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Abstract

Rainfall erosivity impacts all stages of hillslope erosion processes and is an important

factor (the ‘R factor’) in the Revised Universal Soil Loss Equation. It is estimated as the

average annual value of the sum of all erosive events (EI30) over a period of many

years. For each storm event, the EI30 value is the product of storm energy, E in

MJ ha−1, and peak 30‐min rainfall intensity (I30, mm hr−1). Previous studies often

focused on estimation of the R factor for prediction of mean annual or long‐term soil

losses. However, many applications require EI30 values at much higher temporal reso-

lution, such as postfire soil erosion monitoring, which requires a time step at storm

events or on a daily basis. In this study, we explored the use of radar rainfall data to

estimate the storm event‐based EI30 after a severe wildfire in Warrumbungle National

Park in eastern Australia. The radar‐derived rainfall data were calibrated against 12

tipping bucket rain gauges across an area of 239 km2 and subsequently used to pro-

duce a time series of rainfall erosivity maps at daily intervals since the wildfire in Jan-

uary 2013. The radar‐derived daily rainfall showed good agreement with the gauge

measurements (R2 > 0.70, Ec = 0.66). This study reveals great variation in EI30 values

ranging from near zero to 826.76 MJ·mm·ha−1·hr−1 for a single storm event. We con-

clude that weather radar rainfall data can be used to derive timely EI30 and erosion

information for fire incident management and erosion control. The methodology

developed in this study is generic and thus readily applicable to other areas where

weather radar data are available.
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1 | INTRODUCTION

Hillslope erosion after a wildfire often causes land degradation and

adversely impacts the environment and water quality (de Santos

Loureiro & de Azevedo Coutinho, 2001; Klik, Haas, Dvorackova, &

Fuller, 2015; Mello, Viola, Beskow, & Norton, 2013; Renard &

Freimund, 1994). Individual high‐intensity rainstorms can account for

appreciable quantities of postfire erosion (Shakesby & Doerr, 2006).

For example, in an early study in eucalypt forest near Sydney,

Australia, Atkinson (1984) found that one rainfall event of 16.5 mm
wileyonlinelibrary.com/
lasting 45 min caused the equivalent of a year's loss of soil. Leitch,

Flinn, and Van de Graaff (1983) estimated a loss of 22 t ha−1 after

21 mm of rain on small plots in burnt eucalypt‐dominated forest in

the Victorian Central Highlands of Australia.

It is therefore critical to monitor, map, and disseminate both

average and more extreme erosion risks for catchments, given the

predicted increase in climate variability and fire intensity in many parts

of the world (Flannigan, Stocks, & Wotton, 2000; Moody, Shakesby,

Robichaud, Cannon, & Martin, 2013; Westerling, Turner, Smithwick,

Romme, & Ryan, 2011). Like cropping, (Van Oost, Govers, & Desmet,
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2000), wildfire removes the soil cover and results in insufficient cover

to protect soils, which are then vulnerable to an extreme erosive

event. Hence, understanding the characteristics of the spatiotemporal

distribution of wildfires and erosive rainfall events is critical.

Rainfall and runoff erosivity (the ‘R factor’) as defined in the

Revised Universal Soil Loss Equation (Renard, Foster, Weesies,

McCool, & Yoder, 1997) is the average annual value of the sum of

all erosive events (EI30) over a period of many years. The R factor

has been shown to be highly correlated with soil loss at many sites

throughout the world (Panagos et al., 2017). For each storm event,

the EI30 value is the product of storm energy, E in MJ ha−1, and peak

30‐min rainfall intensity (I30, mm hr−1; Renard et al., 1997; Wischmeier

& Smith, 1958). Average monthly or annual rainfall erosivity has been

assessed in several studies from long‐term precipitation records and

local rain gauges (de Santos Loureiro & de Azevedo Coutinho, 2001;

Klik et al., 2015; Mello et al., 2013; Renard & Freimund, 1994). Some

studies have discussed long‐term rainfall erosivity impacts on hillslope

erosion modeling at large spatial scales in Europe (Petan, Rusjan,

Vidmar, & Mikoš, 2010), New Zealand (Klik et al., 2015), Japan

(Santosa, Mitani, & Ikemi, 2010), and Africa (Vrieling, Sterk, & de Jong,

2010). Sidman, Guertin, Goodrich, Unkrich, and Burns (2016) have

discussed the effect of postfire rainfall events on high‐risk areas of

flooding and erosion. Fischer et al. (2016) have estimated rainfall

event erosivity by using radar data. However, there are few studies

on the spatial and temporal variation of daily EI30 during a postfire

recovery period, despite the key role of erosivity in hillslope erosion.

Weather radar is one of the best sources to derive near real‐time

precipitation with high spatial and temporal resolution (few minutes to

subhourly) for large areas (Seed, Siriwardena, Sun, Jordan, & Elliott,

2002; Wüest et al., 2010). It has been used to record real‐time rainfall

since the 1980s (Battan, 1973) and to provide estimation of spatio-

temporal variability of erosivity (Fischer et al., 2016). Although radar

offers high‐resolution spatiotemporal rainfall data, its accuracy can

be affected by certain weather types and technical limitations (Steiner,

Smith, Burges, Alonso, & Darden, 1999). For example, limited visibility

during particular weather events such as graupel and hail can affect

the radar‐received signal (Battan, 1973). Nevertheless, the adjusted

radar‐derived rainfall estimation can be very close to those obtained

from rain gauges (Hossain, Anagnostou, Dinku, & Borga, 2004).

Weather radar measures the reflectivity (Z) and determines the

rain rate (R) through a power law relationship of the formula Z = aRb,

known as the Z–R relationship (Seed et al., 2002; Steiner et al., 1999).

The Z–R relationship normally varies by season and changes with the

raindrop size distribution, the storm type (Chumchean, Seed, &

Sharma, 2008), and the native climate (Seed et al., 2002); hence, radar

rainfall estimation can be significantly affected by these factors, as

well as the uncertainty or errors in reflectivity measurements. Alterna-

tive calibration methods include rain gauges and disdrometers

(Angulo‐Martínez, Beguería, & Kyselý, 2016).

Gauge measurements are representative only at the measurement

site (Steiner et al., 1999), whereas radar estimates instantaneous rain-

fall at some height above the ground (Steiner et al., 1999). Gauged

rainfall measurements over a wider area have been applied to calibrate

the Z–R relationship (Hasan, Sharma, Johnson, Mariethoz, & Seed,

2014). For example, Chumchean, Seed, and Sharma (2006) used a
Kalman filtering approach to calibrate the radar rainfall bias in real

time in Australia; Rendon, Vieux, and Pathak (2012) adapted the

adjustment to radar with seasonal variation in the United States;

Bringi, Rico‐Ramirez, and Thurai (2011) compared radar estimates

against a gauge network in the United Kingdom; and Rozalis, Morin,

Yair, and Price (2010) corrected radar by gauge rainfall to hydrological

modeling in Europe.

Severe wildfire and subsequent storm events increase erosion

rates, change runoff generation, and potentially contaminate water

supplies due to the increased flux of sediment, nutrients, and other

water constituents (Haberlandt, 2007). Severe wildfires removed the

protective soil cover by vegetation and litter, changed soil aggregate

stability and water repellency because of heating (Mataix‐Solera,

Cerdà, Arcenegui, Jordán, & Zavala, 2011), and have the potential to

increase rainfall erosivity due to the loss of canopy (Nanko, Onda,

Ito, & Moriwaki, 2008). Consequently, hillslope erosion rates may vary

according to the burn severity, vegetation recovery, and the postfire

rainfall events, though the relationship is not straightforward (Keeley,

2009; Moody et al., 2013; Vieira, Fernández, Vega, & Keizer, 2015).

Therefore, quantitative and timely assessment of rainfall erosivity

and hillslope erosion after wildfires during individual storm events is

essential but remains a research challenge (Yin, Xie, Liu, & Nearing,

2015). This is largely due to the lack of quality rainfall data at high spa-

tial and temporal resolutions at large spatial scales; the processing of

these large spatial datasets itself is another challenge.

Key literature for the relevant studies are summarized in Table 1.

This study focuses on the estimation of storm event‐based EI30 with

the first attempt of using weather radar data to predict the near

real‐time rainfall erosivity in a burnt area after storm events. The spe-

cific objectives of this research were to (a) identify the bias‐correction

coefficient between radar rainfall and tipping‐bucket gauge rainfall

data; (b) estimate daily EI30 and its spatial and temporal variation;

and (c) assess the impact of event and daily EI30 and apply them to

near real‐time monitoring of hillslope erosion risk. These objectives

primarily define the structural subheadings in Sections 3, 4, and 5.
2 | STUDY SITE AND DATASETS

The study area for this research is approximately 450 km northwest of

Sydney, centered on an area approximately 25 km west of

Coonabarabran, and comprises Warrumbungle National Park (WNP)

and the fire footprint (74,000 ha). The park ranges in elevation from

381 to 1,205 m. The climate is characterized by hot, usually humid

summers and mild to cool winters. The nearest climate data come

from Coonabarabran Airport Automatic Weather Station (AWS; BoM

station no. 064017, −31.29o S, 149.07o E, elevation 645 m) and, until

2013, from Westmount (BoM station no. 064046, −33.33o S, 149.27o

E, elevation 860 m) on the eastern boundary of the park, where the

mean annual rainfall was 1,034 mm. The rainfall is summer‐dominated,

with January the wettest month, at 131 mm (Bureau of Meteorology,

2018b). The driest month is generally April, with a mean rainfall of

58 mm (Bureau of Meteorology, 2018b). Mean annual rainfall is much

lower in the surrounding slopes and plains, at 670 mm (Bureau of

Meteorology, 2018b).



TABLE 1 Summary of relevant studies using radar rainfall to estimate event erosivity in the burnt area

Study Data/model used Location/study size Key results

1. Leitch et al. (1983) Sampling and measurement. Burnt forest near
Warburton, Australia/
0.35 km2

(1) N/A
(2) N/A
(3) It was estimated that about 22 t ha−1 soil were

washed after wildfire and the following intense
thunderstorm (21 mm of rain).

2. Steiner et al.
(1999)

WSR‐88D radar (1 × 1 km2, 5‐min), rain gauge data/
Z–R relationship

Goodwin Creek,
Mississippi, United
States/21.4 km2

(1) Radar rainfall estimates with a RMSE
approximately 10% for the cumulative storm
event of 30 mm or more.

(2) N/A
(3) N/A

3. Legates (2000) WSR‐88D weather radar (4 × 4 km2, 5‐min). 674
gauge‐radar pairs over two months/fixed Z–R
relationship

The southern Great
Plains, United States/
approximately
1,000 × 1,000 km2

(1) Z = 73.97 R1.409. Radar estimates provide the
spatial variation to each storm while gauge
measurements are applied to improve the
accuracy.

(2) N/A
(3) N/A

4. Chumchean et al.
(2006)

7‐month radar and rain gauge data/Kalman filter Sydney, Australia (1) Kalman filter approach becomes unstable when
the size of the gauging network decreases (less
than one gauge 70 km2)

(2) N/A
(3) N/A

5. Cruse et al. (2006) NEXRAD radar (4 × 4 km2, 15‐min), 25 rain gauges,
other data from NRI/WEPP model

Iowa, United States (1) The correlation coefficient of monthly radar
against 12 rain gauges from Iowa City network
is around 0.9, RMSE about 0.12. While when
compare to 12 rain gauges from Iowa State
University Agriculture Network, correlation
coefficient is around 0.7 and RMSE about 0.25.

(2) Estimate spatial variation (10 × 10 km2) of
average runoff for a given day.

(3) Soil erosion (unburnt) ranges from 0 to over
11.2 t ha−1, which also spatially correlated with
rainfall amounts.

6. Rozalis et al.
(2010)

Radar rainfall (3 × 1 km2, 5‐min), 15 rain gauges,
runoff from hydrometric station/hydrology
model (SCS‐CN)

Mediterranean
watershed (unburnt) in
Israel/27 km2

(1) Radar‐derived rainfall was calibrated from rain
gauges.

(2) N/A
(3) According to the prediction from model, the flow

magnitude was significantly affected by rain
intensity distribution within the storm.

7. Vrieling et al.
(2010)

TMPA daily and monthly rainfall, radar estimates
(3 hr, 0.25°), rain gauges/modified Fournier Index
(MFI)

Africa continent (1) 3‐hr radar‐derived rainfall was not sufficient to
represent high‐intensity erosive events.

(2) Monthly product provided spatial estimates of
average annual erosivity.

(3) N/A

8. Wüest et al.
(2010)

72 rain gauges (10‐min), Swiss weather radars
(2 × 2 km2, 5‐min)

Swiss Plateau,
Switzerland

(1) The error to intensity per hour and frequency
were both less than 25%.

(2) N/A
(3) N/A

9. Nyman, Sheridan,
Smith, and Lane
(2011)

Radar‐derived intensity (0.5 × 0.5 km2, 10‐min),
manual rain gauges and debris flow sites from
field survey/RUSLE model

Catchments in eastern
Victoria, Australia/
<5 km2

(1) Cumulative radar rainfall for debris flow was
adjusted from the rainfall measured at field
sites.

(2) N/A
(3) Debris flows triggered by intense storm events in

burnt catchments when I30 ranged from 35 to
59 mm h−1. Postfire sheet erosion from
measurements indicates that hillslope material
provides an important source of sediment.

10. Löwe,
Thorndahl,
Mikkelsen,
Rasmussen, and
Madsen (2014)

Radar (2 × 2 km2, 10‐min), six gauges (10‐min) from
the Danish SVK network and 2.5 months runoff
data in summer/Z–R relationship, stochastic
grey‐box model

Two catchments in the
Copenhagen,
Denmark/13 and
30 km2.

(1) Z = 50 R1.8

(2) Correlation between rainfall and runoff
forecasting has been estimated from both radar
and gauge measurements.

(3) N/A

11. Klik et al. (2015) High‐resolution rainfall data from 35 gauging
station (10‐min) /RUSLE model

New Zealand/
~269,600 km2

(1) N/A
(2) The high variability of rainfall erosivity is mainly

associated with the climatic and topographic
differences across New Zealand. The average
storm‐based erosivity in summer is 2.1‐times
more than that from winter. The peak erosivities
appear mostly in summer (December to February)

(3) N/A

NSW, Australia

(Continues)
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TABLE 1 (Continued)

Study Data/model used Location/study size Key results

12. Yang and Yu
(2014)

Gridded daily rainfall from BoM, 124 sites
pluviography rainfall data/RUSLE model

(1) N/A
(2) In terms of the same rain in the same month, the

rainfall erosivity is higher at lower latitude and at
lower elevation

(3) N/A

13. Fischer et al.
(2016)

Radar rainfall (1 × 1 km2, 5‐min) from RADOLAN
and 30 rain gauges/USLE and RUSLE2 model

Bavarian Tertiary Hills,
Germany/
~15,000 km2

(1) Adjust radar rainfall in 60‐min interval from 30
rain gauges (mean difference 4%, RMSE is
3 mm)

(2) The difference of event rainfall erosivity
between adjacent cells is up 120 N h−1. Compare
with the daily rainfall, the spatiotemporal
variation is considerably stronger.

(3) N/A

14. Sidman et al.
(2016)

USGS stream gauges, DHR radar/KINEROS2,
AGWA model

North Creek within Zion
National Park, United
States/243.83 km2

(1) Rainfall representation by using radar was
applied in areas with low‐gauge density.

(2) N/A
(3) The varying rainfall representation has a great

impact on the peak flow when modeling runoff
after wildfire, although not significantly affected
the predictions for hotspot areas.

15. This study Radar rainfall from BoM (1 × 1 km2, 10‐min,
256 × 256), twelve rain gauges from field, /
RUSLE model

Warrumbungle National
Park, Australia/
233 km2

(1) The radar‐derived rainfall indicates strong
positive correlation with the gauge
measurements (R2 = 0.75).

(2) There is great seasonal variation in spatial and
temporal distributions of EI30 across the Park.
Maximum event EI30 was estimated about
827 MJ mm·ha−1 hr−1.

(3) The maximum erosion rate from soil plot
measurement is approximately 1.35 t·ha−1·yr−1 on
average across the WNP. The time series of daily
EI30 maps can provide timely information for
erosion control and monitoring of fire recovery.

Note. Not all papers included soil erosion modeling and postfire assessment via radar images, and these are denoted with an N/A representing ‘not appli-
cable’ in the relevant part of the “Key results” column. In the “Key results” column, the abovementioned three components are identified by the code: (1)
identify bias correction and radar rainfall variation in the relationship between gauge and radar rainfall; (2) estimate EI30 and its temporal and spatial var-
iation; and (3) assess impact of EI30 on soil erosion in the burnt area.
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A severe wildfire ignited in WNP, New South Wales (NSW), Aus-

tralia, on January 12, 2013. Under the extreme fire weather, 95% of

the park was burnt, with 72% of the area categorized as high to

extreme burn severity. Fire severity was estimated from RapidEye

images based on normalized burn ratio methods (Battan, 1973) and

categorized into four classes (0: unburnt; 1: low severity; 2: high sever-

ity; 3: extreme severity; Storey, 2014). Later, on February 1, 2013, an

intense storm event (rainfall intensity >50 mm h−1) occurred, followed

by several other storms where 100–150 mm of rain fell over the burnt

area. These events led to extraordinary erosion and long‐term land-

scape changes to this iconic park.

A series of 12 closed plots were established in early 2014 at loca-

tions across WNP in order to monitor soil erosion and groundcover.

These plots were established in May 2014 with a size approximately

9 m2 as recommended by Riley, Crozier, and Blong (1981). Though

smaller than the standard USLE plot (length = 22.1 m, slope = 9%),

they were easier to install and maintain and allowed for comparison

with previous studies in Australia (e.g., Atkinson, 1984; Atkinson,

2012; Yang et al., 2018). These monitoring sites were visited at

approximately 2‐month intervals from May 2014 (19 times in total).

Accumulated sediment was collected during each field visit and sent

to Yanco Natural Resources Laboratory, where the material was dried

and weighed, and particle size classes and soil texture determined

(Table 2). From July 2015, each plot site or nearby had a standard rain

gauge and a tipping bucket rain gauge installed from which rainfall
intensity could be measured. Figure 1 shows the locations of the 12

soil plots and the tipping bucket rain gauges, and the basic information

of these plots are listed in Table 2.

In Australia, weather radar networks have been operated by the

Australia Bureau of Meteorology (BoM) since 1948. Nevertheless,

the first quantitative rainfall estimation by radar was not published

and analyzed until the 1960s (Seed et al., 2002). There are 43 full‐time

weather radar stations across Australia; each one updates images at

10‐min intervals with a domain of 256 × 256 km2 and a spatial resolu-

tion of 1 km. For this study, the Namoi (Blackjack Mountain) S‐band

radar (DWSR 8502S; −31.0240° S, 150.1915° E) data (10‐min, 1 km)

were obtained from the BoM. Continuous radar images were obtained

for the period from January to March 2013 immediately after fire and

an extended period from January 2014 to June 2017 for ongoing

monitoring.
3 | METHODS

3.1 | Radar data processing and bias correction

To calculate the radar‐derived rainfall accumulation, the raw radar

reflectivity measurements (10‐min, 1 × 1 km) obtained from the

Namoi station are firstly corrected by removing the effect of beam

blocking. Then rainfall accumulation is converted from the corrected



TABLE 2 Basic information of the twelve soil plots within the Warrumbungle National Park

Site Easting Northing Name
Elevation
(m) Fire Geology

Aspect
(degree)

Slope
(%)

Clay
(%)

Silt
(%)

Fine sand
(%)

Coarse Sand
(%)

1 148.9546 −31.3575 Gunneemooroo 595 0 V 240 30 27 13 30 30

2 149.0322 −31.3249 Strathmore lower 608 1 V 330 25 21 27 29 23

3 148.9947 −31.2617 Buckleys West 445 3 S 65 32 11 7 26 56

4 148.9929 −31.2491 Nth fire trail lower 715 2 V 260 22 15 35 24 26

5 148.9885 −31.2380 Nth fire trail upper 692 2 V 180 22 18 26 36 20

6 148.9916 −31.2477 Nth fire trail middle 605 2 V 220 25 13 44 22 21

7 149.0099 −31.2865 Middle Valley 447 1 S 135 25 13 9 28 50

8 149.0119 −31.2879 Scabilon Hill 519 3 S 250 37 13 33 22 32

9 149.0247 −31.3423 TV Tower 1040 1 V 70 38 8 34 26 32

10 149.0343 −31.3260 Strathmore upper 687 1 V 30 25 22 17 22 39

11 149.0778 −31.2693 Siding Spring 1023 2 V 340 18 19 35 19 27

12 149.0089 −31.2767 Blackman 509 2 S 190 22 14 10 30 46

Note. Fire: fire severity (0–3 represent unburnt to severe burnt classes), S: sandstone, V: volcanic.

FIGURE 1 The Warrumbungle National Park study area and the locations of soil plots and tipping‐bucket rain gauges [Colour figure can be
viewed at wileyonlinelibrary.com]
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radar reflectivity through a Z–R relationship as shown below (Bureau

of Meteorology, 2018a),

Z ¼ 60 R1:7; (1)

where Z represents the reflectivity and R is the rain rate per pixel.

BoM keeps this Z–R relationship constant rather than varying it by

season, as there are insufficient gauges to conduct a real‐time
adjustment within the Namoi coverage area. In this study, daily

radar‐derived rainfall estimations were adjusted against daily rain

gauge observations through linear regression once the radar reflectiv-

ity was converted to rainfall accumulation and daily rainfall depth rate.

The procedures for the rain gauge adjustment are illustrated in

Figure 2. Radar‐based rainfall accumulations were first gap‐filled by

linear interpolation with data from neighboring time steps. MATLAB

scripts were then developed and applied to batch convert the original

http://wileyonlinelibrary.com


FIGURE 2 Processing steps of radar rainfall [Colour figure can be viewed at wileyonlinelibrary.com]
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radar data in NetCDF format to ESRI ASCII grids, which were then

input to ArcGIS for extraction of rainfall accumulation and further cal-

culations for EI30. To ensure data consistency, the radar data were

reprojected from Gnomonic to MGA Zone 55 so that all datasets were

in the same coordinate system. Also, Coordinated Universal Time in

the radar data was readjusted to local Australian Eastern Standard

Time (Australian Eastern Standard Time = Coordinated Universal

Time + 10:00).

The 12 tipping buckets gauges installed within WNP were used to

calibrate the weather radar rainfall data. Where there were data gaps

due to rain gauge instrument failure (<15.5%), the missing values were

filled from the most appropriate gauge according to linear regression

and comparison with all the surrounding rain gauges.

Bias removal is one of the most important processes in the radar‐

based rainfall estimation. To adjust the radar rainfall bias, we devel-

oped a linear relationship between rainfall measured from rain gauges

and the radar. This relationship was based on daily rainfall amounts

(July 2015 to June 2017) for reasons that (a) there was too much var-

iation and data gaps in the 10‐min rainfall time series and (b) the final

EI30 maps are on a daily basis.

3.2 | Event‐based EI30 estimation

The EI30 for a single storm event is the value of energy, E in MJ ha−1,

multiplied by the peak 30‐min rainfall intensity I30 (mm hr−1). In this

study, E is computed from the 10‐min radar‐based rainfall in 10‐min

intervals following Equation 2.

E ¼ ∑N
r¼1erΔVr; (2)

er ¼ 0:29 1 − 0:72 exp −a
ΔVr

Δtr

� �� �
; (3)

where ΔVr/Δtr is the rainfall intensity (mm hr−1), whereas ΔVr refers to

rainfall amount during that particular period, Δtr, N is the number of

10‐min intervals (e.g., N = 3 for 30‐min), er (MJ ha−1 mm−1) means unit

kinetic energy, and a is an empirical coefficient. This form of the equa-

tion, including empirical coefficients, was based on the work of Kinnell

(1981). Equation 3 was proposed by Brown and Foster (1987) as a

replacement for the original equation presented in the Agriculture

Handbook No.537 (Wischmeier & Smith, 1978) and further modified

by Foster et al. (2003) as part of RUSLE2. The maximum unit energy

was taken as 0.29 based on the work of Rosewell (1986). The differ-

ence of these two equations is that the revised exponent value
(0.082) is slightly higher than the counterpart value (0.05) of Brown

and Foster (1987). It is believed that this kinetic energy and intensity

(KE–I) coefficient (Brown & Foster, 1987) underestimates the rainfall

erosivity by about 10% (Nearing, Yin, Borrelli, & Polyakov, 2017;

Renard & Freimund, 1994). Thus, in this study, we compared daily

EI30 computed from Brown and Foster (1987; RUSLE) with its revised

version (Foster et al., 2003; RUSLE2).

The rainfall intensity for 30‐min (mm hr−1) intervals I30 is

calculated as follows:

I30 ¼ P30 × 2; (4)

where P30 is the maximum 30‐min rainfall depth (mm). It is multiplied

by 2 to convert to an hourly scale. Peak rainfall amounts in 30‐min

intervals was extracted from radar images at every three 10‐min inter-

vals. Renard et al. (1997) recommended including all storm events in

the R factor calculation. Most literature has defined erosive storm

events as cumulative rainfall events greater than 12.7 mm, that is, at

least 12.7 mm rain within 30‐min, and separated by a break of more

than 6 hr. However, the discrepancy in the calculated R factor due

to different rainfall thresholds increases as the mean annual rainfall

decreases because the relative contribution of small storm events to

the R factor increases in dry areas (Yu, 1999). Hence, the threshold

was set as 5 mm d−1 instead of 12.7 mm in this study to ensure that

small events that did not produce runoff were not included in the

determination of daily erosivity.

3.3 | Model performance and erosion risk
assessment

Once event‐based EI30 values were computed from the radar data at

10‐min intervals, these values were accumulated to total daily,

monthly, and annual rainfall erosivity (R factor). Model performance

was measured by the coefficient of efficiency, Ec (Nash & Sutcliffe,

1970), which is commonly used to assess model performance in

hydrology and soil sciences (Loague & Freeze, 1985; Risse, Nearing,

Laflen, & Nicks, 1993):

Ec ¼ 1 − ∑M
i¼1 yi−byð Þ2=∑M

i¼1 yi−yð Þ2; (5)

where yi are observed values while by are modelled values, y is the aver-

age of observed values, and M represented the sample size. Essentially,

Ec is an indicator of how close the scatter of predicted versus actual

values are to the 1:1 line (Yang, Yu, & Xie, 2015). The common coeffi-

cient of determination (R2), root mean square difference (RMSE), and
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standard error of the mean were also applied to assess model perfor-

mances by comparing the plot values (e.g., gauged rainfall data) with

the simulated values estimated by weather radar and the KE–I

relationship.
4 | RESULTS

4.1 | Bias correction and radar rainfall variation

Time series of daily rainfall (>5 mm d−1) from July 2015 to June 2017

(two hydrological years) were compared with different data sources
FIGURE 3 Relationship between radar‐derived, gauge‐measured, and p
com]
(Figure 3) including (a) pluviograph data from AWS (064017) at every

6‐min and (b) mean rainfall amount from the 12 tipping‐bucket rain

gauges. The comparisons show that there is a good relationship

between radar‐derived rainfall and the gauge rainfall measurements.

The relationship between raw radar and gauged rainfall during two

hydrological years when combined is relatively weak (Figure 3c,

R2 = 0.5, Ec = 0.043) compared with the individual relationships for

each hydrological year separately (Figure 3a,b, R2 > 0.7). The weaker

relationship with the pluviograph data (R2 = 0.45) might be due to

the location of the pluviograph station (AWS 064017), which is about

30 km away from most of the rain gauges. For this reason, we only
luviograph rainfall [Colour figure can be viewed at wileyonlinelibrary.
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used the rain gauge data for the bias correction, and the pluviograph

data were only used as complementary data sources when gauge data

were not available, such as immediately after the wildfire in 2013

(Figure 3e,f), because gauges were not installed in WNP until July

2015.

An adjustment factor (AF) was applied to calibrate the radar‐based

estimates pixel by pixel and for all radar data with 10‐min time step:

Rgauge ¼ AF × Rradar; (6)

where Rgauge is the daily rainfall collected from the tipping bucket rain

gauges on the ground, AF is the adjustment factor, and Rradar is the

radar‐based rainfall extracted from the pixel in which the gauge is

located. Two AFs were applied (corresponding to the two hydrological

years). For the 2015–2016 hydrological year, an AF of 1.28 was

applied (Figure 3a), whereas for the 2016–2017 hydrological year, an

AF of 0.90 was applied (Figure 3b). For the regressions used to derive

both AFs, there was a strong correlation between gauge and radar‐

derived rainfall (R2 = 0.74–0.75, RMSE = 8.06–1201, Ec = 0.33–0.66).
FIGURE 4 Radar‐derived daily rainfall after calibration from January 201
storm events [Colour figure can be viewed at wileyonlinelibrary.com]
After calibration against the gauges in WNP (Figure 3d), time

series rainfall depth maps derived from the radar data were produced

at hourly, daily, and monthly intervals. Figure 4 shows examples of

daily rainfall derived from the radar data when the daily rainfall

amount was more than 5 mm. The daily rainfall amounts were accu-

mulations over the previous 24 hr to 9:00 a.m. local time. The peak

radar rainfall was estimated to be as high as 61.87 mm for February

2, 2013. Hotspot areas with large daily rainfall amounts coincided with

areas of extreme burn severity (e.g., on February 18, 19, 2, and 22 and

March 5, 2013). These calibrated rainfall data were subsequently used

for EI30 calculations and compared with observed soil loss from hill-

slope plots on a monthly time step.
4.2 | EI30 and its temporal and spatial variation

The modelled daily EI30 over two hydrological years follows a similar

trend to rainfall in general, irrespective of which data sources (radar

or gauge rainfall) or methods (KE–I relation from RUSLE or RUSLE2)

were used (Figure 5a–d). The results show a strong agreement

(R2 = 0.80, n = 52) between the radar‐based EI30 and the gauge‐based
3 to June 2017. The shape here is actually the fire ground for selected
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FIGURE 5 (a) Regression of gauge daily rainfall and gauge daily EI30 (coefficient: 0.05); (b) regression of gauge daily rainfall and gauge daily EI30
(coefficient: 0.082); (c) regression of radar daily rainfall and radar‐derived daily EI30 (coefficient: 0.05); (d) regression of radar daily rainfall and
radar‐derived daily EI30 (coefficient: 0.082); (e) comparison of daily EI30 (coefficient: 0.05) from radar rainfall gauge measurement; (f) comparison of
daily EI30 (coefficient: 0.082) from radar rainfall gauge measurement [Colour figure can be viewed at wileyonlinelibrary.com]
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EI30, although the radar‐derived data (coefficient: 0.05)

underestimated the daily EI30 by approximately 8.20% compared with

the daily EI30, when estimated using the 0.082 KE–I coefficient.

To examine seasonal variation, monthly EI30 values were accumu-

lated from daily radar‐derived EI30 values and compared against the

monthly EI30 values calculated from the gauge sites and pluviograph

data. Table 3 shows the similar seasonal variation in EI30 from all these

different data sources. The higher EI30 values appeared in summer

(December, January, and February), with the EI30 values in winter
(June, July, and August) significantly lower. These trends are reflected

in all EI30 estimates from radar, gauges, and pluviograph

measurements.

For the storm event on February 1, 2013, between 12:30 p.m.

and 13:30 p.m., there were noticeable differences in absolute values

between pluviograph and radar‐derived event EI30. As shown in

Table 3, the event radar EI30 during the storm accounts for more than

9% of seasonal EI30 for the three summer months (December to Feb-

ruary). In contrast, for the pluviograph data, the EI30 estimated from

http://wileyonlinelibrary.com
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the same event accounts for more than 50% of the seasonal EI30 for

summer months. Event‐based EI30 was largely consistent with the

radar‐derived rainfall; each peak EI30 value corresponds to the peak

rainfall intensity (Figure 4). For any given time step (e.g., daily and

monthly), the predicted rainfall erosivity varied spatially across the

park. The EI30 fluctuated in response to the radar‐derived rainfall

estimates.

Figure 6 shows the daily EI30 of storm events and their spatial var-

iation over the monitoring period (January 2013 to June 2017). These

maps can be used to identify potential high erosion risk areas during

storm events. For example, the daily EI30 variation on March 4, 2017 in

Figure 6 refers to a daily EI30 value as high as 826.76 MJ mm ha−1 hr−1

for a single event.
4.3 | Impact of EI30 on erosion

The measured erosion during each field visit follows a similar seasonal

pattern to the monthly EI30 in general (Figure 7), irrespective of which

data source was applied (radar or gauge). Among the soil plots across
FIGURE 6 Time series EI30 maps and the spatial variations in the monitor
actually the annual estimation from the single storm event [Colour figure c
the park, high erosivity was apparent at Site 1 and Site 11 as shown on

Figure 7. Areas near these sites had experienced stronger storm

events and flash flooding than most other soil plots. The higher cumu-

lative EI30 values resulted in higher soil losses from the soil plots.

The relationship between the annual sum of EI30 and postfire ero-

sion was compared and assessed at soil plot sites from July 2015

(Figure 7). The measured soil loss at each plot reflects the influence

of EI30, but there is an obvious discrepancy between observed soil loss

and EI30 values. For example, the highest erosion rates were measured

at Site 11; however, the corresponding EI30 was not the highest.

Heavy rainfall occurred near Site 2, but the measured erosion rates

from that soil plot were relatively low.

There exists a statistical difference of erosion rates according to

the burn severity from the twelve measured erosion plots installed in

2014 (Table 4). Higher erosion occurred in extremely burnt area within

one year after the wildfire (Table 4), but such consistency became

weaker in subsequent years (2016–2017, Table 4) due to vegetation

recovery and erosion control measures. Site 1 (unburnt) has higher

erosion rate compared with some burned areas (e.g., low severity
ing period from January 2013 to June 2017. EI30 distribution here was
an be viewed at wileyonlinelibrary.com]
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FIGURE 7 Spatial variation of rainfall
erosivity and erosion [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 4 The influence of EI30 (MJ mm ha−1 hr−1 yr−1) on site erosion (t ha−1 yr−1) at different fire severity classes

Fire severity Sites
Average EI30
(MJ mm ha−1 hr−1 yr−1)

Average field
erosion (n = 19)
(t ha−1 yr−1)

Annual field erosion (t·ha−1·yr−1)

2014–2015 (n = 8) 2015–2016 (n = 8) 2016–2017 (n = 3)

Mean SEM Mean SEM Mean SEM

Unburnt 1 2777.00 1.00 1.59 ‐ 0.46 ‐ 0.87 ‐

Low severity 2, 7, 9, and 10 1620.85 0.60 1.07 0.25 0.27 0.08 0.48 0.21

High severity 4, 5, 6, 11, and 12 1657.55 1.03 1.60 0.58 0.63 0.14 0.59 0.22

Extreme severity 3 and 8 1354.13 1.12 2.19 0.32 0.42 0.19 0.13 0.06
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class) due to its higher rainfall erosivity which is approximately two

times higher than the low severity sites (2, 7, 9, and 10). In the burn

severity classification, there is essentially no difference between the

‘unburnt’ and ‘low severity’ classes as long as the groundcover is con-

cerned. Therefore, other factors (EI30, slopes) might be more influential

in erosion than groundcover for these classes. This finding also sug-

gests the needs for an unambiguous classification as proposed by

Vieira et al. (2015), and they highlighted the incoherencies between

existing burn severity classifications and concluded that different burn

severity does not evidence significant differences in postfire runoff.
5 | DISCUSSION

5.1 | Bias correction and radar rainfall variation

Radar rainfall can play a significant role in representing rainfall inten-

sity, especially in areas without a high density of gauge networks

(Hossain et al., 2004; Sidman et al., 2016). Even where rain gauges

or pluviograph rainfall stations exist, they are unlikely to replace

radar‐derived rainfall estimates, due to high spatial and temporal reso-

lution from radar data.

The tipping bucket gauges measured the rainfall depth across the

WNP and provided precise calibration and supplementary observation

for radar estimation (Legates, 2000). However, the rainfall gauges are

sparse and thus unable to identify all the hotspot areas across the park

without the assistance of the radar‐derived rainfall. This also limited

the application of the Kalman filter in calibration of radar rainfall as

it requires a much higher density of gauges (about one gauge per

70 km2; Chumchean et al., 2006).
The pluviographic rainfall data from the Coonabarabran Airport

AWS (064017) was available at 6‐min intervals from January 2013

to present. In contrast, the 12 rain gauges were installed in the

WNP only since July 2015; thus, the pluviographic rainfall data are

as essential as the radar‐derived rainfall for estimating the daily rainfall

erosivity immediately after wildfire (since January 2013).

The results from this study illustrate that there is a strong positive

correlation between radar‐derived rainfall and daily EI30 (R2 = 0.72).

Higher radar rainfall estimates correspond to greater rainfall erosivity

at the same grid cell. The variation of rainfall mirrors the variation of

EI30 particularly in the severely burnt area. In agreement with Sidman

et al. (2016), the varying rainfall has a great impact on peak rainfall

erosivity modeling.
5.2 | EI30 and its temporal and spatial variation

Seasonal variation of rainfall erosivity is apparent due to the large sea-

sonal variation of rainfall amount and intensity. The highest seasonal

EI30 occurred in summer, with the lowest in winter. This seasonal

trend agrees with our previous studies using long historical rainfall

records which show strong seasonality with the highest rainfall erosiv-

ity in summer and lowest in winter (Renard et al., 1997).

Compared with daily rainfall, the spatiotemporal variation of rain-

fall erosivity was considerably larger (Fischer et al., 2016). From our

results, the average seasonal EI30 in summer is approximately two to

three times greater than that predicted in winter, based on radar esti-

mation and gauge measurements respectively. In comparison, Yang

et al. (2015) reported that the R factor between summer and winter

had about seven‐fold difference in NSW statewide. Klik et al. (2015)

http://wileyonlinelibrary.com
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found that rainfall erosivity in summer was 2.1 times higher than that

from winter in New Zealand, modelled from gauged rainfall.

Spatial distribution is a highly important factor when estimating

erosivity and erosion in burnt area as wildfire removes the soil cover

and creates a potential window for extreme erosion events (e.g., storm

events). Radar EI30 revealed that the spatial variation of daily EI30 is

mostly driven by the spatial variations in rainfall (Figure 5c,d) and

explicitly predicted the high‐risk areas due to a particular event

(Figure 6).

In this study, radar data have been first applied to detect high‐risk

areas and temporal variation of daily EI30 (Figure 6). However, daily

EI30 estimated using RUSLE was underestimated by 8.20% in compar-

ison to that from RUSLE2 (Figure 5e). This underestimation agrees

with Nearing et al. (2017) and Foster et al. (2003), who believed that

the KE–I relationship from RUSLE underestimates the rainfall erosivity

by approximately 10%. Despite changing the coefficient to 0.082

instead of the commonly applied 0.05 in RUSLE2 (Foster et al.,

2003), the radar‐derived daily EI30 was still underestimated by 11%

(Figure 5f) compared with the gauge‐estimated EI30. Nevertheless, it

is worth noting that no matter which coefficient has been used, they

were both developed based on experiments and data collected in

the United States. Furthermore, although an absolute difference exists

among different KE–I relations, these slight differences will not signif-

icantly affect the estimated results for the WNP study. Thus, we con-

tinue to use the KE–I relationship proposed by Brown and Foster

(1987) in the following sections. Another possible explanation for

the discrepancy might be due to the gap period of the radar estima-

tion, which may miss some rainfall events, whereas the point‐based

gauge measurement fills the gap of radar rainfall.
5.3 | Impact of EI30 on postfire erosion

Similar seasonal variation was apparent from the time series of erosion

measurements and monthly EI30 (Figure 7). More soil loss was

observed in summer when heavy rainstorms occurred, whereas less

erosion was measured in the dry winters. In general, higher erosion

rates were positively correlated with fire severity; however, relatively

high erosion rates were also evident in some unburnt areas such as

Site 1. This discrepancy is probably due to the vegetation recovery

of burnt areas and the effects of other RUSLE factors such as soil,

rainfall, and topographic factors. For example, the slope steepness fac-

tor for Site 1 was measured as high as 0.3 (Table 2) with the highest

rainfall erosivity among the 12 sites (Table 4).

The average erosion from plots in extremely burnt areas

decreased by about 94.1% from 2014 (2.19 t ha−1 yr−1) to 2017

(0.13 t ha−1 yr−1). In comparison, the erosion changes in low (1.07 to

0.48 t ha−1 yr−1) and high severity (1.60 to 0.59 t ha−1 yr−1) burn areas

over three years gradually decreased by 55.0% and 63.1%, respec-

tively. One explanation for these differences is that the rapid vegeta-

tion recovery in high severity burn areas (Gordon, Price, Tasker, &

Denham, 2017) leads to a reduction of postfire erosion rates

(Table 4). The groundcover in WNP has been generally increasing

since the fire in early February 2013 and returned to near preburn

levels within 1 year (Yang et al., 2018). There is an increasing trend

from May 2014 (73%) to July 2017 (79%) according to the
groundcover measurements, although the groundcover varies season-

ally. Gordon et al. (2017) observed strong positive associations

between Acacia species in WNP and total midstory vegetation cover

and fire severity. Results from this study also showed that the

groundcover had recovered 1–1.5 years after the fire, and the level

of groundcover has continued to gradually improved ever since (to

July 2017). The enhanced postfire erosion is not directly and solely a

result of fire severity, but it also related to a combination of the spatial

distribution of rainfall and other erosion factors (e.g., groundcover and

soil properties). This was further complicated by changes in these fac-

tors on different time scales (Moody et al., 2013). Thus, mapping the

burn severity, and not just the fire footprint, combined with radar‐

based event EI30 provides high spatiotemporal resolution information

in relation to fire regime management.

RUSLE or the revised model (RUSLE2) was originally designed to

predict average annual soil loss. Both models have limitations for post-

fire erosion modeling; in particular, they are unable to account for

changes in soil hydrophobicity, which can affect sediment runoff and

often temporarily increases after fire (Sheridan, Lane, & Noske,

2007). As such, these models have limitations in predicting hillslope

erosion for a particular storm event. However, some alternative pro-

cess‐based models such as WEPP (Nearing, Foster, Lane, & Finkner,

1989) are extremely sensitive to parameter estimations, and those

predictions are often poor (Van Oost et al., 2000), whereas RUSLE

requires low data inputs, is robust, and has widely been used across

the world. It is possible to estimate daily (or storm event‐based) soil

loss with time series EI30 at a subdaily scale as discussed above or

the product of the runoff ratio (QR) and EI30 index (Kinnell, 2010;

Kinnell, 2014) given the fact that soil erodibility and topographic fac-

tors are stable and groundcover factor changes seasonally (Yang

et al., 2018).

Prediction of event‐based EI30 will be increasingly important due

to the higher likelihood of intense storm events under climate change

(Alexander et al., 2007). The current climate change projections pre-

dict that the region is trending towards an increased risk of wildfire

due to warmer and drier conditions (Hennessy et al., 2005; Pitman,

Narisma, & McAneney, 2007) and higher frequencies of extreme

weather such as storm events (Alexander et al., 2007; Nyman et al.,

2011).
6 | CONCLUSIONS

In this study, we have assessed various rainfall data types covering

various periods, including pluviograph rainfall, tipping bucket rain

gauges, and radar‐derived rainfall estimates for their potential for esti-

mating EI30. It is important to choose the most suitable rainfall data to

fill the gaps and simulate the time series of rainfall erosivity into WNP

after the wildfire. Radar‐derived rainfall data has its advantage in spa-

tial and temporal resolutions. Thus, the exploration of radar rainfall

data in estimating EI30 is of great importance when rainfall erosivity

and postfire erosion estimation at a storm event or daily time step is

required.

We have developed a set methodology to estimate EI30, com-

pared with the actual erosion from soil plots at subdaily temporal
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resolutions and provided timely information for park management on

erosion control. Our study has demonstrated that weather radar

underestimated rainfall by a factor of 1.28 (R2 = 0.75) from July

2015 to June 2016 and overestimated rainfall (AF = 0.90, R2 = 0.74)

from July 2016 to June 2017 but shows strong correlation with

gauged rainfall. EI30 for storm events or on a daily basis can be esti-

mated from the radar‐based rainfall time series at high temporal

resolution.

Our results indicate that the highest seasonal EI30 appeared in

summer whereas the lowest in winter. Hillslope erosion rates in gen-

eral follow similar seasonality. The time series radar‐derived EI30 dem-

onstrate the potential high‐risk erosion areas on each rain day. The

change of postfire erosion to some extent is mostly driven by the fire

severity. The measured soil loss rates at soil plots correspond well

with the EI30 estimates in the same periods. Our results provide evi-

dence to support and promote the use of weather radar technology

for estimation of rainfall erosivity for individual storm events. As rain-

fall erosivity is one of the key factors in causing land degradation at a

range of scales, this study reveals the potential in using weather radars

for real‐time or nearly real‐time monitoring and prediction of land deg-

radation around the world. Outcomes from this study have been

directly used in hillslope erosion monitoring across the WNP at near

real time (Yang et al., 2018). Our methodology and scripts are general,

thus applicable for areas where weather radar data available.
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