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A B S T R A C T   

A series of policies and laws have been implemented to address climate change impacts in China since the 1980s. 
One of the most notable policies is ecological restoration engineering. However, there are many environmental 
factors that affect vegetation in the ecological restoration engineering zones. The relationships among different 
factors cannot be explained well by traditional statistical methods due to the existence of hidden non-linear 
features. Moreover, it is difficult to adopt threshold methods to accurately define vegetation areas fully, or to 
quantitatively analyze and assess the effects of climate factors and human activities on vegetation changes. The 
objective of this study was to determine vegetation area and distribution using Landsat TM/ETM/OLI images 
combined with a support vector machine (SVM) classification model. We analyzed the dynamic characteristics of 
vegetation area and greenness (NDVI, Normalized Difference Vegetation Index) in China's ecological restoration 
engineering zones from 1990 to 2015. Based on random forest regression (RFR) with a residual analysis method, 
the contributions of meteorological factors and human activities to vegetation greenness changes were quan-
titatively evaluated. Vegetation area and NDVI changed significantly in the study areas, increasing by more than 
50% and 40%, respectively, from 1990 to 2015. Temperature, sunshine hours, and precipitation impacted ve-
getation greenness, which caused NDVI fluctuations in specific years. However, the NDVI increase was difficult 
to explain fully with meteorological factors. Using cross-validation, we predicted about 80% of the observed 
NDVI variation occurring from 1984 to 1994. Nine meteorological factors were related to vegetation growth, of 
which the average temperature, minimum temperature, maximum temperature, and average relative humidity 
were most critical. The combined effect of the nine climatic factors contributed less to NDVI increase than 
human activities. Human activity was the most important factor associated with NDVI increase, with con-
tributions of more than 100% in most study areas. Human activities derived from national or local policies had 
large impacts on vegetation changes. The methods and results of this study can help to understand vegetation 
changes observed in ecological zones and provide guidance for evaluating ecological restoration policies.   

1. Introduction 

Climate change, especially global warming caused by the green-
house effect, is today's common challenge faced by all humanity. 
Climate change directly affects the growth of vegetation, and may play 
a positive or negative role. Meanwhile, vegetation can also reflect and 
regulate climate, and is therefore an important part of terrestrial 

ecosystems (Baldocchi et al., 2001; Bakwin et al., 2002). In a global 
context, areas of green vegetation have been increasing in recent dec-
ades, especially in China and India which account for one-third of the 
global net growth in green leaf area (Jong et al., 2012; Zhang et al., 
2017; Chen et al., 2019a). Some scholars have attributed this greening 
to human factors which have changed land management methods 
(Song et al., 2018; Tong et al., 2018). In general, vegetation greening 
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and browning are the result of a combination of natural and human 
factors (Kuenzer et al., 2015; Zheng et al., 2019). Therefore, dynamic 
vegetation monitoring and attribution of drivers are of great value for 
understanding and mitigating the effects of climate change and ad-
justing strategic policies. 

Vegetation greening or browning occur under the background of 
climate change. Previous studies have demonstrated that climate affects 
vegetation changes in different regions. Niemand et al. (2005) and  
Piao et al. (2008) have shown that climate warming could stimulate 
vegetation growth by extending the growing season and increasing 
photosynthesis, especially in areas without water limitations.  
Adole et al. (2018) reported that precipitation had a great influence on 
large-scale greening in Africa. Rainfall amount is related to vegetation 
greening and browning in arid and semi-arid regions (Adole et al., 
2018; Lamchin et al., 2018). 

Human activities also have a profound impact on vegetation 
changes. Li et al. (2017) indicated that human activities had a sig-
nificant influence on the growth and greening of vegetation. Previous 
studies have evaluated and validated the contribution of human ac-
tivities to vegetation change (Chen et al., 2019b; Liu et al., 2019b;  
Tong et al., 2019). China has implemented a series of related policies 
and laws affecting agriculture, forestry, environmental protection, and 
urban planning to improve the environment in ecologically fragile re-
gions. These policies aimed to reduce soil erosion (Chen, 2007;  
Liu et al., 2008) and land desertification (Zhang et al., 2020), and to 
protecting biodiversity (Narain et al., 2020) and alleviate water 
shortages (Xu et al., 2020). The most notable policies deal with vege-
tation restoration engineering in different climate zones of China. These 
projects have been implemented since the end of the 1980s, with forest 
land, grassland, wetland, and water bodies as the targeted land cover 
types to be converted from cropland and unused land. Trillions of 
dollars have been invested in these projects to address ecological pro-
blems (Chang et al., 2019; Du et al., 2019; Sun et al., 2019). These 
ecological restoration projects have improved the ecological environ-
ment in the project areas (Li et al., 2020; Xu et al., 2020). However, the 
factors dominating vegetation changes are still unknown with regards 
to ecological restoration projects. Quantifying the relative contribution 
of various factors to vegetation change is still a challenge (i.e., de-
termining to what extent the observed greening is caused by human 
activities versus climate change). Moreover, we are not yet able to 
determine whether China's policies that required large financial and 
labor investments have had their intended consequences. In the long 
run, the variable climate conditions across different ecological regions 
make it difficult to clearly understand whether or not vegetation has 
really been improved by these projects. 

The Normalized Difference Vegetation Index (NDVI) is commonly 
used to monitor vegetation growth (Xiao and Moody, 2004), determine 
vegetation distribution, and assess productivity (Xiao and 
Moody, 2004; Evans et al., 2006). The relationship between NDVI and 
environmental factors is increasingly important in ecological research 
(Liu et al., 2019a; Peng et al., 2019). NDVI quantifies the total amount 
of light absorbed and reflected by vegetation, and can indicate the 
degree of vegetation recovery after disturbance (Franks et al., 2017). 
Vegetation growth is closely connected with meteorological factors 
such as temperature, precipitation, and solar radiation (Fensholt et al., 
2012; Cong et al., 2013; Emmett et al., 2018). In fact, there is a problem 
of collinearity between meteorological factors. Some studies have 
considered the contribution of climate factors and human factors to 
NDVI. Li et al. (2017) analyzed the impact of climate and human factors 
on NDVI in the Loess Plateau using linear regression and residual 
analysis. Zheng et al. (2019) distinguished the impact of climate and 
human activities on NDVI using a linear model and NPP. These studies 
did not always explain more of the variation in NDVI when using linear 
models to construct the relationship between several environmental 
variables and NDVI. There are many environmental factors that can 
affect NDVI non-linearly, and the correlation among multiple factors 

cannot be explained well by traditional statistical methods. Because 
interactions among environmental factors can be complex, outliers 
could interfere with linear models (e.g., vegetation greening caused by 
sudden short-precipitation events in arid areas). In view of the above 
problems, we must find a more efficient and accurate method to assess 
vegetation changes. 

The assessment of human activities is usually based on survey data 
from yearbooks, but farmers in the study areas do not directly submit 
production reports to government agencies, which means that the data 
used are highly uncertain with potential bias (Hofmann et al., 2005). 
For example, Clauss et al. (2018) found that the data released by pro-
vincial statistics offices in Vietnam disagreed with data provided by the 
country. Machine learning methods came into being in order to solve 
nonlinear problems and big data processing issues. Machine learning is 
a cross-discipline study area focusing on how computers can be used to 
simulate or implement human learning behaviors so as to acquire new 
knowledge or skills. Machine learning also studies how to reorganize 
existing knowledge structures for continuous performance improve-
ment. Machine learning methods have been applied to the field of ve-
getation recovery and performed well. Vidal-Macua et al. (2020) used 
boosted regression trees combined with Landsat images to assess ve-
getation restoration in coal reclamation areas, thereby demonstrating 
the negative influence of drought on vegetation. Zaimes et al. (2019) 
used a vegetation index and random forest to assess the impact of a dam 
on the vegetation of a riparian delta, and the results showed that low 
vegetation cover was more affected human activities than higher den-
sity vegetation cover. 

In summary, this study used NDVI to quantify vegetation greenness. 
We attempted to use machine learning methods to analyze the re-
lationships between multiple factors and NDVI in different ecological 
engineering zones, accurately identify vegetation changes, and quan-
titatively evaluate the driving factors. The objectives of this study were 
to: (1) interpret and analyze the distribution characteristics of vegeta-
tion using SVM (support vector machine) classifier in seven study areas; 
(2) analyze vegetation greenness changes and the influence of major 
climatic factors (temperature, precipitation, and sunshine hours) on 
those changes over a 25-year period; and (3) quantify the contribution 
of climatic and human activities/policies to vegetation changes based 
on a residual analysis. 

2. Study area 

Major vegetation restoration projects in China include Natural 
Forest Protection Project (NFPP), “Grain for Green” Project (GGP), 
Three-North Shelterbelt Program (TSP), and Beijing-Tianjin Sandstorm 
Source Control Project (BSSCP). NFPP began in 1998 in southwestern 
China to reduce commercial logging and accelerate construction of 
plantations to protect natural forests and reduce natural disasters 
(Liu et al., 2008). BSSCP was launched in 2001 with the aim of estab-
lishing an ecological protection system to deal with the hazards of 
sandstorms in the north, especially Beijing (Wu et al., 2013). TSP en-
compassed a wide geographic range (including Northwest China, North 
China, and Northeast China) over a long time period (1978–2050) to 
form a barrier against desertification (Duan et al., 2011). GGP has been 
called the world's largest ecological restoration project. The project 
started in 1999 and promoted the conversion of farmland to forest in 
hilly areas over most of the ecologically fragile regions in China 
(Liu et al., 2008). 

We randomly selected three to five areas in different ecological 
engineering projects, and left seven representative areas through com-
parative analysis for further investigation (Fig. 1b). The representative 
study areas were distributed in different climatic zones across China 
(Fig. 1a) because we wanted to evaluate the relative contributions of 
meteorological factors to vegetation changes. The land use status of 
each study area was different due to different climatic factors and 
human activities (Fig. 1). The sizes of the study areas were selected to 
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match the coverage of nearby weather stations because the weather 
conditions can be considered as relatively uniform in a certain area 
(Fig. 1a). The more details about study regions are as follows (Table 1): 

Table 1 shows basic information about the study areas. The Kubuqi 
Desert (KBQ) area is located in the north of the Ordos Plateau which 
belongs to the mid-temperate arid and semi-arid regions. The Keerqin 
Sandy Land (KEQ) area is located in the semi-arid area of southeast 

Inner Mongolia with an annual evaporation of 1500–2500 mm. De-
sertification of KEQ has been caused by increased human activities in 
recent decades. The Maowusu Sandy (MWS) area is located between 
Yulin City and Ordos City. Desert formed here after the loss of vege-
tation due to reclamation, climate change, and war. The Minqinxian 
(MQX) region, under the jurisdiction of Wuwei city in Gansu province, 
has a temperate continental climate, with an average annual 

Fig. 1. Study areas and major forest and grassland projects. (a) Climate zones in China and weather station locations. NTZ, MTZ, STZ, PCZ, NSZ, MSZ, SSZ, and MT 
are north temperate zone, mid temperate zone, south temperate zone, plateau climate zone, north subtropical zone, mid subtropical zone, south subtropics zone, and 
mid tropical zone, respectively. (b) Vegetation restoration projects and representative research regions selected for the study. The bottom of the figure shows more 
details of the study areas, where (Ⅰ) KBQ, (Ⅱ) KEQ, (Ⅲ) MWS, (Ⅳ) MQX, (Ⅴ) TKLMG, (Ⅵ) QJS, and (Ⅶ) YTS. See Table 1 for abbreviation definitions for the study 
areas. 

Table 1 
Basic information of the study areas.        

Area Location Coordinate Temperature Precipitation Climatic zone  

KBQ The north of the Ordos Plateau 109.5E, 40.4N 7.37 °C 316 mm MTZ 
KEQ The southeast Inner Mongolia 119.8E, 42.9N 6.00 °C 420 mm MTZ 
MWS The between Yulin and Ordos City 108.9E, 37.7N 8.41 °C 340 mm STZ 
MQX Wuwei City in Gansu 102.9E, 38.7N 7.40 °C 113 mm MTZ 
TKLMG The Yutian area of Xinjiang 81.9E, 36.8N 11.40 °C > 100 mm STZ 
QJS The southwestern of China 103.7E, 24.8N 15.10 °C <1000 mm MSZ 
YTS The Shandong Peninsula of China 121.7E, 37.3N 12.20 °C 650 mm STZ 

Note: KBQ=Kubuqi Desert; KEQ=Keerqin sandy land; MWS=Maowusu sandy; MQX=Minqinxian; TKLMG=Taklimakan Desert; QJS=Qujingshi; YTS=Yantaishi; 
MTZ=mid temperate zone; STZ=south temperate zone; MSZ=mid subtropical zone.  
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evaporation of 2600 mm. The Taklimakan Desert (TKLMG) area in the 
Yutian area of Xinjiang is the largest desert in China. The region is hot 
and dry year around, with sparse vegetation. The Qujingshi (QJS) area 
is located in southwestern China. The Yantaishi (YTS) area is located in 
the Shandong Peninsula of China, surrounded by the sea on three sides. 

3. Materials and methods 

In this study, Landsat imagery was used as the data source, and the 
pre-processed imagery was analyzed to study changes in vegetation 
area (SVM, support vector machine classifier) and greenness with me-
teorological data (MLR, multiple linear regression). A random forest 
regression (RFR) model was constructed using actual NDVI data and 
data for nine monthly meteorological parameters from 1984 to 1994, 
and the contribution of human activities to vegetation changes was 
quantitatively assessed through time-based residual analysis (Fig. 2). 

3.1. Landsat TM/ETM/OLI images pre-processing 

This study used 793 Landsat TM / ETM / OLI images from the 
United States Geological Survey (USGS, http://glovis.usgs.gov/). The 
images have 30 m-resolution with the UTM projected coordinate system 
and the WGS84 geographic coordinate system. 

The raw images were subjected to pre-processing by radiometric 
calibration and FLAASH atmospheric correction using ENVI software. 
We used the radiometric calibration module to convert the DN value of 
the original image into radiance based on the radiation calibration 
parameters that came with the Landsat satellite. The formula is: 

= +L G DN O* (1) 

where Lλ is radiance, and G and O are gain and offset from the image 
metafile, respectively. The DN value is from the pixel value of the raw 
images. Further, we used the FLAASH atmospheric correction module 
based on the radiation transmission model to convert the radiance data 
to surface reflectance data. For specific details about FLAASH atmo-
spheric correction, see Adler-Golden et al. (1999). 

We used pre-processed remote sensing images to calculate normal-
ized difference vegetation index (NDVI), enhanced vegetation index 
(EVI), and ratio vegetation index (RVI) as follows: 

=
+ × × +

EVI G
C C L

NIR Red

NIR Red Blue1 2 (2)  

=
+

NDVI NIR Red

NIR Red (3)  

=RVI NIR

Red (4) 

where ρRed, ρNIR, ρSWIR, and ρBlue are the surface reflectance values of the 
red band, near infrared band, shortwave infrared band, and blue band, 
respectively, in the Landsat TM/ETM/OLI sensor. L is the canopy 
background adjustment that addresses non-linear, differential near in-
frared and red radiant transfer through a canopy. C1 and C2 are the 
coefficients of the aerosol resistance term, which uses the blue band to 
correct for aerosol influences in the red band (Huete et al., 2002). 

Fig. 2. Study workflow.  

Table 2. 
Features of the SVM classifier.    

Type Input data  

Reflectance Band 1-Band 7 from Landsat images 
Vegetation index NDVI, EVI, RVI from Landsat images 
Other DEM (See Supplementary materials) 
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3.2. Meteorological data pre-processing 

The meteorological data were acquired from the National 
Meteorological Centre (Fig. 1a). The impact of the meteorological 
parameters on NDVI were assessed by processing the meteorological 
data into two forms: (1) annual meteorological data – we used daily 
temperature, precipitation, and sunshine hours from 1990 to 2015 to 
generate mean annual temperature (MAT), total annual precipitation 
(TAP), and total annual sunshine hours (TAS). (2) monthly meteor-
ological data – we used daily temperature, precipitation, and sunshine 
hours from 1984 to 1994 to generate mean monthly temperature 
(MMT), mean monthly minimum temperature (MMMT1), mean 
monthly maximum temperature (MMMT2), mean monthly relative 
humidity (MMRH), mean monthly precipitation (MMP), mean monthly 
wind speed (MMWS), mean monthly sunshine hours (MMSH), total 
monthly precipitation (TMP), and total monthly sunshine hours 
(TMSH). 

Monthly meteorological data were used to build the regression 
model. Annual meteorological data were used to analyze the impact of 
meteorological factors on NDVI. 

3.3. Extracting distribution of vegetation 

SVM is a machine learning algorithm based on the structural risk 
minimization principle and statistical theory (Cortes and 
Vapnik, 1995). SVM uses a kernel function to map the nonlinear pro-
blem to a high-dimensional space so as to be transformed into a linear 
problem (Vapnik, 2013). In addition, the values for cost factor and 
gamma, will affect the punishment imposed for misclassification of 
samples and the complexity of the algorithm for the SVM model. The 
detailed description and formulas for SVM are provided in the 

supplementary materials. 
This paper used the SVM model to establish a nonlinear-implicit 

relationship between the object category and features (Table 2) of the 
study areas and to identify vegetation and non-vegetation areas from 
Landsat images of vigorous vegetation growth in 1990, 1995, 2000, 
2005, 2010, and 2015. We used the radial basis kernel function and the 
optimal parameters (cost and gamma by the lattice search) in SVM. This 
work was accomplished with the R program by using the e1071 
package. (https://cran.r-project.org/web/packages/e1071/). 

Considering that the interpretation results of SVM will directly af-
fect the analysis of vegetation area, we generated training data and 
verification data using Google Earth. First, we divided the research 
areas into several layers, including cultivated land, forest, grassland, 
water bodies, construction land, and unused land. Second, random 
points were generated on each layer. We then used very high resolution 
images from Google Earth to check each random point to determine if 
the point fit the correct distribution, and random points without clear 
land cover information were removed. Third, we reclassified each layer 
as vegetation and non-vegetation. Finally, about 200 validation points 
in the study areas were generated to construct the SVM classification 
model and test vegetation maps, of which 50% were used as training 
points and the remaining were used as validation points. The overall 
accuracy and kappa coefficient (calculated by confusion matrix) were 
used as the indicators to assess the interpretation accuracy. 

3.4. Impact of climate on NDVI 

Usually the limiting factors for vegetation growth are solar radia-
tion, temperature, and precipitation. Therefore, we used multiple linear 
regression (MLR) to identify relationships between annual NDVI 
(aNDVI) and three meteorological factors: mean annual temperature 

Fig. 3. The number of annual Landsat images used for calculating annual NDVI by the maximum value composites method at seven study sites in China. (KBQ, 
Kubuqi Desert; KEQ, Keerqin sandy land; MWS, Maowusu sandy; MQX, Minqinxian; TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi). 
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(MAT), total annual precipitation (TAP), and total annual sunshine 
hours (TAS). The aNDVI was calculated in two steps: (1) All NDVI 
images from the processed Landsat images in every year were used to 
generate an annual maximum NDVI image by the maximum value 
composites (MVC) method. (2) Then the mean NDVI values were cal-
culated from the NDVI images obtained in step (1). Fig. 3 shows the 
number of available Landsat images for every year from 1990 to 2015 
in the seven different study areas. 

MLR analysis was completed in the R program. The analysis of 
variance (ANOVA) was used to test the significance of different vari-
ables in the final linear regression model. The F-statistic was used to test 
the significance of overall significance of aNDVI and three independent 
variables. To quantify the relative contribution of different climate 
factors to the regression model, we wrote an R program function to 
derive the relative importance of the three meteorological factors by 
referring to research from Johnson (2004). 

3.5. Attribution of vegetation change 

The RFR model generates different regression trees by using random 
multiple training sets and features (Tian et al., 2016). Each regression 
tree is sampled independently and distributed identically in RFR (Fig. 
S1). Each regression tree produces different results through branching, 

and the prediction from the RFR model is the average of all trees. For 
more details about the RF model, please see Breiman (2001) and the 
supplementary materials. 

Our purpose in using RFR was to reestablish NDVI affected by cli-
mate (NDVIc) from 2000 to 2015. Specifically, we used actual monthly 
mean NDVI (mNDVI) from Landsat in 1984–1994 as NDVIc due to the 
nonlinear change of vegetation greenness and less human disturbance. 
Then we established the relationship between mNDVI and nine monthly 
meteorological factors (MMT, MMMT1, MMMT2, MMRH, MMP, 
MMWS, MMSH, TMP, TMSH). Finally, the established RFR model was 
used to predict NDVIc from 2000 to 2015. 

Values of mNDVI were calculated in two steps: (1) NDVI images of 
the processed Landsat images obtained in every month were used to 
generate a monthly maximum NDVI image by the MVC method. (2) The 
mean value of the NDVI images of step (1) were calculated. Table S1 
(Supplementary material) shows the number of available Landsat 
images for every month from 1984 to 1994 in the seven different study 
areas. The RFR model was obtained through the “randomForest” 
package in the R program, in which ntree was set as 500 and mtry was 
set as 3 (square root of the number of predictor variables) after de-
bugging. 

To evaluate RFR model performance, we used a stratified 10-fold 
cross-validation. Two statistical parameters were used to evaluate the 
results of cross-validation: (1) coefficient of determination (R2

CV); and 
(2) normalized root mean squared error (nRMSECV), where the CV 
subscript represents the data obtained from the validation datasets. We 
used the Cal subscript to represent the data obtained from the cali-
bration datasets. These parameters were calculated as: 

= =

= =
R

x i x y i y
x i x y i y

[ ( ( ) )( ( ) )]
( ( ) ) ( ( ) )
i
n

m m

i
n

m i
n

m

2 1
2

1
2

1
2 (5)  

= =RMSE
pe p
n

( )i
n

i i1
2

(6)  

=nRMSE RMSE
pei (7) 

where y(i) and x(i) are the simulated and observed values of the NDVI, 
respectively; n is the number of samples, pei and pi are the observed and 
simulated values, respectively. pei is the mean value of observed NDVI. 

A brief explanation of the process of stratified cross-validation fol-
lows. The data were first randomly divided into 10 folds by year (using 
the createFolds function in the R caret package). Then validation data 
from the first folder and training data from the remaining data were 
used to build the model. Finally, the previous steps were repeated 10 
times in turn, and the average value was calculated at the end. We also 
used function importance to compute the variable importance in the 
“randomForest” package. The variable importance was quantified as 
the MeanDecreaseAccuracy (defined as the mean decrease value after 
disturbance of the variable) to quantify the contribution of each me-
teorological factor. 

NDVI changes in the study area were divided into two groups. One 
group was NDVI affected by climate factors (NDVIc), and the other 
group was NDVI affected by human factors (NDVIh) (Evans and 
Geerken, 2004; Wessels et al., 2007; Jing et al., 2015). Therefore we 
considered using residual analysis to separate NDVIh. NDVIc was cal-
culated in the RFR model. NDVIh was calculated as follows (Zheng et al., 
2019): 

= +NDVI NDVI NDVIh a c (8) 

where NDVIa is the mNDVI of the Landsat images of luxuriant vegeta-
tion, and is affected by both human and climatic factors. φ is un-
certainty from hidden or unknown environmental factors, such as soil/ 
ground water change, atmospheric concentration, rainfall seasonal 
distribution, etc. In this paper, we did not consider φ, but showed the 
influence of φ on the model in the results to ensure the stability of the 

Table 3. 
The accuracy of image interpretation using the SVM model in seven study areas 
in China from 1990 to 2015.         

Region Year Class Veg. Non-veg. Overall acc. Kappa coef.  

KBQ 1991 Veg./Non-veg. 50/0 0/48 1 1  
1995 Veg./Non-veg. 49/1 0/50 0.99 0.98  
2000 Veg./Non-veg. 47/0 0/53 1 1  
2005 Veg./Non-veg. 50/0 0/48 1 1  
2010 Veg./Non-veg. 52/2 0/44 0.9796 0.9589  
2015 Veg./Non-veg. 48/1 0/47 0.9896 0.9792 

KEQ 1992 Veg./Non-veg. 49/0 0/53 1 1  
1995 Veg./Non-veg. 50/0 0/51 1 1  
2000 Veg./Non-veg. 47/0 0/48 1 1  
2005 Veg./Non-veg. 46/0 0/54 1 1  
2009 Veg./Non-veg. 52/0 0/46 1 1  
2015 Veg./Non-veg. 49/0 0/51 1 1 

MWS 1991 Veg./Non-veg. 47/0 0/51 1 1  
1995 Veg./Non-veg. 47/0 1/56 0.9904 0.9806  
2000 Veg./Non-veg. 49/1 0/47 0.9897 0.9794  
2005 Veg./Non-veg. 45/0 0/52 1 1  
2010 Veg./Non-veg. 51/0 0/49 1 1  
2015 Veg./Non-veg. 59/0 0/46 1 1 

MQX 1991 Veg./Non-veg. 43/0 0/56 1 1  
1995 Veg./Non-veg. 50/0 0/52 1 1  
2000 Veg./Non-veg. 45/0 0/52 1 1  
2006 Veg./Non-veg. 49/0 0/51 1 1  
2010 Veg./Non-veg. 45/0 0/54 1 1  
2015 Veg./Non-veg. 44/0 0/55 1 1 

TKLMG 1993 Veg./Non-veg. 55/0 0/44 1 1  
1996 Veg./Non-veg. 50/0 1/45 0.9896 0.9791  
2001 Veg./Non-veg. 45/0 3/50 0.9694 0.9387  
2006 Veg./Non-veg. 45/0 0/52 1 1  
2010 Veg./Non-veg. 45/0 1/54 0.99 0.9798  
2015 Veg./Non-veg. 45/0 0/50 1 1 

QJS 1989 Veg./Non-veg. 50/0 0/48 1 1  
1994 Veg./Non-veg. 43/0 0/56 1 1  
2000 Veg./Non-veg. 46/0 0/51 1 1  
2005 Veg./Non-veg. 43/0 0/56 1 1  
2010 Veg./Non-veg. 52/0 0/46 1 1  
2015 Veg./Non-veg. 46/0 0/52 1 1 

YTS 1990 Veg./Non-veg. 49/0 0/50 1 1  
1996 Veg./Non-veg. 50/0 0/50 1 1  
2000 Veg./Non-veg. 48/0 0/49 1 1  
2005 Veg./Non-veg. 48/0 0/52 1 1  
2010 Veg./Non-veg. 48/0 0/51 1 1  
2015 Veg./Non-veg. 46/1 0/50 0.9897 0.9793 

Note: KBQ, Kubuqi Desert; KEQ, Keerqin Sandy land; MWS, Maowusu Sandy; 
MQX, Minqinxian; TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi.  
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model. Therefore, the modified formula is given as: 

=NDVI NDVI NDVIh a c (9)  

Because ecological projects began before 2000, this study analyzed 
NDVI changes from 2000 to 2015 (i.e., t1=2000, t2=2015). The actual 
NDVI changes based on formula (8) were calculated as follows: 

=NDVI NDVI NDVIa a t a t, 2 , 1 (10)  

ΔNDVIa was composed of two parts, which were ΔNDVIc affected by 
climate factors and ΔNDVIh affected by human factors. Their formulas 
were: 

=NDVI NDVI NDVIh h t h t, 2 , 1 (11)  

=NDVI NDVI NDVIc c t c t, 2 , 1 (12)  

The contributions of human activities and climate factors to NDVI 
changes were quantified by formulas (9)–(12). 

3.6. Verification of attribution results 

For the verification of attribution analysis results, we used the land 
use database of 1990 and 2015 to establish a transition matrix. The 
objective was to demonstrate the changes in six land use classes from 
1990 to 2015 to indirectly assess the accuracy of attribution results. The 
transition matrix showed the value of the number of land use class 
pixels. Specifically, the diagonal values of the matrix represented the 
number of unchanged land use classes from 1990 to 2015, the values in 
the lower left portion of the matrix are the sum of all classes in 1990 
transferred to a certain class in 2015, and the values in the upper right 
portion of the matrix are the sum of a certain class in 1990 transferred 
to all classes in 2015. 

The land use database was a multi-temporal land use status data-
base that covered the national land area that included 1990, 1995, 
2000, 2005, 2010, and 2015 with a main data source of the Landsat 
TM/ETM images, which was generated by visual interpretation 
(Liu et al., 2014). The land use dataset includes six landform types: 
cultivated land (CL1), forest land (FL), grassland (GL), waters (W), 

Fig. 4. Image interpretation using SVM classifier from 1990 to 2015 in seven study areas in China. (a) True color synthesis image in 1990; (b) true color synthesis 
image in 2015; (c) vegetation distribution in 1990; (d) vegetation distribution in 1995; (e) vegetation distribution in 2000; (f) vegetation distribution in 2005; (g) 
vegetation distribution in 2010; (h) vegetation distribution in 2015. (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy land; MWS, Maowusu Sandy; MQX, Minqinxian; 
TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi). 
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construction land (CL2), and unused land (UL). See Supplementary 
materials Section 1.4 for the results and analysis of the transition ma-
trix. 

4. Results 

4.1. SVM interpretation and changes in vegetation area 

The SVM model was used to extract the vegetation distribution and 
area, and the validation points were used to verify the interpretation 
accuracy (Table 3). Results showed that the interpretation of each study 
area had a high precision, with values of over 95% (i.e., 0.95) for 
overall accuracy and kappa coefficient (Table 3). Fig. 4 shows the image 
interpretation of vegetation distribution, and the result is basically the 
same as the actual vegetation distribution. The high classification ac-
curacy of the SVM model is the basis of extracting vegetation area. 

Further, we extracted the vegetation area every five years from 
1990 to 2015 to analyze the area change. Fig. 5 shows that the slope of 
the vegetation area change in different study areas was greater than 0 
(p-value < 0.05 at KBQ, MWS, TKLMG, and, QJS, p-value < 0.1 in 
MQX). The area of vegetation changed greatly from 1990 to 2015, and 
the vegetation area increased more than 50% at six of the seven areas 
(YTS was 12.26%) (Table 4). Some study areas showed rapid increases 
in vegetation (e.g., KBQ, MWS), while other areas showed much slower 
increases (QJS, YTS) (Fig. 5). 

Vegetation expanded in varying degrees and directions from 1990 
to 2015 (Fig. 4c–h). Vegetation expanded toward the desert in some 
study areas containing desert (KEQ, KBQ, MWS, MQX, and TKLMG). In 
other areas, vegetation expanded from the center of the area to the 

periphery. Some areas showed obvious vegetation expansion (KEQ and 
TKLMG), while other areas had less dramatic vegetation expansion 
(YTS). 

4.2. Temperature, precipitation, and sunshine affect NDVI change 

We analyzed changes in aNDVI from 1990 to 2015. aNDVI changed 
somewhat differently in each study area (Fig. 6), although all seven 
study areas exhibited generally increasing aNDVI over the study period, 
(all slopes > 0 and p-values < 0.05) (Fig. 6). The vegetation generally 
showed a high greenness in each region, even though different regions 
had different climate types, underlying surfaces, and human activities.  
Fig. 7 shows the spatial distribution of aNDVI every five years (the non- 
vegetation areas have been masked out). 

In this study, the environmental factors which were closely related 
to vegetation growth (temperature, precipitation, and solar radiation) 
were selected to analyze the influence of meteorological factors on 
aNDVI (Figs. S2–S8). Vegetation greening was observed to be closely 
related to meteorological factors. Different study areas had different 
limiting factors for aNDVI (Figs. S2–S8). Specifically, temperature in-
fluenced aNDVI at KBQ (P<0.01, R2=0.41); precipitation influenced 
aNDVI at KEQ (P=0.09, R2=0.11); temperature influenced aNDVI at 
MQX (P=0.02, R2=0.21); temperature influenced aNDVI at MWS 
(P=0.01, R2=0.24); sunshine hours influenced aNDVI at TKLMG 
(P=0.07, R2=0.16); sunshine hours influenced aNDVI at QJS (P=0.07, 
R2=0.13). Figs. S2–S8 indicated that a single meteorological element 
cannot explain the change of aNDVI well. 

We further used MLR to explore the impact of the three meteor-
ological parameters on aNDVI. The MLR of aNDVI included tempera-
ture, precipitation, and sunshine hours (Table 5). ANOVA indicated that 
MAT exerted a significant control over aNDVI at KBQ, MWS, and, MQX 
(all with p-value < 0.05). TAP exerted a significant control over aNDVI 
at MQX (with p-value < 0.05). TAS exerted a significant control over 
aNDVI at KEQ and MQX (with all p-value < 0.05). MAT contributed the 
most to the explanatory power of the regression model at KBQ, MWS, 
MQX, and YTS (R2 = 0.51, 0.34, 0.45, and 0.15, resptectively). TAS 
contributed the most to the explanatory power of the regression model 
at KEQ, TKLMG, and QJS (R2 = 0.29, 0.19, and 0.17, respectively). 

Fig. 8 shows the changes in aNDVI and the three meteorological 
factors every five years from 1990 to 2015. The temperature at QJS 
varied the most (coefficient of variation = 10.49%); the range of pre-
cipitation variation was large for all regions (all coefficients of variation 
> 30%); the sunshine hours at MQX and QJS varied the most (coeffi-
cients of variation = 26.50% and 30.66%). 

4.3. Contributions of climate and human factors to NDVI changes 

QJS is located in the monsoon climate zone where conditions were 
often rainy and cloudy, and the imaging times were later at TKLMG and 
KBQ. Therefore, the training points were less able to meet the RFR 
model requirements in those three study areas. We selected the other 
four study areas to quantitatively assess the contribution of meteor-
ological factors and human factors to NDVI changes. 

In order to further evaluate NDVIc changes, NDVIa from remote 
sensing images and nine meteorological parameters from 1984 to 1994 
were used to construct the RFR model in this study. We tested the 
stability of the model to accurately predict NDVIc in four of the eco-
logical engineering zones (Fig. 9). In those zones, the RFR model per-
formed well (cross-validation R2

CV = 0.81, 0.78, 0.82, and 0.76; 
nRMSECV = 0.5%, 0.79%, 1.82%, and 1.76%, respectively, 
ntree = 500, mtry = 3) (Fig. 9). The RFR model reestablished NDVIa 
well from 1984 to 1994, and we therefore used NDVIa driven by nine 
meteorological factors as NDVIc to predict NDVIc from 2000 to 2015. 

As mentioned earlier, the RFR model considered only nine major 
meteorological parameters instead of all of the environmental factors. 
The cross-validation results showed that R2 was not close to 1.00 

Fig. 5. Changes in vegetation area every five years from 1990 to 2015 in seven 
study areas in China. The value of the y-axis tick labels is pixels divided by 
1000. (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy Land; MWS, Maowusu Sandy; 
MQX, Minqinxian; TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, 
Yantaishi). 

Table 4. 
Growth of vegetation area and NDVI in 2015 compared with 1990.          

Change in Study areas 
TKLMGa QJS YTS KEQ KBQ MWS MQX  

NDVI (%) −0.62 63.77 43.70 130.97 10.79 10.78 37.44 
Vegetation area (%) 82.40 53.04 12.26 88.59 76.15 141.59 116.66 
Vegetation area (ha) 3760 974 1771 6174 7913 15369 2436 

a TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi; KEQ, Keerqin 
Sandy Land; KBQ, Kubuqi Desert; MWS, Maowusu Sandy; MQX, Minqinxian.  
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Fig. 6. Changes in annual NDVI from 1990 to 2015 in seven study areas in China. NDVI data were missing from 1990 to 1993 at TKLMG. The gray shaded band 
represents the 95% confidence band for the linear regression. (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy Land; MWS, Maowusu Sandy; MQX, Minqinxian; TKLMG, 
Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi). 
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because of unaccounted factors (Fig. 9). We also tested the variable 
importance of the nine climate factors (MMT, MMMT1, MMMT2, 
MMRH, MMP, MMWS, MMSH, TMP, TMSH). MMT, MMMT1, MMMT2, 
MMRH contributed more to model stability than the other climate 
factors (Fig. 10). 

We then used the RFR model to predict NDVIc from 2000 to 2015, 
and obtained NDVIh by the difference of NDVIa and NDVIc. During the 
2000–2015 period, human activities had a positive effect on NDVI 
growth at MWS, KEQ, YTS, and MQX (ΔNDVIh% = 100.02%, 101.39%, 

124.86%, and 51.38%, respectively) (Table 6). The contribution of 
climatic factors to NDVI growth was different in different regions 
(Table 6). ΔNDVIc% values at MWS, KEQ, and YTS were less than 0. 
This phenomenon indicates that human activities have a major con-
trolling influence on NDVI growth, while climate factors play a negli-
gible role in these areas. The ΔNDVIc% value at MQX was −24.86% 
and indicated NDVI growth was a result of contributions of both human 
activities and meteorological factors (Table 6). 

We analyzed the changes in NDVIc (affected by only climate) and 

Fig. 7. Changes in NDVI from Landsat images of luxuriant vegetation from 1990 to 2015 at seven study areas in China. (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy 
Land; MWS, Maowusu Sandy; MQX, Minqinxian; TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi). 
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NDVIa (affected by both climate and human activity) every five years 
from 2000 to 2015 (Fig. 11). On the whole, the effect of human ac-
tivities on NDVI growth increased over time, and the effect of human 
activities on NDVI growth was similar in all four regions (Fig. 11). 
Meteorological elements in different study areas had different effects on 
vegetation greenness, which may depend on local land use conditions, 
hydrothermal conditions, and vegetation types. However, vegetation 
development in different environments can be directed towards in-
creased greening by implementation of production policies (human 
factors). Such policies may be beneficial for mitigating negative climate 
change impacts. 

5. Discussion 

5.1. Application of machine learning and residual analysis methods 

This study used an RFR model to construct a relationship between 
NDVIc and monthly meteorological data from 1984 to 1994. NDVIc 
from 2000 to 2015 was then predicted by climatic factors. The residual 
between the observed and predicted values was considered to be the 
effect of human activities and non-considered factors on NDVI. We 
predicted about 80% of the variation in observed NDVI through 10-fold 
cross-validation. The key step of this method was to reconstruct the 
vegetation index affected by climatic factors. Therefore, it was very 
important to select an appropriate time period under natural condi-
tions. Although the predicted period is usually determined by statistical 
methods to detect the year of an abrupt change, the period we chose 
was reasonable for two primary reasons: (1) The results of cross-vali-
dation showed that NDVI driven by climate factors was well re-
constructed (Fig. 9). (2) Although land use types changed in some areas 
due to human activities before 1994, these changes were insignificant 
on a regional scale. 

We advise caution when using traditional analysis methods to at-
tribute causes of vegetation changes. First, users need to consider 
whether there is a linear relationship between variables. If so, users will 
eliminate non-linear variables, thus ignoring the causal relationships of 
non-linear changes. There is less robustness to noise (e.g., the noise 
resulting from the impact of changes in the natural environment on 
vegetation) with traditional statistical models. Moreover, it is difficult 
to use several variables to explain more vegetation changes, especially 
in complex environments. Therefore, we chose the machine learning 
model. Machine learning models can overcome the effects of outliers 
and simulate non-linear vegetation changes but they lack a mechanistic 
explanation. 

Previous research has also used residual analysis to separate human 
contributions (Li et al., 2017, 2020). We have made some changes on 
this basis. Specifically, we analyzed vegetation changes in small areas, 
with representative meteorological data from a single station in each 
study area. However, previous studies have used large-scale areas such 
as watersheds, plateaus, and countries (Li et al., 2017), or made spatial 
interpolations of meteorological factors and regression analysis in grid 
studies (Liu et al., 2018). Supplementary Fig. S9 clearly shows the 
process of the method. 

The interpolation method itself has large errors and the calculation 
results also have large deviations. Therefore, we did not adopt the in-
terpolation method, but used single station data. This method can 
better deal with the problem of local areas. However, using this method 
(i.e., without interpolation calculations) does not allow us to show the 
spatial distribution of relevant information and spatial dynamic varia-
tion characteristics. Wang et al. (2018) used linear regression of two 
meteorological factors and NDVI to analyze NDVI trends. In practice, it 
is difficult to assure a linear relationship between meteorological fac-
tors and NDVI because NDVI is affected by many different factors. This 
study used a machine learning method to build the non-linear re-
lationship, which may further improve the prediction of NDVI. 

We used monthly data to establish regression relationships because 
annual average data may reduce the ability to identify the effects of 
abnormal changes. For example, a single large precipitation event can 
have a large impact on vegetation growth in arid or semi-arid areas 
(Miao et al., 2014). Annual data is sometimes not able to adequately 
demonstrate the relationships between NDVI and meteorological 
parameters. 

5.2. Vegetation greening and vegetative area expansion 

This paper made some changes for the method of vegetation ex-
traction. We used an SVM that supported less validation data to inter-
pret vegetation distribution. Previous studies extracted vegetation by 
setting a threshold NDVI value (Neinavaz et al., 2020). However, en-
vironmental changes (such as solar elevation angle) can cause changes 
in vegetation NDVI (Ma et al., 2019). A larger threshold will under-
estimate vegetation area, and a smaller threshold will increase the 
chances of errors associated with extracting other land types. 

From 1990 to 2015, vegetation area and vegetation greenness in-
creased by different degrees in each study area (Table 2), with vege-
tation area increasing by more than 50% in all but one area. This result 
is consistent with the results from Zhu et al. (2016), in which the im-
portance of considering land cover change was demonstrated in a 
greening analysis. Although the geographical environment, climate, 
and human activity in each research area were quite different, increases 
in vegetation and greening occurred simultaneously. However, NDVI 
decreased in one study area even though vegetation area increased. 
Perhaps at that particular site vegetation growth may have been in-
hibited by past precipitation or temperature changes, resulting in a 
decline in NDVI (Li et al., 2019). It is also possible that the negative 
impact of some human activities led to poor vegetation growth 
(Qiu et al., 2017). 

Table 5. 
Multiple linear regression results for annual NDVI changes in response to three 
meteorological factors at seven study areas in China.           

Estimate (and 
standard error) 

ANOVA Relative 
importance 

R2 

F-value Pr (> F)  

KBQ MAT 0.70 (0.16) 18.673 *** 83.87% 0.51 
TAP 0.31 (0.15) 4.204 0.05 12.39% 
TAS 0.01 (0.16) 0.003 0.96 3.74% 

KEQ MAT 0.07 (0.20) 0.129 0.72 3.04% 0.29 
TAP 0.48 (0.20) 3.661 0.07 46.53% 
TAS 0.43 (0.19) 5.275 * 50.43% 

MWS MAT 0.54 (0.18) 8.081 ** 75.48% 0.34 
TAP 0.33 (0.19) 3.099 0.09 20.87% 
TAS 0.05 (0.19) 0.071 0.79 3.65% 

MQX MAT 0.41 (0.16) 7.962 ** 41.03% 0.45 
TAP 0.40 (0.16) 4.976 * 27.99% 
TAS 0.36 (0.17) 4.687 * 30.98% 

TKLMG MAT 0.11 (0.22) 1.021 0.33 14.74% 0.19 
TAP 0.20 (0.24) 0.001 0.98 7.52% 
TAS 0.46 (0.25) 3.372 0.08 77.74% 

QJS MAT −0.23 (0.30) 1.015 0.32 15.01% 0.17 
TAP 0.22 (0.22) 0.035 0.85 9.15% 
TAS 0.57 (0.31) 3.467 0.07 75.84% 

YTS MAT 0.29 (0.23) 1.517 0.23 54.47% 0.15 
TAP −0.06 (0.24) 0.003 0.96 3.65% 
TAS −0.28 (0.23) 1.416 0.25 41.88% 

Note: The P-values generated by the F test for the overall significance of the 
regression models in the seven different regions were 0.001, 0.05, 0.02, 0.004, 
0.26, 0.24, and 0.43, respectively. Pr (> F) is the probability of an F-value 
greater than that given in the “F-value” column. Symbols for the significance 
test are: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. MAT, TAP, and 
TAS are mean annual temperature, total annual precipitation, and total annual 
sunshine hours, respectively. (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy Land; 
MWS, Maowusu Sandy; MQX, Minqinxian; TKLMG, Taklimakan Desert; QJS, 
Qujingshi; YTS, Yantaishi).  
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Fig. 8. Changes in annual NDVI and meteorological factors at seven study areas in China from 1990 to 2015. (a–g) Changes in NDVI and meteorological factors 
(temperature [°C], rainfall [mm], and sunshine hours) during the growing season (KBQ, Kubuqi Desert; KEQ, Keerqin Sandy Land;; MWS, Maowusu Sandy; MQX, 
Minqinxian; TKLMG, Taklimakan Desert; QJS, Qujingshi; YTS, Yantaishi). 
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Vegetation greening is often associated with meteorological ele-
ments. This study selected three meteorological factors (solar radiation, 
temperature, and precipitation) that directly affect vegetation to further 
identify the important driving forces of vegetation greening. 
Meteorological factors will affect NDVI changes, and extreme drought 
and precipitation can greatly change the growth of plants (Ying et al., 
2020). Wen et al. (2017) reported that solar radiation, temperature, and 
precipitation had significant effects on NDVI variations, and human 
activities (especially ecological engineering projects) had great influ-
ence on NDVI changes. However, some changes in NDVI are difficult to 
fully explain with meteorological factors, such as NDVI increases in 
specific years with low precipitation or high temperature (Zhang et al., 
2016). Moreover, the combined effects of other meteorological and 
non-meteorological factors feed back into vegetation development 
(Wang et al., 2015). Collinearity among meteorological variables may 
also affect vegetation development. Therefore, it is difficult to quali-
tatively analyze the changes of vegetation NDVI with key meteor-
ological factors. 

This study quantitatively assessed the contribution of human ac-
tivities to vegetation greening through residual analysis in four study 

areas. Human activities may be caused by policy factors. China has 
implemented a series of forest and grassland policies (Fig. 1a) that have 
produced positive vegetation effects. NDVI has also increased greatly 
from 1998 to 2018 in China (Fig. 1b). Research from Qu et al. (2020) 
also evaluated the contribution of human activities to NDVI, and the 
results were highly consistent with this study. Wang et al. (2015) re-
ported that vegetation coverage was improved or degraded by human 
activities, and the negative effects of extreme weather cannot be ig-
nored. Changes in land use caused by ecological engineering can im-
prove the vegetation situation (Qu et al., 2018). 

5.3. Limitations and future perspectives 

This study used three major meteorological factors related to ve-
getation growth to analyze NDVI changes. However, it is not only solar 
radiation, temperature and precipitation that affect vegetation growth 
and distribution. The NDVI residual value computed in this study 
contained not only human activity signals, but also residual climate 
effects because we used only nine meteorological parameters to build 
the RFR model. In future studies, we may add additional relevant 

Fig. 9. Cross-validation results for the RFR model to reestablish NDVIc in four study areas in China. NDVI during 1984–1994 was predicted using nine meteorological 
factors in the RFR model. The subscripts Cal and CV indicate results from calibration and cross-validation datasets, respectively. (MWS, Maowusu Sandy; KEQ, 
Keerqin Sandy Land; YTS, Yantaishi; MQX, Minqinxian). 
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environmental variables to improve the adaptability of the model. An 
additional limitation of the current study is that ground verification was 
generally weak, as Google Image cannot be considered as ground truth. 
In future studies, we will use more actual ground-truth point data. 

The vegetation change analysis and contribution assessment con-
ducted in this study demonstrated that some uncertainties and limita-
tions cannot be ignored. First of all, there was no trend analysis pre-
sented in this paper, and a relatively simple method was used to judge 
vegetation changes. In addition, the human factors affecting vegetation 
change were not explicitly determined, and it is difficult to judge which 
human activities have higher contributions to NDVI changes. For these 

reasons, a greater degree of refinement for climate and human factors is 
necessary to establish a comprehensive model for quantifying the 
driving factors for changes in NDVI and vegetation amount and dis-
tribution. In the future, vegetation feedback effects will need to be 
considered to reflect vegetation changes more accurately. 

6. Conclusions 

This study used remote sensing images, meteorological data, DEM, 
and other data to quantify changes in vegetation area and greenness 
from 1990 to 2015 in selected ecological engineering zones in China. 
Our results indicated that the vegetation area and greenness increased 
in response to the ecological restoration projects across different cli-
mate regions in China from 1990 to 2015. There were different driving 
factors for vegetation changes in different projects. Specifically, tem-
perature drove vegetation growth at KBQ, MWS, MQX, and YTS; sun-
shine hours promoted vegetation growth at KEQ, TKLMG, and YTS. 
However, the combined effects of climate factors had little effect on the 
growth of NDVI (and sometimes decreased growth), while human ac-
tivities had a definitive impact, contributing more than 100% in most 
regions. The results of this paper can assist policy makers in knowing 
the ecological recovery status and the effect of ecological policies more 
clearly and accurately, allowing them to make timely adjustments to 
decision-making strategies. We used machine learning technology to 

Fig. 10. Variable importance of meteorological factors in predicting NDVI at four study areas in China. The variable importance was determined by the mean 
decrease in accuracy. MMT, MMMT1, MMMT2, MMRH, MMP, MMWS, MMSH, TMP, and TMSH are mean monthly temperature, mean monthly minimum tem-
perature, mean monthly maximum temperature, mean monthly relative humidity, mean monthly precipitation, mean monthly wind speed, mean monthly sunshine 
hours, total monthly precipitation, and total monthly sunshine hours, respectively. (MWS, Maowusu Sandy; KEQ, Keerqin Sandy Land; YTS, Yantaishi; MQX, 
Minqinxian). 

Table 6. 
Mean NDVI changes in four study areas in China (2000–2015).          

Area ΔNDVIcb ΔNDVIh ΔNDVIa ΔNDVIc% ΔNDVIh%  

1 MWSa −0.00002 0.10058 0.10056 −0.02 100.02 
2 KEQ −0.00188 0.13758 0.13570 −1.39 101.39 
3 YTS −0.04375 0.21970 0.17595 −24.86 124.86 
4 MQX 0.05696 0.06020 0.11717 48.62 51.38 

a (MWS, Maowusu Sandy; KEQ, Keerqin Sandy Land; YTS, Yantaishi; MQX, 
Minqinxian) 

b Subscripts c, h, and a on NDVI refer to climate factors, human activities, 
and all factors.  
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improve the regression analysis and to obtain better results, reducing 
the additional uncertainties generated by traditional linear analysis, 
and accurately attributing the contributions of climate and human 
factors to changes in NDVI. This is an attractive method for under-
standing the impacts of human factors and environment on vegetative 
cover in local areas. 
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