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A B S T R A C T

Current water consumptions are unsustainable in many regions, which requiring more efficient agricultural
water management strategies. This study incorporated the DSSAT-CERES-Maize model with a new algorithm for
dynamic within-season irrigation scheduling for maize (Zea mays L.) based on trends in daily forecasted yields.
Field experiments were undertaken at four arid and semiarid sites in Northwest China, including Changwu (2010
and 2011, rainfed), Yangling (2014 and 2015, irrigated), Jingyang (2015, irrigated), and Shiyanghe (2015,
irrigated). Historical 50-year (1968–2017) weather data were available for each site. In daily yield forecasts,
weather data before forecast dates were observed from local weather stations, while the unknown data between
forecast and harvest dates were supplemented by local 50-year continuous weather series in the same periods.
Then 50 maize yields could be obtained on each forecast day, and the median values were calculated as the
prediction on that day. As the growing season advanced, historical weather data were gradually replaced by
actual weather data. Further, the dynamics of daily forecasted yields were used to schedule irrigation based on a
new algorithm. The new algorithm schedule irrigations by considering the feedbacks of maize grain yield to
interactions of actual weather, environment, and management. The results showed that forecasted maize yield
had considerable uncertainty before tasseling but rapidly converged to the actual yield about one month before
harvest. The mean absolute relative errors (MAREs) of daily forecasted yields were 11.7% and 7.3% at Changwu
in 2010 and 2011, respectively. Simulated irrigation use efficiency (IUE) for almost all sites and years were
improved. The new irrigation scheduling algorithm will help to improve irrigation scheduling in arid and
semiarid areas where precipitation is the main limited factor to maize yield.

1. Introduction

Structural change and growth consumption in livestock sectors and
industry has increased the demand for maize, making it one of the most
important crops in China (Qin et al., 2016). In 2017, China had 42.3
million ha sown to maize, yielding 259.1 million ton of grain
(National Statistical Bureau of China, 2017), mainly under drought-
prone weather conditions in northern China. Agriculture is the largest

water user worldwide and is severely affected by water shortages. Ir-
rigation is often used to ensure food production (Kang et al., 2017). The
FAO (2015) reported that irrigated farmland accounts for only 18% of
the total fields worldwide, but produces nearly 40% of all food for
people. In recent years, the increase in greenhouse gas emissions has
resulted in more drought events (Hsiao et al., 2007), necessitating more
efficient field management practices for water managers and farmers
alike.

https://doi.org/10.1016/j.agrformet.2020.107928
Received 8 June 2019; Received in revised form 25 December 2019; Accepted 31 January 2020

⁎ Corresponding author.
⁎⁎ Corresponding author at: College of Water Resources and Architectural Engineering, No. 23 Weihui Road, Yangling 712100, China.
E-mail addresses: qgdong2014@nwafu.edu.cn (Q. Dong), jianqiang_he@nwsuaf.edu.cn (J. He).

Agricultural and Forest Meteorology 285–286 (2020) 107928

0168-1923/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2020.107928
https://doi.org/10.1016/j.agrformet.2020.107928
mailto:qgdong2014@nwafu.edu.cn
mailto:jianqiang_he@nwsuaf.edu.cn
https://doi.org/10.1016/j.agrformet.2020.107928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2020.107928&domain=pdf


Traditional irrigation management involves the transport of water
in the soil–plant–atmosphere continuum (SPAC), with irrigation sche-
dules were usually based on statistical measurements of soil moisture,
plant water content, ET, rainfall, and crop growth status (e.g., grain
yield and aboveground biomass) (Fang et al., 2017; Hrkac et al., 1986;
Liu et al., 2002; Thorp et al., 2017). With improvements in sensors, data
transmission and storage, the above indicators can be transmitted in
real-time to establish irrigation scheduling systems (Thysen and
Detlefsen, 2006; Yang et al., 2017). However, the purpose of irrigation
is to increase grain production, not maintain soil moisture or plant
water content, although irrigation strategies scheduled by field ex-
periments and statistics do meet the crop water requirements for each
growth stage. Due to limited year types and treatments of field ex-
periments, traditional irrigation methods are unable to quantify the
influence of irrigation date and amount on crop growth and develop-
ment for variable weather conditions, crop genotypes, soil types, and
agronomic practices across different years and regions.

In recent years, field experiments combined with crop model si-
mulations have been used to determine irrigation schedules, since crop
models can dynamically quantify crop growth responses to farmland
environments. Rogers and Elliott (1989) used a cost/loss (C/L) risk
analysis to determine the level of irrigation for grain crops in Oklahoma
and reported that the application of C/L could reduce irrigation water
compared with purely biophysical-based irrigation scheduling methods.
Saseendran et al. (2008) applied the CERES-Maize model to optimize
irrigation for maize in northeastern Colorado based on water require-
ments at different growth stages. Kisekka et al. (2016) generated op-
timum deficit irrigation strategies for maize production in Kansas based
on the CERES-Maize model and long-term weather records. They in-
dicated that this model could be used as a decision support tool for
assessing irrigation strategies that optimize the use of limited water and
maximize the net returns for maize production. However, most studies
on optimizing irrigation strategies using crop models have focused on
irrigation scheduling options based on limited experimental data and
simulations with long-term weather data (Anothai et al., 2013;
He et al., 2013; Lopez et al., 2017a). Few studies have reported using
crop simulation models for irrigation scheduling based on real-time
weather conditions, or how seasonal yields are affected by irrigation.
When crop models are used in plant growth simulations, weather data
are needed for the entire growing season. Due to the low accuracy of
long-term weather forecasts, crop modeling studies have mainly fo-
cused on assessing crop growth and development after the growing
season had ended (Araya et al., 2015; He et al., 2011). Effective within-
season climate prediction could assist farmers in managing farmland
and minimizing risk (Prakash et al., 2019; Semenov and Doblas-
Reyes, 2007), but more studies using medium- or long-term meteor-
ological forecasts are needed to improve the precision of crop model
predictions (Ferrise et al., 2015). Some researchers have used historical
weather data combined with real-time weather data to generate mul-
tiple complete climatic data series covering the entire growing season,
to forecast crop growth and yield (Bannayan and Hoogenboom, 2008;
Lawless and Semenov, 2005). In this way, weather series could be
generated on every day in the growing season by incorporating local
historical and daily new measured weather data. Hence, maize growth
status and grain yield related to actual weather conditions could be
forecast on every day before harvest (Chen et al., 2017).

In the process of daily forecasting maize yields, soil, field manage-
ment and cultivars are usually kept the same. Thus, any differences
between forecasted yields on different dates were caused by the
changed days with actual weather data in the generated weather series.
In arid and semiarid areas of China, maize yield is mainly determined
by accumulative rainfall of the whole growing season (Jiang and
Li, 2015). A decline trend in daily forecasted yield might indicate that
the accumulative rainfall in the comparison period resulted in more
serious water stress. The mainly because if soil water content increased
or keep the same, yield predictions should not reduce. Irrigation could

then be used to mitigate the risk associated with weather variability in
maize production. Based on daily forecasted yields and their general
trends, water resource managers can offer suggestions for irrigation,
according to the availability of water, in the search for a cost-effective
water management strategy.

In this study, a new irrigation scheduling algorithm was developed
based on the DSSAT-CERES-Maize model and dynamic weather data
fusion. The main objectives were to: (1) assess the precision of within-
season forecasts of maize grain yield based on the CERES-Maize model
and dynamic weather data fusion, and (2) evaluate the new dynamic
irrigation scheduling algorithm for maize production in arid and
semiarid areas in China. This work is expected to provide a new tool for
dynamic within-season irrigation scheduling for maize production in
Northwest China.

2. Materials and methods

2.1. Experimental sites

Four experimental sites in Northwest China were selected for this
study, including Yangling (34°17′N, 108°04′E, 506 m; YL), Jingyang
(34°32′N, 108°50′E, 411 m; JY), Changwu (35°14′N, 107°52′E, 1220 m;
CW) in Shaanxi Province, and Shiyanghe (37°52′N, 102°50′E, 1581 m;
SYH) in Gansu Province (Fig. 1). Mean annual rainfall ranged from
550–650 mm for the three sites in Shannxi Province and only 162 mm
for Shiyanghe in Gansu Province. The annual rainfall at these sites was
temporally uneven as most rainfall occurred in summer.

Summer maize was planted in Yangling (2014 and 2015, irrigated)
and Jingyang (2015, irrigated), while spring maize was planted in
Changwu (2010 and 2011, rainfed) and Shiyanghe (2015, irrigated)
(Table 1). Changwu, located in the southern part of the Loess Plateau of
China, was the only rainfed experimental site due to the lack of irri-
gation facility. Irrigation in the three irrigated experiments followed the
actual management practices of local farmers in border flooding. All
fertilizers were applied once at planting as basal fertilizer.

2.2. Brief description of the DSSAT-CERES-Maize model

DSSAT is one of the most popular process-oriented cropping system
models (CSM), which can simulate daily crop growth and development,
including phenological states, biomass production and grain yield.
Before running the model, users should input weather factors, soil
profile, cultivar-specific parameters, and field management data
(Hoogenboom et al., 2017; Jones et al., 2003). DSSAT can track carbon,
nitrogen, water, and energy exchange processes. In DSSAT, crop growth
is simulated using specific CSMs. CERES-Maize is one of the CERES
(crop environment resource syntheses system) series models, as are
CERES-Sorghum, CERES-Wheat, and CERES-Barley (Lopez et al.,
2017b; Otter-Nacke et al., 1991; Ritchie and Otter, 1985; White et al.,
2015). CERES-Maize consists of nonlinear, dynamic mathematical
functions that describe maize growth and yield formation as well as
changes in soil water and nutrient contents at a field-scale. The CERES-
Maize model simulates maize growth by considering field practices and
is driven by daily weather conditions. It can simulate the growth and
development of roots, shoots, leaves and stems, biomass accumulation
and partitioning between roots, shoots, leaf, stems, and fruits. Readers
can refer to Jones et al. (1986) for a complete description of CERES-
Maize.

Four groups of data are generally needed for DSSAT simulation:
weather, crop, soil, and management. Daily weather data include
maximum air temperature (Tmax, °C), minimum air temperature (Tmin,
°C), rainfall (Rain, mm), and solar radiation (SRAD, MJ m–2). Crop
parameters and physiological performance are represented by genetic
coefficients. Soil inputs are given as parameters, including physical,
chemical, and morphological properties of each soil layer. Crop man-
agement information includes crop cultivar, planting date, depth and
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density, row space, irrigation, fertilizer, and application of organic
amendments. To promote the use of a minimum data set, a simple water
balance algorithm named “tipping-bucket” approach is embedded in
the CERES-Maize model to calculate yield reduction caused by water
stress. In this model, maize development rates are calculated based on
air temperature and photoperiod. Biomass generated from photo-
synthesis in green organs is affected by daily minimum temperature.
Due to the simplification of water transfer cycles, large simulated errors
occur in DSSAT models with high water stress.

In this study, weather data were obtained from the China
Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/).
Since solar radiation data were not available for the four sites, daily
cumulative solar radiation was calculated by daylight and sunshine
hours using Angstrom's formula (Angstrom, 1924). Soil parameters and
management practices were obtained directly from documented on-
farm observations. Crop cultivar parameters were estimated using the
DSSAT-GLUE package (He et al., 2009; Jones et al., 2011) based on field
observations of important phenology dates, biomass, and yield of
maize.

2.3. Dynamic within-season irrigation scheduling

DSSAT-CERES-Maize is a processing model that simulates plant
growth by taking into consideration the environment, agricultural
management practices and crop genotype. To run the CERES-Maize
model, weather data series covering the whole growing season is
needed. In the process of daily yield prediction, actual weather data
were measured every day at the local weather station. The unknown
weather data between forecasted and harvest dates were represented by
the same-date historical weather records (1968–2017) for the local site.
An integrated weather data series was then generated and updated by
incorporating the newly measured weather data. In this way, seasonal
maize yield which considering actual weather data were predicted daily
during the growing season. Trends in daily forecasted yields were used
to guide irrigation, and irrigation strategies would be added to the
CERES-Maize model to simulate maize growth. By incorporating the
real-time weather data into the generated weather series and assessing
their impact on seasonal maize grain yields dynamically, we could
schedule irrigation by considering the weather, soil, and agronomic

Fig. 1. Distribution of mean annual rainfall in China. Black points indicate experimental sites. The Shiyanghe site, with actual mean annual rainfall of 162 mm, was
located at the junction between the first (15–200 mm) and second (200–386 mm) rainfall levels due to the classification resolution in the ArcGIS software.

Table 1
Main soil, weather, and management information of the four experimental sites. YL, CW, JY, SYH are the sites at Yangling, Changwu, Jingyang, and Shiyanghe,
respectively.

Soil, weather and management Sites

YL CW JY SYH

Soil type Silty loam Clay loam Silty clay loam Sandy loam
Bulk density (g cm−3) 1.31 1.32 1.41 1.47
Field capacity (cm−3 cm−3) 0.26 0.22 0.24 0.35
Mean annual temperature (°C) 12.3 9.2 13.1 8.2
Mean annual rainfall (mm) 637 560 547 162
Cultivar Zhengdan-958 Xianyu-335 Wuke-2 TRFA
Planting density (plants ha–1) 55 000 85 000 75 500 97 500
Year 2014 2015 2010 2011 2015 2015
Planting date 12-Jun 12-Jun 24-Apr 24-Apr 10-Jun 15-Apr
Harvest date 27-Sep 24-Sep 13-Sep 13-Sep 29-Sep 20-Sep
Irrigation amount (mm) 160 – 270 442
N 210 138 180 219

Fertilizers (kg ha–1)
P 96 38 80 –
K 77 – – –
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practices simultaneously.

2.3.1. Within-season maize yield forecasts based on weather data fusion
Weather data for the whole growing season are needed to run the

models to forecast maize yield dynamically. By incorporating newly
measured daily weather data and historical weather data, we can
forecast maize yield in Northwest China with high accuracy on a daily
basis within the growing season (Chen et al., 2017). The weather data
for each growing season were divided into two parts (actual and pre-
dicted). Daily actual weather data were collated from local weather
stations, while predicted weather data for the remaining days were
replaced by 50-year historical weather data (1968–2017). For example,
the summer maize growing season at Yangling was about 110 days. At
sowing, the 50-year historical weather series were taken as 50 possible
scenarios for the target growing season such that 50 possible maize
yields were available from the CERES-Maize model simulations. On the
second day after sowing, actual weather data were available from the
local weather station for the first day, while data for the remaining 109
days were unknown and then replaced with historical data for the same
dates. Consequently, another 50 forecasted grain yields were calculated
on the second day of the growing season. As the maize growing season
advanced, newly measured daily weather data were gradually added
into the weather series. With the fusion of real-time weather data and
50-year historical weather data, multiple complete climatic data series
were created and used to run the CERES-Maize model to forecast maize
growth and yield on each day.

2.3.2. Sensitivity of maize yield to weather variables
To determine which weather variables affected maize yield the most

in the study areas, we analyzed the sensitivity of maize yield to four
different weather variables (Tmax, Tmin, Rain, and SRAD) in the
CERES-Maize model simulation. Experimental files were set up in the
model according to actual field management practices at each site.
Daily mean values for the four weather factors were calculated from
1968 to 2017 before generating three different types of weather data
series. For each type, the actual values for one weather factor were
retained each year, while 50-year means values were used for the daily
values of the other three weather factors. It should be noted that if the
mean valued of Tmin > Tmax, then the model might not run. To avoid
this, Tmin and Tmax were treated as one weather factor and replaced
simultaneously. Three types of maize grain yield across 50 years were
determined by running the CERES-Maize model with the three types of
weather series generated above. The distribution of simulated maize
yields under different climatic scenarios was then analyzed.

2.3.3. Algorithm for dynamic with-season irrigation scheduling
Based on the dynamic maize yield forecast method and sensitivity

analysis of maize yield to different weather variables in the study areas,
a new automatic irrigation scheduling algorithm and software were
established (Fig. 2). The main steps of the algorithm are summarized
below.
Step 1. Trend analysis of daily forecasted yields. Based on the fusion of
daily measured weather data and 50-year historical weather data from
local sites, 50 different possible yields could be forecasted each day in a
given growing season. The daily forecasted yield was calculated as the
median of the 50 simulated yields to avoid the influence of extreme
weather conditions. The trend of forecasted maize yields was analyzed
using linear regression, and the slope of the regression line (Si) was
calculated on the i-th day of the growing season. The number of
accumulative days (ad) of forecasted maize yields with continuous
negative slopes of the regression line was counted to indicate the
influence of forecasted maize yields by weather conditions.

Step 2. Dynamic within-season irrigation scheduling. In the process of
daily yield forecasting in the CERES-Maize model, management, soil
and crop cultivars settings remained the same, except for the weather

files due to newly measured daily weather data. Any differences in
forecasted yields on different dates were probably caused by variations
in weather data (Fig. 3). From Section 2.3.2, rainfall was identified as
the most influential and limiting weather factor for maize yield in the
study areas. Therefore, a continuous decreasing trend in predicted
yields for a given number of days usually meant that actual rainfall in
the target period was less than normal historical years. In fact, the lesser
precipitation resulted in more serious water stress because the
forecasted yield should not decline if the precipitation meets maize
water requirements. To avoid a further decline in forecasted yield,
irrigation should be applied. In this study, we defined the irrigation
threshold IT(DD, ID) as a function of DD and ID, where DD is the
threshold number of accumulative decreasing days of forecasted yields
and ID (mm) is the irrigation depth. If the number of accumulative
decreasing days of forecasted yields (ad) exceeded the threshold DD,
irrigation at depth ID would be added to the irrigation module in the
XFile (model system file with experimental information) in DSSAT on
the same date. Then, the accumulative decreasing days ad was reset to
0. The IT(DD, ID) function can be set according to locally available
agricultural water resources and yield expectations.

Step 3. Automatic Irrigation Scheduling Software (V1.0). Based on the
algorithm above, a program for automatic irrigation scheduling was
developed using R language (V3.4) (R Core Team, 2013). First, users set
up and run the CERES-Maize model in DSSAT based on actual field
experiments. Next, weather data files for historical and target years (a
separate document for each year) are saved in a specified directory.
Daily newly measured weather data are gradually fused into the
weather data files of the target year. Third, the R codes are run to
enter the graphic user interface (GUI) of the program due to the
weakness in GUI design in R Language (Fig. 2b). In the GUI, the left
column is information that users needed to input, including: Site name
(first four letters of the DSSAT-XFile name), Target year, Starting year
and Ending year of historical weather data, Starting date and Ending Date
of irrigation scheduling period (days after planting, or dap), irrigation
depth per event (ID, mm), and accumulative decreasing days of
forecasted yields (DD, d). Finally, click the Run button to start
automatic irrigation scheduling on each day during the growing
season; daily forecasted yields and irrigation events are displayed in
the right window of the GUI.

2.3.4. Evaluation of the automatic irrigation scheduling program
To test the influence of irrigation date and depth on maize grain

yield in the new program, we used different IT(DD, ID) scenarios to
simulated maize growth and schedule irrigation at Changwu (rainfed)
in 2011. Maize yield was forecast on each day during the growing
season under four different IT(DD, ID) scenarios, i.e., IT(10, 40), IT(10,
80), IT(15, 40), and IT(15, 80). To evaluate the efficiency of the irri-
gations scheduled by the new algorithm, we compared simulated final
grain yields, irrigation times, total irrigation depths, and irrigation use
efficiencies (IUE) of the different irrigation schedules based on (1) local
farmer experience, (2) the automatic irrigation option in DSSAT and (3)
the new within-season irrigation scheduling program at the three irri-
gated experimental sites. The comparison objects included simulated
final grain yields, irrigation times, total irrigation depth, and IUE.

In the automatic irrigation option in DSSAT, soil volumetric water
content was used as an indicator for irrigation scheduling. Users should
define three variables before using this module, management depth
(cm), threshold, and end point of irrigation (percent of maximum
available water holding capacity, or AWAC). Here, we took the default
values as an example, where management depth was 30 cm, and the
threshold of soil volumetric water content and end point for irrigation
were 50% and 100%, respectively. In the new irrigation scheduling
program, the parameter of DD was set at ten days and ID had two levels:
local application and half of local application. It should be noted that
the annual average rainfall in Shiyanghe (about 162 mm) was too low
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to satisfy maize water requirements. All of the simulated rainfed maize
yields were <2000 kg ha–1 in the past 50 years, which was much lower
than actual local maize production. Thus, the new irrigation scheduling
program failed to find the decreasing trend of forecasted maize yield
needed for the irrigation decision. To avoid such a failure of the new
irrigation scheduling program under extremely dry conditions, a pre-
determined irrigation at the maize tasseling stage was set in the model
according to local experience. With this basic irrigation, the variation in
daily simulated maize yield increased in different weather scenarios. In
this study, irrigation at a depth of 110 mm was set on the 96th day after
planting according to local farmers.

2.4. Statistical analyses

The absolute relative error (ARE, Eq. 1) was used to evaluate the
accuracy of model calibration and yield forecasting. Mean absolute
relative error (MARE, Eq. 2) was used to analysis the general yield si-
mulation accuracy of the whole growing season. Irrigation use effi-
ciency (IUE, kg ha−1 mm−1, Eq. 3) was used to evaluate the irrigation
use results of different scheduling methods and irrigation threshold
functions of IT(DD, ID) on maize grain yield (DeJonge et al, 2011).
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i i
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where Oi and Si are observed and simulated values of given parameters,
respectively; n is total forecast times in the target growing season; Y is
maize grain yield (kg ha−1), and TI is total irrigation depth (mm).

3. Results

3.1. Calibration and verification of the CERES-Maize model

To assess the prediction accuracy of the CERES-Maize model for
maize grain yield, biomass, and key phenology dates (tasseling and
maturity), we calculated the AREs between simulated and observed
values of these variables (Table 2). We mainly focused on the ability of
the CERES-Maize model to simulate maize yield and phenology dates,
since they were used in our new irrigation scheduling program, and
paid less attention to simulated soil water dynamics and other pro-
cesses. In general, the CERES-Maize model simulated the four variables
well, with especially good results for tasseling date and yield. The AREs
were <13.3% for all treatments over the four years and four sites. The
simulation error in tasseling date was less than two days, but the error
of maturity date was relatively high, which resulted from the difficulty

Fig. 2. Flowchart (a) and interface (b) of the dynamic within-season irrigation scheduling program based on weather data fusion and the DSSAT-CERES-Maize model.
An irrigation event was triggered by a threshold of IT(DD, ID), a function of the accumulative declining days (DD) of daily forecasted yields and irrigation depth (ID)
per event within a given growing season. Slopes of the linear regression were used to judge the reducing trend of daily forecasted yields and the number of
accumulative declining days of forecasted yields.

Fig. 3. Illustration of forecasted yields
with different proportions of actual and
historical weather data. The shaded part
illustrates the portion of historical
weather data replaced by actual weather
data, resulting in different forecasted
yields on different dates. Actual weather
data were measured each day within the
growing season, by local weather stations,
while the weather data of following days
in the growing season were replaced by
local 50-year historical weather data
(1968–2017).
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in using the observation method. Thus, harvest date was usually treated
as the maturity date instead. The AREs of grain yield varied from almost
0–6.8%, but biomass errors were higher than yield. Generally, the
CERES-Maize model performed well in our study areas and was con-
sidered acceptable for simulating local maize growth and yield.

3.2. Dynamic maize yield forecast within a given growing season

With the incorporation of newly measured weather data into the
weather data on each day of a given growing season, maize yields were
dynamically forecasted in 2010 (Fig. 4a) and 2011 (Fig. 4b) at
Changwu. The AREs between predicted and actual final yields were
calculated to assess forecast accuracy (with a time interval of 5 d in the
figure for the sake of clarity). In general, the actual two-year yields
were covered by the range of forecasted yields across the growing
seasons. The distribution of forecasted yields was wide during early
growth but converged closer to the actual yield after tasseling. For
example, on 30, 60, and 90 DAP (days after planting), forecasted yield
ranged from 3,531–14,461, 3,413–14,828 and 961–13,210 kg ha–1,
respectively. After tasseling, on 100 and 130 DAP, the forecasted yield
ranges were 4933–10,826 and 8484–10,565 kg ha–1. AREs of daily
forecasted yields in the two growing season were small at the start of
the growing season (less than 15%), but increased with time to the
maximum at the tasseling stage (up to 35%). Then, AREs decreased
rapidly after tasseling and remained relatively stable in the following
days of the growing season (less than 8%). Generally, MAREs of the two
growing seasons were 11.7% and 7.3%, respectively.

Using the weather data fusion method, actual weather data were
incorporated into the historical weather series, which could produce
extreme weather conditions in the middle of the growing season. In the
early and late stages of the growing season, historical and actual
weather data comprised the largest part of the generated weather
series, respectively. Thus, the weather data series possessed general
features that conformed to local weather conditions. However, in the
middle of the growing season, maize developed quickly and was sen-
sitive to weather conditions. Therefore, uncertainties arising from the
weather data fusion could increase the uncertainties in the forecasted
maize yields. Tasseling date was generally accepted as the transition
between vegetative and reproductive growth stages. The maize plant
canopy was almost steady at this stage. The maximum radiation in-
terception ability and amount of nutrient mobilization by maize plants

Table 2
Comparisons between observed and simulated values in the CERES-Maize model of two phenology dates (tasseling and maturity), grain yield, and biomass of maize
at four experimental sites.

Site Year Rainfall (mm) Irrigation scheduling Simulated yield IUE a

Method Depth per event (mm) Determination factor Irrigation times Total amount (mm) (kg ha–1) (kg ha–1 mm–1)

JY 2015 218 Actual 90 Local experience 3 270 11326 41.9
DSSAT auto-option – Soil moisture 6 280 12077 43.1
New program b 90 Forecasted 3 270 11274 41.8

45 yields 4 180 9929 55.2
YL 2014 381 Actual 80 Local experience 2 160 6150 38.4

DSSAT auto-option – Soil moisture 2 119 6153 51.7
New program 80 Forecasted 2 160 6148 38.4

40 yields 3 120 6149 51.2
2015 271 Actual 80 Local experience 2 160 7069 44.2

DSSAT auto- option – Soil moisture 3 130 7018 54.0
New program 80 Forecasted 1 80 7159 89.5

40 yields 1 40 6245 156.1
SYH 2015 151 Actual 123+103+ Local experience 5 442 8747 19.8

113+41+62
DSSAT auto- option – Soil moisture 9 387 8963 23.2
New program 90+(110) c Forecasted 2+1 290 8420 29.0

45+(110) yields 3+1 245 7845 32.0

a YL, CW, JY, and SYH are the experimental sites at Yangling, Changwu, Jingyang, and Shiyanghe, respectively.
b Sim. and Obs. are simulation and observation, respectively.
c ARE is absolute relative error.

Fig. 4. Dynamics of forecast yields of spring maize based on weather data fu-
sion and the CERES-Maize model in 2010 (a) and 2011 (b) at Changwu, Shannxi
Province, China. Box plots show the forecasted yields at five-day intervals from
planting to maturity. The edges of the boxes represent the 75th and 25th per-
centiles, while the whiskers are the 90th and 10th percentiles. The medians are
shown as horizontal lines within the boxes. Open circles show the absolute
relative error (ARE, %) of forecasted yields on each day. The horizontal solid
line is the observed actual final yield. The vertical dashed line indicates the
tasseling stage.
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had almost been determined at this stage. Thus, both the ranges and
AREs of forecasted yields converged rapidly after tasseling.

3.3. Sensitivities of simulated maize yield to different weather variables

Three types of simulated maize grain yields over 50 years
(1968–2017) were obtained from the CERES-Maize model running the
three types of weather series generated in Changwu (Fig. 5). Generally,
the simulated yields reflected the variation in weather factors. The
distribution of maize yields under actual historic rainfall was much
more dispersed than those under actual radiation and temperature.
Compared with rainfall, simulated maize yields were relatively high
and less variable under variable solar radiation and temperature. Si-
milar results also occurred at the other three sites, indicating that
rainfall was the most determinant factor for maize yield in the study
areas. It should be noted that simulated maize yields were extremely
low at Shiyanghe under all three weather factors across years (Fig. 5c).
Maize production at this site was strongly dependent on irrigation due
to its extreme arid weather, which was why predetermined irrigation
was set at the maize tasseling stage in the CERES-Maize model before
irrigation scheduling.

The median values of forecasted yields in Changwu followed a clear
declining trend from 50–70 DAP in 2010 (Fig. 4a) and 20–35 and 70–85
DAP in 2011 (Fig. 4b). In 2011 at Changwu, the forecasted yields de-
clined from 0–8, 18–26, and 29–54 DAP and increased immediately
after the rains at 8, 26, and 54 DAP (Fig. 6). This kind of relationship
demonstrated that the current yield forecasting method, based on
weather data fusion and the CERES-Maize model, reflects the influence
of real-time rainfall dates and amounts. Combined with the sensitivity
of maize yield to the different weather variables above, the yield
forecast algorithm could be used for maize irrigation scheduling.

3.4. Dynamic within-season irrigation scheduling program

3.4.1. Evaluation of the new irrigation scheduling program with different
IT(DD, ID)

The influence of irrigation date and depth on grain yield and irri-
gation scheduling were evaluated with four different IT(DD, ID) func-
tions at Changwu in 2011 (Fig. 7). In general, the forecasted maize
yields responded properly to irrigation date and depth. Different dy-
namic irrigation suggestions could be automatically provided during

the growing season based on the four different threshold functions of
IT(DD, ID), where DD is the threshold of accumulative declining days of
yield and ID is irrigation depth per event, e.g., IT(10 d, 40 mm)
(Fig. 7a), IT(10 d, 80 mm) (Fig. 7b), IT(15 d, 40 mm) (Fig. 7c), and
IT(15 d, 80 mm) (Fig. 7d). Irrigation events scheduled by the new al-
gorithm all occurred in the early phase of the 2011 growing season
(DAP < 40) at Changwu, which means that actual rainfall in this period
was less than normal historical years and forecasted yields declined
(Fig. 6). Irrigation date and amount affected final maize yield. Although
total irrigation depths were all 80 mm, the simulated yields were
9,245 kg ha–1 for two irrigations of 40 mm (Fig. 7a), 10,076 kg ha–1 for
two irrigations of 40 mm at a later date (Fig. 7c), and 10,954 kg ha–1 for
one irrigation of 80 mm (Fig. 7d). The simulated results suggest that
multiple lower-depth irrigation irrigations may not improve final maize
yield. When irrigation depth reached 160 mm early in a given growing
season, the forecasted yields reached about 13,000 kg ha–1 and main-
tained a high level after 30 DAP (Fig. 7b), indicating that water was the
main limiting factor for maize yield in Changwu. The irrigation
threshold function of IT(DD, ID) can be set by users, according to the
availability of local water resources and yield expectations. Generally,

Fig. 5. Simulated maize yields for 50 years
(1968–2017) with variations in three different
weather variables (SRAD, Tmax/Tmin, and
Rain) at Changwu (a), Jingyang (b), Shiyanghe
(c), and Yangling (d). When simulating maize
yields with variation in a given weather factor,
the other weather factors were replaced by
multi-year mean values on the same dates.
Tmax/Tmin were considered as one factor and
replaced by their individual means simulta-
neously. The edges of the boxes represent 75th
and 25th percentiles, and the whiskers are
90th and 10th percentiles. The medians are the
horizontal lines within the boxes.

Fig. 6. Dynamics of forecasted yields of spring maize and rainfall during the
2011 growing season at Changwu (rainfed), Shaanxi Province. Vertical bars are
rainfall. The horizontal solid line is actual maize yield and the vertical dotted
line indicates the tasseling stage of spring maize.
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the new irrigation scheduling program developed in this study provides
an automatic tool for improving water management in maize produc-
tion.

3.4.2. Comparison among automatically scheduled and actual irrigations
The new dynamic within-season irrigation scheduling program and

the automatic irrigation option in DSSAT were used to generate irri-
gation strategies based on the three irrigated maize experiments in this
study. These irrigation strategies were then compared with local irri-
gation practices for simulated grain yield, irrigation times, total irri-
gation depth, and IUE (Table 3). Compared with local irrigation prac-
tices, IUEs improved with the new irrigation scheduling program and
the DSSAT automatic irrigation option. However, there were remark-
able differences in IUE and total irrigation amount between the dif-
ferent irrigation decision methods. The DSSAT automatic irrigation
option had the most irrigations scheduled at every site, since soil water

moisture was used as the irrigation determination variable. To maintain
soil water content at a fixed threshold, frequent irrigations were applied
with low depth per irrigation (35–45 mm). Hence, simulated yields
with this option were higher than other irrigation strategies, since
water stress was nearly curbed during the whole growing season.

Compared with the other irrigation strategies, the new dynamic
irrigation scheduling program had fewer irrigations and consumed less
water. The IUE also improved in dry years. However, the new program
seemed inefficient when there was heavy rainfall. For example, the
2014 growing season at Yangling had a total rainfall of 381 mm, most
of which was concentrated in August or during grain filling (Fig. 8). The
rainfall matched the maize water requirements but caused low air
temperatures, which reduced final maize yield. The results demonstrate
that the new automatic irrigation scheduling program could be used for
maize irrigation management in arid and semiarid areas, where water
supply is usually limited during the maize growing season.

Fig. 7. Prediction of spring maize yield (open circles)
with the dynamic within-season irrigation scheduling
program in 2011 at Changwu, Shaanxi Province
Irrigation events were scheduled based on four decision
thresholds of IT(DD, ID), as a functions of cumulative
declining days of simulated yields (DD) and irrigation
depth per event (ID, black vertical bars), e.g. IT(10 d,
40 mm) (a), IT(10 d, 80 mm) (b), IT(15 d, 40 mm) (c),
and IT(15 d, 80 mm) (d).

Table 3
Comparisons among the irrigation strategies based on local farmer experiences (identified as actual), the automatic irrigation option in DSSAT (identified as DSSAT
auto-option), and the new dynamic within-season irrigation scheduling program (identified as new program) at Jingyang (JY), Yangling (YL), and Shiyanghe (SYH).

Site Year Rainfall (mm) Irrigation scheduling Simulated yield IUE a

Method Depth per event (mm) Determination factor Irrigation times Total amount (mm) (kg ha–1) (kg ha–1 mm–1)

JY 2015 218 Actual 90 Local experience 3 270 11326 41.9
DSSAT auto-option – Soil moisture 6 280 12077 43.1
New program b 90 Forecasted yields 3 270 11274 41.8

45 4 180 9929 55.2
YL 2014 381 Actual 80 Local experience 2 160 6150 38.4

DSSAT auto-option – Soil moisture 2 119 6153 51.7
New program 80 Forecasted yields 2 160 6148 38.4

40 3 120 6149 51.2
2015 271 Actual 80 Local experience 2 160 7069 44.2

DSSAT auto- option – Soil moisture 3 130 7018 54.0
New program 80 Forecasted yields 1 80 7159 89.5

40 1 40 6245 156.1
SYH 2015 151 Actual 123+103+113+41+62 Local experience 5 442 8747 19.8

DSSAT auto- option – Soil moisture 9 387 8963 23.2
New program 90+(110) c Forecasted yields 2+1 290 8420 29.0

45+(110) 3+1 245 7845 32.0

a IUE is irrigation use efficiency, as defined in Equation 2.
b In the new dynamic within-season scheduling program, an irrigation event of IT(DD, ID) was defined as a function of DD (cumulative declining days of maize

yield) and ID (irrigation depth per event). The value of DD was set to 10 days and the value of ID had two levels of depth that applied by local farmers and half the
value.

c SYH, or Shiyanghe had an original irrigation depth of 110 mm at 96 DAP. Annual mean rainfall at Shiyanghe was only 162 mm, which did not satisfy water
requirement of maize. Therefore, the new program could not capture a decreasing trend of forecasted yields asked for maize irrigation scheduling. Thus, pre-
determined irrigation of 110 mm (as shown the parentheses) according to local experience was added to the model to ensure that the new program worked.
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4. Discussion

4.1. Maize yield forecast based on weather data fusion and crop model

Forecasting crop growth with crop models usually requires a com-
plete weather data series that covers the whole growing season of a
given crop. Apart from readily available weather data before a given
date, unknown weather data for a growing season can be represented
by seasonal weather forecasts (e.g., weather generators, coupled ocean-
atmosphere climate models) or historical weather records. Crop yield
forecasts based on historical weather records tend to be more accurate
than seasonal forecasted weather data (Marletto et al., 2007;
Prakash et al., 2019). This study used weather ensembles by in-
corporating daily measured weather data and historical weather data in
the CERES-Maize model in DSSAT to dynamically predict within-season
maize yields at four sites in Northwest China. High accuracy of yield
forecasts occurred for almost 50 days before maturity for spring maize
at Changwu (Fig. 4). The results demonstrated that the precision of
yield prediction was acceptable by only using historical weather re-
cords in the maize model, which avoided errors and uncertainties in
downscaling and other processes of climate models (Goel and
Dash, 2007).

In the process of daily yield forecasting, the uncertainty and errors
of forecasted grain yields did not initially decrease as the proportion of
actual weather data increased in the weather data series. Yield un-
certainty at a given date mainly resulted from weather variation during
the remaining time of the growing season. The forecast accuracy should
have improved as the number of days with unknown weather decreased
during the growing season. However, the results identified a predict-
ability threshold of developmental stage for maize yield. When maize
reached tasseling, the forecasted yields began to converge with actual
yields, and was similar to the anthesis date for wheat yield forecasts by
Lawless and Semenov (2005). The formation of maize grain yield can be

described as a source–sink relationship that is mainly limited by source
capacity or sink demand for assimilates during grain filling. When
maize reaches tasseling, it enters reproductive growth and has a fully
developed canopy with maximum radiation interception ability. Thus,
yield uncertainty from variable weather conditions was greatly re-
duced. DeJonge et al. (2011) pointed out that the CERES-Maize model
could simulate maize anthesis date accurately in semiarid environment,
which was consistent with this study and important for maize grain
yield simulation.

In this study, we used historical weather data from 1968 to 2017 as
possible weather scenarios to forecast maize yield. The large un-
certainty in forecasted yields resulted from variable rainfall patterns in
the given growing seasons. Bannayan and Hoogenboom (2008) re-
ported that the selection of analog years from historical meteorological
data might reduce the uncertainty in forecasted yields.
Wang et al. (2017) used different numbers of years of historical weather
records to represent the unknown weather data in the growing season
to forecast cotton yield. They identified that the forecasted yields pre-
dicted by the most recent ten years of weather data had the highest
accuracy. This finding is important due to the limited number of years
with historical weather data. However, their conclusions are site-spe-
cific and may vary under different climate conditions. In our study, we
wanted to demonstrate the potential of the new program in irrigation
scheduling with insight into quantifying the real-time influence of ir-
rigation on seasonal yields., Weather records with different numbers of
years could be tested in further work. More research is needed to as-
similate information from multiple remote sensing sources
(Mokhtari et al., 2018; Pagani et al., 2018), and effective seasonal
weather predictions (Brown et al., 2018; Ogutu et al., 2018) need to be
incorporated into crop models to improve the regional predictability of
maize yields.

4.2. New dynamic within-season irrigation scheduling program

4.2.1. Comparisons among the new and common model-based irrigation
scheduling

Global climate changes might make irrigation a more attractive
option because farmers have to take into consideration of economic
benefits and field production capacity into agronomic management
practices (Xu et al., 2019). Therefore, highest economic returns,
available irrigation water, possible weather in the coming days of the
growing season should be accepted in irrigation scheduling. Our irri-
gation scheduling algorithm provides users with a tool to quantify the
influences of different irrigation dates and amounts on seasonal maize
grain yield. Field managers could decide whether irrigate according to
simulations based on their yield expectations and available irrigation
water. Compared with the new dynamic irrigation scheduling program,
common irrigation strategies based on crop model simulations are
usually static and ‘one size fits all’, as irrigation schedules based on
optimizing limited field experiments are applied to all years (Linker and
Kisekka, 2017; Ma et al., 2017). Irrigation strategies scheduled in this
way may become ineffective or even invalid when weather conditions
change.

Furthermore, the main obstacle in common model-based method is
the need for high simulation accuracy of some output variables (such as
soil water content) for irrigation scheduling. Two reference ET calcu-
lation options were offered to users in DSSAT v4.6: (1) Priestley–Taylor
(PT) which only uses four weather variables—Tmin, Tmax, Rain, and
Solar radiation Priestley and Taylor, 1972), and (2) FAO-56 Pen-
man–Monteith method (PM-FAO56) which also include wind speed and
air humidity (Allen et al., 1998). Sau et al. (2004) evaluated four ET
estimation methods and their effects on ET, soil water content, and crop
biomass accumulation under rainfed conditions in southwest Spain. The
author reported that the PT and PM-FAO56 methods simulated crop
growth well but tended to overpredict and underpredict ET, respec-
tively. Anothai et al. (2013) evaluated the two ET options in the DSSAT-

Fig. 8. Rainfall and mean air temperature during the maize growing season in
2014 and 2015 at Yangling, Shannxi Province. Vertical bars are rainfall. Black
solid and pink dashed lines are mean temperatures in the two growing seasons,
respectively.
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CERES-Maize model under different irrigation strategies, reporting the
simulation errors in daily and seasonal ET were less than 12%. The
authors confirmed the potential of using both ET approaches for agri-
cultural water management under water-limited conditions. In addi-
tion, we used the tendency of daily forecast yields rather than direct
model outputs to schedule irrigations in this study. Therefore, the
model only needed to correctly show consistent real-time responses to
water factors rather than had high simulation accuracy for all processes
in the model. With the fusion of newly measured daily weather data and
historical weather series, maize grain yield could be forecasted day-by-
day over the whole growing season. Whether to irrigate or not in our
new program was determined by the trends of dynamically forecasted
yields which responding to real-time weather rather than following a
fixed irrigation schedule for all situations. The simulated IUEs of irri-
gations scheduled by the new algorithm at the four sites were im-
proved, relative to strategies scheduled by local farmers’ experience or
the DSSAT automatic irrigation options. However, three key variables
in the DSSAT automatic irrigation option were set as default values.
Different combinations of these irrigation variables might result in
different irrigation strategies and IUEs.

Byun and Wilhite (1999) used frequency, severity and duration the
three variables to assess levels of drought. Irrigations are mainly used to
resist the negative effects of heavy drought on agriculture and should be
avoided when drought level is slight to save cost. This new irrigation
scheduling program provided trends of within-season yield forecasts
and irrigation suggestions by taking into account real weather condi-
tions in a given growing season. Grain yield was usually the main target
for agricultural management. Our new irrigation scheduling program
based on yield forecasting was thus more purposeful. When the de-
clining trend of forecasted yields occurred first, it meant less rainfall
than historical records, but did not necessarily mean a very serious
water stress. However, if the declining trend lasted for a longer time,
some serious drought must have happened and irrigation should be
applied immediately. In this new program, we defined the irrigation
threshold IT(DD, IT) as a function of DD and ID, where DD (d) is the
threshold number accumulated days of decreasing forecasted yields
which describing user's tolerance to the duration of yield decreasing,
and ID (mm) is the irrigation depth per event. The values of these two
variables could be set by users before running this program. Irrigation
called by the declining yields would not be permitted in the program
when the duration of yield reduction was less than expectation. Users
are allowed to set a small value of DD if irrigation must start 2–3 days in
advance to avoid crop water stress of part of the field. Furthermore,
yield expectation can be added as a variable in the new program. Irri-
gation would be applied if the forecasted yields are less than the target
yields.

4.2.2. Deficiency and improvement of the new irrigation scheduling program
It should be noted that irrigations scheduled by model simulations

are imperfect due to model structure simplification of crop biophysical
processes and uncertainty in model parameters Kisekka et al., 2017.
Irrigation strategies scheduled by our new algorithm were only used in
the CERES-Maize model to simulate maize growth and yields without
actual field application. Further work should take actual field condi-
tions into consideration. However, despite the above disadvantages,
crop models are still useful tools for considering the interactions of
weather, soil, management practices, and crop cultivars. The new dy-
namic within-season irrigation scheduling program was developed on
the hypothesis that the declining trend of forecasted yields mainly re-
sults from a reduction in rainfall compared with normal years. The
results demonstrated that this assumption worked in most of the in-
vestigated years and sites. However, the new program would be in-
effective in two cases: (1) agricultural oasis with extreme drought
conditions and (2) heavy rainfall during the growing season that would
satisfy the maize water requirement.

Mean annual rainfall was only 162 mm at Shiyanghe in Gansu

Province, while mean annual pan evaporation was about 2000 mm.
Simulated maize still had grain yield with 162 mm precipitation at this
site, mainly due to water that had been stored in the soil profile at the
start of the growing season, which ensured seedling emergence; and the
simulation error of DSSAT under high water stress conditions.
Ben Nouna et al. (2000) pointed out that the CERES-Maize model un-
derestimates leaf area index, aboveground biomass and grain yield
under mild soil water shortage. In this study, the DSSAT-CERES-Maize
model had been validated according to experimental observations (ir-
rigated) before been used in irrigation scheduling, the simulation error
of anthesis date, harvest date, grain yield and aboveground biomass
were acceptable. Furthermore, we used the trends of daily forecasted
maize yields rather than single model outputs to guide irrigation. It was
supposed that the application of trends of daily forecasted yields could
reduce the simulation error caused by model deficiency under water
stress. Although daily forecasted rainfed maize yields with 50-year
historical weather series were almost all less than 2000 kg ha–1, the
program failed to capture a declining trend of daily forecasted yields or
provide irrigation suggestions due to the lack of variation in yield
predictions in such dry conditions, which was a prerequisite for irri-
gation scheduling in the new program. To overcome this shortcoming,
predetermined irrigation to 110 mm was set 96 DAP or the time of local
maize tasseling according to local field management. With this addi-
tional irrigation, variations in forecasted maize yields increased dra-
matically with the 50-year weather data series. In contrast, Yangling
had 384 mm rainfall during the 2014 growing season, most of which
occurred in August or during grain filling (Fig. 8). The maize water
requirement was well satisfied, but low air temperatures caused by
continuous rainy days reduced final grain yield. The declining trend in
forecasted yields was treated as a signal for water application in the
new program, although the reduction in forecasted maize yields could
have been caused by other non-water stresses. Liu et al. (2017) devel-
oped an optimal irrigation schedule for cotton by using the water stress
indices computed by DSSAT embedded in the RZWQM, which could be
adopted in the further development of our program. Besides, rainfall
following irrigation may result in unnecessary water application
(Cao et al., 2019). Thus, incorporating possible short-term weather
forecasts, especially rainfall, into irrigation scheduling is a powerful
tool for reducing irrigation water (Cai et al., 2011; Linker and
Sylaios, 2016). In next step, we want to add short-term weather forecast
data in the generated seasonal weather series in the format of “real-time
measurements+ short-term prediction+historical records”. Further
studies are needed to include maize water requirements at different
growing stages and imminent rainfall forecasts in our new dynamic
within-season irrigation scheduling program.

5. Conclusion

A new within-season irrigation scheduling method was established
based on trends in daily yield predictions. By incorporating daily new
measurements with local historical weather data, yields forecasted by
the DSSAT-CERES-Maize model responded to actual weather conditions
that had happened before forecast date. The uncertainty in forecasted
maize yields was large in the early growing season but converged soon
after the tasseling stage. High accuracy of maize yield forecasts oc-
curred nearly 35 days before maturity. Based on the analysis of sensi-
tive weather factor to maize yield in our research areas, variations of
seasonal accumulative precipitation caused the largest uncertainty in
simulated maize yields at the four sites in 1968–2017. In the new ir-
rigation scheduling method, reduction trends caused by more serious
water stress in daily forecasted yields were treated as indicators calling
for irrigation events. Compared with the irrigation strategies scheduled
by farmer experiences or the automatic irrigation option in DSSAT, our
new dynamic within-season irrigation scheduling program suggested
more efficient irrigation strategies in most cases, except at Yangling in
2014 due to heavy rainfall during grain filling. This new irrigation
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scheduling program assumed that the reduction of daily forecasted
yield was caused by lessened accumulative precipitation but did not
consider water requirements at different maize growth stages. Future
research should consider crop water status and short-term daily
weather forecasts to improve the accuracy of the new irrigation sche-
duling program.
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