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Abstract Water use efficiency (WUE), the ratio of gross primary productivity (GPP) over evapotranspiration
(ET), is a critical ecosystem function. However, it is difficult to distinguish the individual effects of climatic
variables and leaf area index (LAI) on WUE, mainly due to the high collinearity among these factors. Here we
proposed a partial least squares regression-based sensitivity algorithm to confront the issue, which was first
verified at seven ChinaFlux sites and then applied across China. The results showed that across all biomes
in China, monthly GPP (0.42–0.65), ET (0.33–0.56), and WUE (0.01–0.31) showed positive sensitivities to air
temperature, particularly in croplands in northeast China and forests in southwest China. Radiation exerted
stronger effects on ET (0.55–0.78) than GPP (0.19–0.65), resulting in negative responses (�0.44 to 0.04) of
WUE to increased radiation among most biomes. Increasing precipitation stimulated both GPP (0.06–0.17)
and ET (0.05–0.12) at the biome level, but spatially negative effects of excessive precipitation were also found
in some grasslands. Both monthly GPP (�0.01 to 0.29) and ET (0.02–0.12) showed weak or moderate
responses to vapor pressure deficit among biomes, resulting in weak response of monthly WUE to vapor
pressure deficit (�0.04 to 0.08). LAI showed positive effects on GPP (0.18–0.60), ET (0–0.23), and WUE
(0.13–0.42) across biomes, particularly on WUE in grasslands (0.42 ± 0.30). Our results highlighted the
importance of LAI in influencingWUE against climatic variables. Furthermore, the sensitivity algorithm can be
used to inform the design of manipulative experiments and compare with factorial simulations for discerning
effects of various variables on ecosystem functions.

1. Introduction

Vegetation assimilates CO2 from the atmosphere through photosynthesis, accompanied by the loss of water
via transpiration. The ratio of assimilation (i.e., gross primary productivity, GPP) to total ecosystem water loss
(i.e., evapotranspiration, ET), defined as ecosystem water use efficiency (WUE), reflects the trade-off between
carbon and water exchange (Law et al., 2002; Zhou et al., 2015). WUE integrates a suite of biotic and climatic
factors (Keenan et al., 2013) and is thus an excellent indicator of ecosystem responses to climate variability
(Campos et al., 2013), vegetation dynamics, and human activities (F. M. Zhang et al., 2013).

The behavior of WUE among different biomes has been extensively studied using multiple approaches over
various spatiotemporal scales, such as manipulative experiments (Niu et al., 2011; Quan et al., 2018), eddy
covariance observations (Law et al., 2002; Ponton et al., 2006; Shi et al., 2014), isotope techniques (Ponton
et al., 2006), and process-based models (Huang et al., 2015; F. M. Zhang et al., 2013). However, studies on
WUE responses to the same climatic or biotic factors are often inconsistent and even contrary in some cases
(Ainsworth & Rogers, 2007; Keenan et al., 2013; Li et al., 2008; Mastrotheodoros et al., 2017). For example, Bai
et al. (2008) reported that ecosystemWUE increased with increasing annual precipitation (Prcp), while Li et al.
(2008) obtained an opposite result. For another example, WUE is usually expected to decrease with increasing
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vapor pressure deficit (VPD, Law et al., 2002) across various time scales. However, in some cases such a
response of WUE to VPD might only exist seasonally (Eamus, Boulain, et al., 2013) or even does not exist at
all due to droughts (Reichstein et al., 2002). In addition, WUE has also been found to be strongly correlated
with air temperature (Ta), radiation (Rad), soil water content (SWC) and leaf area index (LAI, Hu et al., 2008;
Li et al., 2008; Yu et al., 2008; F. M. Zhang et al., 2013). These phenomena reflect the complexity in distinguish-
ing the major driving variable for WUE variations, presumably due to the differential responses of GPP and ET
to environmental and biotic factors (Brümmer et al., 2012). Therefore, it is critical to clarify the individual
responses of GPP and ET and the effects of single variables to determine how WUE changes in a changing
environment.

Factorial experiments in the field are ideal for discerning the independent effects of climatic and biotic vari-
ables. However, most such experiments have been conducted at the plot or plant level and thus have limited
treatments due to financial and time constraints. It is difficult to translate local-scale results to the ecosystem
scale (Norby & Zak, 2011), especially if the response of GPP and ET to abiotic and biotic variables varies across
spatial and temporal scales (Lindroth & Cienciala, 1996). Furthermore, limited numbers of treatments may be
insufficient to clarify interactions amongmultiple environmental variables (Norby & Luo, 2004). Although run-
ning factorial simulations by process-based models is plausible, it is difficult to validate the results of these
simulations at plot and regional scales. Therefore, a statistical evaluation of the response of WUE to environ-
mental changes at the ecosystem scale is critically needed. The advantage of statistical disaggregation of the
effects of single variables in driving WUE is that it allows some ground truth through comparison with
ecosystem-level observations such as eddy covariance measurements.

The simple (SLR) or multiple (MLR) linear regression model is often used to account for the response of one
dependent variable to multiple predictor variables. However, the results by MLR can become problematic if
there is high collinearity among predictor variables, which often occurs to ecological data (Graham, 2003).
Specifically, MLR can significantly bias relationships between the dependent variable and the predictor vari-
ables in the presence of even minor collinearity and inflate the standard errors of the estimated regression
coefficients, leading individual predictor variables to look insignificant (Graham, 2003).

To address the above issue, we developed a new algorithm that calculates the actual sensitivities of GPP, ET,
and WUE (the dependent variables) as a product of their apparent sensitivities (the ratio of change in a
dependent variable over the change in a predictor variable) to environmental drivers (the predictor variables)
with the corresponding weights of each predictor variable. The weights of predictor variables are computed
based on the partial least squares regression (PLSR) method, which can effectively reduce uncertainties
induced by high collinearity among predictor variables. We applied the algorithm to calculate the sensitivities
of monthly GPP, ET, and WUE to climate variables and LAI at seven ChinaFlux (Chinese Terrestrial Ecosystem
Flux Observational Network) sites. These sites cover a range of vegetation and climate types. We then com-
pared this algorithm with the conventional MLR model. Finally, the verified algorithm was applied to the
whole of China to investigate how GPP, ET, and WUE might respond to seasonal climate and LAI variability
among biomes using monthly data-driven GPP/ET products, meteorological data, and satellite retrievals of
LAI from 1982 to 2010.

2. Materials and Methods
2.1. Flux Sites

Seven sites (Figure 1 and Table 1) from ChinaFLUX with contrasting climate regimes (Figure 1) were selected
to examine the sensitivities of WUE to monthly climate variability and LAI. These sites cover several ecosys-
tem types, including crops (CRO, one site), deciduous broadleaf forest (DBF, one site), evergreen broadleaf
forest (EBF, two sites), evergreen needle-leaved forest (ENF, one site), and grasslands (GRA, two sites). The
Yucheng site (CN-Yuc) is a warm temperate dry farming cropland located in the North China Plain (Yu
et al., 2006) with a crop rotation of winter wheat and summer maize. The Changbaishan site (CN-Cha) located
in Northeast China is a DBF ecosystem, dominated by 200-year old Korean pine (Pinus koraiensis) and dense
understory shrubs (J. H. Zhang et al., 2009). The two EBF sites, Dinghushan (CN-Din) and Xishuangbanna (CN-
Xsh), have contrasting climate conditions and vegetation. CN-Din is in a subtropical climate and is dominated
by Schima superb and Castanopsis chinensi (Yu et al., 2008), whereas the CN-Xsh site is a tropical rainforest
with distinct wet and dry seasons (Tan et al., 2013). The Qianyanzhou site (CN-Qia) is the only ENF
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ecosystem with a subtropical monsoon climate. The dominant species are Slash pine (Pinus elliottii), Masson
pine (Pinus massoniana), and Chinese fir (Cunninghamia lanceolata) planted around 1985. Two grassland sites
are included: the water-limited Xilinhot temperate steppe (CN-Xi2) in Inner Mongolia and the low-
temperature Haibei alpine meadow (CN-Ha2) in the Qinghai-Tibet Plateau. The dominant species are
Leymus chinensis, Stipa grandis, and Agropyron cristatum at CN-Xi2 and Potentilla fruticosa, Kobresia capillifolia,
and Kobresia humilis at CN-Ha2 (Guo et al., 2015).

Half-hourly eddy covariance measurements of carbon, water, and energy fluxes and auxiliary observations of
meteorological and soil variables were collected during 2003–2010 at the seven sites and processed follow-
ing the standard ChinaFLUX quality control and gap-filling routines (Yu et al., 2006). GPP was calculated as the
sum of daily net ecosystem carbon exchange and daily ecosystem respiration, with the latter derived from
the relationship between nocturnal net ecosystem carbon exchange and soil temperature and SWC. In addi-
tion, we extracted concurrent LAI data from the 8-day MOD15A2 product (1-km resolution) using a central
3 × 3-km window around each of the flux towers. Only LAI pixels with cloud state values less than 2 and
confidence score values less than 3 were used to calculate the average. All data were then aggregated into
a monthly time step.

2.2. Spatial Data Sets

At the country scale, monthly GPP and ET products (Jung et al., 2009, 2011) with a 0.5° × 0.5° resolution were
used to calculate monthly WUE from 1982 to 2010. These products are upscaled from FLUXNET (https://

Figure 1. The left panel shows locations of the seven ChinaFlux sites used in this study. The background is the spatial dis-
tribution of land cover across China in 2010. Terrestrial ecosystems in China are grouped into CRO = crops; DBF = deciduous
broadleaf forest; DNF = deciduous needle-leaved forest; EBF evergreen broadleaf forest; ENF = evergreen needle-leaved
forest; GRA = grasslands; MF = mixed forests; and SHR = shrublands. The right panel shows the Köppen-Geiger climate
classification in China. Main climates: A = equatorial; B = arid; C = warm temperate; D = snow; and E = polar; precipitation: W
= desert; S = steppe; f = fully humid; w = winter dry; and m = monsoonal; temperature: h = hot arid; k = cold arid; a = hot
summer; b = warm summer; c = cool summer; F = polar frost; and T = polar tundra.

Table 1
Descriptions for the Seven Sites Used in This Study

ID Biome Lat (°N) Lon (°E) MAT (°C) MAP(mm/year) ET(mm/year) GPP(g C·m�2·year�1) WUE(g C/kg H2O) Growing season Period

CN-Yuc CRO 36.83 116.57 13.3 617.3 545.1 2206.1 4.1 Feb–Nov 2003–2010
CN-Cha DBF 42.40 128.10 3.6 472.2 398.5 1590.3 4.0 Apr–Oct 2003–2010
CN-Din EBF 23.17 112.52 20.1 1477.9 641.9 1484.7 2.3 Jan–Dec 2003–2010
CN-Xsh EBF 21.93 101.27 19.4 1237.6 637.2 2253.8 3.5 Jan–Dec 2003–2010
CN-Qia ENF 26.74 115.06 17.7 1197.3 676.2 1810.0 2.7 Jan–Dec 2003–2010
CN-Ha2 GRA 37.67 101.33 �1.4 513.1 531.3 956.3 1.8 May–Sep 2003–2010
CN-Xi2 GRA 43.53 116.67 1.5 234.7 229.2 400.6 1.8 Apr–Oct 2003–2010

Note. Descriptions include site name (ID), latitude (Lat, °N), longitude (Lon, °E), mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm/year),
biome classification, mean annual GPP (g C·m�2·year�1), mean annual growing season ET (mm/year), mean annual growing season WUE (g C/kg H2O), growing
season months of the year, and measurement periods. GPP = gross primary productivity; ET = evapotranspiration; WUE = water use efficiency; CRO = crops; DBF =
deciduous broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen needle-leaved forest; GRA = grasslands.
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fluxnet.ornl.gov/) measurements using the model tree ensemble (MTE) method. The MTE products integrate
information from satellite measurements of vegetation characteristics and gridded climate data but do not
consider physiological effects of increasing atmospheric CO2 concentration and nitrogen deposition. This
deficit prevents MTE products from being used in long-term WUE trend analysis (Huang et al., 2016) but
has only a minor influence on the analysis of variability in WUE (Huang et al., 2015). The monthly climate
data (CRU-NCEP v8.0, https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/cat-
alog.html), including air temperature, shortwave radiation, precipitation, and VPD, were a fusion of pro-
ducts by the Climate Research Unit (CRU) and the National Center for Environmental Prediction (NCEP)/
National Center for Atmospheric Research (NCAR) with a spatial resolution of 0.5° × 0.5° (Wei et al.,
2014). The GLOBMAP LAI (Liu et al., 2012) data, constructed by fusing Advanced Very High Resolution
Radiometer (AVHRR) LAI (1981–2000) and Moderate Resolution Imaging Spectroradiometer (MODIS) LAI
(2000–2011), were used to indicate the vegetation states. The temporal resolution of GLOBMAP LAI is half
monthly, with a spatial resolution of 8 km. The land cover map was derived from the merging of Landsat
TM/ETM and HJ-1 satellite retrievals in 2010 with a spatial resolution of 250 m (Wu et al., 2014). In addition,
to compare with the MTE ET data, the MOD16A2 ET product (at a monthly step and a spatial resolution of
0.05°) during 2000–2010 was also used. All data were aggregated into a monthly time step and a spatial
resolution of 0.5° × 0.5°.

2.3. Disentangling Algorithm

A typical SLR or MLR for one dependent variable with n samples andm independent variables can be repre-
sented in the matrix form as

y¼Xbþe (1)

where y is a column vector (n samples) of the dependent variable, X is a m × n matrix of independent vari-
ables, and e denotes a column vector (n samples) of the residual errors. The unknown b can be calculated
through minimizing the sum of squared residual errors (eTe). However, such a solution can become invalid
or ill conditioned, while XTX is singular due to collinearity between independent variables (Mevik &
Wehrens, 2007).

To circumvent the above deficit of SLR and MLR, the PLSR method is developed. The basic principle of PLSR is
to reduce redundant information by projecting X into a lower-dimensional space constituted by so-called
principal components (PCs) and then regress y on PCs. The first step is to standardize all dependent and
independent variables following

yi ¼
yi � y
σy

(2)

where yi is the ith member of dependent variable y, y is the average of y, and σy is the standard
deviation of y.

The second step is to decompose X into orthogonal PCs. Instead of using the usual singular value decompo-
sition (SVD) method to X to generate PCs, which only considers the substructure information about X when
extracting PCs (Mevik & Wehrens, 2007), PLSR uses a deflationmethod to obtain PCs iteratively. It starts with
the SVD of the matrix XTy, and the first left and right singular vectors,w and q, are then used to weigh X and y,
respectively, to obtain scores t and u for the first PCs of X and y:

t¼Xw

u¼yq:
(3)

The loadings for the first PCs of X and y, p and q, are then calculated as

p¼XTt

q¼yTt:
(4)

Next, X and y are deflated by subtracting the outer products tpT and tqT:
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Xnþ1¼Xn�tpT

ynþ1¼yn�tqT :
(5)

The next PC then can start from the SVD ofXT
nþ1ynþ1 until the number of PCs reaches the optimum. Vectorsw,

t, and p in each iteration constitute matrices W, T, and P.

The third step is to regress y against PC scores to obtain regression slopes as

b¼R TTT
� ��1

TTy (6)

where b is a column vector of m elements, and R = W(PTW)�1 indicates the inflated loadings by the weight
matrixW. Simultaneously, accompanying b, we can get a significance vector, which is then used to select sig-
nificant b and PC loadings at a significant level of 0.05. For these significant b values, we multiplied the b
values and corresponding PC loadings for each variable in X and then sum these products as

wi¼∑kj¼1bjRi;j (7)

where bj is the slope for the jth significant PC, Ri,j is the jth significant PC loading for the ith variable in X, k is
the number of significant PCs, and wi indicates the relative importance of the ith variable in explaining the
variance of y. wi is then used to weigh the apparent sensitivity of y to each variable Xi in X, which was calcu-
lated following (Raupach et al., 2013) as

ayXi
¼ σy

y
=
σXi

Xi
(8)

where σy is the standard deviation of y, y is the mean value of y, and ayXi
indicates the apparent sensitivity of y

to the ith variable in X. The benefit of the ayXi
definition is that sensitivities of different dependent variables to

different independent variables can be directly compared to each other. Further, we obtained the weighted
sensitivity of y to the ith variable in X as

syxi ¼ wia
y
Xi

(9)

2.4. Application of the New Algorithm to Sites and the Whole Country

Specifically, we selected monthly air temperature, solar radiation, precipitation, VPD, and LAI as independent
variables in both site- and country-scale analyses. The growing season period for each site or grid cell was
defined following (1) the multiyear mean monthly temperature should be larger than 0 °C, and (2) the
multiyear mean monthly GPP should be larger than 10 g C·m�2·month�1. Besides computing WUE sensitivity

(sWUE
C lim=LAI) directly, we also partitioned variability in WUE into its two contributive components: GPP and ET.

Theoretically, the relative change between sensitivities of GPP (sGPPC lim=LAI ) and ET (sETC lim=LAI ) can explain the

response of WUE to climate and LAI variability (derived sWUE
C lim=LAI≈ 1þ sGPPC lim=LAI

� �
= 1þ sETC lim=LAI

� �
� 1), and this

relative change can be used to verify whether the sensitivity algorithm is robust. However, due to the data

uncertainties, the derived sWUE
C lim=LAI could be different from the directly computed sWUE

C lim=LAI due to biased

sGPPC lim=LAI and sETC lim=LAI . To alleviate the influence of too short a period of observations, we conducted the

sensitivity analysis nine times at the site level by removing in each iteration 0 or 1 year of data from the total
8-year observations. Thus, there were nine sensitivity values estimated for GPP, ET, or WUE in response to
each predictor variable. To compare the PLSR-based algorithm with the MLR model, the same strategy was
used in the MLR analysis. At the country level, no extra sensitivity analysis was conducted because the data
length of nearly three decades was enough to reduce uncertainty.

3. Results
3.1. Site-Level Sensitivity Analysis

Among all sites, GPP tended to show positive sensitivities to air temperature, radiation, precipitation, and LAI
but negative sensitivity to VPD during the observation periods (Figure 2a). In the MLR analysis, the significant
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estimates of GPP responses to LAI and climatic variables were consistent with those estimated by the PLSR-
based algorithm in most cases (Figure 2b). However, it is noted that the MLR model estimated a strong
positive effect of VPD on GPP at one EBF site (CN-Din) in contrast to a relatively low sensitivity of GPP to
VPD by PLSR. Furthermore, the MLR model failed to give significant (p < 0.05) estimates on GPP
sensitivities to climatic variables or LAI in all the nine times of calculation (Figure 2b). For example, at the
temperature-dominated alpine meadow (CN-Ha2), precipitation showed no significant effect on GPP in at
least one time of calculation, which was against the previous study by Guo et al. (2015).

Across all sites, the PLSR-based algorithm estimated that ET was most sensitive to radiation, air temperature,
and LAI in order (Figure 2c). In contrast, the MLRmodel could only give significant estimates for effects of part
of variables at a specific site (Figure 2d). But the significant estimates by the MLR model were basically posi-
tive consistent with those by the PLSR-based algorithm, except that the MLR model estimated a significant
negative effect of VPD on ET at the DBF site (CN-Cha).

The effects of climatic and LAI variables on WUE depended on their separate effects on GPP and ET. In most
cases, both the PLSR-based algorithm and the MLR model predicted reasonable WUE changes given the rela-
tive responses of GPP and ET to the same environmental variable according to the derived sensitivity equa-

tion (Figure 2). For example, at the CN-Cha site, sGPPC lim=LAI ¼ 0:26±0:23 and sETC lim=LAI ¼ 0:15±0:18. The derived

sWUE
C lim=LAI ¼ 0:096, while the directly computed sWUE

C lim=LAI ¼ 0:07±0:14. However, in some cases, the MLRmethod

failed to explain the WUE response. For example, at one of the subtropical EBF sites (CN-Xsh), although tem-
perature showed larger significant influence on the monthly variability of GPP than that on ET, the MLR
model obtained a negative effect of temperature on WUE (Figure 2).

3.2. Country-Level Sensitivity Analysis

Figure 3a shows the spatial distribution of the predictor variables to which the monthly variability of GPP was
the most sensitive in each grid cell. GPP was the most sensitive to temperature in crops in northeastern China
and radiation in northern forests and Xinjiang grasslands, while GPP was themost sensitive to LAI or tempera-
ture in grasslands along the Inner Mongolia Plateau and radiation or VPD in the Qinghai-Tibet Plateau. Across
the whole country, increasing air temperature could stimulate GPP across themajority of China, particularly in
northern and southwestern China (Figure 3b). Increased radiation could benefit GPP in southeast and the
majority of northeast China and North China Plain. Negative effects of increased radiation were mainly found
in semiarid and arid grasslands, including parts of the Inner Mongolia Plateau and particularly the Qinghai-

Figure 2. Comparison of the partial least squares regression-based (a, c, e) and multiple linear regression-based (b, d, f) sensitivities of GPP, ET, and WUE to monthly
variability in climate and LAI during 2003–2010. Sensitivities of each dependent variable to each predictor variable are calculated nine times at every site, and
the bars indicate the standard deviation. The “*” symbol indicates that there are at least seven significant (p< 0.05) estimates of sensitivities of a dependent variable
to a particular predictor variable, and the mean value and the standard deviation are calculated from only the significant estimates. Otherwise, the mean value
and the standard deviation are calculated from all the estimates by the nine times of calculation. The shades are to annotate neighboring biomes. GPP = gross
primary productivity; ET = evapotranspiration; WUE = water use efficiency; LAI = leaf area index; VPD = vapor pressure deficit; CRO = crops; DBF = deciduous
broadleaf forest; EBF = evergreen broadleaf forest; ENF = evergreen needle-leaved forest; GRA = grasslands.
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Tibet Plateau, and the eastern edge of the alpine regions of northern Xinjiang (Figure 3c). Weak to moderate
negative effects of precipitation on GPP were found in parts of the Xinjiang alpine meadows and grasslands
in the northern Qinghai-Tibet Plateau (Figure 3d). In contrast, GPP was positively sensitive to precipitation in
most grasslands, crops, and forests (Figure 3d). VPD showed negative effects on GPPmainly in northern China
but weak to moderate positive effects in the majority of south China and the Qinghai-Tibet Plateau
(Figure 3e). LAI showed positive effects on GPP in majority of the country, particularly in the grasslands of
the Inner Mongolia Plateau and Qinghai-Tibet Plateau (Figure 3f).

The spatial patterns of ET sensitivities to climatic and LAI variables showed some similarity to those of sensi-
tivities of GPP suggesting the tight coupling of GPP and ET (Figures 3 and 4). However, the patterns of ET

Figure 3. Spatial distribution of (a) variables (climate or LAI) to which GPP is most sensitive and the sensitivities of GPP to
monthly variability in (b) air temperature (Ta), (c) solar radiation (Rad), (d) precipitation (Prcp), (e) VPD, and (f) LAI during
1982–2010. Panel a uses its own categorical legend, while all the other panels share the continuous legend in the right of
the figure. LAI = leaf area index; GPP = gross primary productivity; VPD = vapor pressure deficit.

Figure 4. Spatial distribution of (a) variables (climate or LAI) to which ET is most sensitive and the sensitivities of ET to
monthly variability in (b) air temperature (Ta), (c) solar radiation (Rad), (d) precipitation (Prcp), (e) VPD, and (f) LAI during
1982–2010. Panel a uses its own categorical legend, while all the other panels share the continuous legend in the right of
the figure. LAI = leaf area index; ET = evapotranspiration; VPD = vapor pressure deficit.
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sensitivities were much simpler than those for GPP. The main differences can be seen in the spatial distribu-
tion of the variables to which GPP or ET showed the largest sensitivity (Figures 3a and 4a). Among the five
predictor variables, ET was most sensitive to radiation or temperature across the majority of China
(Figure 4a), whereas GPP was most sensitive to LAI or VPD in parts of the Inner Mongolia Plateau, the
Qinghai-Tibet Plateau, and croplands in southwest China (Figure 3a). Opposite to the negative effects of
radiation on GPP (Figure 3c) in parts of China, increased radiation generally had a positive effect on ET
(Figure 4c). Precipitation also showed positive effects on ET across the majority of China (Figure 4d).
Similar to GPP, ET also responded negatively but more moderately to VPD across northern China
(Figure 4e). The sensitivities of ET to LAI were positive across most of China, with the exception of parts of
tropical and subtropical EBF forests in southern and southwestern China (Figure 4f).. This result contrasts with
the previous analysis in the CN-XSH site, where ET responded positively to LAI (Figure 2c). To clarify such dis-

sonance, we compared sETLAI calculated using MTE ET product during 2000–2010 and that using the MOD16A2
ET product (Mu et al., 2011) in the same period. Figure 5 shows that MOD16A2 produced positive LAI effects

on ET in most southern EBF forests and larger sETLAI in grasslands than the MTE ET product but more negative
effects of LAI in the Qinghai-Tibet Plateau. The differences between the results obtained by the two products
featured the accuracy or biases of ET products in specific biomes or regions that can affect the spatial sensi-
tivity analysis such as the one conducted in this study.

Figure 5. Comparison of the sensitivities of (a) MOD16A2 ET and (b) MTE ET to leaf area index data during 2000–2012. The
two products show differences in South China and the Qinghai-Tibet Plateau, where evergreen broadleaf forests and
grasslands dominate, respectively. ET = evapotranspiration; MTE = model tree ensemble.

Figure 6. Spatial distribution of (a) variables (climate or LAI) to which WUE is most sensitive and the sensitivities of WUE to
monthly variability in (b) air temperature (Ta), (c) solar radiation (Rad), (d) precipitation (Prcp), (e) VPD, and (f) leaf area
index (LAI) during 1982–2010. Panel a uses its own categorical legend, while all the other panels share the continuous
legend in the right of the figure. LAI = leaf area index; WUE = water use efficiency; VPD = vapor pressure deficit.
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WUE was the most sensitive to radiation, LAI, or air temperature in the majority of grid cells (Figure 6a). In
grasslands of the Inner Mongolia Plateau and the Qinghai-Tibet Plateau, monthly variability of WUE showed
the largest sensitivity to LAI or radiation (Figure 6a). Air temperature generally had positive effects on WUE, in
particular in croplands in the northeastern China and parts of grasslands in Xinjiang (Figure 6b). Increasing
radiation generally decreased WUE and showed the largest negative effects in grasslands except in parts
of the alpine meadows in Xinjiang region (Figure 6c). WUE showed weak negative response to precipitation
in parts of Xinjiang due to negative effects of precipitation on GPP and in southeast China due to stronger
effects of precipitation on ET (Figures 3d, 4d, and 6d). VPD tended to show weak negative effects on WUE
in northern and northeastern China but positive effects in southern China, most of the Qinghai-Tibet
Plateau, and parts of Xinjiang (Figure 6e). Similar to GPP, LAI in grasslands in the Inner Mongolia Plateau
and Qinghai-Tibet Plateau showed the strongest effects on WUE (Figure 6f).

3.3. Different Responses of Biomes to Climatic Variables and LAI

The area-weighted sensitivities of GPP, ET, and WUE in response to climate and LAI for biomes are summar-
ized in Figure 7. The variable to which GPP was the most sensitive varied among biomes (Figure 7a), while ET
across biomes showed the largest sensitivity to radiation except in EBF (Figure 7b). In almost all biomes, WUE
showed negative responses to radiation particularly in GRA and SHR (shrublands, Figure 7c). The effects of
temperature were generally positive for the change of monthly WUE (Figure 7c) at the biome level.
Precipitation and VPD generally showed minor influences across biomes (Figure 7c). While WUE generally
responded positively to LAI among biomes, it is noted that WUE of grasslands showed the largest sensitivity
to LAI (Figure 7c).

4. Discussion and Conclusions
4.1. Direct Effects of Temperature on GPP, ET, and WUE

Limitations to the rate of photosynthesis include Rubisco enzyme activity, photosynthetic electron transport,
and the rate of export or utilization of the photosynthetic products (Collatz et al., 1991; Farquhar et al., 1980).
Temperature directly influences the reactions catalyzed by Rubisco and the electron transport chain along
with stomatal conductance (discussed in next paragraph); thus, photosynthesis is recognized as a very

Figure 7. The area-weighted mean sensitivities of (a) GPP, (b) ET, and (c) WUE to monthly variability in climate and LAI
during 1982–2010 among different biomes in China. GPP = gross primary productivity; ET = evapotranspiration; WUE =
water use efficiency; LAI = leaf area index; VPD = vapor pressure deficit CRO = crops; DBF = deciduous broadleaf forest; DNF
= deciduous needle-leaved forest; EBF = evergreen broadleaf forest; ENF = evergreen needle-leaved forest; GRA = grass-
lands; MF = mixed forests; SHR = shrublands.
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temperature-sensitive process (Yamori et al., 2013). The response of photosynthesis to temperature is along a
parabolic curve with a peak at an optimum temperature (Berry & Bjorkman, 2003) where plants reach their
largest carbon assimilation rate. Therefore, elevated temperature can enhance vegetation productivity when
temperature is low but decrease vegetation growth when temperature is too high. For terrestrial ecosys-
tems that have adapted to the current regional climate, the highest monthly temperatures are generally
close to the optimal value for maximal rates of photosynthesis (Wan et al., 2005). Thus, GPP generally
showed a positive response to increased monthly temperature in either site- or country-level analysis
(Figures 2a, 3b, and 7a) because temperatures are frequently lower than the optimal. The positive sensi-
tivity of GPP to temperature was also found in a number of field-warming experiments globally. In a
meta-analysis covering various ecosystem types, Lu et al. (2013) reported an on-average 15.7% increase
of GPP per 1.81 °C increase in air temperature. However, this positive GPP response to elevated tempera-
ture is not temporally homogeneous. Experimental warming in a tall grass prairie in the U.S. Great Plains
significantly increased green biomass in spring and autumn but less so in summer (Wan et al., 2005). This
contrasting effect of elevated temperature in summer and other seasons has also been found in other
ecosystems, including subalpine coniferous forest (Huxman et al., 2003) and white spruce forest in
Alaska (Wilmking et al., 2004). It is noted that the direction and magnitude of the sensitivity of GPP to
temperature can depend on the magnitude of elevated temperature (Piao et al., 2013). In addition, its
impact can be masked by the interactions among temperature and other factors, such as water availabil-
ity (Niu et al., 2008) and CO2 concentration (Norby & Luo, 2004). For example, in a temperate grassland
near the CN-Xi2 site, experimental warming decreased GPP compared to the control subplots (Niu
et al., 2011). However, the increased temperature was accompanied with a significant depletion of soil
water, and therefore it is most probable that increased temperature without increased depletion of soil
water can increase GPP at this site. As Norby and Luo (2004) noted, the limited number of treatments
in factorial experiments often leads to imprecise hypotheses and inconclusive results. This is also the rea-
son that MLR could not distinguish the independent effect of temperature on GPP at the CN-Xi2
site (Figure 2a).

Sources of ET include transpiration by vegetation canopy, soil evaporation, and evaporation from intercepted
water by vegetation following rain. Transpiration is regulated by stomatal conductance, which is limited by
atmospheric demand for water (usually represented using VPD in practice) and leaf temperature (Bunce,
2000a; Jarvis, 1976; Mott & Peak, 2010). Because leaf temperature and VPD are strongly correlated, it is diffi-
cult to conduct factorial experiments outside models (e.g., Eamus, Cleverly, et al., 2013) to distinguish the
direct effects of a single variable. However, in the limited number of manipulative experiments reported, sto-
matal conductance showed a large increase in response to increasing temperature (Fredeen & Sage, 1999;
Mott & Peak, 2010). The possible underlying mechanism is that high temperature can decrease water viscos-
ity and increase plant membrane permeability and thus increases water supply to guard cells (Fredeen &
Sage, 1999), which will result in higher stomatal conductance and transpiration. In natural environments,
maximum stomatal conductance values were found to occur when high temperatures coincided with low
VPD in winter wheat and barley crops (Bunce, 2000a). Similarly, Bunce (2000b) reported that stomatal con-
ductance increased exponentially as leaf temperature increased from 15 to 35 °C in eight cool and warm cli-
mate herbaceous crop and weed species, even when temperature exceeded the optimum for
photosynthesis. Such behavior of stomatal conductance in response to high temperature can benefit plants
by cooling leaves in hot environments (Fischer et al., 1998; Lu et al., 1994). However, the temperature increase
can drive the increase of VPD, which will lead to the decrease of stomatal conductance and transpiration
(Damour et al., 2010). Such a positive direct effect of temperature and the indirect effect of temperature
through VPD lead the inflection point of transpiration-VPD curve to be postponed as temperature increases
(see Figures 3d and 4a in Fredeen and Sage (1999)). It is noted that the direct effect of temperature on sto-
matal conductance also influences GPP because vegetation absorbs CO2 from the atmosphere
through stomata.

We found that WUE showed varied temperature sensitivities among biomes due to the differences between
the responses of GPP and ET to temperature. This arises from biomes that have (a) different optimum
temperatures for GPP (Berry & Bjorkman, 2003; Yamori et al., 2013), (b) different acclimation capacities to tem-
perature (Smith et al., 2016; Yamori et al., 2013), and (c) different increased stomatal conductance with
elevated temperature (Bunce, 2000a, 2000b; Fredeen & Sage, 1999; Mott & Peak, 2010).
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4.2. Direct Effects of Radiation on GPP, ET, and WUE

Radiation directly regulates rates of photosynthetic electron transport (Farquhar & Sharkey, 2003;
Tinocoojanguren & Pearcy, 1993) and stomatal behavior (Hattori et al., 2007; Tinocoojanguren & Pearcy,
1993). Stomatal conductance can respond rapidly to sudden change in light intensity (Hattori et al., 2007;
Tinocoojanguren & Pearcy, 1993). Generally, the response of rates of photosynthesis to radiation can be
described by a rectangular hyperbolic curve (Yu et al., 2004). However, excessive radiation can induce injury
to the photosynthetic apparatus (hereafter photoinhibition, Powles, 2003; Warner & Caldwell, 1983), includ-
ing photodestruction of photosynthetic pigments and even cell death. This is likely to be the reason that GPP
showed a negative response to radiation in parts of Inner Mongolia Plateau and Qinghai-Tibet Plateau
(Figure 3c) and relatively low radiation sensitivity in grasslands compared to other biomes (Figure 7a).
However, the occurrence of photoinhibition is not related to the degree of stomatal opening (Powles,
2003). Jones (1998) reported that carbon assimilation of Phaseolus leaves was stable while stomatal conduc-
tance continued to rise as light intensity increased. Therefore, strong radiation showedminor negative effects
on ET (Figure 4c). Furthermore, increased radiation can stimulate evaporation from the soil surface and from
wet canopies. This is likely to be the reason that ET generally showed larger radiation sensitivities than GPP
among biomes, and thus WUE showed negative response to elevated radiation (Figure 7c).

4.3. Direct Effects of Water Availability on GPP, ET, and WUE

Increased frequency, severity, and areal extent of droughts have been widely reported across the world (Allen
et al., 2010; Carnicer et al., 2011; Matusick et al., 2013). In extreme cases, severe water stress can lead to large-
scale mortality of trees (Hicke et al., 2012; Phillips et al., 2009). Water stress decreases stomatal conductance
(Jarvis, 1976; Lu & Zhang, 1999; Zhou et al., 2014) and can affect photosynthetic biochemical processes (Graan
& Boyer, 1990; Zhou et al., 2013). Accompanied with depression of GPP, canopy transpiration declines due to
stomatal closure. These effects of water stress can reasonably explain the positive responses of GPP and ET to
increasing precipitation at the site level (Figure 2), in the majority of China (Figures 3 and 4) and among
biomes (Figure 7). However, the effects of water availability can be masked by other covarying factors. For
example, at the alpine meadow (CN-Ha2) which is generally thought of as temperature-limited (Guo et al.,
2015), the PLSR-based algorithm obtained a positive sensitivity of GPP to precipitation (Figure 2a), whereas
the MLR model estimated no significant response to precipitation (Figure 2b). However, at this site Guo et al.
(2015) showed that water availability can mediate the effects of increasing temperature on GPP (Figure 4a in
the paper), that is, the positive effect of high SWC on GPP partly offsets the negative effect of low tempera-
ture. Therefore, the MLR model failed to reveal the precipitation effect on GPP. Although GPP and ET usually
respond positively to increasing water availability, excessive SWC can result in down regulation of stomatal
conductance and photosynthesis arising from root zone hypoxia (Bradford, 1983; Merchant et al., 2010;
Pociecha et al., 2008). For example, the negative effects of growing season precipitation or large rainfall
events on vegetation growth in alpine meadows or grasslands in parts of Xinjiang, Inner Mongolia Plateau,
and Qinghai-Tibet Plateau (Figure 3d) were also reported by Piao et al. (2006) and Yuan et al. (2015). They
attributed the negative effects of precipitation on vegetation growth to simultaneous decrease in tempera-
ture (Piao et al., 2006; Yuan et al., 2015), although extensive precipitation is also associated with reduced solar
radiation inputs which may also contribute to reduced GPP. It has been reported that unusually large rainfall
events can reduce aboveground productivity by vegetation in comparison to average rainfall events (Knapp
et al., 2002; Xu & Zhou, 2011). As for Xinjiang and other semiarid regions in China, grassland ecosystems are
widely distributed in mountain areas where water limitation is not as severe as commonly expected in other
arid and semiarid regions. The photosynthesis of local dominant species Leymus chinensis and Stipa grandis
are found to be enhanced under moderate SWC but reduced under severe water deficit and excessive water
(Xu & Zhou, 2011). In light of such negative effects of precipitation on vegetation growth, more efforts are
needed to address whether and to what degree grassland ecosystems in above regions can benefit from
the climate change-induced shifts of precipitation amount and pattern.

4.4. Direct Effects of VPD on GPP, ET, and WUE

The influence of VPD on leaf stomatal conductance and thus GPP, ET, and WUE has been extensively studied
(e.g., Lange et al., 1971; Leuning, 1995; Monteith, 1995; Shi et al., 2014; Thomas & Eamus, 1999). It is widely
recognized that leaf stomatal conductance could increase as VPD increases when VPD is low or moderate
but decrease with increasing VPD when it is high (Damour et al., 2010). At the ecosystem level, a number

10.1029/2018JG004482Journal of Geophysical Research: Biogeosciences

LI ET AL. 2439



of studies have reported the close correlations between GPP, ET, or WUE and VPD (Eamus, Boulain, et al.,
2013; Ponton et al., 2006; Shi et al., 2014; F. M. Zhang et al., 2013). Our results (Figures 2, 3d, 4d, 6d, and 7)
are consistent with these previous studies. However, it is noted that the sensitivity of vegetation to VPD
can be mediated by other factors such as soil water stress (Cunningham, 2005; Niglas et al., 2014; Thomas
& Eamus, 1999). In addition, in a condition of high humidity, the reduced evaporative demand of the atmo-
sphere could contribute to the less sensitivity of ET to elevated VPD than that of GPP and thus causes a posi-
tive response of WUE in ecosystems in northern and northeastern China (Figures 2e and 7c) (Frank
et al., 2015).

4.5. Direct Effects of LAI on GPP, ET, and WUE

Although there were uncertainties induced by the accuracy of data sets used in this study (e.g., Figure 5 as
discussed later), the results showed that LAI generally exerted positive effects on GPP, ET, and WUE
(Figures 3f, 4f, 6f, and 7). Structural dynamics can influence the biophysical properties of vegetation and car-
bon, water, and energy fluxes (Bonan, 1993). Changes in the magnitude and distribution of LAI can affect the
absorbance of photosynthetically active radiation (Nilson, 1971) and the partitioning of net radiation
between sensible and latent heat flux (Verstraete & Dickinson, 1986). Numerous studies have documented
the strong positive control of GPP exerted by LAI, especially in biomes with a low-to-moderate LAI
(Duursma et al., 2009; Keith et al., 2012; Van Dijk et al., 2005). Large values of LAI can result in a decrease of
GPP (e.g., EBF forests in southwest China and in southern Tibet) due to a higher proportion of aged leaves
with low assimilation capacity (Joggi et al., 1983) and through self-shading of leaves within the canopy.
The positive effects of LAI on ET are more significant in influencing seasonality of ET but weak on long-term
ET, because it is energy and water availability that control annual ET (Kabat et al., 1997; Liu et al., 1992).
Analysis by a process-based model showed that LAI has stronger effects on GPP than ET (Puma et al.,
2013); thus, the sensitivity of WUE to LAI is positive among biomes and is particularly large in grasslands
(Figure 7c). This result is consistent with the report by Hu et al. (2008) that the seasonality of WUE at four
grassland sites in the Qinghai-Tibet Plateau and North China were controlled by LAI.

4.6. Uncertainties and Implications

The data sets used in the spatial analysis were developed from interpolation of meteorological measure-
ments (climate variables), satellite monitoring (LAI), and data-driven products upscaled from the FLUXNET
observations (GPP and ET). Therefore, there exist unavoidable uncertainties. The comparison of responses
of MTE ET and MOD16A2 ET to LAI (Figure 5) shows that these uncertainties can bring subtle influences to
the results. The lack of long-term continuous eddy covariance observations, particularly in tropical and sub-
tropical EBF forests (most FLUXNET sites are from temperate regions), means that the MTE products have to
use spatial relationships to derive temporal variations (Piao et al., 2013). However, the spatial relationships are
not totally equal to the temporal relationships and thus could bring considerable uncertainty.

Although uncertainties exist, the PLSR-based algorithm performed better than the conventional MLR model
for monthly GPP, ET, and WUE, providing reasonable estimates of the individual effects of climate variables
and LAI which highly covary with each other. Our results can inform the design of field experiments that
try to discern the influences of multiple factors. It is often technologically impractical and expensive in both
financial and time costs to conduct factorial experiments at the ecosystem level. The PLSR-based algorithm
allows discrimination of the most important variables driving GPP, ET, and WUE. It can also be used to assess
the accuracy of data-driven products and clarify which factor is not appropriately represented in the product,
as identified in our comparison of MTE ET and MOD16A2 ET products. Third, our results can be used to eval-
uate the performance of complex ecosystem models in response to a single variable through factorial simu-
lations, which are usually validated by field experiments at the ecosystem scale.
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