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Abstract Extreme heat events have become more frequent
and intense with climate warming, and these heatwaves are a
threat to rice production in southern China. Projected changes
in heat stress in rice provide an assessment of the potential
impact on crop production and can direct measures for adap-
tation to climate change. In this study, we calculated heat
stress indices using statistical scaling techniques, which can
efficiently downscale output from general circulation models
(GCMs). Data across the rice belt in southern China were
obta ined from 28 GCMs in the Coupled Model
Intercomparison Project phase 5 (CMIP5) with two emissions
scenarios (RCP4.5 for current emissions and RCP8.5 for in-
creasing emissions). Multi-model ensemble projections over
the historical period (1960–2010) reproduced the trend of ob-
servations in heat stress indices (root-mean-square error
RMSE = 6.5 days) better than multi-model arithmetic mean
(RMSE 8.9 days) and any individualGCM (RMSE 11.4 days).

The frequency of heat stress events was projected to increase
by 2061–2100 in both scenarios (up to 185 and 319% for
RCP4.5 and RCP8.5, respectively), especially in the middle
and lower reaches of the Yangtze River. This increasing risk of
exposure to heat stress above 30 °C during flowering and
grain filling is predicted to impact rice production. The results
of our study suggest the importance of specific adaption or
mitigation strategies, such as selection of heat-tolerant culti-
vars and adjustment of planting date in a warmer future world.

1 Introduction

Climate change is characterized by increasing temperature,
modified precipitation patterns, and increasing frequency of
extreme weather events. Global average temperature has in-
creased by 0.85 °C between 1880 and 2012 (IPCC 2013). In
the last 50 years, temperatures have increased by 0.15–
0.40 °C per decade in China (Piao et al. 2010). Not only is
temperature increasing, extreme climate events such as
heatwaves will become more frequent in the future (Shen
et al. 2016; Sun et al. 2014). These changes in global climate
can detrimentally affect crop phenology (Tao et al. 2014;
Zhang et al., 2013), production, and water use (Shuai et al.,
2014; Tao and Zhang 2013; Yao et al. 2007).

Rice is one of the most important staple foods globally,
feeding more than half of the world’s population. Rice pro-
vides a livelihood for farmers in Asia, Latin America, and
increasingly in Africa (Jagadish et al. 2014). China is the
largest producer of rice, accounting for 18.5% of the world’s
rice planting area and 28% of the world’s rice production (Shi
et al. 2015a, b). As rice is usually planted in subtropical re-
gions, exposure to acute high temperature is a common risk.
Heat stress can cause a dramatic reduction in yield, particular-
ly during reproductive periods (Jagadish et al. 2007). For
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example, rice yield in China decreased by 1.5–9.7% due to
heat stress in the past three decades (Shi et al. 2015a; Zhang
et al. 2016). Rice yield decreased by 10% in the Philippines
due to a 1 °C increase in minimum temperature (Peng et al.
2004). Simulation results in the rice belt of China (Yao et al.
2007) indicated that variation of rice yields would increase
due to climate change. Heat stress has become one of the
worst threats for rice production in a warmer future
(Jagadish et al. 2014; Sánchez et al., 2014;Wang et al. 2014b).

Previous research into the influence of heat stress on rice
production mainly focused on historical effects of heat stress
(Huang et al. 2016; Shi et al. 2015a; Sun and Huang 2011;
Zhang et al., 2016), mechanisms of heat stress damage
(Jagadish et al. 2007), or modeling (Shi et al. 2015a, b). For
example, historical data indicate that heat stress increased
from 1981 to 2010 in most areas of southern China (Shi
et al. 2015a). Jagadish et al. (2007) studied the effects of
duration of exposure to high temperature on spikelet fertility
and found less than 1 h of exposure to high temperature is
sufficient to induce sterility in rice. Shi et al. (2015b) found
further effects of extreme high temperature on rice phenology.
However, what extent of rice heat stress in the future scenarios
is less known. Additionally, future heat stress risk is also un-
certain due to uncertainty of different GCMs and multi-model
ensemble methods. Consequently, it is essential to quantify
what extents of exposure to heat stress for rice in the future,
which can be done using ensemble results of general circula-
tion models (GCMs).

GCMs have projected extreme temperatures in the future
(Jiang et al. 2012; Sillmann and Roeckner, 2008). However,
output data from GCMs cannot be directly used in the site-
specific impacts of climate change on crops due to the coarse
spatial and temporal resolution of GCMs. Downscaling
methods can obtain high-resolution or site-specific climate
data, either by dynamical downscaling or by statistical down-
scaling (Vaittinada Ayar et al. 2016). Dynamical downscaling
has a high computational cost due to nesting of regional cli-
mate models (Liu and Zuo 2012). Statistical downscaling has
a low computational cost for obtaining site-specific data under
different emissions scenarios. This method usually applies
statistical transfer functions, stochastic weather generators,
or weather typing based on GCM outputs (Vaittinada Ayar
et al. 2016). In this study, we used the statistical downscaling
method proposed by Liu and Zuo (2012), which uses a sto-
chastic weather generator to obtain daily and site-specific data
from multiple GCMs under various future emissions scenari-
os, including RCP4.5 and RCP8.5.

The role of heat stress on rice in the future is less well
known due to uncertainty in various GCMs. There is not a
GCM that can be considered as the best model due to the
complexity of the climate system (Knutti and Sedlacek
2013; Tebaldi and Knutti 2007). To reduce uncertainty,
multi-model ensembles combine results frommultiple models

using weighting approaches such as Bayesian methods
(Tebaldi et al. 2005). Bishop and Abramowitz (2013) devel-
oped a new strategy called the independence-weighted mean
(IWM) that accounted for inter-model dependence and was
defined using covariances of model errors. IWM estimates
are weighted as a linear combination of model simulations in
the ensemble. In this study, we used IWM to estimate heat
stress indices specific to rice.

We firstly analyzed heat stress indices for rice in the south-
ern China by statistically down-scaling the data from 28
GCMs. We next applied the IWM approach to ensemble heat
stress indices from outputs of the GCMs. We hypothesized
that the frequency and intensity of heatwaves would increase
in the future, potentially affecting yield and survival in rice of
southern China.

2 Materials and methods

2.1 Study region and observed meteorological sites

Rice production in China is mainly distributed to the South,
including 18 provinces, autonomous regions, or municipali-
ties (Fig. 1). Rice accounts for 84% of planting area in this
region and 83% of the total rice production in China. The
planting area for rice across this region was 25,412,000 ha
per year on average (for the period 2010–2014), ranging from
4,079,500 ha per year in Hunan province to 104,000 ha per
year in Shanghai. Two seasons of rice production per year
occur in the South, mainly distributed in Hunan, Jiangxi,
Zhejiang, Fujian, Guangdong, Guangxi, and the south of
Anhui. To the North of this double-season rice belt, a single
crop is obtained each year (Fig. 1).

The China Meteorological Administration (CMA) pro-
vides data from up to 170 meteorological stations from 1960
to 2010. These historical data include maximum and mini-
mum temperature, precipitation, wind speed, relative humidi-
ty, etc. Temperature data were used to calculate observed heat
stress indices over the historical period (1960–2010) and for
statistical downscaling.

2.2 Rice heat stress indices

Short-term exposure to heat above 33 °C during anthesis in
rice can lead to sterility, whereas exposure to temperatures
below 29.6 °C during this crucial stage does not (Jagadish
et al. 2007). Heat stress indices were thus chosen to reflect
the risk to growth, survival, and yield in rice following nation-
al standards (GB/T 21985, 2008) and previous studies (Tao
and Zhang 2013; Zhang et al. 2014). These heat stress indices
are listed in Table 1. Heat stress was evaluated relative to daily
mean (30 °C) or maximum temperature (35 °C) and all days
versus during heatwaves of 3 days or more in length.
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Heat stress usually occurs during several stages: booting,
heading, flowering, and milky ripening. Booting, heading,
and flowering are the most sensitive stages associated with
reduced crop yield due to heat stress. Because of differing
phenology across the rice belt, we calculated the heat stress
indices during the period from June 1 to August 31. Booting,
heading, and flowering in rice usually occur during this peri-
od. Furthermore, heat stress also occurs more frequently dur-
ing this period.

2.3 GCMs, statistical downscaling method, and climate
projections

The data of 28 GCMs were obtained from the Coupled Model
Inter-comparison Project phase 5 (CMIP5; Table 2). The de-
tailed description of CMIP5 can be found at the website http://
cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.

pdf. These 28 GCMs were selected because no single model
can capture the complexity of the climate system.

Fig. 1 Rice planting area in southern China and observed meteorological sites in this study. The panel in the figure is South China Sea Islands

Table 1 Definitions of heat stress indices used in this study

Abbr. of index Definition Unit

MeanT30days The number of days with daily average
temperature ≥ 30 °C temperature °C

days

MeanT30daysMore3 The number of days with three or more
continuous days of daily average
temperature ≥ 30°C with daily average
temperature ≥ 30 °C

days

MaxT35days The number of days with daily maximum
temperature ≥ 35 °C

days

MaxT35daysMore3 The number of days with three or more
continuous days of daily maximum
temperature ≥ 35 °C

days
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We used the statistical downscaling method developed by
Liu and Zuo (2012), which is rapid and reliable, and it is
capable of stochastically generating daily climate series from
monthly projections based on a modified version of the
WGEN weather generator (Richardson and Wright 1984).
The statistical downscaling method relies on empirical rela-
tionships between observational data and data from GCM
simulations. There are usually two procedures, separately
performing spatial and temporal downscaling. Firstly, month-
ly GCM simulations were downscaled to specific sites (in this
case 170 sites in the rice belt of southern China, Fig. 1) using
the inverse distance-weighted (IDW) interpolation method. A
bias correction procedure was used during this step to correct
site-based monthly GCM values. Secondly, daily climate var-
iables (maximum and minimum temperature and precipita-
tion) were temporally scaled for each site from the spatially
downscaled projections by using theWGEN stochastic weath-
er generator. Unlike other statistical downscaling methods,

this method does not require atmospheric circulation or sea
surface temperature as predictors. In addition, it can easily
obtain daily climate series on a small computer, thus minimiz-
ing computational time and cost relative to dynamic down-
scaling. This simplified approach is effective at generating
daily climate sequences for studies of future climate extremes
(Wang et al. 2016) and climate impacts on crops (Anwar et al.
2015; Yang et al. 2014).

Liu and Zuo (2012) tested the improvedWGEN procedure
by which daily climate was generated from monthly observa-
tions. In our study, the performance of the statistical down-
scaling model was evaluated through comparisons between
the distributions of measured and downscaled climate data
using the Kruskall-Wallis rank (K-W) and Siegel-Tukey rank
sum dispersion (S-T) tests. As the following describes, these
tests showed that the method reproduced observed climate
statistics at annual, monthly, and daily time scales during both
training and validation periods.

Table 2 28 GCMs used in this study for statistical downscaled outputs of 170 sites (Liu and Zuo 2012)

Model no. Name of GCM Abbr. of GCM Institute ID Country

01 BCC-CSM1.1 BC1 BCC China

02 BCC-CSM1.1(m) BC2 BCC China

03 BNU-ESM BNU GCESS China

04 CanESM2 CaE CCCMA Canada

05 CCSM4 CCS NCAR USA

06 CESM1(BGC) CE1 NSF-DOE-NCAR USA

07 CMCC-CM CM2 CMCC Europe

08 CMCC-CMS CM3 CMCC Europe

09 CSIRO-Mk3.6.0 CSI CSIRO-QCCCE Australia

10 EC-EARTH ECE EC-EARTH Europe

11 FIO-ESM FIO FIO China

12 GISS-E2-H-CC GE2 NASA GISS USA

13 GISS-E2-R GE3 NASA GISS USA

14 GFDL-CM3 GF2 NOAA GFDL USA

15 GFDL-ESM2G GF3 NOAA GFDL USA

16 GFDL-ESM2M GF4 NOAA GFDL USA

17 HadGEM2-AO Ha5 NIMR/KMA Korea

18 INM-CM4 INC INM Russia

19 IPSL-CM5A-MR IP2 IPSL France

20 IPSL-CM5B-LR IP3 IPSL France

21 MIROC5 MI2 MIROC Japan

22 MIROC-ESM MI3 MIROC Japan

23 MIROC-ESM-CHEM MI4 MIROC Japan

24 MPI-ESM-LR MP1 MPI-M Germany

25 MPI-ESM-MR MP2 MPI-M Germany

26 MRI-CGCM3 MR3 MRI Japan

27 NorESM1-M NE1 NCC Norway

28 NorESM1-ME NE2 NCC Norway
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WGEN (Richardson and Wright 1984) generates these cli-
mate variables using serial-correlation (matrix A) and cross-
correlation coefficients (matrix B):

X i jð Þ ¼ AX i−1 jð Þ þ Bϵi jð Þ ð1Þ
where Xi(j) is a matrix including three climate variables (max-
imum temperature, minimum temperature and radiation) for
day i. ϵi is a vector of independent random components. A and
B are matrices that are calculated by

A ¼ M 1M−1
0 ð2Þ

BBT ¼ M0−M 1M−1
0 MT

1 ð3Þ

where the elements of M0 are the correlation coefficients on
the same day and those of M1 are the lag-1-day correlation
coefficients. In the previous version of WGEN (Richardson
andWright 1984), only one set of elements for matrix A and B
were given and applied across the entire continental USA. We
used to apply same matrix values for A and B to other
countries due to lacking of reported data on analytic
solutions for matrix B in literature. Liu and Zuo (2012) first
provided a derivation of the elements of matrix B to apply
WGEN for downscaling with parameters derived specifically
from their site. For downscalingWGEN parameters, historical
climate data from 1960 to 2010 were sorted into 28 climate
groups. WGEN parameters were then downscaled based on
linear and non-linear relationships derived for the 28 climate
groups from historical data and future GCM projections. The
overall averaged confidence intervals between parameters and
climate variables in our study were 0.08 and 0.11 (compared
to a maximal value of 1.0) for observed mean and maximum
values of climate variables, respectively, revealing a high con-
fidence in extrapolating parameters for downscaling future
climate. Downscaled daily sequences were finally evaluated
to ensure that they were consistent with monthly GCM out-
puts in terms of monthly means or totals.

Two Representative Concentration Pathway scenarios
(RCP4.5 and RCP 8.5) were considered in this study.
RCP4.5 is a stabilization scenario where total radiative forcing
is stabilized before 2100 by employment of a range of tech-
nologies and strategies for reducing greenhouse gas emis-
sions. The RCP 8.5 is a high emissions scenario which is
characterized by increasing greenhouse gas emissions. These
two scenarios represent better and worse cases, respectively.
Furthermore, these two scenarios have a larger collection of
monthly temperature data in the CMIP5 archive than other
RCPs, providing a larger sample size for more robust analysis.

2.4 Multi-model ensemble methods

Multi-model ensembles are commonly used in climate predic-
tion to decrease the uncertainty of independent models. In

addition to the arithmetic mean of model outputs, the IWM
(independence weight mean) ensemble method was devel-
oped by Bishop and Abramowitz (2013) and was used to
calculate multi-model mean values and heat stress indices.
First, we calculated the four heat stress indices for each month
(June to August) at each site during the period 1960–2010,
producing 28 × 153 values for each site. The aim of IWM is to
find the linear combination of an ensemble of model simula-
tions that minimizes mean square difference (MSD) with re-
spect to an observational dataset. That is to find

∑ J
j¼1 μ j

e−y
j� �2

where μ j
e ¼ wTxj ¼ ∑K

k¼1wkx
j
k ð4Þ

is minimized with the additional constraint that ∑
K

k¼1
wk ¼ 1.

The (1,…,j,…J) is time steps (in this study, J is 153 and K is

28) and this x jk is the jth time step of kth bias-corrected model.
yj is the jth time-step observation, wk is the kth model coeffi-
cient (i.e., the weight in the linear combination).

wT = [w1, w2,…wK] and x jð ÞT ¼ x j1; x
j
2;…x jK

� �
. This re-

quires minimizing the following function:

F w;λð Þ ¼ 1

2

1

J−1ð Þ ∑
J
j¼1 μ j

e−y
j� �2

� �
−λ ∑K

k¼1wk
� �

−1
� � ð5Þ

where λ is the Lagrange multiplier. The solution of Eq. 2 is

w ¼ A−11

1TA−11
ð6Þ

where 1T=[1,1,…,1] andA is theK×K difference covari-
ance matrix.

A ¼
c1;1 ⋯ c1;K
⋮ ⋱ ⋮
cK;1 ⋯ cK;K

2

4

3

5

0

@

1

A ð7Þ

where ci , j is the covariance of the ith and jth bias-corrected
model minus observed time serials.

After ensemble monthly mean values were obtained, we
calculated heat stress indices in every year and for each site.

3 Results

3.1 Spatial variation of historical rice heat stress indices

There were strong spatial patterns in heat stress indices across
the rice belt of southern China from 1960 to 2010 (Fig. 2).
Heat stress was severe in the central and eastern areas of the
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double-harvest region, which includes portions of Hunan,
Jiangxi, Zhejiang, and Fujian provinces. In the single season
region, Chongqing province had the highest frequency of heat

stress, whereas the Yungui Plateau (Yunnan and Guizhou
province) province had the lowest frequency of heat stress
due to its high altitude.

Fig. 2 The spatial distribution of
average observed heat stress
indices from 1960 to 2010 across
rice planting region in southern
China

Fig. 3 Observed and simulated heat stress indices from individual models and the ensemble multi-model independence weight mean (IWM). Values are
averaged across the rice-planting region of southern China
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Of the four heat stress indices, meanT30days resulted
in the largest distribution of heat stress between 1960
and 2010. MeanT30days hot spots in Hunan, Jiangxi,
Zhejiang, Guangxi, and Guangdong typically persisted
for 26 to 37 days (Fig. 2). By contrast, the average value
of meanT30daysMore3 was reduced to 21–25 days in three
provinces: southeast Hunan province, most of of Jiangxi prov-
ince and central Zhejiang, although this was still double or triple
the heat stress experienced in other parts of study region.
Similarly, values of maxT35days and maxT35daysMore3 were
h i gh i n t h e r e g i o n s whe r e meanT30day s and
meanT30daysMore3 were high, although the average values
of maxT35days and maxT35daysMore3 were smaller (up to
25–30 days and 19–23 days, respectively).

3.2 Comparison between observed and downscaled heat
stress indices

Figure 3 shows the observed and downscaled values of each
heat stress index from 1960 to 2010 across the rice belt in
southern China. Table 3 shows the trends and their signifi-
cance in observed and simulated heat stress indices. There
were significant, increasing trends for observed and
modeledMeanT30days andMeanT30daysMore3 except in
four GCMs (GFDL-ESM2M, MIROC5, MIROC-ESM-
CHE, and MRI-CGCM3). AM produced similar trends to
observations in MeanT30days and MeanT30daysMore3
(Table 3). The observed indices MaxT35days and
MaxT35daysMore3 showed no significant trend, whereas

Table 3 Observed and simulated trends (days dacade−1 over 1960–2000) for the four heat stress indices. Italics signifies trends that are significant at
the 5% level

GCMs MeanT30days MeanT30daysMore3 MaxT35days MaxT35daysMore3

Observed 1.69 1.52 0.63 0.47

AM 1.63 1.48 1.15 0.97

IWM 1.59 1.44 0.73 0.64

BCC-CSM1.1 2.13 1.98 1.52 1.29

BCC-CSM1.1(m) 1.40 1.29 0.98 0.80

BNU-ESM 1.76 1.65 1.06 0.97

CanESM2 1.75 1.59 0.95 0.73

CCSM4 2.65 2.46 1.98 1.70

CESM1(BGC) 2.16 1.96 1.75 1.41

CMCC-CM 1.71 1.68 1.04 0.96

CMCC-CMS 1.65 1.45 1.16 0.93

CSIRO-Mk3.6.0 1.30 1.18 0.85 0.65

EC-EARTH 1.54 1.38 0.99 0.82

FIO-ESM 1.72 1.55 1.31 1.10

GISS-E2-H-CC 1.81 1.68 1.32 1.16

GISS-E2-R 1.61 1.43 1.47 1.23

GFDL-CM3 1.44 1.28 0.72 0.54

GFDL-ESM2G 1.42 1.33 0.78 0.68

GFDL-ESM2M 0.64 0.53 0.21 0.11

HadGEM2-AO 1.94 1.82 1.27 1.07

INM-CM4 2.17 1.96 2.22 1.92

IPSL-CM5A-MR 1.75 1.57 1.43 1.17

IPSL-CM5B-LR 1.53 1.39 1.01 0.87

MIROC5 0.04 0.08 −0.44 −0.36
MIROC-ESM 1.47 1.34 1.04 0.88

MIROC-ESM-CHEM 0.80 0.70 0.40 0.33

MPI-ESM-LR 2.60 2.33 2.32 1.93

MPI-ESM-MR 2.93 2.67 2.53 2.20

MRI-CGCM3 0.42 0.36 −0.10 −0.11
NorESM1-M 2.13 1.93 1.60 1.37

NorESM1-ME 1.11 0.97 1.00 1.29
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21 of the GCMs had significant trends but with two models
displaying a negative trend (MIROC5 and MRI-CGCM3;
Table 3).

Inter-annual variability was large in both observed
and simulated heat stress indices (Fig. 3). The variabil-
ity of IWM simulations from 28 GCMs was less than
that of the individual models. Additionally, the IWM
ensemble results had good consensus with observations
(Fig. 3). Table 4 shows the root-mean-square error
(RMSE) values which were calculated between the
multi-model arithmetic mean (AM), independence
weighted mean (IWM), each GCM, and observed
values for the four heat stress indices during 1960–
2000. All GCMs had larger RMSE than the ensemble
values (AM or IWM), and the RMSE for IWM was
smallest (Table 4).

3.3 Multi-model ensemble projections of heat stress
in the twenty-first century

Spatial differences in multi-model ensemble (IWM) heat
stress indices between 1960–2010 and 2061–2100 for
RCP8.5 (i.e., increasing emissions scenario) are shown as
Fig. 4. Heat stress will increase across the rice belt of southern
China between 1960–2010 and 2061–2100, regardless of the
heat stress index used. Not only will heat stress increase across
the region, there are no locations where heat stress is expected
to decline (Fig. 4). The most spatially consistent increase of
MeanT30days and MeanT30daysMore3 was in the middle
and lower reaches of Yangtze River, including Chongqing,
Hunan, Hubei, and Jiangxi provinces. The annual number of
heat stress days showed increases across this region by 47–67
a n d 4 3 – 6 4 d a y s i n t h e Me a n T 3 0 d a y s a n d

Table 4 Root-mean-square error (RMSE) between observations and multi-model arithmetic mean (AM), independence weighted mean (IWM), or
individual GCMs during 1960–2000

GCMs MeanT30days MeanT30daysMore3 MaxT35days MaxT35daysMore3

AM 9.57 8.92 8.93 8.12

IWM 7.08 6.41 6.59 5.88

BCC-CSM1.1 11.53 11.16 10.90 10.16

BCC-CSM1.1(m) 11.98 11.49 11.22 10.44

BNU-ESM 11.33 10.93 10.74 9.97

CanESM2 11.91 11.46 11.37 10.67

CCSM4 13.10 12.50 12.64 11.72

CESM1(BGC) 13.01 12.43 12.19 11.29

CMCC-CM 11.54 11.02 10.97 10.15

CMCC-CMS 12.15 11.72 11.54 10.68

CSIRO-Mk3.6.0 12.27 11.80 11.84 10.91

EC-EARTH 11.99 11.49 11.41 10.54

FIO-ESM 12.01 11.54 11.51 10.61

GISS-E2-H-CC 12.74 12.21 11.84 11.02

GISS-E2-R 11.86 11.40 11.27 10.39

GFDL-CM3 11.43 11.11 11.09 10.36

GFDL-ESM2G 11.98 11.51 11.55 10.70

GFDL-ESM2M 11.89 11.59 11.35 10.65

HadGEM2-AO 11.42 11.00 10.96 10.15

INM-CM4 11.53 11.17 11.84 11.04

IPSL-CM5A-MR 11.49 11.09 11.94 11.02

IPSL-CM5B-LR 11.60 11.10 11.67 10.73

MIROC5 12.06 11.66 11.42 10.60

MIROC-ESM 12.37 12.01 11.60 10.86

MIROC-ESM-CHEM 11.74 11.31 11.19 10.38

MPI-ESM-LR 11.96 11.44 11.41 10.47

MPI-ESM-MR 12.66 12.12 11.94 10.99

MRI-CGCM3 11.35 11.08 10.90 10.26

NorESM1-M 11.34 10.99 11.23 10.49

NorESM1-ME 11.42 11.13 10.94 10.30
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MeanT30daysMore3 indices, respectively. Using either the
MeanT30days or MeanT30daysMore3 index, heat stress will
consistently increase over the twenty-first century under both
emissions scenarios (RCP 4.5 with stable emissions and
RCP8.5) (Fig. 5a–b). In comparison to the reference period
(1960–2010), MeanT30days increased dramatically (by ca.
142.5% under RCP 4.5 and 223% under RCP8.5). By the
end of twenty-first century, MeanT30daysMore3 showed in-
creases of approximately 185.2 and 319% under emissions
scenarios RCP4.5 and RCP8.5, respectively.

The maximum-temperature indices, MaxT35days and
MaxT35daysMore3, also increased across the rice belt in
2061–2100 by 0–70 and 0–72 days, respectively (Fig. 4c–
d). Increases were largest in Chongqing, east of Hubei, and
Jiangxi provinces with a range of 47–70 days forMaxT35days
and of 39–72 days for MaxT35daysMore3. By the end of
twenty-first century,MaxT35dayswill have increased dramat-
ically by about 118.2% for RCP4.5 and 208.2% for RCP8.5,
and MaxT35daysMore3 will have increased by about 167.5
and 296.5% for RCP4.5 and RCP8.5, respectively (Fig. 5c–d).

4 Discussion

As hypothesized, heat stress in the Chinese rice belt has
been shown to increase during the historical period

(1960–2010; Table 3) as well as in climate projections
through the twenty-first century (Fig. 5). Spatially, heat
stress was distributed across the southern and eastern re-
gions which produce two crops per season (the double
season region), whereas the largest projected increases in
heat stress were predicted for these provinces. The histor-
ical increase was consistent with the results of Zhang
et al. (2014) and Shi et al. (2015a), who used alternative
heat stress indices. For example, the cumulative exposure
to extreme temperatures (GDD) has increased by 2.25 °C
in single rice in the Yangtze River basin, and by 4.42 °C
in the double-season rice region of southern China (Zhang
et al. 2014). Similarly, the accumulated days of heat stress
(ADHS) index showed an increasing trend from 1981 to
2010 of 1.2 days per decade in the eastern double-season
rice region (Shi et al. 2015a), which was smaller than our
results (1.52–1.69 days per decade in Table 3). The small-
er rates in the study by Shi et al. (2015a) are due to
compensation by rice phenology, which was not consid-
ered in our study.

The ensemble heat stress indices from downscaled GCM
data were representative of the pattern of observed heat stress
over the whole region as indicated by the high temporal con-
sistency between simulated and observed trends (Fig. 3) and
small RMSEs (Table 4). However, the trends produced by
some individual GCMs was opposite to observed values

Fig. 4 Changes in multi-model
ensemble (IWM) simulated heat
stress indices during the period
2061–2100 compared to 1960–
2000 under RCP 8.5
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(e.g., MaxT35daysMore3 from MIROC5; Table 3), although
these reverse trends were not significantly different from zero.
Individual differences among GCMs notwithstanding, the
close consistency between ensemble results and observations
are expected due to the empirical relationships relied upon by
statistical downscaling methods (Liu and Zuo 2012).
Furthermore, extreme heat stress may not be well represented
in individual GCMs, while other models might overestimate
extremes, thus errors compensated to produce better corre-
spondence between observed data and ensemble results.
This lends confidence to the ensemble results for representing
future scenarios.

Our results also showed that there was a significant in-
crease in heat stress indices over the whole rice belt both in
RCP 4.5 (emissions leveled off) and RCP 8.5 (increasing
emissions) scenarios. The results were similar to previous re-
sults (Jiang et al. 2012; Xu et al. 2009; Zhou et al. 2014) which
presented the projection of extreme temperature change over
the whole China using ensemble results of multi-models.
Jiang et al. (2012) evaluated heat wave duration index
(HWDI) based on observed and GCM simulations in
CMIP3, finding HWDI would increase by 35 to 90 days in

various scenarios by the end of 21st. Zhou et al. (2014) illus-
trated that the median of TX90p (percentage of days when the
daily maximum temperature is above the 90th percentile) will
increase in southern China by the end of twenty-first century
from 10% in the base period to 36% under RCP4.5 and 59%
under RCP8.5. Our study offers alternative heat stress indices
which produce consistent trends to those of Jiang et al. (2012)
and Zhou et al. (2014), indicating extreme warming in the
future will be more serious. In addition, this study provided
higher fine-scale resolution of future heat stress over the rice
belt using IWM method than previous studies which focused
on grid scales which are too coarse for accurate estimates of
relevance for rice production.

The high risk of exposure to heat stress for rice in a warmer
future world emphasizes the importance of promoting specific
adaptations or mitigation strategies, especially to the north of
the two-season line where heat was lower in the historical
period but increased more in future scenarios. The flowering
and grain-filling stages are most sensitive in rice to damage by
heat stress. Even short episodes (less than 1 h) of heat stress
during flowering can cause pollination failure, which reduces
seed number and grain yield (Jagadish et al. 2007; Shi et al.

Fig. 5 Time series of multi-
model ensemble simulated heat
stress indices under RCP 4.5 and
RCP 8.5 averaged across the rice
planting region in southern China
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2015a). In addition, photosynthetic assimilation is reduced
during grain filling, and the grain-filling period can be short-
ened due to heat stress. Damage to rice crops can be partially
minimized by adjustment of the sowing date to avoid heat
stress during key reproductive stages (Wassmann et al.
2009). Some modeling results (Krishnan et al. 2007; Wang
et al. 2014a) indicated that advancing the sowing date can
avoid heat stress and improve rice yield.

Increases in heat stress will exceed 50 days per year in
some locations, which could reduce the efficacy of shifting
the timing of the growing season and have disastrous effects
on rice yield in the future. Thus more effort in breeding tech-
nology is crucial. Heat-tolerant cultivars should be planted
widely throughout the region. Wang et al. (2014a) showed
using the CERES model with two emissions scenarios that
selecting very heat-resistant cultivars and altering the planting
date can increase rice yields in Jiangsu province. From our
results, heat stress risk in the middle and lower reaches of
Yangtze River is highest in the future, where rice planting is
extensive. Furthermore, risk of disaster increases due to the
interaction of other extreme events like floods, which occur at
high frequency in these rice-producing provinces of China.

The uncertainty in this study are from following aspects: (1)
differences in the greenhouse gas emissions pathway (RCP sce-
nario uncertainty), (2) differences due to the choice of GCM
(GCM uncertainty), (3) differences due to the inter-annual vari-
ability of the climate system, and (4) differences due to statistical
downscaling methods (e.g., failure to capture future extreme
events, such as heavy daily precipitation or heatwaves).
Uncertainty due to choice of RCP scenario or GCM was mini-
mized by selecting a diversity of GCMs (28 in CMIP5) and
applying two emissions scenarios (RCP4.5 and RCP8.5).
Uncertainty due to our inability to model increasing inter-
annual variability and extreme events in a future climate (Frank
et al. 2015) is unavoidable. The 2003 heatwave in Europe is a
key example of a temperature extreme which was statistically
very unlikely (Schär et al. 2004), but the probability of predicting
such a heatwave is improved in RCP8.5 relative to RCP4.5
(Russo et al. 2015). We found a similarly higher likelihood of
heatwaves in RCP8.5 than in RCP4.5 (Fig. 5), suggesting that
statistical uncertainty (i.e., due to variability and extremes) was
minimized in the results from RCP8.5. No approach is complete
without uncertainty, but sources of uncertainty in this study were
minimized in as much as is practical at the current time.

There are some limitations in this study. Firstly, phenology
of rice and timing of heat stress in the future is not considered
when calculating the heat stress indices, thus overestimating
the effect of heat stress in the future. Moreover, rice yield was
not predicted in future scenarios in our study. Prediction of
phenology, timing, and yield into the future is dependent upon
the specific management adaptations that are applied in re-
sponse to the way climate change unfolds. This requires fur-
ther research into specific management scenarios.

5 Conclusions

Four heat stress indices were calculated using downscaled
ensemble data from 28 CMIP5 GCMs. Ensemble model out-
put using the independence weighted mean (IWM) method
replicated the historical trend of heat stress indices over the
period of 1960–2010. Additionally, RMSE between observed
heat stress indices and ensemble results (6.5 days) was smaller
than for individual GCM simulations (11.4 days), which indi-
cated that the ensemble heat stress indices based on multiple
models can reduce the uncertainty due to shortages in any
single model. We found that there will be more heat stress
events (by 118–319%) over the rice belt in southern China
by the end of twenty-first century, especially in the middle
and lower reaches of Yangtze River where heat stress has been
historically small. These findings indicate that rice in southern
China will have higher frequency of exposure to heat stress in
the future (by up to 72 days of temperatures above the phys-
iological tolerance of 30 °C). Thus, selection for heat-tolerant
cultivars and adjustment of planting dates to avoid heat stress
periods should be adopted to adapt to the effects of climate
change on rice production in southern China.
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