD) and soil moisture (SWS)] are 
shown in Fig. 1.

EMD and EEMD

The EMD is an adaptive and efficient method to decompose 
nonlinear and non-stationary data into several components 
of intrinsic mode function (IMF) using a sifting process. 
The EMD is base the following three assumptions: (1) the 
data have at least one maximum and one minimum. (2) The 

characteristic time scale is defined by the time lapse between 
the local maximum and minimum. (3) If the data were totally 
devoid of maxima and minima but included only inflection 
points, then they can be differentiated once or more times to 
reveal these local maximum and minimum. IMF must first 
satisfy that the number of extrema and the number of zero 
crossings must be equal or differ at most by one. The second 
is that at any point the mean value of the envelope defined by 
the local maxima and the envelope defined by the local minima 
must be zero. IMF represents the oscillation mode imbedded in 
the data and the modulation of both amplitude and frequency 
is permitted (Hong et al. 2010; Huang et al. 1998; Wang et al. 
2012). Each IMF indicates the specific temporal scale informa-
tion which imbedded in the original data. The sifting process 
is used to decompose the data into IMF, which is described 
as follow:

1.	 Identify the local maxima and minima of the original 
data x(t), then all local maxima are connected by a cubic 
spline from the upper envelope, and minima are con-
nected to form the lower envelop. There mean is desig-
nated as m1, and the difference between x(t) and m1 as 
the first component h1:

2.	 However, if h1 does not satisfy the definition of an IMF, 
then the process is repeated.

m11 is the mean envelop of h1.
	   Repeat this step for k times, until h1k is an IMF.

	   Then, the first IMF, c1 = h1k when

	   Here, Dk is a stoppage criterion and smaller than a 
predetermined value such as 0.2.

3.	 Once the first IMF is removed from the original data, 
x(t)

Because r1 still contains information of longer period 
components, it is treated as the new data and subject the 
same sifting process as above. If c1 or r1 is smaller than a 

(1)h1 = x(t) −m1.

(2)h11 = h1 −m11,

(3)h1k = h1(k−1) −m1k.

Dk =

∑T

t=0
�h1(k−1)(t) − h1k(t)�

∑T

t=0
�h1(k−1)(t)�2

2

.

(4)r1 = x(t) − c1.

Table 1   Agronomic management and mean meteorological variables during the wheat season

Crop Variety Sowing date Harvest date Irrigation (mm) Precipitation (mm) Mean temperature (°C)

Wheat Keshu 13 2004/10/18 2005/6/10 225.0 101.0 7.1
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predetermined value, or becomes a monotone function, the 
sifting process is stopped. Thus,

So,

Thus a series of IMFs can be obtained.
The most significant drawback of EMD is mode mixing, 

which implies a single IMF consisting of signals of obvi-
ous disparate scales or a signal of the same scale appear-
ing in different IMF component. To overcome the prob-
lem, Wu and Huang (2009) proposed a new noise assisted 
analysis method called EEMD. The algorithm of EEMD 
is described as follow:

(5)r1 = x(t) − c1, r2 = x(t) − cc,… rn = rn−1 − cn.

(6)x(t) =

n∑

i=1

ci + rn.

1.	 Add a white noise series to the original signal and 
decompose the signal with added white noise into IMFs 
using EMD.

2.	 Repeat the step 1 but with different white noise series 
each time and obtain the corresponding IMF compo-
nents of the decompositions.

3.	 Adopt the means ensemble corresponding to the IMFs 
and residue of compositions as the final result.

More detail of EMD and EEMD can be found in (Huang 
et al. 1998) and (Wu and Huang 2009). The MATLAB code 
of EMD/EEMD and a simple tutorial will be found at the 
website (http://rcada.ncu.edu.tw/research1.htm).

After the decomposition, the significance of IMF white 
noise is tested according to the method proposed in Wu and 
Huang (2004). The variance of each IMF and residual were 

Fig. 1   Time-series data for 
fluxes (NEE exchange of carbon 
dioxide, LE latent heat, H sen-
sible heat) and environmental 
variables (T ambient tempera-
ture, Rn net radiation, μ wind 
speed, VPD vapor pressure defi-
cit, SWS soil water content, rain, 
LAI), the same as following

http://rcada.ncu.edu.tw/research1.htm
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evaluated as variance(IMFi)/∑ variance(IMFi). Correlation 
coefficients between IMFs of environmental factors and CO2 
and water flux were calculated to detect those relationships 
on different temporal scales.

Results

Multiple Temporal Variability of Carbon and Water 
Exchange

The ecosystem exchange of CO2 (NEE) is completely 
decomposed into 12 IMFs and a trend (R) by EEMD 

Fig. 2   The time series of NEE 
is decomposed into 12 intrinsic 
mode functions (IMF) compo-
nents and a trend by EEMD

Table 2   Period and variance 
contribution of NEE, LE in each 
timescale

Flux Timescale Hourly Diurnal Weekly Seasonal Trend

NEE IMF 1–3 4–6 7–9 10–12 –
Period (days) 0.6–0.27 0.6–2.0 4.0–22 50–130 –
Variance contribution (%) 29.6 58.9 0.6 4.7 6.4

LE IMF 1–3 4–6 7–9 10–12 –
Period (days) 0.6–0.33 0.7–2.1 2.9–23 59–250 –
Variance contribution (%) 15.5 55.2 1.8 5.1 22.4

Fig. 3   The time series of LE is 
decomposed into 12 intrinsic 
mode functions (IMF) compo-
nents and a trend by EEMD
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(Fig. 2). NEE variations contain 12 quasi-period oscilla-
tions on different temporal scales and a trend, which can be 
classified into four temporal scales (hourly, diurnal, weekly 
and seasonal) as shown in Table 2. Diurnal and hourly scales 
are the most significant cycles for NEE variation with 58.9 
and 29.6% of variance contribution (Table 2), respectively. 
The longer scales i.e. weekly and seasonal are weaker than 
shorter scales with variance contribution of 0.6, 4.7%, 
respectively. 

The LE is also completely decomposed into 12 IMFs 
and a trend (R) by EEMD (Fig. 3). 12 IMFs indicate water 
flux oscillates on different temporal scales including hourly, 

diurnal, weekly and seasonal (Table 2). Diurnal scale is the 
dominant oscillation in the water flux with largest variance 
contribution (55.2%, Table 2). The trend and hourly scales 
comes next with variance contribution of 22.4 and 15.5%, 
respectively. Weekly and seasonal scales in the water flux 
are weaker than short scale like the NEE flux.

Significance tests of IMFs of Fc and water flux (LE) are 
shown in the Fig. 4. All the IMFs are above the 99 or 95% 
confidence level bounds. There is remarkable peak on the 
diurnal scale for Fc and LE (Fig. 4), which is consistent with 
the largest variance contribution in the diurnal scale.

Multiple Temporal Variability of Environmental 
Variable

Environmental variables also are decomposed into 12 IMFs 
and a trend. The statistical periods and variance contribu-
tions of IMFs and significance tests are shown in Table 3 and 
Fig. 5, respectively (corresponding IMFs figures are omit-
ted). IMFs of environmental variables significantly oscil-
late on different scales include hourly, diurnal, weekly and 
seasonal (Fig. 5; Table 3). However, there are differences 
in environmental variables. Trend dominates the oscillation 
in the temperature with 63.4% variance contribution due to 
increasing trend from winter to summer. Diurnal variation 
contributes the large variance contribution in Rn (72%), 
μ (54.2%), VPD (42.2%), T (18.3%) due to solar diurnal 
rhythm. There are significant hourly variation in Rn (18.3%), 
μ (15.5%) and VPD (10.2%). However, soil water only var-
ied at longer scale with larger variance contribution of 35.6, 
30.1% in seasonal, weekly scale, respectively. The rainfall is 
much more in summer than winter causes 32% of variance 
contribution for soil water in trend.

The remarkable peak in the diurnal scale (Fig. 5a–d) also 
verified the large variance contribution in diurnal scale for 
T, Rn, μ and VPD. Conversely, There is remarkable peak 
in longer scale i.e. seasonal (Fig. 5e) indicates soil water 
oscillate in longer scale because soil water is relative stable 
in short scale.

The Relationship Between Carbon and Water Flux 
and Environmental and Biotic Factors

The correlation coefficients of NEE and environmental fac-
tor showed that NEE significantly negatively correlated with 
net irradiation (Rn), VPD, wind speed (μ), temperature (T) 
and soil water content (SWS) in original data (Fig. 6a). The 
largest correlation coefficient is net irradiation (− 0.68). In 
hourly scale, NEE significantly correlated with all environ-
mental factors except for soil water content (SWS), but all 
correlation coefficients are smaller than 0.3. In daily scale, 
net irradiation strongest correlated with NEE and the cor-
relation coefficient is larger than 0.7. The temperature and 

Fig. 4   Significance tests of IMFs of a NEE, b LE. The upper pink 
(blue) solid line represents the upper bound of Gaussian noise at 99% 
(95%) confidence level
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VPD were also strong correlated with NEE (correlation 
coefficient > 0.4).

NEE significantly correlated with Rn on all timescales, 
as well as with VPD, T and μ in diurnal scale (Fig. 6a). 
The soil water content (SWS) impacts NEE on longer scale 
i.e. the seasonal, which have larger correlation coefficients 
at seasonal scale, while its smaller values in shorter scale 
(Fig. 6a) and even insignificantly in hourly scale. The larger 
coefficient of T, Rn and NEE in seasonal scale indicates the 
seasonal variation of temperature and solar radiation also 
influenced the NEE seasonal variation.

LE significantly positively correlated with Rn on all time-
scales, as well as with VPD and μ in weekly scale (Fig. 6b). 
The correlation coefficient between LE and soil water 
become larger from short scale to seasonal scale, which 
indicates the soil water has little contribution on the LE 
variation on short scales, but impacts the seasonal varia-
tion of LE.

The seasonal variation of NEE and LE also influence by 
the crop development. By comparing the LAI and the recon-
struction of seasonal signals (IMF10 + IMF11 + IMF12) of 
NEE and LE (Fig. 7), the seasonal IMFs of Fc and LE keep 
consistent trend with LAI, which implies LAI regulates the 
CO2 and water flux in the seasonal scale.

Discussions

The most significant temporal scale is diurnal for Rn due to 
the daily rhythms in solar radiation. The diurnal cycle of 
sun causes the diurnal variation of temperature, VPD and 
wind. However, the soil water is less influenced by solar 
radiation and keeps stable in the short term scale, which 
is influenced by the rainfall or irrigation. That is why the 

variance contribution for soil water in hourly (0.1%) and 
diurnal (2.1%) scale is very small.

The variability of CO2 and water flux was investigated 
at scales ranging from hourly to seasonal using EEMD in 
winter wheat. The EEMD can successfully diagnose the 
multiple temporal singles from hourly to seasonal includ-
ing in the original flux data like the Fourier transformation 
(Baldocchi et al. 2001), singular system analysis (Mahecha 
et al. 2007) and wavelet transformation (Katul et al. 2001; 
Katul and Parlange 1995; Stoy et al. 2005). The variation of 
diurnal scale dominates the CO2 and water flux variation in 
this agriculture ecosystem due to solar rhythm, which also 
tested in forest (Baldocchi et al. 2001; Stoy et al. 2005), 
grassland (Stoy et al. 2009) and maize (Ding et al. 2013). 
Compared with other method (Fourier transformation, wave-
let transformation), the trend of CO2 and water flux can be 
detected by using EEMD. The variance contribution of LE 
is 22.4% (Table 2) in trend, which indicates the increasing 
trend of LE in the winter wheat growing season.

A previous study about wavelet analysis in summer 
maize in the North China Plain showed the CO2 and LE 
flux had significant periods at 110, 64 and 32 day (Qin 
et al. 2008). Compared with the significant period at long-
term scale, our result was different. The most significant 
variability of CO2 and LE was at short-term scale, i.e. 
diurnal scale. We inferred that the noise of CO2 and LE 
flux cause the wavelet analysis failed to extract the short-
term scale signals. However, EEMD successfully decom-
posed different temporal signals included in this nonlinear 
and non-stationary carbon and water flux data.

The CO2 and water flux is influenced not only by physi-
cal but also biological drivers on different temporal scales 
(Baldocchi and Wilson 2001; Katul et al. 2001; Stoy et al. 
2005). In short-term scale such as second and hourly, 

Table 3   Period and variance 
contribution of environmental 
variables in each timescale

Variables Timescale Hourly Diurnal Weekly Seasonal Trend

T IMF 1–3 4–6 7–9 10–12 –
Period (days) 0.6–0.33 0.9–3.8 7.0–34.5 110–246 –
Variance contribution (%) 1.1 18.3 6.2 10.8 63.4

Rn IMF 1–3 4–6 7–9 10–12 –
Period (days) 0.6–0.43 0.9–2.0 4.7–19.0 37–233 –
Variance contribution (%) 18.3 72.0 1.0 1.1 7.6

μ IMF 1–3 4–6 7–9 10–12 –
Period 0.6–0.33 0.7–3.1 6.0–25.0 56–278 –
Variance contribution (%) 15.5 54.2 18.5 7.4 4.3

VPD IMF 1–3 4–6 7–9 10–12 –
Period 0.6–0.35 0.9–3.3 6.6–30.0 89–246 –
Variance contribution (%) 10.2 42.2 7.9 6.1 33.6

SWS IMF 1–3 4–6 7–9 10–12 –
Period 0.6–0.23 0.5–2.0 6.7–31.1 74–246 –
Variance contribution (%) 0.1 2.1 30.1 35.6 32.0
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variation in CO2 and water exchange are forced by tur-
bulent eddy motion or precipitation events (Katul et al. 
2001; Stoy et al. 2005). The high correlation between CO2 
and LE flux and Rn in all timescale provided the evidence 
that carbon and water flux were primarily regulated by 

Rn (e.g., the photosynthetic response to solar radiation), 
which was supported by other studies (Baldocchi et al. 
2001; Ding et al. 2013; Stoy et al. 2009). However, in 
the long-term scales, synoptic weather events and crop 
phenology regulated variation in carbon and water fluxes 

Fig. 5   Significance tests of IMFs of a T, b Rn, net radiation, c μ, wind speed, d VPD, e θ, soil water. The upper pink (blue) solid line represents 
the upper bound of Gaussian noise at 99% (95%) confidence level
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(Dietze et al. 2011; Stoy et al. 2005). In our study, the 
soil water more correlated with flux in the seasonal scale. 
Furthermore, LAI synchronized with the NEE and LE in 
seasonal scale which justified that the biological control 
in long-term scale.

Conclusions

This paper attempted to analyze the characteristics of 
flux and environmental variables on different temporal 
scales by a new novel tool EEMD and try to unveil how 

the environmental and biological factor drive carbon and 
water flux on multi-temporal scales in winter wheat. The 
results showed that all environmental and flux variables 
can be decomposed into different temporal scales includ-
ing hourly, diurnal, weekly and seasonal scales. The diur-
nal variations of carbon and water fluxes were regulated by 
diurnal variation of the net radiation (Rn), VPD and wind 
speed (μ) due to the daily rhythms in solar radiation. The 
soil water varied in the longer scale, i.e. seasonal scale 
due to less variation in short scales and controlled carbon 
and water fluxes in longer scales. Furthermore, the crop 
dynamics regulated carbon and water fluxes in the seasonal 
scale.
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