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Abstract 

The rainfed cropland belt in Australia is of great importance to the world grain market 

but has the highest climate variability of all such regions globally. This thesis aims to 

quantify the spatial temporal climatic impacts on crop productivity, crop phenology and 

cropland photosynthesis activities across the Australian rainfed cropland belts using 

multiple source of observed datasets.  

The literature review on climate-crop growth relationship called for a future agenda on 

integrated climate driving factor employment, crop phenology and photosynthesis 

response focus, multiple source of datasets engagement, and bottom-up approaches for 

agricultural adaptation.  Consistent findings from the three empirical studies in this thesis, 

which focused on different broad angles of the crop response, indicate that: (1) August 

and September are the optimum trigger months to spatially predict agricultural annual 

yield across the rainfed cropland belts in Australia; (2) two critical 8-day periods, 

beginning on day of the year (DoY) 257 (in September) and 289 (in October), were 

identified as the key ‘windows’ of crop growth variation that arose from the variability in 

climate and land surface temperature. (3) there was a seasonal hysteresis of crop 

photosynthesis activities in response to surface temperature change throughout the winter 

crop growing season in Australia. The optimum surface temperature range for satellite 

observed photosynthesis activity were identified as16.6-17.6 °C during August. 

This thesis systematically assessed the climatic impacts on crop growth across the 

Australian rainfed cropland belts. Practically, it provides new opportunities for large-

scale cropland heat and water stress detection and can serve as an early warning system 
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for agricultural adaptation in broad-acre rainfed cropping practices. Theoretically, it 

offers a fresh understanding for analyses of the climate-crop growth relationship across 

diverse spatial-temporal scales. 

Key words 

Climate change and variability, crop growth, rainfed croplands, multi-source datasets, 

remote sensing, Australia 
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Chapter 1. Introduction 

1.1 Background 

1.1.1 Global climate change and variability 

Future climate scenarios where local temperatures increase by 2℃ or more above late-

20th-century values will, according to the Intergovernmental Panel on Climate Change 

(IPCC), negatively impact wheat growth in tropical and temperate regions (Field et al. 

2014). Increases in global temperature, water shortage, as well as extreme weather events 

(heatwave, drought, flood), combined with increasing food demand, would pose great 

risks to all aspects of food security globally and regionally (Calzadilla et al. 2013; 

Godfray et al. 2010; Lobell et al. 2011).  

 

Figure 1.1 Global year-to-year wheat yield variability over the last three decades (1979-
2008) (left) and total wheat yield variability explained due to climate variability (right)  
* Figure cited from (Ray et al. 2015). 

Ray et al. (2015) have mapped the global year to year wheat yield variability over the last 

three decades. They used the ratio of standard error to thirty-year mean to represent crop 

yield variability and collected data from ~13,500 political units. From figure 1.1 we can 
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find that, climate variability accounts for roughly a third (~32-39%) of the observed wheat 

yield variability globally. Regionally, Australia cropland belts have the greatest 

variability over the last 3 decades and its wheat yield variability can be explained by 

climate around 43%. Particularly, the percentage was greater than 60% in parts of western 

Australia. 

1.1.2 Climate trends and variability in Australia 

According to the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) and Bureau of Meteorology in Australia (Figure 1.2), there has been a warming 

trend across most parts of Australia in annual mean surface air temperature of 0.16 ℃ per 

decade since 1970, and rainfall shows considerable variability toward drier conditions 

from year-to-year (Pearce et al. 2007).  

 

Figure 1.2 Trends in total rainfall (A, mm/10yr), maximum temperature (B, ℃/10yr), 
minimum temperature (C, ℃/10yr), and mean temperature (D, ℃/10yr) from 1970 to 
2017 in Australia 
* Source: Bureau of Meteorology in Australia: http://www.bom.gov.au/climate/change/ 
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Meanwhile, climate in Australia is well known to be influenced by multiple climate 

components (Stokes & Howden 2010), which include the El Niño-Southern Oscillation, 

the Southern Annular Mode, the Indian Ocean Dipole, the Inter-decadal Pacific 

Oscillation, the Madden-Julian Oscillation, and seasonal synoptic circulations and frontal 

systems.  

 

Figure 1.3 Normal Density curves of the historical climate conditions across Australian 
cropland. a) Pre-growing season rainfall, b) growing season rainfall, c) growing season 
maximum temperature, d) growing season minimum temperature 
* Data collected from Australian Scientific Information for Land Owners (SILO) patched 
point dataset (http://www.bom.gov.au/silo/); Growing season (GS) was defined as 1st 
May to 30th November; Tmax is daily maximum temperature; Tmin is daily minimum 
temperature; Purple vertical dash lines in the left and right in each panel were the 
minimum and maximum actual observations respectively. Y-axis: Density distribution. 

The red curves in each panel in Figure 1.3 are the climatic conditions during the current 

decade from year 2000 to 2013. We can see that, the average growing season rainfall has 

been decreasing and maximum temperature has increased. Meanwhile, the minimum 

temperature and the average pre-growing season slightly decreased by less than 1℃and 
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0.2 mm, respectively. These indicated that Australian cropland is getting drier and hotter, 

and the extreme weather events are becoming more frequent in last century. 

In the dryland dominated Australian farming systems, the wheat crops are sown based on 

defined sowing rains (20 mm over a 10-day period) over a “sowing window” from the 

start of May to the end of July (Keating et al. 2002). Therefore, both long-term climatic 

conditions and year-to-year climate variability in Australia would definitely threaten its 

rain-fed arable land planting system (Anwar et al. 2007; Hochman et al. 2012). 

1.1.3 Agricultural land use in Australia 

In Australia, the 2012-13 (http://www.daff.gov.au/abares) area of land that can be used 

for agriculture was 397 million hectares, which covers approximately 52% of Australia's 

total land. But only less than 10% of the area is crop planted area (31.6 million hectares), 

which has also declined over the past decade (http://www.abs.gov.au/). Australia has a 

first world economy, but a third world export profile, with 20% of its export value derived 

from agriculture (Hamblin 2009; Lawrence et al. 2013). This means its farming system 

needs to provide enough food to feed a population of 22 million domestically, and also 

another 40 million people abroad (Lawrence et al. 2013). In the following 40 years, the 

population in Australia is expected to double (Lawrence et al. 2013; Millar & Roots 2012), 

while the projected growth in the world will reach 9 billion from the current 7 billion  

(Godfray et al. 2010), which would directly bring serious pressure to Australia’s food 

security. Meanwhile Australia’s dominant rain-fed farm production levels are low by 

world standards because of the low and erratic nature of the rainfall and the infertile, acid, 

alkaline or salty soils (Hamblin 2009). During 2001-2011, Australia suffered a “big dry” 

http://www.abs.gov.au/
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(2001-2009) that was followed by a “big wet” (2010-2011) hydro climatic events, which 

greatly influenced  Australia’s crop system (Steffen et al. 2013).  

 

Figure 1.4 Boxplots of de-trended crop yield (kg/ha; Wheat, Potatoes, Oats, Maize, and 
Barley) from 1877 to 2011. 
* Data comes from Australia Bureau of Statistics (ABS, www.abs.gov.au/); The de-
trending method of first-difference is used to remove the possible confounding effects of 
non-climatic factors; Yield (Kg/ha) is expressed as the quotient of production (Kg) 
divided by planting area (ha); Black dots inside boxes indicates the mean value, box-
boundaries are the 25 and 75 percentiles, whiskers are the 10 and 90 percentiles and blue 
circles indicate each outlier. 

In the State of NSW,Australia, total annual wheat production varied between 2,477-

10,700 kt over the past decade (2003-2014), and the harvested area ranged between 2,995-

4,322 kha. Most importantly, yield per hectare varied more than five-fold, between 0.62-

2.80 t/ha (www.abares.gov.au). Historically, Figure 1.4 shows the variability extents of 

time-series de-trended crop yield. The longer the box length, the more the yield fluctuates. 
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Statistical de-trended yields at all five crop planting States vary greatly among years. The 

extent (10 to 90 percentiles) of fluctuations reached to [+1000, -800] kg/ha. 

As the climate is changing and will unavoidably change in the long run 

(http://www.ipcc.ch/), it is indispensable to ensure a steady growth of food production in 

Australia, especially for the fundamental crop outputs (Tester & Langridge 2010). A 

comprehensive understanding of arable land under climate change constraints is critically 

needed, other than only considering intensification and economic concentration (Sandhu 

et al. 2008). It would help us to timely identify those changes, be prepared for uncertainty, 

and promote adaptation strategies (Lobell et al. 2008; Stokes & Howden 2010).  

1.2 Incorporating multi-source datasets in climate-crop relationship analysis 

To monitor world-wide croplands in a changing climate, efforts have been made in 

aspects of crop simulation models (Asseng et al. 2011; Calzadilla et al. 2013), climate 

projection models (Liu & Zuo 2012; Turner et al. 2011; Yu et al. 2008), and remote 

sensing detection methods (Cong et al. 2013; Ma et al. 2014; Sakamoto et al. 2005), trying 

to identify specific crop growth mechanisms (Chen et al. 2010), environmental 

determining factors to crop yield (Asseng et al. 2011; Brown 2014; Chen et al. 2013; Yu 

et al. 2014), critical dates of plant life cycle (Sakamoto et al. 2005), and land allocation 

(Bindi & Olesen 2011; Yan et al. 2013) using either historic statistical data (Yu et al. 

2001; Yu et al. 2014) or spatial distribution data (Sakamoto et al. 2005). However, each 

research only focused on a single method or model to conduct limited features of arable 

land planting system. Moreover, simulation modelling requires large workload to upscale 

from species level to ecosystem level or regional level. For instance, statistical crop yield 

data do not contain information of spatial distributive variation, and also crop growth 
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conditions. Remotely-sensed data are able to overcome these limitations. However, they 

cannot achieve long term observation since most sensors emerged only from late 20 

century. Estimating the climate-crop growth relationship by using a single understudied 

source or method would result in large potential uncertainties (Cong et al. 2013). Thus, 

evaluating and integrating multiple sources of datasets and methods are necessary. 

Adopting novel methods by incorporating multi-source observation data will better 

illustrate the relationships between climate factors and crop growth measurements 

spatially and temporally. Take the State of New South Wales (NSW) in Australia as an 

example, Hutchinson et al. (2005) has divided the NSW wheat belt into 5 main agro-

climatic zones (E4, E3, E2, D5, and E6). Several spatial temporal datasets were evaluated 

to demonstrate the advantage of incorporating multi-source data in climate-crop 

relationship analysis. 

The weather stations dataset for each of the agro-climatic zones were collected from SILO 

(PPD, www.longpaddock.qld.gov.au) patched point. Each of the weather stations has a 

century of daily records in maximum temperature, minimum temperature, rainfall, and 

solar radiation. This study calculated average daily values for these five stations to 

represent the historical climatic patterns across NSW wheat belt. Each of the weather 

station data were used to characterize the climate patterns for the corresponding agro-

climatic zones. The wheat growing season (GS) was then distinguished as May to 

November in each year, and pre-growing season (pre-GS) as January to April. As for in-

situ data, 370 wheat trial observation records were collected, which include sowing date, 

harvest date and actual yield from 2005 to 2013. This ground truth data for wheat 

phenology and productivity came from the National Variety Trials 

(http://www.grdc.com.au/), Grains Research and Development Corporation (GRDC) in 
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Australia. MOD13A1 EVI with 16 days temporal resolution and 500 meters spatial 

resolution from year 2000 to 2013 were collected. Time-series profiles of EVI and 

integrated EVI (iEVI) for each pixel were then extracted. iEVI is an index to represent 

crop productivity in most cases (Broich et al. 2015). 

1.2.1 Weather patterns derived from SILO and sowing and harvesting windows from 

NVT 

By comparing rainfall distribution patterns throughout year 2005 and 2006 across the 

NSW wheat belt (Figure 1.5), we can see that total rainfall in year 2006 (218 mm) was 

half of the amount in 2005 (436 mm) and there were nearly 40 continuing days without 

rainfall around October in 2006. Based on the study of (Zhang et al. 2016), year 2006 can 

be taken as a drought year, compare to the normal year 2005. During the growing season, 

rainfall in 2006 (128 mm) was significantly lower than in 2005 (352 mm), but in the pre-

growing season, the rainfall conditions in the 2 years were very similar (61 mm in year 

2005 and 80 mm in year 2006). This explained why planting areas (Table 1.1) in years 

2005 and 2006 were nearly the same, but the annual production in these 2 years has nearly 

3-fold differences. 

The horizontal black dash lines in Figure 1.5 are the minimum (2 ℃) and maximum 

(34 ℃ ) temperature thresholds that wheat growth can tolerate. If daily minimum 

temperature is lower than 2 ℃, wheat crop would suffer from freeze damage, and limits 

crop growth. If daily maximum temperature is higher than 34 ℃, heat stress would affect 

crop grain filling (Anwar et al. 2007; Asseng et al. 2011), and reduce yields and total 

production. 
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Figure 1.5 Comparison of weather conditions and sowing and harvest windows across 
NSW wheat belt in year 2005 and 2006. 
* Blue vertical lines stand for daily rainfall; Red line is time series maximum temperature; 
Purple line is minimum temperature; The horizontal black dash lines are the minimum 
(2℃) and maximum (34℃) temperature thresholds that wheat growth can tolerate; Black 
and green shadowed areas are sowing window and harvest window which are extracted 
from observed trial sites data in years 2005 and 2006. 

Figure 1.5 shows the number of extreme days (hot and cold) in 2006 were greater than in 

2005, with 74 and 34 days respectively. This correspond to narrower and earlier sowing 

and harvest windows in 2006 compared with year 2005. In 2005, the sowing window and 

harvesting window began on 19-May and 4-November, each with lengths of 64 days and 

54 days, respectively, while in 2006, the beginning dates were 10-May and 1-November, 

with respective sowing and harvesting window lengths of 56 days and 49 days. 

Table 1.1 NSW wheat planting area, yield and Sowing and Harvest windows in selected 
years 

Year Area Production Yield Sowing Date Range Harvest Date Range LGS Range 

 Hectares Tonnes Kg/m2 Min Max Range Min Max Range Min Max Range 

2002 2,994,800 2,494,900 0.08 -- -- -- -- -- -- -- -- -- 

2005 3,554,100 8,049,700 0.23 19-
May 

22-Jul 64 
days 

4-Nov 28-
Dec 

54 
days 

134 
days 

205 
days 

71 
days 

2006 3,595,800 2,576,700 0.07 10-
May 

05-Jul 56 
days 

1-Nov 20-
Dec 

49 
days 

141 
days 

204 
days 

63 
days 

2010 3,814,700 10,488,400 0.27 28-Apr 11-Jun 44 
days 

6-Nov 8-Jan+ 63 
days 

169 
days 

220 
days 

51 
days 

* In this table, -- means “not available”; + means “plus next year”; Range is calculated 
by Max value minus Min value for each attribute (Sowing date, harvest date and length 
of growing season). 
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1.2.2 EVI time series profile of wheat phenology at different agro-climate zones 

Figure 1.6 shows the weather and smoothed EVI time series profiles, as a surrogate for 

wheat growing conditions, in the normal year 2005 and the drought year 2006 over 4 

different agro-climatic zones. As region E6 has a semi-arid climate that is too dry to 

support wheat growth, the approach was conducted to the other 4 agro-climatic zones. 

Figure 1.6 clearly shows the corresponding wheat growth conditions followed by 

different weather patterns among the 4 agro-climatic zones. The amount of rainfall during 

the wheat GS in year 2006 is around one third of that in year 2005, in all the NSW agro-

climatic zones. Meanwhile, in the GS in drought year 2006, the average maximum 

temperature is higher than in year 2005, and the average minimum temperature is lower 

than in the year before.  However, in zone E4, total rainfall in pre-GS 2006 is much higher 

than that in year 2005.  

 

Figure 1.6 Wheat phenological smoothed EVI profile over different Agro-climate zones 
(E4, E3, E2, and D5).  
* Pink and orange solid lines, and vertical blue line are time-series maximum and 
minimum temperature and rainfall, respectively; Horizontal grey dash lines are maximum 
and minimum temperatures that wheat growth could tolerate; Green solid line is time 
series EVI profile for the trial point located in a specific agro-climatic zone and with 
actual observation for year 2006; Green dash line is the time series EVI profile for the 
trial point with actual measurements for year 2005; ‘soc’ is start of growth cycle; ‘eoc’ is 
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end of growth cycle; ‘min’ is the minimum point of smoothed time-series EVI; ‘max’ is 
the maximum point of the smoothed time-series EVI. 

 

Located in southwestern part of the NSW wheat belt, zone E2 was the region in which 

wheat growth was least affected by climate variabilities, with wheat EVI profiles similar 

in both years and its peak point EVI values are higher than all the peak values in the other 

regions. From the amplitude of EVI curves, drought has clearly affected wheat above-

ground biomass in regions E4, E3 and D5. In the normal year 2005, the average EVI peak 

values at zones E4, E3 and D5 were 0.375, 0.563 and 0.535, while they were 0.293, 0.455 

and 0.359, respectively in the drought year 2006. 

1.2.3 Spatial temporal relationship between climate factors and crop growth 

Figure 1.7 shows the crop-climate information derived from all the 3 datasets in 2005-

2014. We can see that higher growing season-iEVI occurs with higher rainfall and lower 

number of hot days during growing season across study area (year 2010 and 2005). The 

average length of growing season was the longest in the “wet” year 2010, which was 200 

days. We can also find from Figure 1.7 that Sowing and Harvest windows are adjustable 

with the corresponding climate condition each year, and the average dates have an early 

trend over the years from 2001 to 2013.  
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Figure 1.7 Rainfall, hot days, growing season iEVI and sowing and harvest windows of 
crops across NSW wheat belt in 2005-2014. 
* GS is growing season; Hot days were counted as the days in which the maximum 
temperature higher than 34 ℃ during crop growing season; iEVI were calculated as the 
total EVI during crop growing season. 

 

Therefore, it is concluded that incorporating multi-source observation datasets would 

better illustrate the relationships between climate factors and crop growth spatially and 

temporally. Thus, with the use of diverse temporal-spatial resolution datasets emerging 

in recent years (Thenkabail et al. 2012), this thesis proposes empirical methods using 

multi-source data to detect the response of rainfed cropland production, phenology and 

photosynthesis activity to climate variability in Australia. 

1.3 Significance 

Crop planted in rainfed cropland is influenced by climate variability during the whole life 

span. Reasons are: (1) Rain-fed agriculture mostly rely on rainfall for water supply, and 

it occupies more than 90% of Australia’s total cultivated land (Hamblin 2009), which 

makes crop productivity highly sensitive to climate changes (Anwar et al. 2007; Cornish 
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1950). (2) Phenology is defined as the study of periodic life cycle events of living things 

and how those are influenced by environmental factors (such as climate, hydrology and 

soil) (Zhu & Wan 1973). Climate variability is the major driving factor influencing crop 

phenology, and even the whole arable land planting system. (3) Gross primary production 

(GPP) is mainly determined by the amount of photosynthetically active radiation 

absorbed by vegetation (Gitelson et al. 2015). Crop photosynthesis activity is highly 

sensitive to environmental change, such as the variability of vapour pressure deficit, and 

drought stress  (Dong et al. 2015).  

Therefore, estimating the climatic impacts on crop productivity, crop phenology and crop 

photosynthesis activity across the rainfed cropland belt of Australia using multi-source 

datasets, would practically release the timely information needed for the design and 

implementation of relevant adaptation strategies to climate variability in different 

geographical scenarios. And theoretically, the efforts will help to reduce yield gap 

between attainable yield and potential yield in broad-acre rain-fed cropping system both 

in Australia and worldwide and enhance the knowledge of researchers and industries on 

climate-crop growth relationship. At the same time, this thesis will help to improve the 

capability of policy makers and farmers to prepare for uncertainty, design farm 

management, and take in time agricultural adaptation strategies in the changing climate. 

The data and utilities will be fundamental for crop yield forecasts and can serve as an 

early warning system for regions suffering from crop loss and food shortages. 

1.4 Structure of this thesis 

The thesis including publications is structured into six chapters. Three chapters from this 

thesis have been under review or published in leading agricultural multi-disciplinary 
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journals. These three journal articles have placed in the thesis as stand-alone chapters 

contributing to the overall aim of this thesis to evaluate the climatic impacts on crop 

growth across the rain-fed croplands in Australia. 

Chapter 2 is a literature review paper by understanding the current status of dryland 

climate-crop growth relationship (CCR) by surveying 44 journals articles. Four broad 

research angles of state-of-art CCR research have been identified: (1) climate change and 

variability, (2) crop response, (3) CCR approaches, and (4) agricultural adaptation. 

Focusing on the broad angle of crop response, the responses of crop productivity, crop 

phenology and crop photosynthesis activities have been subsequently addressed in 

Chapter 3, Chapter 4 and Chapter 5. This chapter highlights the thesis foundation. 

 

Figure 1.8 Outline of the thesis. 
* Abbreviations: ‘OzWALD’-Australian Water and Landscape Dynamics group, 
Australian National University (http://www.wenfo.org/wald/); ‘ABS’- Australia Bureau 
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of Statistics (www.abs.gov.au/); ‘ABARES’- Australian Bureau of Agricultural and 
Resource Economics and Sciences, Australian department of Agriculture and Water 
Resources. (www.abares.gov.au/); ‘MODIS EVI’- Moderate Resolution Imaging 
Spectroradiometer, Enhanced Vegetation Index; ‘iEVI'- intergrated Enhanced Vegetation 
Index; ‘BOM’- Australian Bureau of Meteorology (www.bom.gov.au/); ‘SILO’- 
Australian Scientific Information for Land Owners patched point dataset 
(http://www.bom.gov.au/silo/); ‘LST’- Land Surface Temperature; ‘GOME-2 SIF’- the 
Global Ozone Monitoring Experiment-2 sensed Solar-Induced chlorophyll Fluorescence. 

 

Chapter 3 is an attempt to spatiotemporally predict the rainfed agricultural annual yields 

using satellite-based gross primary production (GPP) for Australia. This chapter 

investigated the relative advantages of regression in prediction. The dataset from 

Australian Bureau of Statistics (ABS) (annual data; 2000-14; State scale) are considered 

as representative of actual agricultural yields across Australian cropping belt. Monthly 

GPP data from 2000-14 with the spatial resolution of 0.05° was applied for my analysis. 

The optimum predicting months of GPP were specified in this Chapter. The results 

showed that it is possible to spatially predict agricultural annual yield. 

Chapter 4 is an empirical study to quantify the contributions of climate and Land Surface 

Temperature (LST) variations to the variability of crop growth (Phenology) by using 

remote sensing methods, which has been published in Agriculture, Ecosystems & 

Environment. Different from previous studies, the data was analysed at an 8-day time-

step to provide a more accurate evaluation through the rainfed cropland of Eastern 

Australia. The study identified two critical 8-day periods as the key ‘windows’ of crop 

growth variation that arose from the variability in climate and LST. The results show that 

the impacts of heat variation outweighed rainfall variation across rainfed crops.  

Chapter 5 is the third empirical study to explore the potential to directly monitor cropland 

photosynthesis activity from space. Satellite based solar-induced chlorophyll 
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fluorescence (SIF) and Enhanced vegetation index (EVI) provide direct measurement of 

vegetation photosynthesis activity and greenness, respectively. The link between SIF with 

crop photosynthesis is instantaneous, but satellite SIF signal often contains information 

of canopy structure, total canopy chlorophyll content, and canopy greenness level. The 

concept of light-use efficiency (LUE) constructed in this study has removed the relatively 

constant greenness level within a certain time. This study further demonstrated the spatial 

pattern and temporal dynamics of satellite-based vegetation measurements both among 

the cropland growing season months and within each of the months at diverse land surface 

temperature (LST) levels. The results of this study tend to have significant implications 

for large-scale cropland water and heat stress detection and monitoring, and also for 

remotely analyse the photosynthesis activities from canopy to leaf level. 

Chapter 6 is the final chapter of this thesis. It synthesizes previous chapters in articulating 

the contributions of this thesis to the field of dryland crop stress detection. It concludes 

with the imitation of this thesis and recommendation for future research. 
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Chapter 2. Dryland climate-crop growth relationship: a Review 

Highlights 

 A content analysis approach was employed in the literature review. 

 Four broad research angles of the CCR research were investigated. 

 Agenda for future research were discussed. 

Abstract 

To deal with the increasing challenges of climate change and climate variability, the 

complex climate-crop relationship (CCR) need to be better understood. This study 

provides a systematic, holistic and objective review of the dryland climate-crop 

relationship (CCR) academic literature by combining Leximancer, a content analysis tool, 

to conventional bibliographic analysis. Forty-four publications on climatic impacts on 

croplands from 2009 to 2018 (inclusive) have been identified. The findings revealed four 

broad areas of foci with CCR research: (1) climate change and variability, (2) crop 

response, (3) CCR approaches, and (4) agricultural adaptation. The specific agro-climatic 

change variables, crop growth measurements and models employed in current CCR 

research were identified by manually bibliographic analysis. This study calls for a future 

agenda on integrated climate driving factor employment, crop phenology and 

photosynthesis response focus, multiple source of datasets engagement, bottom-up 

approaches for agricultural adaptation. 

Key Words 
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2.1 Introduction 

With the rapid growth of industrialization and population, the concentration of 

greenhouse gases (carbon dioxide, methane and nitrous oxide) is now unprecedentedly 

higher than it has been for the last 8 billion years (Pachauri et al. 2014). Increasing 

emission of greenhouse gases has caused and will continue causing further warming and 

long-lasting changes on the Earth’s climate system, including intense heat waves, extreme 

precipitation events, and rising global mean sea level (Pachauri et al. 2014; Smith et al. 

2007). In recent decades, the observed climatic impacts on all nature and human systems 

(rangeland vegetation, cropland system, water availability, human health, etc.) are strong 

and comprehensive (Asseng et al. 2011; Calzadilla et al. 2013; Ray et al. 2015). These 

indicate that the biodiversity, ecosystem services and economic development are highly 

sensitive to the changing climate. Across a wide range of regions, many studies 

(Calzadilla et al. 2013; Pachauri et al. 2014; Ray et al. 2015; Tripathi et al. 2016)  showed 

the negative impacts of climate change and variability on nature and human systems, 

especially cropland system, have been more common than positive impacts.  

The productivity of cropland system, as the foundation to human welfare, essentially and 

ultimately depends on climate (Navin et al. 2002), due to the limitations in accumulated 

temperature, precipitation (and soil moisture), solar radiation during the limited length of 

crop growing seasons. In dryland agricultural sector, climate is the most important factor 

that determines the efficiency of crop productivity (Yuan et al. 2017). Ray et al. (2015) 

revealed that climate variability contributes to 32-39% of the variability in global 

observed crop yield and they illustrated the spatial pattern of crop yield sensitivity to 
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climate variability (temperature, precipitation and their interaction, respectively). At a 

regional level, croplands in the Southern provinces of Canada, north-western and north-

central states of the United States, northern Europe, southern former Soviet Union, and 

the Manchurian plains of China are mostly sensitive to changes in temperature (Navin et 

al. 2002). Croplands in the Great Plains region of the United States and north-eastern 

China are mostly sensitive to changes in precipitation (Navin et al. 2002). In Australia, 

wheat yield has stalled since 1990 due to the reduced rainfall and rising temperature 

(Hochman et al. 2017) and is expected to decrease by the late 21st century (Wang et al. 

2018).  

As climate-crop relationship (CCR) research is multi-disciplinary, there is a range of 

levels of spatial and temporal patterns to focus on to address real-world problems 

(Challinor et al. 2009). Computer simulation (Asseng et al. 2015; Rosenzweig et al. 2013) 

and satellite imagery (Potgieter et al. 2010; Shen et al. 2018) have been widely used to 

understand the complex mechanism of CCR. Meanwhile, regional (e.g. crop outlook 

https://qaafi.uq.edu.au/industry/crop-outlook) and global (e.g. crop monitor 

https://cropmonitor.org/) projects on detecting, monitoring and predicting the cropland 

productivity under the changing climate have also been launched as a mean to enhance 

the knowledge of researchers, industries, policy makers, and small holder farmers on 

CCR. However, literature concerning CCR has been relatively fragmented with multiple 

conclusions. As such, it is timely to undertake a review article on CCR to provide a clear 

picture of the field to advance researchers’ knowledge.  

By employing content analysis through the software Leximancer, this paper aims to 

provide a text-driven analysis of the literature on CCR. By doing so, this paper provides 
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a conceptual map that visually presents the conceptual and relational insights of the 

previous studies by providing up-to-date knowledge of the CCR field. 

This Chapter begins by presenting the results of conventional bibliographic analysis in 

agro-climatic change variables, crop growth measurements and models employed in 

current CCR research. Afterwards, the research design using content analysis is then 

introduced. The results are discussed via the visual representations derived from 

Leximancer. Thereafter, relevant insights are presented from the results and research gaps 

and areas for future research then follow. It concludes with a summary of the findings 

and limitation of this study. 

2.2 Research design 

2.2.1 bibliographic analysis 

In the first step, a keyword-based search for related articles was performed from the 

scientific database of Scopus. The evolution of electronic age has offered the facilities of 

many powerful databases for the researchers to search on a particular subject and analyze 

citation. Scopus, one of the current most popular database, offers the widest coverage of 

journals in top-level subject fields with consistent accuracy (Falagas et al. 2008). It 

provides both in keyword searching and citation analysis, although it is limited to recent 

articles (published after 1995) (Falagas et al. 2008). As search keywords from title, 

abstract and keywords, The following query (accessed on 26th April 2018) were used: 

TITLE-ABS-KEY ( "climate change"  ,  "climate variability"  ,  AND crop )  AND  

( LIMIT-TO ( EXACTKEYWORD ,  "Climate Effect " )  OR  LIMIT-TO 

( EXACTKEYWORD ,  "Climate Variability And Change " ) )  AND  ( EXCLUDE 
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( EXACTKEYWORD ,  "Irrigation" )  OR  EXCLUDE ( EXACTKEYWORD ,  

"Irrigation (agriculture)" ) ) 

In this way, papers referring to CCR but not applied to the irrigated agriculture domain 

were filtered. In the second step, only journal articles written in English were selected, as 

journal articles have been peer-reviewed indicating a good quality. The search then 

restricted the articles to be published during the latest decade between 2009 to 2018 

(inclusive). Thereafter, a small number of interesting efforts which did not qualify in 

terms of the research approach addressed and the relevance of CCR, were excluded. As a 

result, a total of 44 papers were selected. A list of these article is provided in Appendix. 

In the final step, the 44 papers selected were analyzed manually. That is, the author went 

through each article one-by-one to identity the detailed research focus, agro-climatic 

change variables and crop growth measurements used, sources of data and models 

employed. 

2.2.2 Content analysis 

To better understand the topics discussed the literature, content analysis of the selected 

literature was performed by using the software - Leximancer. Leximancer is high-level 

language processing software through the employment of statistical algorithms but also 

nonlinear dynamics and machine learning. Leximancer transforms ‘lexical co-occurrence 

information from natural language into semantic patterns in an unsupervised manner’ 

through ‘two stages of extraction – semantic and relational’ (Smith & Humphreys 2006). 

Previous research demonstrated that  Leximancer reduces the per-conception bias that is 

often associated with manual analysis and generates more objective and text-driven 

results (Cheng 2016; Nunez‐Mir et al. 2016). A detailed description about Leximancer’s 
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algorithm can be found in the work of Smith & Humphreys (2006). The concepts that are 

mapped closed indicate a closer relationship. 

All the full texts of the selected papers were analyzed in Leximancer, as Leximancer can 

provide a systematic and objective analysis of state of the art related work. This would 

enable the researchers to uncover concepts, themes, and relationships in the texts of 

articles, and discover unknown qualities about the data to generate valid and trustworthy 

inferences.  

2.3 Main findings 

2.3.1 Bibliographic analysis results 

2.3.1.1 Agro-climatic change variables 

As shown in Table 2.1, the 44 selected papers focus on 4 major aspects of climatic impacts 

(on dryland crops): terrestrial drought, solar radiation, modelled scenarios, and ocean 

climate. Drought, a result of the interactions from increased water deficit, warmer average 

air temperature and elevated atmospheric CO2, appears to be the major climatic driving 

component in the CCR related papers published in the recent decade. Precipitation and 

temperature are two predominant factors that drive the response of crops (Table 2.1). 

Rainfall, dry days, and terrestrial water storage (TWS) were identified as the indicators 

of precipitation measurements from the selected papers. Meanwhile, heat stress, 

maximum temperature, minimum temperature, and diurnal range of temperature were 

covered as temperature measurements by the surveyed papers. Besides the three 

independent climatic variables (precipitation, temperature, and CO2) to describe 

terrestrial drought, vapour pressure deficit (VPD) and standardized precipitation and 
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evapotranspiration index (SPEI), two computed variables, were also identified by the 

selected papers (Table 2.1). VPD and SPEI has been recognized as effective indices to 

measure the climatic stress on dryland crop growth. 

Solar radiation is also a fundamental climate factor that governs the physiological and 

biophysical processes of crop growth in terms of photosynthesis activity and 

evapotranspiration. Hernández-Barrera & Rodríguez-Puebla (2017) indicated that the 

performance of the models based on solar radiation is better than that of studies based on 

temperatures and precipitation variables. 

 

Table 2.1 List of agro-climatic indicators used in selected Climate-Crop research 
literature 

Foci Climatic driving variables Indicators 

Terrestrial 

drought 

(Kristensen 

et al. 2011; 

Steiner et 

al. 2018; 

Wang et al. 

2016) 

Precipitation 

(Dosio & Paruolo 2011; Liu et al. 2016; Rahman et 

al. 2018; Steiner et al. 2018; Ummenhofer et al. 

2015) 

-Dry days (Traore et al. 2013) 

-Rainfall  

(Armah et al. 2011; Conway & 

Schipper 2011; Dono et al. 2016; 

Gichangi et al. 2015; Hakala et al. 

2012; Kassie et al. 2013; Milan & 

Ruano 2014; Omoyo et al. 2015; 

Paudel et al. 2014) 

-GRACE TWS 

(Ndehedehe et al. 2018) 

Temperature 

(Dono et al. 2016; Dosio & Paruolo 2011; Hakala et 

al. 2012; Liu et al. 2016; Omoyo et al. 2015; Rahman 

et al. 2018; Steiner et al. 2018; Tao & Zhang 2013; 

Ummenhofer et al. 2015) 

-Heat stress 

(Hawkins et al. 2013) 

-Max/min temperature 

(Gichangi et al. 2015; Traore et al. 

2013) 

-Diurnal range 

(Hernandez-Barrera et al. 2017) 
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CO2
 (Dono et al. 2016; Tao, Yokozawa, et al. 2009; 

Tao & Zhang 2013; Tao, Zhang, et al. 2009) 

 

VPD (Mojid et al. 2015)  

SPEI (Prabnakorn et al. 2018)  

Solar 

radiation 

 

Solar radiation (Hernández-Barrera & Rodríguez-

Puebla 2017) 

 

Modelled 

scenarios 

GCMs (Cobon et al. 2016; Tao, Zhang, et al. 2009)  

RCMs (Dosio & Paruolo 2011)  

MIROC 3.2 HI/PRECIS 

(Naresh Kumar et al. 2016) 

 

REMO HadRM3 (Mishra et al. 2013)  

Ocean 

climate 

SST (Alves et al. 2009)  

Niño-3 / dipole index (Alves et al. 2009)  

NAO index (Marta et al. 2010; Persson et al. 2012)  

* Abbreviations: GRACE-Gravity Recovery and Climate Experiment; TWS-Terrestrial 
Water Storage; SPEI-Standardized Precipitation and Evapotranspiration Index; GCMs-
General Circulation Models; MIROC3.2 HI-Model for Interdisciplinary Research on 
Climate, Japan; PRECIS-Providing Regional Climates for Impact Studies; VPD- vapour 
pressure deficit; REMO- Regional Model, Max-Plank Institute for Meteorology, 
Hamburg, Germany; HadRM3- Hadley Regional Model, Hadley Centre for Climate and 
Meteorology, UK; NAO- North Atlantic Oscillation; SST-sea surface temperature; 
RCMs- regional climate models. 

Modelled scenarios of future and possible climate conditions were generated by the 

selected papers, which cover a range of spatial scales and complexity. The climate models 

used were listed in Table 2.1. The climate simulations from the global climate model, 

General Circulation Models (GCMs), has coarse spatial resolution in the range 100-300 

km, while a regional climate model (RCM) typically has the resolution of 10-50 km. 

Regional models were mostly applied to specific regions, where the model initial 

conditions were tailored designed to reduce the uncertainty of projections. Efforts in 
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ensemble of multiple climate models was also made to minimize the inherent 

uncertainties in climate simulations (Dosio & Paruolo 2011; Tao, Zhang, et al. 2009). 

Besides conventional meteorological variables (air temperature, precipitation, and CO2) 

measured from terrestrial sites, ocean climate has also contributed greatly to the land 

surface processes in the earth system. The El Niño and La Niña phenomena have multiple 

climatic and socio-economic consequences globally and regionally (Alves et al. 2009). 

They associated with dry episodes and flooding over the circum-Pacific regions (Holton 

& Dmowska 1989). The meridian mode of climate variability in the tropical Indian Ocean 

is usually indicated by ‘dipole index’ in academic research. The dipole index is calculated 

by a latitudinal gradient in the sea surface temperature (SST) anomaly pattern between 

the north and south of the tropical basin (Black et al. 2003). The North Atlantic Oscillation 

(NAO) index measures the variation in air pressure difference in the northern Atlantic 

Ocean, which highly related to the winter conditions in north-western Europe (Persson et 

al. 2012). 

2.3.1.2 Crop growth measurements 

The dynamic nature of climate affect crop growth happens during the whole crop life span 

and eventually limit the final grain yields (van Ittersum et al. 2003). Crop response in 

aspects of productivity, phenology, photosynthesis, and varieties/types (Table 2.2) were 

conducted by the selected papers. 

Variables for crop productivity included in the selected papers were annual grain yield, 

reference crop evapotranspiration (ET), extreme yield, leaf area index (LAI), crop 

production/ Gross domestic product (GDP), and small-holder agriculture (Table 2.2). 

Crop production and annual grain yield were the two most used variables to measure 
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agricultural productivity in CCR research.  While reference crop ET was considered as a 

hydrological parameter that reflects the integrated effects of various climatic parameters 

(Mojid et al. 2015). Ummenhofer et al. (2015) explored the seasonal cycle of climatic 

variables during extreme-yield years and their links to crop growth. LAI is a 

dimensionless quantity that characterizes crop canopies and is used as a reference tool for 

crop growth (Wilhelm et al. 2000). The social-economic terms of crop productivity are 

GDP and small-holder agriculture (farmer’s income). These two variables might have 

relatively lower sensitivity to climate variability because of the protection policy 

(Conway & Schipper 2011) and the agricultural trading market.  

 

Table 2.2 List of crop growth measurements used in selected Climate-Crop research 
literature 

Aspect of crop 

response 

Variables References 

Crop productivity Annual grain yield (Alves et al. 2009; Hawkins et al. 2013; 

Hernández-Barrera & Rodríguez-Puebla 2017; 

Hernandez-Barrera et al. 2017; Klink et al. 2014; 

Kristensen et al. 2011; Liu et al. 2016; Masere & 

Worth 2015; Naresh Kumar et al. 2016; 

Ndehedehe et al. 2018; Omoyo et al. 2015; 

Potgieter et al. 2016; Prabnakorn et al. 2018; 

Rahman et al. 2018; Sayari et al. 2015; Tao, 

Yokozawa, et al. 2009; Traore et al. 2013; Traoré 

et al. 2011; Wang et al. 2016) 

Reference crop ET (Mojid et al. 2015) 

Extreme yield (Ummenhofer et al. 2015) 

LAI (Mishra et al. 2013) 

Crop production/GDP (Alves et al. 2009; Armah et al. 2011; Cobon et 

al. 2016; Conway & Schipper 2011; Dono et al. 

2016; Estrada et al. 2012; Steiner et al. 2018; 

Tao, Zhang, et al. 2009) 
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Small-holder agriculture (Kassie et al. 2013; Milan & Ruano 2014; Paudel 

et al. 2014) 

Crop phenology Greening and browning (Broich et al. 2015) 

Phenology (Marta et al. 2010) 

Frost injury (Persson et al. 2012) 

Crop varieties/types  (Gichangi et al. 2015; Hakala et al. 2012) 

Crop photosynthesis  (Tao & Zhang 2013) 

* Abbreviations: ET- evapotranspiration; LAI-leaf area index; GDP- Gross domestic 
product 

 

In the research of crop phenology response to climate change, Broich et al. (2015) 

developed a set of land surface phenology (LSP) remote sensing products characterizing 

the episodes of greening and browning of the vegetated land surface in Australia. This 

dataset tracks crop phenology over time and thereby monitor the crop growth response 

and resilience to climate variability. Persson et al. (2012) conducted the risk of frost injury 

on winter wheat during the negative NAO phases over the north-western Europe. More 

specifically, Marta et al. (2010) investigated the timing of crop bud-break, flowering and 

harvest response to the change of meteorological variables. 

In response to climate change and variability, sufficient crop diversity in types and 

cultivars may enhance the resilience (Gichangi et al. 2015; Hakala et al. 2012). The 

indigenous knowledge on weather forecasting will be helpful in farming decision making 

on the types of crops to be planted (Gichangi et al. 2015).  

Crop photosynthesis response to climate change was analysed in only one of the selected 

papers (Tao & Zhang 2013). It has indicated that crop photosynthesis could be enhanced 

by the rising CO2 because of its fertilization effects. 
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2.3.1.3 Models employed in current CCR research 

As Figure 2.1 shows, there were two major aspects of efforts in ‘modelling’ from the 47 

selected studies, model assessment and model simulation.  

 

Figure 2.1 scheme of efforts in ‘modelling’ from the 47 selected studies 

The efforts in ‘modelling assessment’ in the current literature (Figure 2.1) majorly 

focused on model uncertainty estimation (Estrada et al. 2012; Tao, Zhang, et al. 2009), 

model calibration and validation (Dosio & Paruolo 2011; Klein et al. 2012; Tingem et al. 

2009), and model comparison and integration (Lobell & Asseng 2017; Rosenzweig et al. 

2013). The nature of climate forcing and crop growth dynamics is complex and cannot be 

known precisely, therefore, the inherent uncertainties in CCR simulation and prediction 

are unavoidable. The uncertainty could be caused by model parameter setting, the 

predictability of the atmosphere, and the crop response of physical and biological systems 

(Challinor et al. 2009; Murphy et al. 2004). To assess and minimize such inherent 

uncertainty, Klein et al. (2012) calibrated a crop system model (CropSyst model) by using 
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farm accountancy data. Tingem et al. (2009) calibrated the same model using observed 

crop annual yield data and tested the capability of the model to represent the actual 

performance of crops grown in sub- Saharan Central African. Using multiple models with 

vary spatial and temporal resolutions (model integration or ensemble) can also give more 

skilful and reliable results than any single model (Hagedorn et al. 2005; Murphy et al. 

2004). The Agricultural Model Inter-comparison and Improvement Project (AgMIP) is a 

major international effort linking the most cutting-edge CCR models and technology to 

produce improved crop and economic models and projections for the agricultural sector 

(Rosenzweig et al. 2013). 

The calibrated and optimized models are capable to serve as simulation tools to explore 

the relationship between climate change and crop growth.  The simulations (Figure 2.1) 

focus on climate change/variability projection, crop growth simulation, and climate 

impact research. In climate modelling, the simulated climate is sensitive to historical and 

projected changes to the land surface (Challinor et al. 2009). The importance of water and 

carbon cycles for representing weather and climate has been recognized in the climate 

models (listed in Table 2.1) utilized in the selected papers. Meanwhile, the process-based 

crop modelling can capture the complex biophysical processes associated with climate 

driving factors by parameterize the environmental factors and management practices 

during the growing season of a specific crop variety. APSIM (Agricultural Production 

Systems Simulator) (Liu et al. 2016; Masere & Worth 2015), CropSyst model (a crop 

system model) (Klein et al. 2012; Tingem et al. 2009), FROSTOL (a model to simulate 

the frost tolerance of crops) (Persson et al. 2012), and MCWLA (Model to capture the 

Crop-Weather relationship over a Large Area) (Tao, Yokozawa, et al. 2009; Tao, Zhang, 

et al. 2009) were the crop response models that mostly employed in the selected papers. 
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2.3.2 Content analysis results 

Figure 2.2 and Table 2.3 indicate four broad area of foci (1) climate change and variability, 

(2) crop response, (3) CCR approaches, and (4) agricultural adaptation in the selected 

literature. There are various themes and concepts in each broad area reflecting the diverse 

perspectives of CCR research. 

 

 

Figure 2.2 Conceptual map of CCR literature published during 2009-2018.  
(1) Climate change and variability; (2) Crop response; (3) CCR approaches; (4) 
Agricultural adaptation 
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Table 2.3 Themes and Concepts of CCR literature published during 2009-2018 

Foci Themes Concepts Frequency 

Climate 

change and 

variability 

Climate climate, change, crop, impacts, variability, regional, 

conditions, future, scenarios, management, level, 

assessment, information, uncertainty, economic 

6223 

Crop 

response 

Yield yield, temperature, wheat, rainfall, maize, precipitation, 

period, increase, higher, maximum, winter, year, grain, CO2, 

sorghum, rice 

5682 

Production production, water, soil, effects, area, dry, potential, drought, 

global, development, stress, response, case, land, plant, heat 

3984 

Growth season, growth, index, surface 984 

CCR 

approaches 

Models models, model, data, different, based, variables, weather, 

simulation, statistical, approach, parameters, available 

3773 

Data time, trends, observed, analysis, average, series 1989 

Agricultural 

adaptation 

Adaptation agriculture, adaptation, farmers, risk, systems, food, local 1768 

 

2.3.2.1 Climate change/variability  

The climate change/variability and its impacts are concerned as the driving component in 

CCR research. The concept climate in close proximity with change, impacts, assessment, 

scenarios and risk (Figure 2.2) indicates the rapid growth of research focus on generating 

the present and the future climate conditions regionally and globally, and evaluating the 

impacts of the climate scenario on crop growth (Dono et al. 2016) and the corresponding 

social-economic risks (Estrada et al. 2012). Moreover, the concept uncertainty is 

particularly connected to risk, information, scenarios and assessment (Figure 2.2) 

illustrating that the uncertainty generated from CCR research is an important factor 

affecting the assessment of the expected agricultural loss and decision-making. 
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2.3.2.2 Crop response 

The broad area of crop response includes ‘yield’, ‘production’ and crop ‘growth’ response, 

which are highly semantically close. The theme ‘yield’ and ‘production’ has the highest 

occurrence frequency of 5682 and 3984 respectively, while the occurrence of the theme 

‘growth’ has the lowest frequency of 984 (Table 2.2).  These indicate the majority of the 

selected papers in CCR research focus on annual grain yield and crop production response.  

As for the ‘yield’ theme, the most related concepts are specific climate variables 

(temperature, rainfall, precipitation, and CO2) and crop species (winter wheat, maize, 

sorghum, and rice). While, the ‘production’ theme includes more general concepts as 

water, soil, area, drought, land and heat. These indicates that crop grain yield response 

is the most popular research interest in the selected related works. Researches on 

agricultural production often links with large scale policy making and social-economic 

adaptation (Conway & Schipper 2011).  

The theme ‘growth’ describes the crop response to climate change / variability during the 

crop growing process. The concept season reflects the agro-climatic conditions like 

winter season (Persson et al. 2012), rainy and dry season (Kassie et al. 2013; Mishra et 

al. 2013; Ndehedehe et al. 2018; Prabnakorn et al. 2018) during crop growing season. 

While, the concept surface provides information about the soil (Hakala et al. 2012) and 

water (Kassie et al. 2013; Mishra et al. 2013) conditions.  

2.3.2.3 CCR approaches 

The broad area of CCR approaches includes various types of ‘models’ and ‘data’. The 

dominant methodology employed in the selected literature is modelling. Table 2.3 listed 
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30 concepts that have ≥ 20% co-occurrence likelihood to the concept model. The related 

concepts show that the current CCR approaches are highly diverse comprising different 

statistical and simulation models, parameters calibration, and their uncertainty 

estimation, particular ensemble multiple models (Lobell & Asseng 2017) with different 

spatial and temporal resolution, apply models in different sites (Lobell & Asseng 2017) 

under different management practices (Persson et al. 2012), or under the possible weather 

scenarios in the future.  

 

Table 2.4 Co-occurrence likelihood ≥ 20% of related-concepts to ‘model’ 

Word Likelihood Word Likelihood Word Likelihood 

models 93% Global 30% Series 22% 

Statistical 61% Regional 30% Information 21% 

Simulation 53% Approach 30% Analysis 21% 

Parameters 40% Data 27% Time 21% 

Economic 39% Crop 27% Effects 21% 

Scenarios 33% Observed 27% Available 21% 

Uncertainty 33% Impacts 25% Soil 21% 

Variables 32% Growth 24% Future 21% 

Assessment 32% Weather 24% Case 20% 

Different 31% Wheat 22% Climate 20% 

 

The performance of models is limited by data availability for the study case (Lobell & 

Asseng 2017; Potgieter et al. 2016). ‘Data’ therefore is the second theme of CCR 
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approaches. The theme ‘data’ reflects the data used in the selected literature in terms of 

data source and data analysis. This theme is also connected to the ‘yield’ theme by the 

concepts trends and observed (Figure 2.2) reflecting that the method of processing long 

term records (such as time series) of crop grain yield (Hernández-Barrera & Rodríguez-

Puebla 2017; Paudel et al. 2014) and climate change variables (Klink et al. 2014) was 

mostly applied in current CCR research. 

2.3.2.4 Agricultural adaptation 

CCR research serves for the decision-making of agricultural adaptation strategies to the 

changing climate. The broad area agricultural adaptation connected to the broad areas of 

crop response and climate change/variability by the concepts local and adaptation, 

respectively (Figure 2.2).  These indicate that climate adaptation requires approaches that 

address biophysical and socioeconomic considerations at regional and local scales 

(Steiner et al. 2018), especially include bottom-up approaches from small-scale farming 

(Steiner et al. 2018). Cobon et al. (2016) and Armah et al. (2011) assessed the agricultural 

risk and vulnerability to the changing climate at a local scale and identified the impacts 

and adaptation responses for farmers.  

2.4 Discussion 

The analysis of extent literature using Leximancer indicates there are four distinct areas 

within the climate-crop growth relationship (CCR) literature (1) climate change and 

variability, (2) crop response, (3) CCR approaches, and (4) agricultural adaptation. The 

specific agro-climatic change variables, crop growth measurements and models employed 

in current CCR research were identified by manually bibliographic analysis. The 
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following discussion focus on four promising areas for future research, integrated climate 

driving factor employment, crop phenology and photosynthesis response, multiple source 

of datasets engagement, bottom-up approaches for agricultural adaptation. 

2.4.1 Integrated climate driving factor employment 

Efforts in the selected papers focus on one or several lead agro-climatic change variables 

to explore the climate-crop relationship. However, the conclusions were fragment 

because the models utilized in current research tend to emphasize the physical side, while 

the biological processes are rather modelled empirically (Sippel et al. 2018) and the 

interactions among different climate driving factors are often neglected in controlled-

environment experiments. Changes in air temperature, the amount and distribution of 

precipitation, and elevated atmospheric CO2 concentration together can have complex 

and indirect impact on crop growth (Asseng et al. 2004) at different crop phenological 

stages. Elevated atmospheric CO2 will enhance crop photosynthesis due to its fertilization 

effects (Tao & Zhang 2013), but it also mean warmer average air temperature and 

increased water deficit in agricultural systems. Thus, it is critical to adopt an integrated 

climate driving factor that combines indirect effects of air temperature, effective 

precipitation, CO2, and soil conditions within the soil-plant-atmosphere continuum. Li et 

al. (2013) has introduced the potential to use satellite-derived land surface temperature 

(LST) to measure the physical processes of the ground surface energy and water balance 

and reflects the water and heat status of vegetation and soil. LST indicates deficient soil 

moisture and also a high canopy heat stress (Karnieli et al. 2010). It has proven to be a 

well-suited ground water and heat measurement at canopy level in large-scale crop 

monitoring (Karnieli et al. 2010).  More possible integrated climate driving factors to be 

employed in CCR research is worth putting on the agenda. 
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2.4.2 Crop phenology and photosynthesis response focus 

The themes ‘yield’ and ‘production’ response were the two major angles of crop growth 

response in the current CCR related works. However, meteorological variability, such as 

heatwaves and frost stress, also have strong influence on the main biological processes 

(setting and ripening of plant organs, onset and duration of different phenological stages) 

responsible for plant growth and development (Marta et al. 2010). Crop phenology is a 

sensitive indicator of climate change/variability and has great socio-economic and 

biological impacts through the changes in productivity and in the carbon and water cycles 

(Marta et al. 2010). Currently, there is little knowledge about the diverse responses of 

crop growth to regional climate variability at every growth stage.  Understanding the CCR 

over the life span of crops can help farmers and agricultural departments make timely 

decisions in response to climate variability and reduce potential losses in yield (Rabbinge 

2007). 

Another important crop growth and development measurement, crop photosynthesis 

activity, can be affected by a range of leaf and environmental factors (Gitelson et al. 2015), 

such as chlorophyll pigment composition, state of stomatal conductance (Yan et al. 2017), 

changes in leaf and canopy structure, vapor pressure deficit (VPD), CO2 concentration 

(Tao & Zhang 2013) and drought stress. Consequently, crop photosynthesis activity 

varies dynamically over diverse temporal and spatial scales because of the changing 

climate. These call for urgent agenda to continuously monitor and detect all the changing 

environmental variables and photosynthesis responses throughout the life span of crops. 

2.4.3 Multiple source of datasets engagement 
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In most previous studies, the ‘models’ of CCR research can be divided into two major 

types: observational and statistical models, and crop simulation techniques (Figure 2.2, 

Table 2.3). The data collection of observational and statistical models has been mostly 

limited from administrative boundaries, which cannot reflect the crop-growing biological 

process and do not contain information of spatial heterogeneity. Process-based crop 

simulation models can reconstruct the physical growth cycles of crops using parameter 

pre-setting. However, it is labour intensive to spatially up-scale the simulations from the 

field plot to ecosystem or regional scales (Rosenzweig et al. 2013). This is due to the fact 

that crop simulation needs considerable efforts in data collection and parameter 

calibration to overcome its limitations in spatial heterogeneity (Shen et al. 2018). These 

limitations in spatial up-scaling can be overcome by introducing remote sensing detection 

methods (Reed et al. 1994; Sakamoto et al. 2005) or by combining crop models with 

satellite observations (Ma et al. 2008; Moulin et al. 1998).  

Satellite radiometric observations offer rich spatial-temporal-spectral resolutions (Eamus 

et al. 2016), from hourly (e.g. Himawari 8 observations) to monthly (e.g. MODIS- The 

Moderate Resolution Imaging Spectroradiometer datasets), from meters (Landsat datasets) 

to kilometres, from optical hyperspectral bands (Prasad et al. 2011) to electromagnetic 

radiation emitted directed from the objects (e.g. Radar- Radio Detection and Ranging). 

Though extensive independent field-based investigations and specialised research 

information are required to validate the performance of remote sensing observations 

(Justice et al. 1998). Remotely sensed indices to measure vegetation health and growth 

conditions have also been extensively established by many efforts(Huete 2012; Zheng & 

Moskal 2009), these enriches the wealth of available data and allows to integrate models 

and data using (Sippel et al. 2018) to minimize the inherent uncertainty associated with 

climate projections and the complexity of agricultural systems. 
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2.4.4 Bottom-up approaches for agricultural adaptation 

Climate adaptation decision-making, such as cultivars selection, sowing date adjustment, 

planting density design, fertilization, and irrigation at critical growth stages, have to be 

undertook by the small-scale farmers. The small-scale farmers often have their indigenous 

indicators to predict the nature of the season, which have not been tested in a changing 

climate (Masere & Worth 2015; Steiner et al. 2018). These suggest that CCR research 

need to include bottom-up approaches to raise farmers’ engagement into scientific 

enquiry (Masere & Worth 2015; Worth 2002). Taking a bottom-up approach, such as 

learning networks and peer-to-peer communication, whereby practical and efficient 

adaptation strategies for local and regional scale climate risk assessment is essential 

(Steiner et al. 2018). Adaptation management options like fertilization and irrigation will 

require additional economic consideration for farmers and sustainability assessments 

(Rahman et al. 2018; Reidsma et al. 2010). Including the socio-economic impacts of the 

available adaptation response options is an issue that is worth putting on the policy agenda. 

Meanwhile, because management and adaptation can remarkably reduce the potential 

impact of climate change on crop productivity (Reidsma et al. 2010), future assessment 

of climatic impacts on crop growth should integrate possible adaptation options into the 

model simulation, rather than set adaptation alone as a last step conclusion (Reidsma et 

al. 2010). 

2.5 Conclusions 

By combining conventional bibliographic analysis and a text-driven approach using 

Leximancer, this paper presents an objective, systematic and holistic review of current 

CCR literature. The specific agro-climatic change variables, crop growth measurements 
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and models employed in current CCR research were identified by manually bibliographic 

analysis. The content analysis using Leximancer illustrated the key concepts, themes and 

broad area underpinning the CCR field, and further uncovered the research gaps. 

In summary, this study has a number of contributions to extant literature. Firstly, it offers 

a clear-cut representation of the CCR literature by a visual analytics approach to help 

researchers visibly position themselves in the literature to identify potential new 

directions as well as to locate their work within the field. Secondly, it can serve as an 

introduction to the rapidly evolving CCR field by addressing the agro-climatic change 

variables, crop growth measurements, and models involved for an evidence-informed 

approach. Thirdly, by aggregating various fragmented evidence in the literature, it also 

highlights existing barriers and opportunities on collaboration to harness the benefits of 

CCR research. 

The limitations of this study are: 1) examined only academic journal articles published in 

the current 10 years (2009-2018 inclusive). Future research including wider coverage of 

publications (such as longer years of retrieval, more databases of searching, government 

reports, and issues papers), and perhaps a further comparative approach between 

government-industry-media and academic sources would offer additional insights into the 

CCR research. 2) Filtered the journal articles only focusing on the direct climate driving 

factors. The articles focus on the non-climate factors (such as plant diseases, plague of 

insects, and farmland management), which could be also related to climate 

change/variability, will be considered in the future. 
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Appendix  

List of the selected papers in Climate-crop relationship research 

No. Authors Climate indicator 

(P-precipitation; T-temperature) 

Crop growth measurement Methodology Aspect of crop 
response 

1. Rahman et al. (2018) P/ T Cotton production/yield Multi-model ensemble Crop 
productivity 
response 2. Ndehedehe et al. (2018) GRACE TWS Crop yield Remote sensing 

3. Prabnakorn et al. (2018) SPEI Rice yield Statistical-based model 

4. Steiner et al. (2018) Drought/P/T Crop production Decision support tool 

5. Hernández-Barrera & 
Rodríguez-Puebla (2017) 

Solar radiation Wheat yield CMIP5 simulation model 

6. Hernandez-Barrera et al. 
(2017) 

Diurnal range of temperature Wheat yield Statistical-based model 

7. Cobon et al. (2016) 5 GCMs Wheat, Sorghum production ‘risk matrix’ approach 

8. Dono et al. (2016) CO2/ rainfall/T Crop production DSP and PDF models 

9. Liu et al. (2016) P/T APSIM-maize yield Process-based model 

10. Naresh Kumar et al. (2016) MIROC3.2 HI (global) 

/PRECIS(regional) 

Mustard production/yield InfoCrop model (simulation) 

11. Masere & Worth (2015) Rainfall APSIM-maize yield Focus group discussion 
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12. Omoyo et al. (2015) Rainfall/T Maize yield Statistical-based model 

13. Gichangi et al. (2015) Rainfall/ maximum and minimum T Crop types Statistical / survey 

14. Mojid et al. (2015) Net radiation/wind speed/ VPD Reference crop ET Statistical-based model 

15. Sayari et al. (2015) Evapotranspiration (P&T) Chickpea, lentil, bean yield Statistical-based model 

16.  T/ P Agro-IBIS-Extreme yield Simulation model 

17. Klink et al. (2014) T & P variability Spring barley and oat yield Statistical-based model 

18. Paudel et al. (2014) Rainfall/T Small-holder agriculture Statistical/ survey 

19. Milan & Ruano (2014) Rainfall variability Corn-based cropland system Survey 

20.  REMO HadRM3 model Rice, wheat yield (LAI) DSSAT model 

21. Kassie et al. (2013) T/ rainfall  Survey-small holder farmers 

22. Traore et al. (2013) maximum and minimum T / dry days Crop yield Statistical-based model 

23. Hawkins et al. (2013) Heat stress French maize yield Statistical/ prediction 

24. Persson et al. (2012) NAO index Winter wheat-frost injury FROSTOL model 

25. Armah et al. (2011) Rainfall Millet, sorghum production Markov chain, fuzzy model 

26. Kristensen et al. (2011) 9 agro-climatic indices Winter wheat yield Mixed regression model 

27. Conway & Schipper (2011) Rainfall behavior Crop production/ GDP Statistical-based model 

28. Traoré et al. (2011) GCMs Millet, sorghum yield SARRAH simulation model 

29. Tao, Yokozawa, et al. (2009) CO2 Crop productivity MCWLA crop model 

30. Alves et al. (2009) SST/ Nino-3/dipole index Crop production, area, yield Statistical-based model 

31. Potgieter et al. (2016) Drought conditions Sorghum, wheat yield Statistical-based model 
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32. Wang et al. (2016) Drought stress/Aeration stress Crop yield SWAT model Crop phenology 
response 

33. Broich et al. (2015) -- Land surface phenology Remote sensing product 

34. Marta et al. (2010) NAO index/ conventional indices Grapevine phenology Regression analysis 

35. Hakala et al. (2012) Rainfall/ T Diversity among varieties Statistical-based model Crop varieties 
response 

36. Tao & Zhang (2013) CO2/temperature stress MCWLA-Wheat yield/ET Ensemble model Photosynthesis 

37. Estrada et al. (2012) Climate uncertainty Coffee production/ income Risk value assessment Uncertainty  

38.  CO2/GCMs Maize production MCWLA crop model 

39. Klein et al. (2012) -- Farm accountancy CropSyst model Model 
calibration and 
validation 40. Dosio & Paruolo (2011) RCMs-T/P -- ENSEMBLES 

41. Tingem et al. (2009) -- Observed yields CropSyst model 

42. Lobell & Asseng (2017) T/ P/ CO2/ ozone Crop yield Process and statistical based Model 
comparison and 
integration 43. (Rosenzweig et al. (2013)) -- -- AgMIP project 

44. (Reidsma et al. (2010)) Warmer climate Crop yield/ farmer’s income Statistical analysis Adaptation 

* Abbreviations: (in ‘Climate indicator’ column) GRACE-Gravity Recovery and Climate Experiment; TWS-Terrestrial Water Storage; SPEI-(Standardized Precipitation and 
Evapotranspiration Index; GCMs-General Circulation Models; MIROC3.2 HI-Model for Interdisciplinary Research on Climate, Japan; PRECIS-Providing Regional Climates 
for Impact Studies; VPD- vapour pressure deficit; REMO- Regional Model, Max-Plank Institute for Meteorology, Hamburg, Germany; HadRM3- Hadley Regional Model, 
Hadley Centre for Climate and Meteorology, UK; NAO- North Atlantic Oscillation; SST-sea surface temperature; RCMs- regional climate models. (in ‘Crop indicator’ column) 
APSIM- Agricultural Production Systems Simulator; ET- evapotranspiration; Agro-IBIS- a dynamic global vegetation model adapted from the Integrated Biosphere Simulator; 
LAI-leaf area index; GDP- Gross domestic product. (in ‘Methodology’ column) CMIP5-Coupled Model Intercomparison Project Phase 5; DSP- discrete stochastic programming; 
PDF- probability distribution functions; DSSAT-Decision Support System for Agro-technology Transfer; FROSTOL- a model to simulate the frost tolerance of crops; 
SARRAH- Syst`emed’Analyse R´egionale des Risques Agroclimatiques, version H crop simulation model; MCWLA- Model to capture the Crop–Weather relationship over a 
Large Area; SWAT- Soil and Water Assessment Tool; ENSEMBLES- Europe developed in the framework of the European Union 6th Framework Programme project; AgMIP- 
Agricultural Model Intercomparison and Improvement Project. 
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Chapter 3. Spatial prediction of rainfed grain yield based on remote 

sensing gross primary production estimates 

Highlights 

 The linkage between statistical data and satellite-based dataset were quantified. 

 Prediction models of spatial grain annual yield using monthly GPP were built. 

Abstract 

Spatiotemporal prediction of rainfed agricultural yields as affected by climate variability 

continues to be a challenging task. This study related satellite-based gross primary 

production (GPP) estimates to reported agricultural yields for Australia. This study 

investigated the relative advantages of regression in prediction. The dataset from 

Australian Bureau of Statistics (ABS) (annual data; 2000-14; State scale) are considered 

as representative of actual agricultural yields across the Australian cropping belt. Monthly 

GPP data from 2000-14 with a spatial resolution of 0.05° is applied for the analysis. Here, 

considering crops types and the growing season across the rainfed cropland belts in 

Australia, August and September months are specified as optimum triggers for yield 

prediction (Growing season between June to November). The results showed that it is 

feasible to predict agricultural yields across our study area of the State of New South 

Wales (NSW), with an average error of estimations less than 10%. Nonetheless, to reach 

more accurate results, further research is needed. 

Key Words 
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Spatial prediction, satellite-based GPP, agricultural productivity, stepwise regression 

approach 

3.1 Introduction 

Global food demand is expected to increase by at least 60% by 2050, requiring 

corresponding increases in crop production. Australian wheat yields have stalled during 

the last two decades, mainly due to increased water stress from declining precipitation 

and rising air temperature (Hochman et al., 2017). From 2000 to 2013, Australian 

croplands veered from prolonged water stress conditions during the Millennium Drought 

(2002-2009) to very wet conditions during the ‘Big Wet’ (2010-12) (Cleverly et al., 2016; 

Van Dijk et al., 2013). This resulted in annual nation-average cereal yields varying 

between 0.6 to 2.6 tons/ha, with an average of 1.7 tons/ha (ABS, 2017). In general, 

agriculture in Australia follows reactive approaches for agricultural activities. However, 

a few attempts have been made to proactively estimate agricultural yield based on the 

spatial conditions at early stages of crop growth (Ray et al., 2015). 

Agronomists define cereal crop productivity as crop biological yield, grain yield and 

harvest index under certain plant density (Donald & Hamblin 1976). In actual practices, 

farmers and scholars evaluate crop productivity by grain yield (Y) (Lobell et al. 2011; 

Thompson 1975). In field studies, grain yield is normally calculated by number of grains 

per square meter multiply weight of 100 grains in grams (Bugbee & Monje 1992), and 

statistic year books often generally take crop annual yield as the quotient of total grain 

weight (P) divided by harvested acreage (cropping area, A) within one political unit 

boundary (Porter et al. 2014). In research, crop grain yield was further narrowed into 

potential, attainable and actual yield based on crop growth environmental driving factors 
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(Rabbinge 2007). The gaps between attainable and potential yield is determined by the 

accessibility of soil water and nutrients and between actual yield and attainable yield  

based on conditions of pests, weeds, and diseases (Yu et al. 2014). Future climate change 

is expected to modify regional soil moisture endowments (Calzadilla et al. 2013), and the 

limitations of soil moisture determine the level of crop attainable yield and could increase 

the risk of agricultural loss, especially for rainfed cropping systems (Calzadilla et al. 

2013). Considering the variation of different cereal crop species and their mechanical 

properties (Gliński 2011), it is impractical and costly to enumerate each crop species in 

every field site across the whole Australia cropland belt. 

Converting the vegetation productivity to a unified dimension is one of the most 

challenging tasks. Focusing on this, efforts have been done in many aspects. In a 

socioeconomic perspective, Lampe et al. (2014) introduced a weighted average price 

index to compare the outcomes of 10 different global economic models in different 

scenarios on various economic behaviour and biophysical drivers. Costanza (1998) also 

calculated the world’s total natural capital by estimating the separated 17 ecosystem 

functions, which contribute to human welfare both directly and indirectly, including food 

production and nutrient cycling. In an energy aspect, Odum et al. (2000) introduced the 

concept of ‘emergy’ for ecological systems. Their accounting method allows us to 

integrate natural capital and man-made capital by using a consistent energy unit (Wang 

et al. 2014). Those methods show great advantages in estimation of cropland productivity. 

However, when it comes to explicit spatial cropping factors, there are still limitations in 

the regional based calculations that cannot adequately reflect the spatial heterogeneity in 

crop productivity.  
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To overcome the disadvantages, many studies turned to estimate the biological yield 

using various variables derived from remote sensing real-time multi-spectral information 

(Tao et al. 2005), measure the spatial-temporal gross primary production (GPP) or net 

primary production (NPP) by incorporating remote sensing fraction of absorbed 

photosynthetically active radiation (fAPAR) products and crop light-use efficiency model 

(Lobell et al. 2003; Monteith & Moss 1977; Ruimy et al. 1994; Yebra et al. 2015). 

Because the growing season GPP (g C m−2 yr−1) is directly related to crop dry biomass 

matter by multiplying the harvest index (ratio of grain mass to total dry mass), the crop 

biomass allocated to edible products (grain yield) can be obtained (Elliott et al. 2015; 

Iizumi et al. 2014; Lobell et al. 2003; Reeves et al. 2005). In terms of the relationship 

between GPP derived grain yield and field observation (or national and subnational 

statistics), there is a strong positive linear correlations (Iizumi et al. 2014; Lobell et al. 

2003), although the correlation coefficients slightly vary for crops in different levels of 

nitrogen treatment (Lobell et al. 2003).  

Thus, this study obtained the monthly 0.05° Global (non-forest vegetation) GPP datasets 

for Australia (Yebra et al. 2015) as the explanatory variable to estimate vegetation 

productivity across the Australian rainfed belt. The GPP dataset encompasses the spatial 

variation of predicted agricultural grain yield. The linear regression fit coefficients 

between State-wise statistical actual yield and the monthly GPP value averaged over 

rainfed cropping and pasture grid cells (respectively) from year 2000 to 2013 were 

calculated for each State. Therefore, the crop productivity temporal variation in my 

approach basically followed those in the Australia Bureau of Statistics (ABS) State-wise 

data, as well as those in GPP dataset. 
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The objectives of this approach are: 1) to quantify the linkage between statistical data and 

the productivity estimation derived from remote sensing; 2) to examine the possibility of 

forecasting crop grain yield from monthly satellite-based GPP data across Australian rain-

fed cropping and pasture land use belt.  

3.2 Study area and data processing 

3.2.1 Study area 

This approach focuses on the rainfed cropping and pasture land use belts, extending from 

north-east to south-west Australia (Figure 3.1a). The distribution of rainfed agriculture 

and pasture was derived from the Dynamic Land Cover Data (version 2), which is 

produced by Geoscience Australia (Lymburner et al., 2010). The cropping belt 

experiences temperate to subtropical climate conditions, with a mean annual temperature 

of 14°C to 26°C and annual precipitation of 250 mm to 1500 mm (Dan et al., 2007). Based 

on the modified Köppen climate classification (Peel et al., 2007), the major classes are 

identified predominantly on native vegetation types, with six major groups and 27 sub-

groups of climate zones across Australia (Figure 3.1b). 

The 250m Australian land cover dataset is produced based on an analysis of 16-day EVI 

composite at 250 metres resolution using the MODIS satellite during 2002 - 2014.  Its 

classification show a high degree of consistency with extensive independent field based 

datasets (Lymburner et al. 2010). I extracted the pixels which were identified as rainfed 

cropping and rainfed pasture as my study area. 

The Australian rainfed farming area extends as a crescent alone western, southern, south-

eastern, and eastern mainland Australia (Figure 3.1). It covers Köppen climate zones of 
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temperate, grassland, and subtropical and characterized by large spatial variation of 

climate conditions (Figure 3.1). 

 

Figure 3.1 Australian rainfed cropping and pasture land use belt (left) and Australian 
major climate zones based on Köppen classification (right) 
* Abbreviations: WA-Western Australia; NT-Northern Territory; SA-South Australia; 
QLD-Queensland; NSW-New South Wales; ACT-Canberra; TAS-Tasmania. 

 

3.2.2 Grain annual yield 

Crop grain production per unit area (yield) is the fundamental metric in agricultural 

research (Iizumi et al. 2014). This study obtained the grain yield datasets from Australia 

Bureau Statistics (ABS) (http://www.abs.gov.au/).  Grain yield (wheat, barley, oats and 

cereal), Hay yield, and cattle number (meat cattle, milk cattle, sheep) of each State, across 

the rainfed farming area, from 2000 to 2013 were combined by reviewing agricultural 

commodities information from respective crop statistic year. Planting wheat is the major 

farming activity across Australian rainfed cropland. Pasture cropland are supposed to 
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raise cattle, sheep and other feed animals. Therefore, wheat, barley, oats and cereal (crop 

species summed-up production/ summed-up area) yields were selected as the ground truth 

cropland productivity proxies in each State each year. And the increment numbers 

(number of current year minus number of previous year) of meat cattle, milk cattle, sheep 

in stock and hay yield (hay production divided by hay area) as the pasture land 

productivity proxies. 

3.2.3 Monthly Gross Primary Production product 

The Global vegetation GPP (non-forest) dataset for Australia was collected from the 

Australian National Computational Infrastructure data collection (http://nci.org.au/) and 

provided by Australian Water and Landscape Dynamics group, Australian National 

University (OzWALD, http://www.wenfo.org/wald/). This dataset derived from MODIS 

remote sensing used an effective method considering radiation and canopy conductance 

limitations on GPP (Yebra et al. 2015). And it is provided as monthly cumulative GPP 

(in g C/m2) (2000-14) at a spatial resolution of 0.05° (accessible via 

http://www.wenfo.org/wald/data-software/ ). These GPP estimates have shown stronger 

or similar correlation to local GPP estimates from flux towers than current alternative 

GPP products (Yebra et al., 2015). 

3.3 Methodology 

In this study, a stepwise approach with goodness-of-fit of Bayesian Information Criterion 

(BIC) was considered for all regression models (both linear and nonlinear regressions (i.e. 

quadratic regressions) are examined). This combination not only focuses on the accuracy 

of forecasts but also tries to keep regressions as simple as possible. To address the limited 

http://www.wenfo.org/wald/data-software/
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data, a bootstrapping approach with 5000 simulation repetitions was applied, where for 

each simulation, 75% of data are randomly assigned to the calibration-verification stage 

and 25% has been allocated to the validation stage (Figure 3.2).  

 

 

Figure 3.2 Bootstrapping method to estimate model coefficients  
* Example for Victoria cereal yield estimation using September GPP as predictor. 

 

The correlations and regressions were between annual-mean GPP and ABS annual yield, 

and monthly-mean GPP and ABS annual yield respectively for separate species in each 

State. The GPP values were averaged over the pixels which were identified as cropland 

and pasture land respectively each year from 2000 to 2013 for each State.  

3.4 Results and Discussion 

3.4.1 Correlation between GPP and agricultural annual yield in Australia 

As noted, several species of cropland and pasture land products from the ABS yearbooks 

were selected to represent the actual agriculture productivity respectively. By correlating 
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them with corresponding GPP values separately, we can find the best fit agriculture 

productivity proxy to convert GPP into crop grain yield for cropland, and pasture yield 

for pasture land. 

Figure 3.3 shows that, different species in different States have different correlation 

performance between their yield and Annual-mean GPP: In western Australia, only meat 

cattle increment number has significant correlation with GPP; Hay yield was significantly 

negatively correlated with GPP in Queensland, but significantly positively correlated with 

GPP in Victoria; Milk cattle increment number has no significant correlation with annual 

GPP in any of the States during 2000-2013. In NSW, SA and VIC, all the crop species 

correlated well with annual GPP. These indicate that, in terms of correlation with annual 

GPP, crop proxies perform better than the pasture proxies. 

 

Figure 3.3 Correlation matrixes between annual-mean GPP and ABS annual yields  
* In the left matrix: black cells, p<0.01; blue cells, p> 0.05; cyan cells, p<0.1, marginal 
significant; yellow cells, p>0.1, no significant. 
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Admittedly, such remarkable differences were caused by diverse geophysical areas and 

annual average GPP have no information concerning crop growth conditions. Because 

different species have inconsistent growing season, and the same species have different 

growing season in different States, I therefore had tests on the correlations between 

agricultural annual yield and monthly GPP for each species in each State were therefore 

tested.  

 

Figure 3.4 Correlation matrixes between monthly-mean GPP and ABS annual yield  
* Each matrix plot represents the conditions in each month from January to December. 
Green and cyan cells, p>0.1, no significant; other color cells, p<0.1, significant or 
marginal significant. 

 

The monthly GPP and ABS yield correlation matrices (Figure 3.4) show that, the months 

of most significance and marginal significance correlation between GPP and annual yield 

were in the last half of a year, especially from August to December, which can be seen as 
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the major cropping season across Australia rainfed farmland belt, and this fact is 

consistent with the report from the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES, www.abares.gov.au, 2013) and literature (Wang et 

al. 2015; Zheng et al. 2012). Average Australian major growing season starts in late May 

and ends during December. There are two months of winter time from June to July for 

crop seeds to establish from sowing date to stems tillering and booting. August and 

September are the best and earliest two months to monitor aboveground cropland 

vegetation biomass (GPP) at the first half of growing season from remote sensing. 

Because from these months, cropland vegetation reached the highest density that allow 

remote sensing radiometer sensors to capture the most of photosynthesis information. 

During August and September, wheat and cereal grain yields in the States Western 

Australia, New South Wales and Victoria were significantly correlated with cropland 

monthly GPP (Figure 3.4), while nevertheless none of the pasture proxies and pasture 

land GPP were significantly correlated. The pasture land yield proxies in this study were 

the increment number of milk cattle, meat cattle and sheep in stock each year, and hay 

yield. Cattles and sheep are fed by pasture land weeds, their numbers are indirectly 

correlated and insensitive to pasture land vegetation biomass (GPP). In terms of hay yield, 

Australian pasture lands have diverse pasture species planted at the same time and their 

growing season extends over a whole calendar year. No dominant species that produce 

more than 50% of the annual hay total production regionally and nationally 

(www.abares.gov.au, 2013), this caused the non-significant correlation between ABS 

State-wise annual hay yield and annual and monthly GPP.  

Based on the statistics of ABS, Western Australia, New South Wales, and Victoria 

together produce more than 75% of the nation’s total cereal productions. Therefore, the 
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prediction model was built only in these three States, and used August and September 

monthly-mean GPP as separate predictors to estimate cereal grain yield for each rainfed 

cropland pixel. 

3.4.2 Model development using Monthly GPP to forecast Annual yield 

Table 3.1 listed the cereal yield estimation equations for WA, NSW and VIC rainfed 

croplands using August and September monthly-mean GPP as predictor. The Root Mean 

Square Error (RMSE) of all the models developed were limited to 0.25 t/ha, compared to 

the average cereal yield across Australia cropland belt, 1.7 t/ha, the magnitudes of the 

errors in my models using pixel monthly GPP to predict cereal yield are 14.7%. 

Table 3.1 Cereal yield models for three States  

State Month Equation R2 P value RMSE(t/ha) 

WA Aug Y = 0.96 * GPP + 0.71 0.37 0.021 0.08 

Sep Y = 0.73 * GPP + 0.89 0.29 0.045 0.09 

NSW Aug Y = 0.6 * GPP + 0.74 0.31 0.038 0.25 

Sep Y = 0.45 * GPP + 0.87 0.59 0.001 0.15 

VIC Aug Y = 0.72 * GPP + 0.59 0.40 0.015 0.22 

Sep Y = 0.56 * GPP + 0.55 0.74 0.000 0.10 

* Y-agricultural annual grain yield 

In terms of correlations, regressions show promising results stating that general behavior 

of Annual grain yield can be approximated reasonably by GPP values in early growing 

season months (August, and September). Nonetheless, error magnitudes in some cases 

are not negligible (i.e. RMSE=0.25 t/ha in NSW based on August GPP values). 

Simultaneous consideration of both goodness-of-fit criteria can imply that estimating 

annual grain yield would be more accurate in case of benefitting GPP values in 

Septembers. In addition to temporal estimations of actual agricultural yields, since GPP 
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data contains the attribute of spatial variation, it is practical to use the derived regressions 

to downscale the actual agricultural yields data from State resolution to grid cell sizes (at 

current study, 0.05° identical to GPP spatial resolution). 

3.5 Conclusion 

This approach focused on bridging between monthly GPP (as an indicator of crop growth 

condition) and actual annual agricultural yield across Australian rainfed farmland belts. 

The main motivation was the fact that currently, actual agricultural yield datasets have 

coarse spatiotemporal resolutions (i.e. ABS datasets: annual, State-wide dataset) which 

can be estimated in finer resolutions (monthly, 0.05o) via the proposed methodology. 

Results were promising in estimating annual agricultural yield in cropping land across 

three States of NSW, VIC, and WA. Therefore, although the current methodology will 

not appropriately be applicable in agricultural business-economy (in which more accurate 

estimations of supply/demands are required), it can conservatively help agricultural 

decision makers to have estimations of potential produced crops affected by water and 

heat stress, which is highly critical to the field of food security in Australia. 

The main limitations and difficulties of this study were: 1) availability of actual 

agricultural yield datasets only for a 14-year period, since 2000. 2) the lack of a reliable 

and comprehensive proxy for determining actual pasture productivities. 3) high 

complexity and diversity in crop types, land use, natural geography and climate 

conditions across the study area (even over each State). 4) available uncertainties/errors 

in GPP data as modelled based datasets.  
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The main future directions consist of: 1) concentrating on selected local areas at different 

States to increase the level of homogeneities in climate conditions, land use and crop 

types, 2) re-implementing the methodology with up-to-date datasets to investigate the 

footprint of recent water and heat stress in agricultural productivities as well as the 

performance of proposed methodology. 3) evaluating the influence of applying more 

complicated models in predictability of proposed methodology. 
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Chapter 4. Diverse sensitivity of dryland winter crops over the growing 

season to climate and land surface temperature 

Highlights 

 A new perspective to understand and quantify the observed impacts of climate 

variability on crop growth at every 8-day time slice from space was provided. 

 MODIS Enhanced vegetation Index (EVI) is able to illustrate crop growth cycle and 

productivity in broad-acre rainfed cropping systems in eastern Australia. 

 Land surface temperature (LST) was introduced to be an effective factor that integrates 

the complex interactions among rainfall, air temperature and solar radiation in large-scale 

dryland crop-climate relationship study. 

 The key 8-day “sensitive windows” during the crop growth cycle, prone to climate and 

LST variability, were identified for the eastern Australian rainfed cropland-belt. 

Abstract 

The rainfed cropland belt in Australia is of great importance to the world grain market 

but has the highest climate variability of all such regions globally. However, the spatial-

temporal impacts of climate variability on crops during different crop growth stages 

across broadacre farming systems are largely unknown. This study aims to quantify the 

contributions of climate and Land Surface Temperature (LST) variations to the variability 

of the Enhanced Vegetation Index (EVI) by using remote sensing methods. The datasets 

were analyzed at an 8-day time-scale across the rainfed cropland of eastern Australia. 
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First, EVI values were more variable during the crop reproductive growth stages than at 

any other crop life stage within a calendar year, but nevertheless had the highest 

correlation with crop grain yield (t ha-1). Second, climate factors and LST during the crop 

reproductive growth stages showed the largest variability and followed a typical east-west 

gradient of rainfall and a north-south temperature gradient across the study area during 

the crop growing season. Last, two critical 8-day periods were identified, beginning on 

day of the year (DoY) 257 and 289, as the key ‘windows’ of crop growth variation that 

arose from the variability in climate and LST. The results show that the sum of the 

variability of the climate components within these two 8-day ‘windows’ explained >88% 

of the variability in the EVI, with LST being the dominant factor. This study offers a fresh 

understanding of the spatial-temporal climate-crop relationships in rainfed cropland and 

can serve as an early warning system for agricultural adaptation in broadacre rainfed 

cropping practices in Australia and worldwide. 

Key Words 

Climate variability; MODIS EVI; crop growth stages; land surface temperature; rain-fed 

croplands; eastern Australia
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Chapter 5. Dynamics of light-use efficiency using satellite solar-induced 

chlorophyll fluorescence and the enhanced vegetation index 

Highlights 

 GOME-2 solar-induced chlorophyll fluorescence (SIF) and the MODIS enhanced 

vegetation index (EVI) can be used in large-scale light-use efficiency (LUE) monitoring. 

 Spatial pattern of LUE seasonality (2007-2016) were not consistent with seasonality in 

the spatial patterns of land surface temperature (LST), EVI, nor SIF. 

 The optimum LST range for satellite-based LUE across Australian rainfed cropland 

belts were identified as 16.6-17.6 °C during August. 

Abstract 

Crop light-use efficiency (LUE) is sensitive to water and heat stress. Consequently, 

continuous and accurate estimating cropland LUE can serve to provide early warning 

detection of crop water and heat stress, and therefore can be used to assist in forecasting 

crop productivity. Space-based monitoring of sun-induced chlorophyll fluorescence (SIF) 

and the MODIS enhanced vegetation index (EVI) provide direct measurement of 

cropland vegetation photosynthetic activity and vegetation greenness, respectively. This 

Chapter explored the potential to remotely monitor real-time LUE by calculating the ratio 

of photosynthetically active radiation (PAR) normalized SIF to EVI. This calculation was 

applied to demonstrate spatial patterns and temporal dynamics of LUE in response to land 

surface temperature (LST) across Australian rainfed croplands (2007-2016). LST was 

used to provide an integrated measure of vegetation heat and drought stress in this study. 
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The findings are: spatially, LUE tends to be higher in the geographical middle zones with 

a mild range of LST level across Australian croplands, than either the hotter northern 

regions and the colder southern regions; temporally, there was a seasonal hysteresis of 

LUE in response to surface temperature change throughout the winter crop growing 

season. The results of one-way ANOVA and post-hoc tests revealed that the optimum 

LST range for satellite-based LUE were 16.6-17.6 °C during August. Pixels with 

optimum LST across the 10-year sampling period (August of 2007-2016) were distributed 

in the South-Middle to Middle zones of the Australian rainfed croplands. Practically, 

these results provide new opportunities for large-scale cropland heat and drought stress 

detection, and theoretically, for remote analyses of the photosynthetic activities across 

diverse spatial-temporal scales. 

Key words 

Solar-induced chlorophyll fluorescence, enhance vegetation index, land surface 

temperature, light-use efficiency, rainfed croplands 

5.1 Introduction 

Estimation of large-scale vegetation light-use efficiency (LUE) has both theoretical and 

practical significance. The LUE model is a physiological model originally conceptualized 

by Monteith (1972, 1977), and since then (adopted by researchers in the fields of carbon 

and water flux estimation and remote sensing.  Gross primary production (GPP) is mainly 

determined by the amount of photosynthetically active radiation (PAR) absorbed by 

vegetation (APAR) (Gitelson et al. 2015). Light-use efficiency (LUE) describes the 

efficiency of conversion of absorbed light to fixed carbon, that is, GPP. Continuous and 
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accurate monitoring of cropland APAR and LUE not only can forecast crop productivity, 

but also provides insight to better understand responses of crop photosynthesis to 

environmental change, and thereby provides information about the impact of climate 

variability on crop productivity.  

In most current GPP estimation models, LUE is often calculated by down-regulating the 

maximum LUE with scalars of water and heat stress (Dong et al. 2015; Sims et al. 2008), 

or parameterized as function of meteorological parameter for a given biome (Running et 

al. 2004; Wang et al. 2010; Xiao et al. 2008). In these cases, LUE models must heavily 

rely on the parameterizations of many physiological limiting factors. The more factors in 

the model, the more measurements and calibrations are required. As a result, this can 

make the model more complex and consequently create more systematic errors.  

Physiologically, LUE can be affected by a number of processes (Gitelson & Gamon 2015), 

ranging from chlorophyll pigment composition, enzyme kinetics, changes in stomatal 

conductance (Gamon & Qiu 1999; Yan et al. 2017), changes in  leaf  and canopy structure, 

vapour pressure deficit, and drought stress  (Dong et al. 2015). Consequently, LUE varies 

dynamically over multiple temporal and spatial scales because of changing environmental 

conditions.  This fact makes it difficult to continuously and rapidly parameterize all the 

changing environmental variables throughout the life span of vegetation. 

To overcome these limitations, efforts have been made to passively estimate LUE and 

vegetation activities entirely from remotely sensed variables without any ground-based 

inputs. These include the MODerate-resolution Imaging Spectroradiometer (MODIS)-

GPP model (Running et al. 1999; Zhao et al. 2005), and a Vegetation Photosynthesis 

Model (VPM) (Xiao et al. 2004; Xiao et al. 2005; Yan et al. 2009). However, the LUE 
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values of MODIS-GPP models were obtained from look-up tables for individual 

vegetation types within each pixel. The EVI-based models rely on two key factors: Land 

Surface Temperature (LST) and EVI. The optimum temperature for the relationship 

between photosynthesis activity and LST was  set to be 30 °C based on  research by  Berry 

& Bjorkman (1980). However, it is still unclear to what extent the optimum LST range 

changes seasonally. While EVI is effective for measuring vegetation greenness, canopy 

chlorophyll, and water content (Huete 2012; Xiao et al. 2005; Yang et al. 2013), it is 

apparent that photosynthetic activities can be highly variable despite vegetation greenness 

remaining constant. Thus, EVI-based models tend to either overestimate the length of the 

photosynthetically-active periods (Joiner et al. 2014), or underestimate the impacts of 

temporal variation in optimum LST.  

A newly emerging space-borne retrieval, Solar-Induced Fluorescence (SIF) holds great 

potential for advancing the capacity to directly measure the photosynthetic status of 

vegetation (Guan et al. 2016; Jeong et al. 2017; Joiner et al. 2014). Photosynthetic activity 

generates fluorescence, and the excitation-energy for this process is provided by sunlight. 

The emission of chlorophyll fluorescence has two peaks near 685 and 740 nm in the red 

and far-red wavelengths, respectively (Campbell et al. 2008; Joiner et al. 2011). At the 

canopy level, satellite SIF can be expressed as an integral of contributions over all 

excitation wavelengths from all the active chlorophyll photosynthesis. Therefore, satellite 

SIF signal contains not only leaf level photosynthesis activity, but also information about 

canopy structure, canopy chlorophyll content, and canopy greenness  (Yang et al. 2017). 

The aims of the study were to: 1) Approximate light-use efficiency (LUE) remotely across 

broadacre rainfed croplands using satellite Solar-Induced chlorophyll Fluorescence (SIF) 

and enhanced vegetation index (EVI); 2) characterize seasonal dynamics of the remote 
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sensed measurements of winter wheat cropland in Australia; 3) examine the spatial-

temporal performance of LUE in response to Land Surface Temperature (LST) during the 

crop growing-season.  

5.2 Material and methods 

5.2.1 Obtaining LUE from SIF and EVI 

Current work (Guan et al. 2016; Guanter et al. 2014; Joiner et al. 2014)  defines  Solar-

Induced Fluorescence (SIF) as: 

)()()(  escF fLUEfPARPARSIF =                                     (5.1) 

Where λ is the excitation wavelength (~740 nm in the GOME-2 retrievals as described in 

the following section). PAR is the flux of photosynthetic-active radiation at the top of the 

canopy and the term fPAR is the fraction absorbed of PAR. Thus, the product of PAR 

and fPAR is APAR, the absorbed photosynthetic-active radiation by vegetation (Monteith 

1977). FLUE is a light-use efficiency for SIF, which is the efficiency of fluorescence 

photons re-emitted from APAR. And )(escf  is the fraction of fluorescence photons 

escaping from the canopy surface. Experiments have shown that the ratio of PLUE to

)(FLUE  remains relatively constant under strong sun illumination, such as in the late 

morning when many space-borne observations are made (Berry et al. 2012; Joiner et al. 

2014): 

  𝐿𝑈𝐸𝑃 = 𝐿𝑈𝐸𝐹(𝜆) × 𝑎                                                            (5.2) 
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Where PLUE is the term light-use efficiency that I am monitoring in this study, which is 

the efficiency of carbon uptake per unit APAR. In current reflectance-based GPP 

estimation models, the Enhanced Vegetation Index (EVI) is an effective measurement for 

canopy chlorophyll content, the fraction of PAR within the photosynthetic-active period 

is estimated as a linear function of EVI with a coefficient of 1.0 (Garbulsky et al. 2008; 

Lobell et al. 2002; Xiao et al. 2004; Xiao et al. 2005; Yan et al. 2009).  Thus:  

EVIEVIfPAR =)(                                                                   (5.3) 

The reflectance signature of green leaves shows minimal absorbance in the near-infrared 

wavelengths (Gitelson & Merzlyak 1996). Therefore, 1)( escf was assumed. Therefore, 

we may expect the PLUE  to be simply estimated as: 

  𝐿𝑈𝐸𝑃 =
𝑆𝐼𝐹(𝜆)𝑃𝐴𝑅

𝐸𝑉𝐼
× 𝑎                                                      (5.4) 

Where PARSIF )( is the PAR normalized satellite solar-induced fluorescence. a is the 

constant ratio of PLUE to )(FLUE , which can be calibrated by field observations 

(Verma et al. 2017; Zhang et al. 2016). The exact value of a will not influence the 

comparisons of LUE in diverse spatial temporal scenarios. Thus, we assumed a equals to 

1 and examined the spatial distribution and temporal dynamics of LUE in this study. 

5.2.2 Statistical analyses  

In previous studies, LUE was down-regulated as function of temperature and drought 

stress from a maximum value of LUE. Land surface temperature measurements by 

infrared thermometry can adequately estimate the integral stress from those 
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meteorological variables, without explicitly considering each of them (Idso et al. 1977; 

Sims et al. 2008). Land surface temperature is a measurement of earth “skin” temperature 

rather than air temperature, and is commonly used in plant physiological studies 

(Sandholt et al. 2002). The change of evapotranspiration rate is an integrated result of the 

change of meteorological factors such as rainfall, air temperature, and solar radiation.  

Hereafter, LST was used as an integrator of crop temperature and drought stress. One-

way analysis of variance (ANOVA) (Welch 1951) was performed to determine whether 

there were  any statistically significant differences among the means of satellite SIF-

derived LUE with different LST values. If the one-way ANOVA test gives a significant 

result, Tukey's honestly significant difference (HSD) post hoc test (Salkind 2010) was 

applied  to examine all pairwise comparisons between the LUE means across every LST, 

and identify all differences between any two LUE means that is larger than the expected 

standard error.  

5.2.3 Applications across Australian croplands 

Here, the approach was applied to study spatial patterns and temporal dynamics of 

satellite SIF-derived LUE across Australian rainfed croplands, where there is a distinct 

seasonality of vegetation both in greenness and in photosynthesis (Figure 5.1). 
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Figure 5.1 Australian rainfed croplands in different levels of spatial resolution (left) and 
the spatial groups of testing pixels (right) 
* The white to green colour range in the left panel is the 10-year (2007-2016) mean 
MODIS EVI map during September. Western Australia (WA), South Australia (SA), 
Victoria (VIC), New South Wales (NSW), Queensland (QLD), and Northern Territory 
(NT) are the 7 States and Territory in Australia. The five groups between the transects for 
each of the major Australian cropland belts in the right panel were designated as: 1) 
Southern, (2) Southern-Middle, (3) Middle, (4) Northern-Middle, and (5) Northern zones. 

 

5.2.3.1 Land use classification 

The remote sensing datasets used in this study were obtained at two different spatial 

resolutions.  Figure 5.1 shows the extent of Australian rainfed croplands across these two 

levels of spatial resolution. The Dynamic Land Cover Dataset (DLCD verison 2) for 

Australia was obtained from Geoscience Australia (http://www.ga.gov.au/). This dataset 

is based on an analysis of a 16-day MODIS EVI composite at a 250-meter resolution 

during 2002-2010 (Lymburner et al. 2010). The dataset distinguishes rainfed cropland 

from irrigated cropland in Australia and shows a high degree of consistency (93%) with 

extensive independent field-based investigations. To select effective rainfed cropland 

pixels in 0.5°×0.5° resolution, the 250-meter resolution land use classification map was 
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resampled by using the majority resampling method. The majority land cover type (>75%) 

within each larger (0.5°×0.5°) pixel is attributed as the land cover type of the certain pixel.   

Based on the resampled map, 111 pixels were identified which were classified as rainfed 

cropping in the study area. The Australian rainfed cropping area extends across Western 

Australia (WA), South Australia (SA), Victoria (VIC), New South Wales (NSW), and 

Queensland (QLD), and comprises two belts along western and eastern Australia, 

respectively. 

5.2.3.2 Satellite SIF retrievals 

The purpose of resampling the fine resolution map to a coarse one (red boxes in Figure 

5.1) across Australia rainfed croplands was to allow comparison with the satellite-SIF 

dataset.  The global satellite-SIF retrievals were obtained from the Global Ozone 

Monitoring Experiment-2 (GOME-2) sensors on board the MetOp-A platform during 

2007-2016 (version 26), and they were processed as 0.5°×0.5° spatial resolution monthly 

dataset with estimated errors of 0.1-0.4 mW m-2 nm-1 sr-1 by Joiner et al. (2013). The 

footprint size of GOME-2 sensors is 40×80 km at nadir, but GOME-2 currently provides 

the longest record of SIF retrieval since 2007. The overpass time of MetOp-A platform is 

at 9:30 am local time, which is close to the window of peak daily photosynthesis across 

Australian croplands (Guan et al. 2016). All the data have been processed by quality-

filtering, and the level 3 global gridded monthly data (0.5°×0.5°) with PAR normalization 

process (Joiner et al. 2013) were used. 

5.2.3.3 MODIS EVI and LST datasets 
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The MODIS monthly 0.05°×0.05° Enhanced Vegetation Index (MOD13C2) (Huete et al. 

2002) and land surface temperature (MOD11C3, version 06) during 2007-2016 were 

downloaded from the Land Process Distributed Active Archive Center (LP DAAC) data 

pool, and were then processed by cloud filtering. Both the MOD11C2 and MOD13C3 are 

located on board Terra, which has the overpass time of 10:30am local time. The digital 

numbers (DN value) of EVI (MOD13C2) images were converted to 0-1, while the DN 

values of LST (MOD11C3) images were converted to °C. 

Figure 5.1 shows the 10-year average EVI in September (2007-2016) across Australia 

with 0.05° spatial resolution. We observed that the September EVI values in the rainfed 

croplands were larger than in the rest of Australia. September is in Australia’s spring 

season, the rainfed croplands are predominantly planted with winter wheat, with a typical 

sowing date from May to July (Bowden et al. 2008). 

5.2.3.4 Eddy flux sites 

There are currently three eddy flux sites located in crop fields in the Australian rainfed 

croplands, as shown in Figure 5.1 and Table 5.1. I collected eddy flux data from the 

OzFlux network (http://www.ozflux.org.au/) (Beringer et al. 2017).  

The original observations have been processed by Dynamic IN-tegrated Gap-filling and 

partitioning for OzFlux (DINGO v13) program to half-hourly time series GPP data 

(Beringer et al. 2017). Monthly flux tower measured GPP were aggregated based on the 

half-hourly GPP data during daytime and during the morning window 09:00 -11:00 am, 

separately. Where, daytime was defined as the half hours that have active carbon uptake 

during a certain day. The purpose to select a morning window from 09:00 to 11:00 am is 
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to keep the consistency of observation time from different sources of satellite data, while 

ensuring the instantaneous flux GPP during that window can estimate daily GPP. 

Table 5.1 Details of the three Australian eddy flux sites 

Name Location 

(Lat/Lon) 

Monitor Period Annual 

Rainfall 

Temperature 

Range 

Land Cover State 

Riggs 

Creek 

-36.6499, 

145.5760 

Jan 2011 - Oct 2015 650 mm 12-26 °C Dryland 

Agriculture 

Victoria 

Ridgefield -32.5061, 

116.9668 

Mar 2016 -Nov 2016 446 mm 5.5 -31.9 °C Dryland 

Agriculture 

Western 

Australia 

Yanco -34.9893, 

146.2907 

Oct 2012 - Dec 2016 465 mm 12- 37 °C Dryland 

Agriculture 

New 

South 

Wales 

 

The footprint of the flux tower measurement (around 1×1 km) is much smaller than the 

footprint of GOME-2 satellite measurements (40×80 km). Therefore, to examine the 

landscape homogeneity around towers, I used MODIS EVIs with 0.05°, 0.1° and 0.5° 

resolutions to regress with flux site observations (GPP) respectively. If there is no big 

change in regression determination coefficients (R2) and the p-values keep significant 

(p<0.01) while changing the EVI from smaller (higher) to a larger (lower) resolution, the 

footprint of the flux tower could reach the larger (lower) one. Otherwise, it would stay in 

the smaller (higher) resolution. 

In this chapter, data processing and statistical analysis were performed in the R 

computation environment, and required packages were obtained from The 

Comprehensive R Archive Network (http://cran.r-prject.org) (RCoreTeam 2013). 
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5.2.3.5 Spatial division of testing pixels 

Rainfall, air temperature and solar radiation are direct growth-defining and limiting 

factors of broadacre crops (Yu et al. 2001). Land surface temperature (LST) measures the 

crop canopy temperature and represents an integral of crop stress from those 

meteorological variables (Shen et al. 2018). To test how EVI, SIF and LUE response to 

LST change, we need to take account spatial and seasonal variations of LST arising from 

predictable seasonal changes in sun incident angle but also variation in water and heat 

distribution across the land surface. Thus, the range of latitudes encompassing the 

selected rainfed cropland pixels were equally divided into five LST zones for each of the 

two major Australian cropland belts (Figure 5.1). The eastern belt includes croplands in 

NSW and VIC, while the western belt only includes WA croplands. The five LST regions 

were then designated as: 1) Southern, (2) Southern-Middle, (3) Middle, (4) Northern-

Middle, and (5) Northern, corresponding to regions from lower to higher mean annual 

temperature.  I then averaged the rainfed cropland pixel values of LST, EVI, SIF, and 

LUE and plotted their seasonal patterns (Figure 5.3) and variability in each LST zone. 

Seasonality was calculated from 10-years of monthly means. 

5.2.3.6 Temporal division of testing pixels 

There were different groups of pixels with different LST values within any given month, 

both spatially and temporally. For example, in August, there were 111 0.5°×0.5° pixels 

across the Australian rainfed croplands covering a range of LST values, as shown in 

Figure 5.1. At each pixel, 10 LST values were recorded in the 10 Augusts from year 2007 

to 2016. Consequently, there were a range of LST values levels during each month, which 

reflect the spatial and inter-annual variations of water and heat condition, and this may be 
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expected to affect LUE.  To examine this, the 1110 spatial-temporal datasets each month 

were divided by percentage quantiles of LST into 10 groups. 

5.3 Results and Discussion 

5.3.1 Footprint calibration for flux sites 

The results of the linear regressions between daytime flux measured GPP with MODIS 

EVI at 0.05°, 0.1° and 0.5° spatial resolutions, respectively (Figure 5.2 a-c) reveal that 

there were slight differences among their regression coefficients. The smaller the spatial 

resolution in EVI, the smaller the slope coefficient, and the larger the R2 value. When 

EVI resolution was 0.5°, the regression R2 dropped from 0.86 to 0.80, and the slope value 

increased by 4.7%. However, all the p-values are statistically significant (p<0.01). Thus, 

variances of flux GPP and EVI with 0.5° can still linearly explain each other 80%. The 

direct comparison of flux derived GPP data with the much larger footprint of remotely 

sensed retrievals at 0.5° spatial resolution produced acceptable regressions for these 

selected eddy flux sites. Australian rainfed croplands are mostly characterized by broad 

acre planting (Hochman et al. 2012; Hochman et al. 2017), and the landscape is generally 

homogenous within several square kilometres. 

Thereafter, the fit of linear regressions between satellite SIFPAR and morning (between 

09:00 to 11:00 am) flux GPP, and daytime Flux GPP were compared respectively (Figure 

5.2 d-e). The determination coefficients, R2, were the same (0.74) and statistically 

significant (p<0.01) between the two regressions. It should be noted that the 

photosynthesis activities between 09:00 and 11:00 am at these three flux sites are able to 

estimate the corresponding daily GPP.
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Figure 5.2 Flux tower footprint calibrations  

* Moring Flux_GPP is the monthly GPP aggregated from half-hourly GPP during 9:00-11:00 am. Daytime Flux_GPP is aggregated during the 

daytime. And SIFPAR is PAR normalized SIF.
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5.3.2 Spatial pattern of satellite-based vegetation measurements 

We found that there was only one major crop growing season across both of the Australian 

rainfed cropland belts, from June to November, based on canopy greenness (EVI) 

monthly seasonality curves (Figure 5.3c, d). The start and end dates of each growing 

season were consistent among the five LST zones, which indicates that spatial variation 

of LST did not have any significant impact on cropland phenology at a monthly temporal 

resolution. The EVI values peaked in September across all the zones in the eastern belt 

(NSW and VIC) and the Southern zone in the western belt (WA).  Peaks in EVI were 

observed in August across all the other zones in WA. 

We also observed that the LST curves showed a gradient in spatial pattern of water and 

heat conditions from North to South across Australian rainfed croplands (Figure 5.3a, b). 

In the western belt, seasonality curves of surface temperature in the five LST zones were 

gradually reduced from North to South without intersecting throughout the year. In 

contrast, in the eastern belt, February (a summer month) temperatures were the same 

among the five LST zones. The colder the surface temperature, the larger the 

differentiation among the growing season months of the regions. These characterize the 

various spatial patterns of surface water and heat conditions across the cropland belts.  

The results further show that there was also only one major cycle of increasing, peak and 

decreasing rates of photosynthesis from around June to November with minimal variation 

among those LST zones (Figure 5.3e, f). The PAR normalized SIF peaks in August in 

Northern and Northern-middle zones of the eastern cropland belt and in all the zones of 

the western belt. 
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Figure 5.3 Spatial patterns in 10-year mean seasonality of LST, EVI, SIFPAR, and LUE  

* SIFPAR is PAR normalized SIF, and LUE is non-parameterized light-use efficiency.  

Satellite based LUE ranged 2.1-4.4 and 1.3-4.9 g dry matter MJ-1 in the eastern and 

western belts, respectively (Figure 5.3g, h).  Only one major cycle in LUE was present 

among all the LST zones, although there was more inter-monthly variation in LUE than 

in LST, EVI, or SIF. August was generally the peak month of LUE across the entire study 

area, with the exception of the cooler southern LST zone of the eastern belt peaks during 

September. During the growing season, regions with larger LSTs exhibited larger EVI 

and SIFPAR values in terms of seasonality, but this was not consistent with the satellite 

based LUE values. Average LUE in the middle LST zone was the largest in the eastern 
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belt, while in the Northern-middle LST zone was largest in the western belt. This indicates 

a spatial non-linear relationship between LUE and LST. During the growing season, the 

rate of decline in LUE after August (the month with optimum LST level) was larger than 

the rate of LUE rising before August, implying a seasonal hysteresis of LUE in response 

to surface temperature change across Australian rainfed croplands throughout the winter 

crop’s growing season. 

5.3.3 Seasonal dynamics of LUE and related measurements 

Temporally, cropland vegetation greenness and photosynthesis-active seasonality are 

determined by the meteorological cycle. Throughout the growing season LST, EVI, SIF 

and LUE vary during every month. Consequently, seasonal dynamics of satellite based 

LST, EVI, SIF and LUE during growing season were summarised across Australian 

rainfed cropland belts. Table 5.2 shows the 10-year average value for each of these 

satellite-based vegetation measurements from June to November. 

Table 5.2 Statistical summary of satellite based LST, EVI, SIF and LUE across all sites 

during the growing season 

 LST (°C) 

 

SIFPAR (mW-2nm-1sr-1) 

 

EVI 

 

LUE (g dry matter MJ-1) 

 
 mean Se mean Se mean Se mean Se 

June 14.4 0.08 0.74 0.01 0.22 0.002 3.27 0.05 

July 13.5 0.08 1.11 0.02 0.29 0.002 3.72 0.05 

Aug 16.5 0.10 1.54 0.02 0.37 0.003 4.19 0.04 

Sep 21.9 0.14 1.45 0.02 0.37 0.003 3.89 0.04 

Oct 30.5 0.15 0.92 0.02 0.28 0.003 3.15 0.04 

Nov 36.9 0.14 0.43 0.01 0.18 0.002 2.31 0.04 

* Se is one standard error. 
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Table 5.3 Pairwise comparison among each month for satellite based LST, EVI, SIF 

and LUE 

p value June July Aug Sep Oct June July Aug Sep Oct 

  LST (°C) SIFPAR (mW-2nm-1sr-1) 

July <0.01 
   

  <0.01 
   

  

Aug <0.01 <0.01 
  

  <0.01 <0.01 
  

  

Sep <0.01 <0.01 <0.01 
 

  <0.01 <0.01 <0.01 
 

  

Oct <0.01 <0.01 <0.01 <0.01   <0.01 <0.01 <0.01 <0.01   

Nov <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

  EVI LUE (g dry matter MJ-1) 

July <0.01 
   

  <0.01 
   

  

Aug <0.01 <0.01 
  

  <0.01 <0.01 
  

  

Sep <0.01 <0.01 1.00 
 

  <0.01 0.09 <0.01 
 

  

Oct <0.01 <0.01 <0.01 <0.01   0.83 <0.01 <0.01 <0.01   

Nov <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

Across all years, the largest EVI value occurred in September, while SIF and LUE 

reached their largest value in August. July was the coldest month across all sites, with the 

lowest surface temperature (LST), but this did not coincide with the smallest greenness 

index (EVI) nor the lowest photosynthetic activities (SIF and LUE). The smallest EVI, 

SIF and LUE occurred in November, the hottest month during the growing season (but 

not the hottest month of the year, which occurs in late summer) across Australian rainfed 

croplands.  By pairwise comparisons  of each of the mean satellite-based measurements 

among the growing season months (Table 5.3), we observed that: (a) among all the 

growing season months, average EVI during August and September were not statistically 

different (p > 0.1) across all study areas; (b) SIF values varied significantly among the 

months of growing season (p  < 0.05); (c) LUE shows distinguish value during August 

compare to other months of growing season (p<0.01), but did not differ significantly  

during June and October (p >0.1). The difference in mean LUE was of marginal 



127 
 

significance (0.1>p>0.05) between July and September. These imply a non-symmetrical 

bell-shaped curve of LUE seasonality across Australian rainfed croplands. 

5.3.4 Performance of satellite based LUE in response to LST 

Table 5.4 summarizes the LST range and means of each spatial-temporal percentage 

quantile LST value within each month of the growing season. The range of LST in a 

specific month overlapped with the range of LST in the month before and after. 

Furthermore, all the levels of mean LST within each month were significant different 

with each other (all pairwise p < 0.05). The standard deviation (Sd) in the first and last 

10% quantiles of LST, especially the last, were greater than that of other percentage 

quantiles in each month from June to November. This indicates that every month during 

growing season has pixels with extreme high LST values. 

By comparing the mean values of satellite based LUE across different groups of LST each 

month using one-way ANOVA and post-hoc testing, the spatial-temporal LST each 

month were regrouped into several ranges (Figure 5.4). Thereafter, we attribute each of 

the statistical LST ranges as slight cold, normal, optimum, slight hot, medium hot, and 

extreme hot group for LUE based on their means of LST range (Figure 5.4). Mean LUE 

significantly (p < 0.1) peaked at the LST range of 16.6-17.6 °C during August (Figure 

5.4, Table 5.4), which is the optimum LST range for Australian rainfed cropland 

photosynthetic activity. LST that were lower or higher than this range in August resulted 

in lower LUE values. It is noteworthy that the mean LUE values are significantly reduced 

(p < 0.05) when LST was in the highest 10% quantile during August, September and 

October. Every month has its certain water and heat patterns, corresponding to the certain 

stages of crop growth over specific crop life span. The pixels with the uppermost 10% 
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quantiles of LST during each month exhibit extreme water and heat conditions, which 

lead to stresses on photosynthetic efficiency. Furthermore, the non-linear relationship 

between LUE and LST was also observed among the re-grouped spatial-temporal LST 

levels (Figure 5.4). During June and July, there was no significant LUE increase among 

all the 10% quantiles of LST groups. However, there were significant LUE decreases in 

the uppermost 10% quantile of LST group in October and 6 groups of the 10% quantile 

of LST in November. These facts indicated that LUE increased more slowly (was less 

sensitive) as temperature increased from the minimum range to the optimum range (16.6-

17.6 °C during August), but then declined more rapidly (was more sensitive) as LST 

increased from supra-optimal values, especially during October and November. 

Consequently, assigning a single threshold of LST at 30 °C as that has been applied in 

most formulations of current GPP models can result in significant errors without 

considering spatial and temporal variation in optimum temperature. 
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Table 5.4 Statistical summary of spatial-temporal percentage quantile LST levels each month from June to November 

Interval   0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
 

Jun 9.3 11.5 12.2 12.7 13.2 13.8 14.4 15.4 16.8 18.5 25.1 
 

Jul 8.4 10.9 11.4 11.9 12.3 12.8 13.4 14.2 15.4 17.3 26.6 
 

Aug 9.8 12.7 13.8 14.4 15.1 15.6 16.6 17.6 19.1 21.4 31.7 
 

Sep 12.7 16.4 18.0 19.2 20.2 21.4 22.6 24.0 26.0 28.3 37.3 
 

Oct 16.7 23.7 26.0 27.6 29.1 30.6 32.0 33.7 35.1 36.8 43.8 
 

Nov 22.4 31.2 33.3 34.7 35.8 37.0 38.4 39.6 41.0 42.8 49.5 

Mean Jun 
 

10.9 11.8 12.4 13.0 13.5 14.1 14.9 16.0 17.6 19.7 
 

Jul 
 

10.2 11.2 11.6 12.1 12.5 13.1 13.7 14.7 16.3 19.3 
 

Aug 
 

11.8 13.3 14.1 14.7 15.3 16.1 17.0 18.3 20.1 23.9 
 

Sep 
 

15.1 17.2 18.6 19.7 20.7 22.0 23.2 24.9 27.0 31.1 
 

Oct 
 

21.6 24.9 26.9 28.4 29.8 31.3 32.9 34.4 35.9 38.8 
 

Nov   28.6 32.4 34.0 35.3 36.4 37.7 39.0 40.3 41.9 44.4 

Sd Jun 
 

0.05 0.02 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.13 
 

Jul 
 

0.06 0.02 0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.17 
 

Aug 
 

0.06 0.03 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.20 
 

Sep 
 

0.08 0.04 0.03 0.03 0.03 0.04 0.04 0.06 0.06 0.23 
 

Oct 
 

0.16 0.06 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.16 

  Nov   0.18 0.06 0.04 0.03 0.03 0.04 0.03 0.04 0.05 0.14 

* All pairwise comparison test in mean of temperature among LST levels each month have a statistically significant p value of < 0.05. 
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Figure 5.4 Re-grouped spatial-temporal LST levels within each month divided by one-way ANOVA and post hoc test 
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Figure 5.5 Spatial-temporal distributions of pixels with the re-grouped LST levels during August across all 10 years 
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Since three spatial-temporal LST groups during August (Normal, Optimum, and slight 

hot) were identified, the spatial-temporal distributions of pixels in each of the groups were 

then examined (Figure 5.5). 

Pixels having the optimum and slightly hot LST range were distributed in different 

regions across Australian rainfed croplands. The pixels in the optimum LST group and 

with the highest LUE level (green crosses in Figure 5.5) in August were distributed across 

western, southern, and eastern regions, with the exception of Queensland (QLD). Pixels 

having the slightly hot LST range were distributed in the upper northern part of the eastern 

belt, and also the western belt in some hydrologically dry years (2007, 2009, 2012, 2013 

and 2014) (Cleverly et al. 2016; Dijk et al. 2013).  Year 2011 had the most pixels (19) 

with an optimum LST value in August, and year 2008, 2010, 2015, and 2016 had the 

smallest number of pixels within the optimum LST range (6, 7, 3 and 8, pixels 

respectively). For the slightly hot LST range, 18 were recorded in 2007, while 2 and 4 

pixels were recorded in 2010 and 2016, respectively.   

In summary, the eastern belt of Australian rainfed croplands recorded a larger number of 

slightly hot pixels than the western belt in August. Pixels within the optimum LST range 

in August were distributed in the South-middle to Middle zones of both cropland belts, 

while the rest of the rainfed cropland pixels either had colder or hotter surface temperature 

and this resulted in a lower LUE.  Years 2008, 2010, 2015, and 2016 recorded fewer than 

10 pixels both in the optimum LST range and the slightly hot LST group, while years 

2007, 2009, and 2011-2014 recorded more than 10 pixels in these two ranges of LST in 

August.   
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5.4 Conclusions 

This study monitored real time cropland light-use efficiency from space by calculating 

the ratio of SIFPAR to EVI, (followed by multiplication by a constant coefficient). Satellite 

based solar-induced chlorophyll fluorescence (SIF) and the enhanced vegetation index 

(EVI) provided direct measurements of vegetation photosynthetic activity and greenness, 

respectively. The link between SIF and crop photosynthesis is instantaneous, but the 

satellite SIF signal often contains additional information pertaining to canopy structure 

and total canopy chlorophyll content (Yang et al. 2017). The methodological advance was 

to effectively and accurately remove the constant greenness level, so as to estimate the 

real-time photosynthetic activity entirely from remotely sensed variables. 

This study further demonstrated the spatial pattern and temporal dynamics of satellite 

based vegetation measurements both among the cropland growing season and within each 

of the months across a range of land surface temperature values. LST is a measure of 

vegetation canopy temperature and was demonstrated to be an effective climate 

component that integrates complex interactions among the climate-driving factors (Shen 

et al. 2018) in this study. LST is closely related to plant evapotranspiration because 

increases in LST reflect decreased partitioning of radiation to latent heat flux compared 

to sensible heat flux. Spatially, although there were gradients in seasonality of in LST, 

EVI and SIF from northern to southern regions of the western and eastern croplands of 

Australia, LUE values in the northern (hottest) zones and southern (coldest) zones were 

not the largest recorded. Temporally, LUE peaked at the LST range of 16.6-17.6 °C 

during August (Figure 5.4, Table 5.4). The results also indicated a hysteresis of LUE in 

response to surface temperature spatially, seasonally and during certain month. Thus, the 

contributions of the study are that I’ve: 1) approximated the real-time LUE entirely by 
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remote sensing; and 2) taken spatial and temporal variation into consideration when 

estimating the optimum temperature for vegetation activity. The results of this study have 

significant implications for large-scale detection and monitoring of cropland water and 

heat stress, as well as application of remotely sensed analyses of photosynthetic activities 

at leaf and canopy scales. 

5.5 Limitation and future research 

This study is not without limitations. Firstly, the linear relationship between LUEP and 

LUEF is a debatable issue in current research. PAR absorbed by vegetation chlorophyll 

(APAR) was theoretically divided into three distinctive fractions: the energy to fix carbon, 

generate fluorescence and dissipate non-radiative heat (Verma et al. 2017). These three 

pathways may compete with each other (Meroni et al. 2009) especially at the 

instantaneous scale and leaf level. However, many recent empirical studies indicated that 

SIF linearly related to GPP is more robust at the coarse spatial and temporal resolution 

(such as ecosystem and regional scale) (Guanter et al. 2014; Joiner et al. 2014; Smith et 

al. 2018; Zhang et al. 2016) than the theory based on leaf-level processes (Verma et al. 

2017). At the same time, SIF better captures the dynamics of seasonal and inter-annual 

GPP than other remote sensing observations, especially across dryland ecosystems (Smith 

et al. 2018). The relationship between LUEP and LUEF at 0.5°×0.5° spatial resolution 

therefore can be simplified as linearly based on the concepts that SIF and GPP were 

roughly estimated as APAR multiply LUEF and LUEP, respectively. Meanwhile, Figure 

2 (d-e) has indicated the linear relationship (R2=0.74, p<0.01) between satellite SIF and 

Flux GPP both during the morning window and during the photosynthesis-active daytime 

in Australian rainfed cropland. Thus, the assumption of linearity in LUEP:LUEF for this 
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study is appropriate, though the linear relationship in SIF:GPP under different 

environmental conditions (Verma et al. 2017) is required to be tested in future research. 

Secondly, the value of the constant coefficient value a , calculated as the ratio of PLUE

to )(FLUE , will be enhanced by conducting field validations. I applied a constant value 

of 1 in this study. One reason for this was because this study examined spatial and 

temporal changes in LUE by comparing those relative values, rather than directly utilizing 

it in GPP estimation models. In addition, previous experimental studies (Charles-Edwards 

1982; Garcia et al. 1988) have estimated a similar range of LUE values (upper limit to be 

6.4 g dry matter MJ-1) for crops as the satellite estimation (1.2 to 4.9 g dry matter MJ-1). 

Thus, the assumption of a  equals to 1 is appropriate. 

Thirdly, we acknowledge that GOME-2 SIF retrieval has a coarse spatial resolution of 

0.5°×0.5°, which may contain noises of LUE estimation. The EVI dataset I utilized in this 

study is derived from MODIS, which is a well-tested instrument for land monitoring, and 

the current EVI product is mature (version 6). As Figure 5.2 shows, both of the 

correlations of Flux GPP-SIF and Flux GPP-EVI are statistically significant, and their R2 

only have a difference of 0.06 at 0.5°×0.5° resolution. My intension was to perform a first 

test using existing spaceborne SIF products as such the first test is valuable. Thus, there 

is no major concern with the spatial resolution.  

Fourthly, the physiological responses of LUE to LST vary dynamically over different 

time scales, ranging from hourly-to-monthly-to-seasonally.  In the present study, I only 

examined variation at monthly and seasonal scales due to data availability. Finer spatial 

and temporal resolutions of SIF data can be conducted in future studies.  
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Lastly, the exact range of optimum LST values during August depend on the method of 

statistical division, the resolution of percentage quantiles determines the thresholds of 

each level within each growing season month. One-way ANOVA and its post-hoc testing 

helped us to identify and re-classify the equally divided groups into several significantly 

different levels. As such, we still have high confidence in the conclusion that the range of 

optimum LST level for satellite-based LUE across Australian croplands was 16.6-17.6 °C.  
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Chapter 6. Summary and future research 

6.1 Summary 

Climate in Australia is well known to have the highest variability around the world as it 

is influenced by multiple components. Accordingly, the total annual wheat production in 

Australia has varied dramatically, especially during the most recent decade. By 

incorporating multi-source observed datasets, this thesis illustrated the relationship 

between climate variability and crop growth spatially and temporally across the 

Australian rainfed cropland belts. 

To deal with the increasing challenges of climate change/climate variability, the complex 

climate-crop relationship (CCR) needs to be better understood. This thesis provided a 

systematic, holistic and objective review of the dryland CCR academic literature by 

combining Leximancer, a content analysis tool, to conventional bibliographic analysis. 

Forty-four publications on climatic impacts on croplands from 2009 to 2018 (inclusive) 

have been identified. The findings revealed four broad areas of foci with CCR research: 

(1) climate change and variability, (2) crop response, (3) CCR approaches, and (4) 

agricultural adaptation. The specific agro-climatic change variables, crop growth 

measurements and models employed in current CCR research were identified by manual 

bibliographic analysis. This thesis calls for a future agenda on integrated climate driver 

factor employment, crop phenology and photosynthesis response focus, multiple source 

of datasets engagement, and bottom-up approaches for agricultural adaptation. Focusing 

on the broad angle of crop response, the responses of crop productivity, crop phenology 

and crop photosynthesis activities were subsequently addressed in three major chapters 

in this thesis. 
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Spatiotemporal prediction of rainfed agricultural yields as affected by climate variability 

is a challenging task. This thesis related monthly satellite-based gross primary production 

(GPP) estimates to reported agricultural yields for Australia. The findings indicate that 

August and September are the optimum triggers for yield prediction (Growing season 

between June to November) across the rainfed cropland belts in Australia. The results 

showed that it is possible to spatially predict agricultural yield, especially in the State of 

New South Wales (NSW). 

In terms of the spatial-temporal impacts of climate variability on crops during different 

crop growth stages. This thesis quantified the contributions of climate and Land Surface 

Temperature (LST) variations to the variability of the Enhanced Vegetation Index (EVI) 

by using remote sensing methods. The datasets were analyzed at an 8-day time-scale 

across the rainfed cropland areas of eastern Australia. The results indicated that: (1) EVI 

values were more variable during the crop reproductive growth stages than at any other 

crop life stage within a calendar year, but nevertheless had the highest correlation with 

crop grain yield (t ha-1). (2) two critical 8-day periods, beginning on day of the year (DoY) 

257 and 289, were identified as the key ‘windows’ of crop growth variation that arose 

from the variability in climate and LST. (3) the sum of the variability of the climate 

components within those two 8-day ‘windows’ explained >88% of the variability in the 

EVI, with LST being the dominant factor.  

Crop Photosynthesis is highly sensitive to water and heat stress. Consequently, 

continuous and accurate estimation of cropland photosynthesis activity can serve to 

provide early warning detection of crop water and heat stress, and therefore can be used 

to assist in forecasting crop productivity. Space-based monitoring of sun-induced 

chlorophyll fluorescence (SIF) and the MODIS enhanced vegetation index (EVI) provide 
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direct measurement of cropland vegetation photosynthetic activity and vegetation 

greenness, respectively. This thesis explored the potential to remotely monitor real-time 

light-use efficiency by calculating the ratio of photosynthetically active radiation (PAR) 

normalized SIF to EVI. This thesis applied this calculation to demonstrate spatial patterns 

and temporal dynamics of LUE in response to land surface temperature (LST) across 

Australian rainfed croplands (2007-2016). LST was used to provide an integrated 

measure of vegetation heat and drought stress in this study. The results showed that: 

spatially, LUE tends to be higher in the geographical middle zones with a mild range of 

LST level across Australian croplands, than either the hotter northern regions and the 

colder southern regions; temporally, there was a seasonal hysteresis of LUE in response 

to surface temperature change throughout the winter crop growing season. The results of 

one-way ANOVA and post-hoc tests revealed that the optimum LST range for satellite-

based LUE were 16.6-17.6 °C during August. Pixels with optimum LST across the 10-

year sampling period (August of 2007-2016) were distributed in the South-Middle to 

Middle zones of the Australian rainfed croplands.  

6.2 Contributions 

This thesis has a number of contributions to dryland crop stress detection and adaptation: 

From a theoretical perspective, it offers enhanced spatial temporal models in quantifying 

the observed impacts of climate variability on crop productivity and photosynthesis 

activity, especially on crop phenology at 8-day time step. As such, it identifies the impacts 

of heat variation to outweigh rainfall variation on crops across rainfed croplands. It also 

identified the optimum surface temperature range for Australian cropland photosynthesis 

activity; From a methodological point of view, it contributes to extant literature on the 

exploration of crop-climate relationship (CCR) not only by introducing Leximancer, a 
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content analysis tool into the study to visualize the state-of-art related works, but also by 

putting efforts on closing the gaps identified from the literature review: climate driving 

factor employment, crop phenology and photosynthesis response focus, and multiple 

source of datasets engagement; From a practical point of view, the results of this thesis 

have significant implications for large-scale detection and monitoring of cropland water 

and heat stress, as well as application of remotely sensed analyses of crop productivity, 

phenology and photosynthetic activities at leaf and canopy scales. This thesis paves a way 

for timely understanding the influence of climate variability on crop growth and 

productivity and can serve as an early warning system for agricultural adaptation. 

6.3 Limitations and future research 

From the findings, the main future directions have become clearer: 

1) The literature review in Chapter 2 examines only academic journal articles published

in the current 10 years. Future research including grey literature (such as government 

reports, policy statements and issues papers), and perhaps a further comparative approach 

between industry and academic sources would offer additional insights into the climate-

crop growth relationship research. 

2) The research findings were limited to data availability and accessibility. Re-

implementing the methodology with up-to-date datasets to investigate the climatic 

impacts on crop productivity, phenology and photosynthesis activity, as well as the 

performance of proposed methodology will be necessary.  
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3) The performance of climate-crop growth relationships can be variable under various

spatial-temporal scales.  Evaluating the influence of applying combination of datasets 

with vary spatial-temporal resolutions and process-based models in the reliability of 

proposed methodology is a logical progression. 

4) In this thesis, sensitivity and resilience of crop growth response to climate change and

variability were analysed without time-lag considerations. Conducting analysis of the 

time-lag effects in the measurements of crop growth to specific agro-climatic change 

variables spatially and temporally is an important future research direction. 

5) Soil moisture, which negatively impacts on crop growth by either water deficiency or

excess water stress, is one of the environmental factors that directly limit crop growth, 

especially in dryland agriculture systems. Assessment of the impacts of soil moisture 

change on crop growth based on both satellite and in-situ observations will be my next 

future step work. 
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