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A B S T R A C T

Understanding how crop development rate responds to the environment provides the basis for evaluating the
impact of climate change on crop yield. In most crop simulation models, temperature response functions of
development rate during the reproductive growth period (RGP) are assumed to only vary with temperature and
not with other environmental factors. However, studies have indicated that the response functions may be plastic
with other factors. Until now, little attention has been paid to this type of response. Here, using extensively
collected field observations and data from intentionally designed interval planting experiments with winter
wheat (Triticum aestivum L.), rice (Oryza sativa L.), and spring maize (Zea mays L.), we show that temperature
response functions during RGP are plastic with day of year of flowering/heading (DOYR). Coefficients of de-
termination between DOYR and development rate were significant for 69% sites. Partial correlation coefficients
between development rate, temperature, and DOYR suggest that DOYR explains almost the same variability in
maturity date as temperature. The plastic model was developed by coupling DOYR with a linear temperature
response function. The model can improve the fitting efficiency by 112%, while dependency between DOYR and
temperature explains less than 25% of this improvement. The average RMSEs of simulated maturity date esti-
mated by the plastic model in the three crops were 2.1, 2.5, and 3.7 d, respectively, while the corresponding
values given by widely applied traditional models were 3.1, 6.5, and 7.4 d, respectively. Therefore, the plastic
model can reduce simulation error by half. Moreover, simulation errors resulting from the plastic model have
less systematic bias than traditional models. The plastic model simply and effectively provides accurate estimates
of crop maturity and reduces the system deviation of the estimates. Coupling the plastic model of crop devel-
opment with crop simulation models will likely decrease uncertainties in simulated yield under warming con-
ditions. Additionally, results of this study will encourage future studies of other phenotype plasticity considered
in current crop simulation models.

1. Introduction

As sessile organisms, plants require a tremendous capacity to adjust
their phenotype to survive in the environment to which they have been
dispersed (Rozendaal et al., 2006). Many kinds of phenotypes in various
plant species are plastic to changes in environmental conditions
(Nicotra et al., 2010), such as leaf functions (Schmitt et al., 2003;
Rozendaal et al., 2006; Poorter et al., 2009), root distribution in soil
profiles (Hodge, 2004), optimum temperature of photosynthesis
(Kumarathunge et al., 2019), and photosynthetic capacity (Kattge and

Knor, 2007). However, plasticity in crop phenology has not been well
investigated, especially during the reproductive growth period (RGP,
from flowering (for wheat and maize) or heading (for rice) to maturity).
Though many crop simulation models are already essential tools for
investigating climate change effects on agriculture (Asseng et al.,
2015), the thermal time accumulation required to complete RGP for a
specific variety is generally assumed to be a constant in these models.
As simulation models generally allocate most of the biomass formed
during RGP to storage organs such as grain (Jones and Kiniry, 1986;
Supit et al., 1994; Mccown et al., 1996; Bouman et al., 2001), the length
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of RGP has a very large impact on crop yield. Understanding the plas-
ticity of development rate to environment during RGP can provide the
basis for accurately evaluating the impact of climate change on crop
yield.

Three factors are generally considered to impact development rate
during the vegetative growth period (temperature, photoperiod, and/or
vernalization) (Mouradov et al., 2002). However, most models cur-
rently consider only one factor (temperature) to affect development
rate during RGP, though soil water condition can also affect develop-
ment (McMaster and Wilhelm, 2003; Liu et al., 2016b). Three cardinal
temperatures are generally used to define the response of development
rate to temperature. They are: base temperature (below which devel-
opment rate is zero), optimum temperature (at which development rate
is the maximum), and maximum temperature (above which develop-
ment rate is zero) (Porter and Gawith, 1999). Response functions can be
linear or curvilinear between base temperature and optimum tem-
perature, and between optimum temperature and maximum tempera-
ture (Wang et al., 2017). The time scale applied when calculating the
thermal time accumulation with a temperature response function is
usually daily and hourly (Supit et al., 1994; Yin et al., 1995;
Bouman et al., 2001). Maturity date can then be predicted if meteor-
ological data and the starting date of RGP are available. This framework
for describing a temperature response function is the most widely ac-
cepted and applied method used in crop modeling.

One of the underlying assumptions of this framework is that the
assumed temperature response function will remain the same for a
given variety and is independent of conditions other than temperature.
However, crop maturity is also affected by other factors including un-
favorable weather events. For example, wheat originated from the arid
countries northwest of the Fertile Crescent (Salamini et al., 2002),
where the summer is hot and dry. Wheat has adapted to local climate
and evolved to mature before the onset of the unfavorable hot and dry
weather. Autumn-harvested crops, including maize and rice, have a
vital need to produce progenitive seeds before a killing frost occurs. In
fact, it is widely accepted that all plants, including crop species, are
already finely tuned to the seasonality of their growing environments
(Menzel and Fabian, 1999; Cleland, et al., 2007).

Many phenotypes of plants are plastic to environmental conditions,
and the molecular basis of this plasticity has been more and more
clearly defined (Valladares et al., 2006; Zhu, 2016; Liu et al., 2017).
Like other phenotypes, the temperature response function of develop-
ment rate may not be a fixed relationship and may be plastic to the
signals given by the environment. This shifted temperature sensitivity
has been verified by Fu et al. (2015). But unlike other parameters in
existing phenology models, the signal may not be quantified adequately
by a genetic crop parameter since the time of occurrence of unfavorable
events is not determined by crops, but rather is locally dependent.

The underlying assumption of the traditional framework also im-
plies that, for a given variety, the contribution of per unit accumulated
thermal time to development rate is equal at any time and in any place.
However, after investigating rice phenology responses to historical
climate change under conditions in which variety remained the same
for 21 years, Zhang et al. (2008) reported that thermal time accumu-
lation from transplanting to maturity has significantly increased with
years. In a related modeling study, van Oort et al. (2011) found that the
trend in simulation errors caused by the trend in thermal time accu-
mulation could be removed by lowering the base and optimum tem-
perature. However, Wu et al. (2019) carried out an extensive in-
vestigation with a similar data set across China and found thermal time
accumulation during RGP in four of the seven investigated winter
wheat varieties was increased significantly though the base tempera-
ture had been set low (0 °C). As shown in previous reports (Hawker and
Jenner, 1993; Slafer and Rawson, 1995) for winter wheat, the base
temperature during RGP was reported as 5 °C in most cases. Lowering
base temperature to remove the increasing trend in thermal time ac-
cumulation therefore may not remove the trends in all crops. In

addition, after examining the phenology of a spring maize variety
across 34 sites in north China, Liu et al. (2013) reported that the
thermal time accumulation in RGP significantly decreased with lati-
tude. Consequently, the contribution of per unit accumulated thermal
time to development rate may also be plastic with the environment.

In general, one of the important defects existing in the traditional
framework is that it considers crop response to environment but not
crop adaptation to environment. The key problem in considering crop
adaptation is to find out which factors are proper to use to quantify the
adaptation. Since phenology has been regarded as a major adaptive
trait of plants to environment (Cleland et al., 2007), and the climatic
environment under which plants grow changes annually, the day of
year of a phenology event (DOYph) could be used to characterize both
the preceding climate that a crop has experienced and the anticipated
climate that a crop will experience. Therefore, DOYph has the potential
to act as a signal given by the environment. Several reports have al-
ready implied the possible relationships between DOYph and develop-
ment rate. Zhao et al. (2016) reported that timing of rice maturity in
China was affected more by day of year of transplanting date than by
climate change. Fu et al. (2014) showed experimental results from in-
dicating that a warming-induced earlier spring led to earlier autumn
senescence in trees. The relationship was then verified by field and
satellite observations (Keenan and Richardson, 2015). The model based
on the relationships between day of year of spring phenology and au-
tumn senescence has proven to be able to produce accuracy similar to
that of traditional models (Keenan and Richardson, 2015). However,
until now, there has been very little research on the plastic phenology
model in crops.

In this study, we assume that the temperature response function
during RGP of crops is plastic to the day of year of flowering/heading
(DOYR), i.e., the contribution of per unit temperature on development
rate is affected by DOYR. Extensively collected field-observed data were
obtained and an intentionally designed interval planting experiment
was conducted to compile data sets to verify this assumption. The ob-
jectives of this study were to verify the impact of DOYR on development
rate, investigate the independence of DOYR to temperature in impacting
maturity date, and to evaluate the plastic model through comparisons
of simulations from three widely applied traditional crop models.

2. Material and methods

2.1. Sites and observations

Two data sets were assembled in which phenology data were ob-
served under varying temperature conditions. The first data set was
comprised of phenology observations of three crop species (winter
wheat, rice, and spring maize) at 11 sites (Fig. 1). At each site, crop
variety remained unchanged for at least 15 years. In total, 12 crop
varieties were planted at these sites. There were seven winter wheat
sites, two single rice sites, and three spring maize sites. The Tonghua
station planted both single rice and spring maize. The start of RGP for
winter wheat and spring maize was flowering. For rice, due to lack of
observations of flowering date, the start of RGP was set as heading. Day
of year of flowering and heading date for the three investigated crops
were represented as DOYR. The end of RGP for the three crops was
physiological maturity. Phenological observations were managed by
the Chinese Meteorology Administration (CMA). Management practices
included irrigation, fertilizer applications, and weed control, and were
generally the same as or better than local traditional practices
(Tao et al., 2013). Observations were conducted by trained agricultural
technicians following standardized observation methods (CMA, 1993).
All phenology observation data were obtained from the National Me-
teorological Information Center (NMIC). Historical weather data at
agro-meteorological observation sites, including mean temperatures
and precipitation during the same years as phenology observations
were also collected from NMIC. Table 1 shows the site information and
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summary meteorological information for these sites. Wu et al. (2019)
described the phenological characteristics of these crops in more detail.
This data set represents the response of maturity date to climate change
under normal planting conditions.

The second data set was an intentionally designed interval planting
experiment under controlled conditions. This experiment was carried
out to observe spring maize phenology response to different sowing
dates at Jinzhou Agricultural Ecosystem Experiment Station (41.82° N,
121.20° E, 17m a.s.l) (Fig. 1) in 2018. Soil at this site is a typical brown
soil, with field capacity of 21.6% and wilting point of 6.2% in the
0–50 cm profile. The variety was ZD958, which is a widely planted
variety in China (Liu et al., 2013; Hou et al., 2014). The first planting
was done at day of year 94. Planting earlier than this day results in poor
seedling emergence due to low soil temperatures. Seeds were

subsequently planted every five days. The last planting was ended on
day of year 149. Planting later than this date results in maize not
reaching physiological maturity before a killing frost. Each planting
occupied a plot (15m long and 5.5m wide), with an in-row plant
spacing of 0.5m and row spacing of 0.3 m. The experiment was man-
aged such that there were no water and nutrient stresses. Management
was performed to guarantee optimum growth and to avoid the effects of
weeds and pests. Table 2 provides the detailed information for the ex-
periment. There was a national weather station within 50 m of the
experiment field. Daily average temperatures were collected from the
weather station. This data set characterized the response of maize
maturity date to a large variation in flowering date under natural
conditions.

Fig. 1. Locations of 11 agro-meteorological
observation sites and one experiment site. + is
the site where the intentionally designed in-
terval planting experiment was carried out, ●
are winter wheat observation sites, ■ are rice
sites, ★ are spring maize sites. Tonghua station
had both rice and spring maize observations,
with the ★ above the Tonghua label indicating
the actual position for the observations. To
show the two crops at the same location, we
show the rice site to the left of the actual po-
sition.

Table 1
Summary information for sites in which the planted variety remained unchanged for at least 15 years. Laizhou and Fushan planted the same variety ‘YN15’. In order
to distinguish between the two, the variety name was marked as ‘YN15(LZ)’ and ‘YN15(FS)’, respectively. The definition of reproductive growing season for winter
wheat and spring maize is from flowering to maturity, and for rice is from heading to maturity.

Site name Elevation (m) Number of
observations

Variety Reproductive Growing
season duration (d)

Annual temperature
(°C)

Reproductive growing season
average temperature (°C)

Reproductive growing
season rainfall (mm)

Winter wheat
Changzhi 992 17 CZ648 32.6 9.9 19.2 55
Hancheng 458 15 XY6 32.6 13.8 20.7 63
Jincheng 753 21 5819 35.3 11.9 20.1 69
Huanghua 7 23 71,321 28.0 13.0 21.7 40
Laizhou 48 21 YN15(LZ) 35.3 13.4 21.0 56
Fushan 54 26 YN15(FS) 36.3 12.8 20.9 60
Tianshui 1142 19 7464 40.4 11.5 19.7 71
Rice
Tonghua 380 26 QG 48.5 6.0 19.1 124
Muling 266 16 SY397 42.6 4.0 19.1 197
Spring maize
Jiamusi 82 18 DN248 59.9 4.1 18.6 184
Meihekou 341 15 TD4 59.7 5.8 18.7 227
Tonghua 380 20 JD101 51.7 6.0 20.7 319
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2.2. Testing the driving effect of DOYR on development rate

Regression analysis between DOYR and development rate for each
species and at each site was conducted to determine if DOYR affects the
development rate. Significance level of coefficient of determination was
determined by two-tailed t-test.

Readers should be aware that DOYR and average temperature in
RGP are not totally independent. The relative influence of DOYR on
development rate was tested for each species and at each site using
partial correlation analysis (controlling for temperature). The sig-
nificance level of the partial correlation coefficient was also determined
by two-tailed t-test.

Because both reciprocal of number of days and reciprocal of thermal
time accumulation are widely used to represent development rate, the
regression analysis and partial correlation analysis were performed for
these two development rate expressions.

2.3. Introduction to the plastic temperature response function

The plastic phenology model was developed by assuming that de-
velopment rate is linearly related to temperature, but that the linear
relationship is affected by DOYR. Three kinds of regression relationships
were designed to investigate how fitting efficiency (R2) was improved
by coupling DOYR with a linear temperature response function.

The response of development rate to temperature is essentially non-
linear (Bonhomme, 2000), but for ease of application, it is assumed to
be linear over a wide temperature range in many crop simulation
models (Hodges and Ritchie, 1991; Supit, et al., 1994; Bouman et al.,
2001). For simplicity, we assumed a linear response function. The linear
relationship is:

= + ×R a b T1 1 (1)

where R is the development rate over a specified growth period (d−1),
and a1 and b1 are regression coefficients. T is growth period average
temperature (℃). Traditional mechanical models can be roughly re-
garded as a special case of this linear function, since they assume
constant thermal time accumulations. However, in this linear function,
the thermal time accumulation can be increased or decreased, de-
pending on the linear tendency. The larger the linear tendency, the
greater the decrease in thermal time accumulation, and vice versa.

We assumed that the linear tendency (b1 in Eq. (1)) was affected by
DOYR. Thus we defined the plastic model as:

= + + × ×R a b c D T( )2 2 2 (2)

where a2, b2, and c2 are regression coefficients, D is the DOYR. If DOYR

does affect temperature sensitivity, R2 of the plastic relation is expected
to be much larger than for the linear temperature response function.

Obviously, the linear relationship (Eq. (1)) is a special case of the plastic
relationship (Eq. (2)). Traditional models, therefore, can be seen as a
special case of the plastic model.

Fitting efficiency of Eq. (2) can be partially explained by the linear
relationship between DOYR and T. Thus, we replaced DOYR in Eq. (2)
with the linear regression between DOYR and T:

= + + × + ×R a b c d e T T( ( * ))3 3 3 3 3 (3)

where a3, b3, c3, d3, and e3 are regression coefficients.
Reorganizing Eq. (3) and produces the polynomial relationship:

= + × + ×R a b T c T4 4 4
2 (4)

where a4, b4, and c4 are regression coefficients. a4 equals a3, b4 equals
+ ×b c d3 3 3, while c4 equals c3× e3. If the effect of DOYR on develop-

ment rate is not primarily caused by the dependency between DOYR and
average T, R2 in the plastic relationship is expected to be larger than the
polynomial relationship.

The above three regressions were performed for each variety of each
crop by the ordinary least squares method. Significance levels were
determined by two tailed t-tests. Because both reciprocal of number of
days and reciprocal of thermal time accumulation have been widely
used to represent the development rate, regressions were performed on
these two development rate expressions. Values of AICc were used to
determine whether it was cost-effective to introduce DOYR in Eq. (1):

= × − + +
× +

− −

R k k
n k

AICc n ln(1 ) 2k 2 ( 1)
1

2
(5)

where n represents the number of observations, R2 is the coefficient of
determination in each regression, and k denotes the number of para-
meters needed to be fitted. For Eqs. (1) and (2), k equals 2 and 3, re-
spectively.

2.4. Model comparison

Three commonly applied traditional phenology models (used by
crop growth models CERE-Wheat, CERES-Maize, and ORYZA2000)
were used to simulate crop phenology. Many reports have described the
models in detail (Jones and Kiniry, 1986; Hodges and Ritchie, 1991;
Bouman et al., 2001). For all three models, only one parameter affects
development rate during RGP. For CERES-Wheat and CERES-Maize, the
parameter is the thermal time accumulation. For ORYZA2000, the
parameter is the inverse of the thermal time accumulation. Parameters
for these models were optimized over a wide range and with a small
step. For these three models, parameter ranges were 300–800,
500–1150, and 0.0001–0.0050, respectively. The corresponding steps
were 1, 1, and 0.0001, respectively. All observations were used to ca-
librate the model. The principle of optimization was root mean square

Table 2
Dates of planting, flowering, and maturity, reproductive growing period (RPG) length, average temperature, and accumulated temperature for maize in interval
planting experiment at Jinzhou, China during 2018.

Number of planting Planting dateb Flowering dateb Maturity dateb RGP Length (d) Average temperature (°C) Accumulated temperature (°C·d)a

1 94 190 253 64 25.6 1123.7
2 99 192 253 62 25.6 1091.2
3 104 192 255 64 25.5 1119.8
4 109 194 257 64 25.5 1117.1
5 114 195 258 64 25.4 1111.1
6 119 195 258 64 25.4 1111.1
7 124 196 260 65 25.2 1115.1
8 129 200 261 62 25.1 1060.6
9 134 212 263 52 24.4 850.9
10 139 212 266 55 24.1 883.1
11 144 213 271 59 23.4 906.1
12 149 213 273 61 23.0 914.2

a The effective accumulated temperature above 8 °C.
b day of year.
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error (RMSE) minimization. The parameter values that achieved the
minimum RMSE were considered as the best values.

Maturity date simulation errors and corresponding RMSE values
produced by the traditional models and the plastic model were calcu-
lated. Trends of simulation errors over RGP average temperature,
DOYR, and year were calculated to evaluate model performance and
compared for both traditional models and the plastic model.

3. Results

3.1. Effect of DOYR on development rate

When using the reciprocal of number of days from flowering/
heading to maturity as the development rate, DOYR was positively re-
lated to development rate for 11 sites, and nine of them were significant
(Table 3). Neither of the two negative relationships were significant.
The relationships were significant at six winter wheat sites and three
spring maize sites (including the interval planting experiment)
(Table 3). The averaged R2 for the three crops were 0.62, 0.02, and
0.46, respectively. When using the reciprocal of accumulated tem-
perature as the development rate, DOYR was positively related to de-
velopment rate for all sites (Table 3), and 11 of them were significant.
The averaged R2 for the three crops were 0.28, 0.49, and 0.78, re-
spectively. The interval planting experiment with maize had the highest
R2 (0.923). These results suggest that the development rate is positively
related to DOYR.

Partial correlation coefficients between DOYR and development rate
(controlling for temperature) were also positive for all varieties of all
crops, whether the development rate was expressed as the reciprocal of
number of days or the reciprocal of accumulated temperature (Table 3).
For the two expressions, partial correlation coefficients for the three
crops were significant at 57% of winter wheat sites, 0% of rice sites, and
100% of maize sites. When the development rate was expressed as the
reciprocal of number of days, averaged partial correlation coefficients
for the three crops were 0.50, 0.32, and 0.76, respectively. When
controlling for DOYR in the partial correlation analysis, the averaged
correlation coefficients for the three crops were 0.45, 0.56, and 0.65,
respectively. These results suggest that DOYR explains almost the same
amount of variability in maturity date as temperature for the three
crops.

Additionally, Table 2 shows that for the interval planting experi-
ment with maize, each day delay in flowering date resulted in a

decrease of accumulated temperature by 11.4 °C·d ( =R 0.9382 ,
p<0.001). This result indicates that the contribution of per unit accu-
mulated temperature to development rate is positively related to DOYR.

3.2. Improved fitting efficiency after coupling DOYR with a linear response
function

Based on the observed relationship between DOYR and development
rate, a plastic phenology model was developed, which accounts for the
impact of DOYR on development rate (Eq. (2)). Results showed that
fitting efficiency (R2) can be greatly improved after DOYR was com-
bined in the linear temperature response function for both the case of
using the reciprocal of number of growing days (Fig. 2) as the devel-
opment rate and the case of using the reciprocal of accumulated tem-
perature (Fig. 3) as the development rate.

For the case of using the reciprocal of number of growing days as
the development rate, the R2 values were improved for all varieties of
all crops when DOYR was included in the relationship compared with
the linear function (Fig. 2). Average R2 values for the three crops were
improved by 0.23, 0.06, and 0.49, respectively. The R2 values in the
maize variety ‘DN258’ increased the most (0.59). Averaged over all
variety and crops, the R2 was improved by 112%. Dependency between
DOYR and temperature partially explains the improved R2. The poly-
nomial relationship showed that after considering this dependency, R2

values for the three crops were only improved by 0.04, 0.12, and 0.04,
respectively. On average, the R2 was improved by 20%. Therefore, the
dependency between DOYR and temperature explains less than 20% of
the improvement resulting from incorporating DOYR.

Similar results were obtained using the reciprocal of accumulated
temperature as the development rate (Fig. 3). For this case, the R2 va-
lues for the three crops were improved by 0.30, 0.03, and 0.18, re-
spectively, while the quadratic polynomial relationship improved R2 by
0.06, 0.08, and 0.03, respectively. On average, the plastic and poly-
nomial relationships improved R2 by 65% and 15%, respectively. In this
case, dependency between DOYR and temperature also explained only
25% of the improvement. These results further indicate that DOYR can
be regarded as a relatively independent factor, and confirms that in-
troducing DOYR into the linear temperature response function can
greatly improve model fitting efficiency.

The AICc values for Eq. (2) were lower than the values for Eq. (1) in
nine out of 13 sites in the two expressions of development rate (Fig. 4),
indicating that introducing DOYR was effective for explaining maturity

Table 3
Slopes, coefficients of determination and partial correlation coefficients (controlling for temperature) between day of flowering/heading date DOYR and development
rate. In calculating the development rate, both reciprocal of number of growing days and reciprocal of accumulated temperature were used as the development rate.
Base temperatures for calculating the accumulated temperature for winter wheat, rice, and spring maize were set as 0, 8, and 8 °C, respectively.

Crop Variety Using the reciprocal of number of days during RGP as the
development rate

Using the reciprocal of accumulated temperature during RGP as
the development rate

Slope (×10−3) R2 r (partial correlation
coefficient)

Slope (×103) R2 r (partial correlation
coefficient)

Field observation Winter
wheat

CZ648 0.4372 0.572* 0.429 0.0151 0.241* 0.431
XY6 0.5180 0.807*** 0.734*** 0.0150 0.336* 0.726***
5819 0.6141 0.663*** 0.639** 0.0256 0.430*** 0.647**
71,321 0.6014 0.622** 0.215 0.0114 0.138 0.208
YN15 0.4038 0.754*** 0.756*** 0.0164 0.455*** 0.757***
YN15 0.4328 0.658*** 0.628*** 0.0171 0.330** 0.636***
7464 0.0841 0.263 0.120 0.0012 0.008 0.131

Rice QG -0.0551 0.038 0.391 0.0282 0.553*** 0.385
SY397 -0.0437 0.010 0.240 0.0578 0.429*** 0.317

Spring
maize

DN248 0.1700 0.638** 0.765*** 0.0382 0.761*** 0.797***
TD4 0.0072 0.032 0.698** 0.0369 0.770*** 0.678**
JD101 0.2241 0.573** 0.691*** 0.0410 0.669*** 0.712***

Interval planting
experiment

Spring
maize

ZD958 0.0996 0.605** 0.902*** 0.0115 0.924*** 0.893***

*, **, ***: statistically significant at p < 0.05, p < 0.01, and p < 0.001 levels.
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date variation at most sites.

3.3. Model evaluation

Table 4 shows the values of the three parameters in the plastic
model. The influence of DOYR on temperature sensitivity (parameter c2
in Eq. (2)) was found to be positive for all varieties of all crops. For
winter wheat, rice, and spring maize, the average impact of DOYR on
temperature sensitivity was 0.0016 × 10−3, 0.0058 × 10−3, and
0.0132 × 10−3, respectively. We interpret this to mean that the de-
velopment rate of all three crops will be accelerated if the DOYR is
increased.

Averaged over all crops and varieties, the RMSE found for the si-
mulation of maturity date by the plastic model (2.5 d) was about half of
that found for the traditional developmental models used by the three
crop simulation models (5.0 d) (Fig. 5a). For all varieties of all crops,
the plastic model always resulted in lower RMSE than seen with the
traditional models. The average RMSE values resulting from the plastic
model were 2.1, 2.5, and 3.7 d for winter wheat, rice, and spring maize,
respectively, while the corresponding values resulting from the tradi-
tional developmental models were 3.1, 6.5, and 7.4 d, respectively.
Therefore, the plastic model was found to be more accurate than the
traditional models. This was mainly because traditional models assume
that development rate was only affected by temperature and assumed
constant thermal time accumulations. In years with later DOYR, this
assumption will lead to a very late simulated maturity date, or even to a
situation in which the crop never matures in an extremely cold year.
But with the plastic model, later DOYR will result in greater temperature
sensitivity, thus reducing the number of growing days during this
period, resulting in simulated plant development always reaching ma-
turity, even in cold years.

Additionally, the simulation error generated by the plastic model
was not significantly related to temperature and DOYR at all sites

(Fig. 5b,c), and was significantly related to year at four sites (Fig. 5d).
With the traditional models, errors were significantly related to tem-
perature at five sites, to DOYR at seven sites, and to year at six sites.
Therefore, the plastic model can reduce the system error of the simu-
lated maturity date.

The plastic model provided a better fit of simulated maturity dates
to observed maturity dates than the traditional models for winter wheat
and spring maize, with R2 values of 0.932 and 0.772, respectively
(Fig. 6a, c). For the traditional models, the corresponding R2 values
were 0.884 and 0.633, respectively. As for rice, the ORYZA2000 model
(R2 = 0.957) gave a slightly better fit than the plastic model
(R2 = 0.938) (Fig. 6b). However, the plastic model gave a better no-
bias fit than the traditional models used for the three crops. For winter
wheat, rice, and spring maize, when flowering/heading date was de-
layed by 1 day, the maturity date simulated by traditional models was
delayed by 1.13, 1.61, and 1.24 d, respectively, while the plastic model
predicted delays of 1.00, 1.07, and 0.91 d, respectively. For spring
maize in the interval planting experiment, the systematic biases for the
traditional models and the plastic model were 1.81 and 0.86 d, re-
spectively (Fig. 6d). Hence, considering all four data sets, the plastic
model gave better unbiased estimates of maturity date than the tradi-
tional models.

Observations of rice variety ‘QG’ at the Tonghua have been reported
previously (Zhang et al., 2008; van Oort et al., 2011). In the current
study, this site was used as a typical case to show how the plastic model
and ORYZA2000 performed in detail. At this site, the RMSE values
produced by the plastic model and ORYZA2000 were 1.7 and 6.1 d,
respectively (Fig. 5a). The trends of simulation error against year,
growth period average temperature, and DOYR produced by
ORYZA2000 were significant, while the only significant trend of si-
mulation error produced by the plastic model was the trend of simu-
lation error against year. Though the error produced by ORYZA2000
was larger than the error produced by the plastic model in 19 out of 26

Fig. 2. Coefficients of determination for three kinds of relationships (linear, plastic, and polynomial) for winter wheat (a), rice (b), and spring maize (c) using the
reciprocal of number of growing days as the development rate. *, **, ***: statistically significant at p < 0.05, p < 0.01, and p < 0.001 levels.
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years, this large RMSE was mainly attributed to the very large error
observed in 1986 when the simulation error produced by the plastic
model and by ORYZA2000 were 1 and 18 d, respectively (Fig. 7a). In
this year, measured effective accumulated temperature above 8 ℃ was
355 ℃·d. This was the lowest value during the entire 26 years. The
average value during these years was 473 ℃·d. Average heading and

maturity dates were 7 August and 17 September, respectively. Hence,
during this period, temperature was decreasing, and the effective
temperature accumulated for each day was also gradually decreasing.
According to the assumption used in ORYZA2000, the model needed
473 ℃·d to reach maturity in every year. In 1986, ORYZA2000 needed
extra days to accumulate the additional 118 ℃·d, thus the simulation

Fig. 3. Coefficients of determination of three kinds of relationships (linear, plastic, and polynomial) for winter wheat (a), rice (b), and spring maize (c) using the
reciprocal of accumulated temperature as the development rate. Base temperature used in calculating the accumulated temperatures for winter wheat, rice, and
spring maize were 0, 8, and 8 °C, respectively. *, ***: statistically significant at p < 0.05 and p < 0.001 levels.

Fig. 4. AICc value of Eqs. (1) and (2) using the reciprocal of number of growing days as the development rate (a) and using accumulated temperature as the
development rate (b).
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error was very large. In contrast, the plastic model assumes that the
later the DOYR is, the larger the temperature sensitivity. In 1986, the
DOYR was the latest of all 26 years (14 August), thus the temperature
sensitivity was also the highest. Consequently, less accumulated tem-
perature was required in this year. Hence, the simulation error given by
the plastic model in this year was only 1 d. The huge simulation error in
this one year also contributed to the significant trend of simulation
error against average temperature (Fig. 7b) and against DOYR (Fig. 7c).
In this case, the plastic model showed the typical advantage in a year
with extreme climate.

4. Discussion

The accurate and unbiased estimation of crop phenology response to
climate variation is essential for correctly and reliably estimating crop
yield response to future climate change. Previous studies indicate that
crop yields will likely decline in the context of climate warming, mainly
due to shortened growth periods (Challinor et al., 2016; Liu et al.,

2016a). However, in this study, we found that the response of devel-
opment rate to temperature in RGP is plastic with DOYR. This plastic
relationship indicates that under warmer conditions, crop growing
season length during RGP will not likely be shortened as much as tra-
ditional models predict.

Previous studies have shown that many phenotypes of plants are
plastic to environments (Sultan, 2000; Pigliucci, 2005). For example,
root distribution in the profile is plastic to cope with the naturally oc-
curring heterogenous supplies of water and nutrients (Hodge, 2004).
Light was also found to have significant effects on leaf functions. Spe-
cific leaf area, the key phenotype used in current crop models, has also
been shown to be plastic with irradiance (Rozendaal et al., 2006).
Temperature response of photosynthesis varies temporally, as a result
of adaption to changes in ambient temperature (Kumarathunge et al.,
2019). Two main parameters representing photosynthetic capacity have
been observed to adapt to plant growth temperature (Kattge and Knor,
2007). The plasticity we found in temperature sensitivity of develop-
ment rate is consistent with the general conclusions in the field of ge-
netics (Queitsch et al., 2002) and evolutionary biology (Franks, 2011).

The plastic temperature response function that we developed was
based on and is an extension of the traditional temperature response
framework. In traditional models, temperature sensitivity is always
assumed to be in a fixed form in any year. Our plastic model extended
this assumption and assumed that the sensitivity varied in different
years. With the plastic assumption, if the DOYR remained the same in
every year, then the temperature sensitivity would also remain un-
changed. Therefore, the traditional assumption is a special case of the
plastic assumption. Some traditional models provide for physiological
maturity when temperature is too low to accumulate sufficient thermal
time accumulation, especially for autumn-harvested crops (Jones and
Kiniry, 1986). This special rule is consistent with the assumption of the
plastic model, i.e., allowing crops to mature before a killing frost.

Keenan and Richardson (2015) developed a phenology model for
trees to relate autumn senescence with timing of spring phenology. In
their model, if spring phenology events appeared earlier, autumn se-
nescence would also appear earlier, and vice versa. Generally, one day
earlier of spring events would result in about 0.6 day earlier autumn
senescence. Both our plastic model and their model use day of year of a
previous phenology event as input, so the two models are related. But

Table 4
Values of the three parameters in the plastic model for all varieties of winter
wheat, rice, and spring maize.

Crop Variety Parameter value in plastic model
(×10−3)

a2 b2 c2

Field observation Winter
wheat

CZ648 −3.356 −0.02 0.01334
XY6 20.256 −2.172 0.02268
5819 1.584 −2.124 0.02675
71,321 −5.737 0.605 0.01023
YN15(LZ) 16.592 −1.706 0.01784
YN15(FS) 16.427 −2.033 0.01929
7464 4.557 0.834 0.00148

Rice QG 3.162 −0.462 0.00648
SY397 12.923 −0.574 0.00514

Spring
maize

DN248 3.68 −2.307 0.01441
TD4 0.696 −1.498 0.01118
JD101 6.711 −2.78 0.01658

Interval planting
experiment

Spring
maize

ZD958 −26.176 −0.388 0.01051

Fig. 5. Simulation accuracy of maturity date
from the plastic model and three traditional
phenology models (CERES-Wheat, CERES-
Maize, and ORYZA2000) for varieties of winter
wheat, rice, and maize. Panel a is the simula-
tion root mean square error (RMSE); panel b is
the trend of simulation error against growth
period average temperature; panel c is the
trend of simulation error against day of year of
flowering/heading date; panel d is the trend of
simulation error against year. The solid and
hollow circles are for the traditional and plastic
model, respectively. Green, blue, and red
symbol colors indicate trend differences be-
tween the plastic model and the traditional
phenology models that are statistically sig-
nificant at p < 0.05, 0.01, and 0.001, respec-
tively. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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one of the disadvantages of their model was that their model didn't take
into account the effects of temperature on development rate. Our plastic
model addresses this disadvantage by combining a linear temperature
response function to determine maturity date, since it is well known
that temperature plays an important role in determining crop devel-
opment rate (Porter and Gawith, 1999; Siebert and Ewert, 2012).

There was a significant relationship between DOYR and day length
at each investigated site. Therefore, using day length in the plastic
model instead of DOYR can result in similar results. But doing so is
equivalent to assuming that development rate during RGP is photo-
period sensitive. However, this assumption is contrary to current per-
ceptions that development rate during RGP is not sensitive to day
length. In addition, using day length in the model would result in a
greater number of model parameters and generate additional compu-
tations. Therefore, in this study we used DOYR, and propose that this
parameter is a comprehensive indicator of many possible environ-
mental factors. However, it is still not clear what exactly these factors
are. Further research will be needed to explore the phenology plasticity.

Values of the three parameters determined for the plastic models in
‘YN15(LZ)’ and ‘YN15(FS)’ were very similar (Table 4). There are two
possible reasons. The first is that both sites used the same wheat variety
(‘YN15’) (Table 1) and this similarity may indicate that the parameter
values of the plastic model will remain stable among different sites. The
second reason may be that the two sites are not far apart (linear dis-
tance between sites is about 115 km) and both sites are located in the
North China Plain (Fig. 1). Therefore, the climate at both sites is very
similar (Table 1), resulting in the wheat variety showing similar plas-
ticity in developmental response to temperature.

The traditional models have only one fitting parameter, less than the
three parameters required for the plastic model. This is likely the pri-
mary reason that the plastic model was more accurate than the

traditional models. However, the traditional models have three other
implicit parameters, i.e., the three cardinal temperatures. We used their
default values for model validation. For winter wheat, rice, and spring
maize, their values were 0, 26, and 34 °C; 8, 30, and 42 °C; and 8, 34,
and 44 °C, respectively, for the base, optimum, and maximum tem-
peratures (Jones and Kiniry, 1986; Hodges and Ritchie, 1991;
Bouman et al., 2001). Therefore, there is a chance to further reduce the
simulation error by adjusting these values. For example, van Oort re-
ported that by lowering the base and optimum temperature, the si-
mulated RMSE produced by ORYZA2000 could be reduced (van Oort
et al., 2011). However, the physiological meanings of the three cardinal
temperatures are very clear. Determining their values cannot rely only
on fitting the observed data. Adjusting parameter values casually can
impair model function. In addition, finding the best cardinal tempera-
ture values is time-consuming work. Furthermore, multiple combina-
tions of parameters may lead to the same simulation accuracy which
will further lead to huge uncertainty in model results, especially with
these nonlinear functions (He et al., 2017). Therefore, reducing simu-
lation error by adjusting cardinal temperatures is much less desirable
than reducing simulation error by directly assuming plastic temperature
sensitivity.

There exists potential for improving accuracy of the plastic model.
Using a more complicated temperature response function instead of a
linear relationship may be one of the most promising ways. Many kinds
of curvilinear functions have been applied in traditional models
(Wang et al., 2017), which have proven to be more effective than linear
functions. Therefore, there is reason to believe that curvilinear func-
tions can be more effective than linear functions. However, in this study
our use of linear functions was reasonable for the temperatures that
most crops experience during RGP. All of the sites in our study were
located in north China, where the chance of daily average temperatures

Fig. 6. Measured and simulated maturity date
for winter wheat (a), rice (b), and spring maize
(c) from field observations, and for spring
maize (d) from the interval planting experi-
ment. The maturity date was expressed as the
day of year. The black points and regression
lines are for the traditional model comparison
and the red points and regression lines are for
the plastic model comparison. ***: statistically
significant at p < 0.001 levels. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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exceeding the optimum temperature are low, especially for rice and
spring maize.

A second way to improve the plastic model is to use a nonlinear
function instead of the linear relationship between DOYR and tem-
perature sensitivity, since the responses of development rate to en-
vironmental factors are very complicated, and the linear relationship is
a simplified form of the actual relationship. However, using nonlinear
functions will likely increase the number of fitting parameters and re-
duce model applicability.

Our findings indicated that warming-induced yield loss may be less
than currently forecasted. This can be explained as a result of the trend
for date of flowering/heading to occur earlier (Tao et al., 2013;
Wu et al., 2019), which will reduce development rate temperature
sensitivity, and thus stabilize the development duration and thereby
benefit crop yield. Additionally, the reduction in temperature sensi-
tivity may be beneficial for crops to maintain adaptability to climate.
Rahmstorf and Coumou (2011) reported that occurrences of extreme
weather have increased over the past few decades and will likely con-
tinue to increase in the future, especially associated with warm winter
and warm spring events. By adjusting the temperature sensitivity of
crop development rate, the improved phenology plasticity will prevent
simulated maturity dates from appearing too late in cool years (thereby
avoiding the risk of killing frost), and also prevent simulated maturity
date from appearing too early in warm years, thereby making the most
efficient use of thermal resources and accurately simulating the accu-
mulation of more dry matter.

The plastic model of plant development that resulted from this study
has potential for improving calculations of regional and global carbon
uptake and emission. Moreover, other important processes simulated by
crop models, such as dry matter allocation among different plant
structures, specific leaf area, etc., may also be plastic to environmental
factors such as irradiance, water availability, and nutrient status. If
these additional plastic responses are accurately accounted for in crop
models, uncertainties and errors in simulated yield responses to future
climate change will likely be effectively reduced.

5. Conclusions

Based on field observations and data from an interval planting ex-
periment, we found that the sensitivity of crop development rate to
temperature during RGP was positively plastic with DOYR for winter
wheat, rice, and spring maize. Partial correlation analysis showed DOYR

can be regarded as an impact factor that is independent of temperature.
Therefore, DOYR can be used as the indicator to represent the pheno-
logical adaptive response of a crop to the local environment. The plastic
phenology model, which was developed by coupling DOYR with a linear
temperature response function, can greatly improve the model fitting
efficiency. The dependency between DOYR and temperature explained
only a small part of this improvement. Compared with traditional
phenology development methods used in three widely used crop si-
mulation models, the plastic phenology model reduced the simulation
error by nearly half, and can effectively reduce the systematic tendency

Fig. 7. Trends of rice maturity date simulation error over year (a), growth period average temperature (b), and day of year of heading date (c) produced by the plastic
model and ORYZA2000. The black solid circles, regression lines, and regression equations are for the ORYZA2000 model, while the red solid circle, regression lines,
and regression equations are for the plastic model. * and ***: statistically significant at p < 0.05 and p < 0.001 levels. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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of simulation error in a simple and effective way. The future use of this
plastic model of crop development will improve estimates of crop yield
produced by simulation models, thereby more accurately predicting the
impacts of future climate change.
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