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Abstract
Although crop phenology is responsive and adaptable to cultural and climatic
conditions, many phenology models are too sensitive to variable climatic condi-
tions. We developed a plastic temperature response function by assuming that
development rate was linearly related to temperature and that the linearity was
linearly responsive to day of year (DOYv) of the starting date of the vegetative
growth period (VGP). Phenology observations and weather data were acquired
for winter wheat (Triticum aestivum L.), rice (Oryza sativa L.), maize (Zea mays
L.), and soybean [Glycinemax (L.) Merr.] at 12 locations over 15–26 yr. Additional
datawere observed formaize grown in an interval planting experiment. For 78.6%
of the sites, the crop development rate during the VGP was positively affected by
DOYv. Partial correlation analysis (controlling for temperature) indicated that
DOYv was independent of temperature. When averaged over all crops and sites,
the RMSE for a plastic phenology model based on both response and adapta-
tion mechanisms was lower (RMSE = 2.81 d) than models (RMSE = 3.39) based
only on response mechanism (p < .01). Furthermore, simulations produced by
the plastic model showed less bias to DOYv, temperature, and year. The plas-
tic function provided a simple and effective method for achieving better phe-
nology simulation accuracy. According to the plastic function, growing season
under warming conditions will not be reduced by as much as simulated by mod-
els based only on response mechanism, so yield loss due to warming is likely to
be overestimated.

1 INTRODUCTION

Accurate crop phenology predictions are required to accu-
rately assess the effects of climate variability on crop
yields (Estrella, Sparks, & Menzel, 2007; Kumudini et al.,

Abbreviations: CMA, Chinese Meteorology Administration; DOY, day
of year; DOYv, day of year of the starting date of vegetative phase; RGP,
reproductive growth period; VGP, vegetative growth period.
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2014; Lollato, Edwards, & Ochsner, 2017; Olesen et al.,
2012; Siebert & Ewert, 2012; Tao, Zhang, & Zhang, 2012).
For most crops, temperature is the most important factor
affecting phenology (Porter & Gawith, 1999; Sanchez, Ras-
mussen, & Porter, 2014). Many response functions have
been developed to describe how crop development rate
responds to temperature (Parent, Millet, & Tardieu, 2019).
The response function is nonlinear in nature, but, for ease
of application, it has often been simplified as a linear,

3832 wileyonlinelibrary.com/journal/agj2 Agronomy Journal. 2020;112:3832–3846.

https://orcid.org/0000-0002-1400-9108
https://orcid.org/0000-0001-6950-1821
mailto:yuq@igsnrr.ac.cn
https://wileyonlinelibrary.com/journal/agj2


WU et al. 3833

bilinear, multilinear, or curvilinear function (McMaster,
Wilhelm, & Morgan, 1992; Olsen, McMahon, & Hammer,
1993; Porter, 1993; Wang et al., 2017). Three cardinal tem-
peratures are often used to describe the shape of these
response functions (Bonhomme, 2000). Cardinal temper-
atures (i.e., base, optimum, and maximum temperatures)
can vary with different developmental stages (Porter &
Gawith, 1999; Sanchez et al., 2014).However, for easy appli-
cation, cardinal temperatures are generally assumed to
remain unchanged over a long period of the growing sea-
son (Wang & Engel, 2000;Wu, Feng, Zhang, Gao, &Wang,
2017; Zhang, Tao, & Zhang, 2017).
It is widely accepted that many crop phenotypes are

plastic with environment (Grogan et al., 2016; Hodge,
2004; Nicotra et al., 2010; Peltonen-Sainio, Jauhiainen, &
Sadras, 2011; Rozendaal, Hurtado, & Poorter, 2006; Sadras,
Mahadevan, & Zwer, 2017; Sadras, Reynolds, De la Vega,
Petrie, & Robinson, 2009). Phenotype plasticity is thought
to be evidence of crop adaption to the environment (San-
dras & Richards, 2014). For example, in some crop models,
specific leaf area is considered a parameter that is inde-
pendent of environmental factors (Supit, Hooijer, & van
Diepen, 1994). However, it has been reported that spe-
cific leaf area varies with irradiance in order to maximize
growth under different light conditions (Rozendaal et al.,
2006). Also, roots often proliferate within nutrient-rich
zones (Hodge, 2004). The plastic response of roots has been
considered as the major adaptive mechanism by which
crops can make full use of available nutrients. For a given
region, the climate resources appear regularly in an annual
cycle, and as such a crop may have the ability to adjust
its phenological progression in order to make full use of
climate resources. This indicates that crops may be less
sensitive to temperature in warmer than cooler years. Wu
et al. (2019a) developed a plastic function that accounts
for this adaptability. Their plastic function assumed that
the relationship between temperature and growth rate was
affected by the day of year (DOY) at the starting date of the
examined phase. However, most phenology models do not
account for this adaptability.
Different from the reproductive growth period (RGP),

development rate during the vegetative growth period
(VGP) is additionally affected by photoperiod (Sinclair,
Kitani, Hinson, Bruniard, & Horie, 1991). Depending on
the effect of day length on development rate, crops can be
divided into long-day species (e.g., winter wheat [Triticum
aestivum L.]) and short-day species (e.g., single rice [Oryza
sativa L.], maize [Zea mays L.], and spring soybean
[Glycinemax (L.)Merr.]) (Blanchard&Runkle, 2010; Yano,
Kojima, Takahashi, Lin, & Sasaki, 2001). For long-day
crops, flowering date is advanced with longer day length,
whereas shorter day lengths advance flowering date for
short-day crops (King, Moritz, Evans, Junttila, & Herlt,

Core Ideas

∙ A plastic phenology model was applied to simu-
late crop vegetative phase.

∙ Wheat, rice, maize, and soybean phenology
observations under long-term natural cultiva-
tion and an interval planting experiment were
used.

∙ Plastic model assumes development rate is lin-
early related to temperature and that the linear
relationship is affected by day of year of the start-
ing date of vegetative phase.

∙ Plastic model accurately predicts flowering/
heading date similar to other models in a sim-
ple and effective way.

2001). For long-day crops that are primarily harvested in
the summer, advanced development stage leaves subse-
quent growth phases in a shorter day length period, thus
reducing the effects of temperature on the development
growth rate (Hodges & Ritchie, 1991; Mccown, Hammer,
Hargreaves, Holzworth, & Freebairn, 1996), which in turn
leads to a delayed flowering date. As for short-day crops
that are harvested primarily in the autumn, advanced
development stage leaves subsequent growth phases in
a longer day length period, resulting in reduced effects
of temperature on the crop development rate (Bouman
et al., 2001; Jones & Kiniry, 1986; Jones et al., 2010), which
delays the flowering date. Therefore, long-day and short-
day crops have one common feature (i.e., if the starting
date of VGP is advanced, the effect of temperature on
development rate will be reduced, and vice versa). As a
result, the plastic function developed by Wu et al. (2019a)
may be applied to describe the common features of long-
day and short-day crops. However, this hypothesis has not
been confirmed or tested. Therefore, the objectives of this
research were to investigate the independence of emer-
gence date or jointing date regarding temperature impacts
on heading date or flowering date and to evaluate the plas-
tic function through comparisons of simulations fromphe-
nology modules that are used in several typical traditional
crop models.

2 MATERIALS ANDMETHODS

2.1 Sites and observations

Two data sets were assembled in which phenology
was observed under varying temperature conditions
to evaluate model performance under varying climate
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F IGURE 1 Locations of 11 agro-meteorological observation sites and one experimental site in China. Plus sign denotes the site where the
interval planting experiment was carried out, circles are winter wheat observation sites, squares are rice sites, stars are maize sites, triangle is
the soybean site. Tonghua station had both rice and maize observations, with the star above the Tonghua label indicating the actual position
for the observations. To show the two crops at the same location, we show the rice site to the left of the actual position.

conditions. The first data set was comprised of phenol-
ogy observations of four crop species (winter wheat, rice,
maize, and soybean) at 12 sites (Figure 1). At these sites,
crop variety remained unchanged for at least 15 yr and for
up to 26 yr. On average, these sites had 20 yr of observa-
tions. Wu et al. (2019b) presented a detailed description
of the data collected for winter wheat, rice, and maize.
The soybean cultivar TF29 was planted at the Jinzhou
Agricultural Ecosystem Experiment Station (41◦49′10″ N,
121◦12′4″ E) from 1999 to 2015. In total, 13 crop varieties
were planted at these sites. Seven, two, three, and one sites
were available for the four crops, respectively. Both rice
and maize were planted at the Tonghua station (41◦24′0″
N, 125◦26′24″ E). Phenological observations were con-
ducted by theChineseMeteorologyAdministration (CMA)
by trained agricultural technicians following standardized
methods (CMA, 1993).
Different from the other three crops, winter wheat has

a dormancy phase (from the start of overwintering to
spring dormancy break). During this phase, the temper-
ature response is different from other phases, and this
response cannot be reflected by the plastic model. The
spring dormancy break stage is not a true development
stage. The next true stage observed by CMA is jointing.
As a result, the start of VGP for winter wheat was set as
jointing, and the start of VGP for the other three crops was
set as emergence. The dates of heading and flowering for
rice are very close (generally within 2–3 d), so CMA only
recorded the heading date. Therefore, the end of VGP for
rice was set as heading, whereas for the other three crops
the end of VGP was set as flowering. The corresponding

BBCH codes for the above-mentioned emergence, joint-
ing, heading, and flowering stages are BBCH10, BBCH31,
BBCH55, and BBCH64, respectively. Management prac-
tices included irrigation, fertilizer applications, and weed
control and were generally the same as or better than
local traditional practices (Tao et al., 2013). All phenology
observation data were obtained from the National Mete-
orological Information Center. Historical weather data at
agro-meteorological observation sites, including mean
temperatures and precipitation during the same years
as the phenology observations, were also collected from
the National Meteorological Information Center. Table 1
shows the site information and summary meteorological
information for these sites. This data set represents the his-
torical response of heading and flowering date to climate
change under normal field planting conditions.
Because these observations occurred over at least

15 yr, the temperature response may be confounded by the
improved field management practices during those years
(e.g., better fertilization and irrigation management).
Therefore, an interval planting experiment for sum-
mer maize under controlled conditions was conducted.
This experiment was carried out at Gucheng Eco-
meteorological Observation Experiment Station (39◦08′2″
N, 115◦48′14″ E) (Figure 1) in 2018. The sandy loam soil
at this site has a pH value of 8.19, with total nitrogen and
total phosphorus of 0.98 and 1.02 g kg−1, respectively. The
maize cultivar was ZD958 (Hou et al., 2014; Liu et al.,
2013). Planting occurred every 5 d from DOY 130 to DOY
170, for a total of nine planting dates. The planting date
treatments were not replicated. After planting, the
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TABLE 1 Summary information for sites in which the planted variety remained unchanged for at least 15 yr

Vegetative growing seasonb

Site name
Number of
observations Varietya

Date of
emergence or
jointing

Date of
heading or
flowering Duration

Average
temperature Rainfall

DOY d ◦C mm
Winter wheat
Changzhi 17 CZ648 111 ± 6c 136 ± 4 26 ± 4 15.3 ± 1.3 40 ± 22
Hancheng 15 XY6 92 ± 8 119 ± 6 28 ± 6 16.0 ± 1.3 24 ± 16
Jincheng 21 5819 103 ± 7 130 ± 4 29 ± 4 15.5 ± 1.0 38 ± 28
Huanghua 23 71321 108 ± 5 130 ± 4 22 ± 3 17.3 ± 1.1 25 ± 21
Laizhou 21 YN15(LZ) 94 ± 6 127 ± 4 35 ± 5 14.9 ± 0.9 36 ± 19
Fushan 26 YN15(FS) 96 ± 5 134 ± 4 38 ± 5 14.4 ± 0.7 56 ± 34
Tianshui 19 7464 96 ± 5 132 ± 5 37 ± 5 14.8 ± 1.0 46 ± 23

Rice
Muling 16 SY397 130 ± 3 213 ± 5 84 ± 5 19.3 ± 0.7 225 ± 55
Tonghua 26 QG 119 ± 5 220 ± 2 102 ± 4 18.4 ± 0.7 513 ± 153

Maize
Jiamusi 18 DN248 150 ± 6 209 ± 6 60 ± 4 21.3 ± 1.1 187 ± 94
Meihekou 15 TD4 137 ± 4 211 ± 5 75 ± 5 20.4 ± 0.8 299 ± 112
Tonghua 20 JD101 134 ± 4 205 ± 3 72 ± 4 18.9 ± 1.0 316 ± 92

Soybean
Jingzhou 17 TF29 137 ± 5 198 ± 4 62 ± 4 22.5 ± 0.8 201 ± 99

aLaizhou and Fushan planted the samewinter wheat variety (‘YN15’). To distinguish between the two, the variety names are marked as ‘YN15(LZ)’ and ‘YN15(FS)’,
respectively.
bThe definition of vegetative growing season for winter wheat is from jointing to flowering, for rice is from emergence to heading, and for maize and soybean is
from emergence to flowering.
cThe date of emergence and jointing, date of heading and flowering, vegetative growing season duration, vegetative growing season average temperature, and
vegetative growing season rainfall are presented as mean values ±1SD.

TABLE 2 Dates of planting, emergence, and flowering, length of vegetative growing period (VGP, from emergence to flowering), average
temperature, and accumulated temperature for maize in the interval planting experiment at Gucheng, China, in 2018

Planting date Emergence date Flowering date VGP length
Average temperature
in VGP

Accumulated
temperature in VGPb

DOYa d ◦C ◦C d−1

130 135 189 55 25.3 953.5
135 141 194 54 25.7 955.1
140 146 199 54 26.3 987.5
145 150 203 54 26.8 1014.0
150 154 205 52 27.0 988.0
155 159 209 51 27.1 976.6
160 165 215 51 28.2 1029.4
165 169 217 49 28.5 1005.1
170 175 219 45 28.5 921.9

aDay of year.
bThe effective accumulated temperature above 8 ◦C.

developmental stages (including emergence, heading, and
flowering) were recorded daily. Each planting date plot
had dimensions of 5.5 by 15m, with a row spacing of 0.33m
and a within-row plant spacing of 0.50 m. At planting,
80 mm of irrigation water and 150, 75, and 75 kg ha−1 of N,

P, and K fertilizer, respectively, were applied. Management
practices were used to minimize yield reductions due to
nutrients, weeds, and pests. A weather station located
10 m north of the experimental field provided daily aver-
age temperature. Table 2 provides detailed information
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for each planting, including planting, emergence, and
flowering dates and daily average temperature data. This
data set characterized the response of maize flowering
date to the various combinations of temperature and day
length without the effects of changing field management
practices.

2.2 Introduction to the plastic
temperature response function

The plastic phenologymodel proposed byWu et al. (2019a)
was used in this paper. The model assumes development
rate is linearly related to temperature and that the linear
relationship is affected by day of year of vegetative emer-
gence and jointing date (DOYv). Three kinds of regres-
sion relationships were designed to investigate how R2 was
improved by coupling DOYv with a linear temperature
response function.
The response of development rate to temperature is

essentially nonlinear, but it is approximately linear over a
wide temperature range. In this study, all sites were located
in northern China, and their latitudes were higher than
34o. The probability of daily average temperature exceed-
ing the optimum temperature is very small. For simplicity,
we assumed a linear response function:

Rate = 𝑎1 + 𝑏1 × 𝑇 (1)

where Rate is the development rate over a specified growth
period (d−1 or ◦C−1 d−1), a1 and b1 are regression coeffi-
cients, and T is growth period average temperature (◦C).
Depending on the value of b1, the thermal/photothermal
time requirement may respond positively or negatively
with increased temperature. Therefore, Equation 1 is an
extension of traditional models that are based on a con-
stant thermal/photothermal time requirement. We fur-
ther assumed that the linear slope (b1 in Equation 1) was
affected byDOYv. Thus, themathematical equation for the
plastic model was:

Rate = 𝑎2 + (𝑏2 + 𝑐2 × DOYv) × 𝑇 (2)

where Rate and T mean the same as in Equation 1, and
a2, b2, and c2 are regression coefficients. If DOYv does
affect temperature sensitivity, the R2 of this relationship is
expected to be much greater than for the linear tempera-
ture response function. Because Equation 2 is an extension
of Equation 1, Equation 2 is also an extension of traditional
models.
However, R2 of Equation 2 can be partially explained

by the linear relationship between DOYv and T. Thus, we

replaced DOYv in Equation 2 with the linear relationship
between DOYv and T and obtained the quadratic polyno-
mial relationship:

Rate = 𝑎3 + 𝑏3 × 𝑇 + 𝑐3 × 𝑇2 (3)

where Rater and Tmean the same as in Equation 1, and a3,
b3, and c are regression coefficients. If the effect ofDOYv on
development rate is not primarily caused by the linear rela-
tionship betweenDOYv andT,R2 in Equation 2 is expected
to be much greater than that for the quadratic polynomial
relationship.
Regressions for the above three models were performed

for each crop and cultivar by the ordinary least squares
method. Significance levels were determined by two-tailed
t tests. Because both reciprocal of number of days and
reciprocal of thermal time accumulation have been widely
used to express the development rate, regressionswere per-
formed twice on each of the three models.

2.3 Testing the driving effect of DOYv on
temperature sensitivity

Linear regression analyses between DOYv and develop-
ment rate were conducted for each crop and cultivar to
determine whether DOYv affects the development rate.
The significance level of coefficients of determination was
determined by two-tailed t test.
Readers should be aware that DOYv and average tem-

perature are not totally independent. The relative influ-
ence of DOYv on development rate was tested for each
crop and cultivar by using partial correlation analysis (con-
trolling for temperature). The significance level of the par-
tial correlation coefficient was determined by two-tailed t
test. Differences in R2 values between Equations 2 and 3
were tested by paired t test to determine to what extent the
improvement ofR2 in Equation 2was caused by the depen-
dency between DOYv and temperature. Values of Akaike’s
information criteria were used to select the best equations
among Equations 1, 2, and 3 (Akaike, 1974; Ren, Qin, Ren,
Sui, & Zhang, 2019):

AICc = n × ln
(
1 − 𝑅2

)
+ 2𝑘 +

2𝑘 × (𝑘 + 1)

𝑛 − 𝑘 − 1
(4)

wheren represents the number of observations, and k is the
number of parameters needed to be fitted. For Equations 1,
2, and 3, k equals 2, 3, and 3, respectively.
Because both reciprocal of number of days and recipro-

cal of thermal time accumulation are widely used to repre-
sent development rate, the linear regression analysis and
partial correlation analysis were performed twice to find
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TABLE 3 Descriptions and optimization ranges and loop steps for parameters in phenology modules used in WOFOST, ORYZA2000,
CERES-Maize, and DSSAT-Soybean models

Model name Parameter Range of value Loop step Explanation
WOFOST Tsum1 300–600 1 Temperature sum from jointing to flowering
ORYZA2000 DVRJ 0.0001–0.0025 0.0001 Development rate in basic vegetative phase

DVRI 0.0001–0.0025 0.0001 Development rate from end of basic
vegetative phase to panicle initiation

DVRP 0.0001–0.0025 0.0001 Development rate from panicle initiation to
heading

SHCKD 0.0–0.1 0.01 Transplanting shock
PPSE 0.0–0.6 0.01 Photoperiod sensitivity

CERES-Maize P1 50–200 1 Thermal time from emergence to the end of
the juvenile period

P2 0–2 0.01 Photoperiod sensitivity measured in days of
tassel initiation delay per hour of
photoperiod increase

PHINT 30–70 1 Phyllochron interval
DSSAT-Soybean CSDVAR 10.5–15.0 0.1 Day length threshold below which

developmental progress is a maximum f
CLDVAR 15.1–21.0 0.1 Day length at which developmental progress

is a minimum
PHTHRS(2) +
PHTHRS(3)

121–160 1 Photothermal sum from emergence to end of
juvenile phase

PHTHRS(4) +
PHTHRS(6)

450–800 1 Photothermal sum from end of juvenile to
flowering

out if different expressions affect the results. For simplic-
ity, the first one was named Method 1 (using reciprocal
of number of days for development rate), and the second
onewas namedMethod 2 (using reciprocal of thermal time
accumulation).

2.4 Model comparison

For each crop, a phenology module used in a widely
applied traditional crop model was selected to simulate
the phenology. For winter wheat, rice, maize, and soy-
bean, the selected phenology submodels were taken from
WOFOST (Supit et al., 1994), ORYZA2000 (Bouman et al.,
2001), CERES-Maize (Jones & Kiniry, 1986), and DSSAT-
Soybean (Jones et al., 2010), respectively. For the four tra-
ditional models, all parameters were optimized except for
the three cardinal temperatures. The values of the three
cardinal temperatures were the default values set by the
models. The number of parameters affecting development
rate were one, five, three, and four, respectively. Parame-
ters for each model were optimized over a wide range with
a small loop step (Table 3). Ranges of values for parameter
optimizations were wider than values shown in published
reports (Porter & Gawith, 1999; Sanchez et al., 2014; Setiy-
ono et al., 2007).

At each site, all observations were used to calibrate the
traditional and plastic models. All coefficients were cali-
brated simultaneously to search for a global rather than a
local optimum. The principle of optimization was RMSE
minimization. Parameter values that produced the mini-
mum RMSE were considered as the best values.
Simulation errors of heading or flowering dates and cor-

responding RMSE produced by the traditional and plas-
tic models were calculated. Differences in RMSE values
between the traditional and plastic models were tested by
paired two-tailed t test to determinewhether theywere sig-
nificant. Trends of simulation errors over average temper-
ature, DOYv, and year were calculated to evaluate model
performance and compared for both the traditional and
plastic models.
To further test model accuracy, both traditional and

plastic models were tested using leave-one-out cross-
validation, which is commonly used to quantify the relia-
bility of a forecasting system in the presence of limited data
(Cappelli et al., 2018; Zhang&Tao, 2019). For the four tradi-
tional models, the parameterization method was the same
as used with the above-mentioned model calibration.
All statistics were done by FORTRAN codes. Results

generated by these codes were verified by comparing the
results given by statistical functions available in Microsoft
EXCEL 2013.
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TABLE 4 Slopes, coefficients of determination, and partial correlation coefficients (controlling for temperature) between day of year of
date of emergence (for rice, maize, and soybean) or jointing date (for wheat) and development rate

Method 1 Method 2
Crop Variety Slope (× 10−3) R2 r Slope (× 10−3) R2 r

Field observation Winter wheat CZ648 0.755 .501** 0.604** 0.0322 .259* 0.611**

XY6 0.747 .463** 0.427 0.0280 .270* 0.386
5819 0.636 .548*** 0.683*** 0.0277 .330** 0.685***

71321 0.412 .135 0.361 0.0054 .006 0.363
YN15(LZ) 0.503 .461*** 0.377 0.0220 .386** 0.393
YN15(FS) 0.409 .343** 0.529** 0.0226 .256** 0.545**

7464 0.407 .270* 0.407 0.0171 .168 0.378
Rice SY397 0.084 .095 0.352 −0.0056 .027 0.322

QG 0.075 .791*** 0.860*** 0.0017 .015 0.840***

Spring maize DN248 0.044 .055 0.120 −0.0050 .066 0.026
TD4 0.123 .306* 0.644** 0.0083 .348* 0.655**

JD101 0.151 .613*** 0.511* −0.0031 .056 0.468*

Soybean TF29 0.104 .329* 0.849** 0.0026 .044 0.840**

Interval planting
experiment

Spring maize ZD958 0.087 .825*** 0.543* −0.0002 .004 0.467

Note. In calculating the development rate, both reciprocal of number of growing days (Method 1, using the reciprocal of number of days during vegetative growing
period as the development rate) and reciprocal of accumulated temperature (Method 2 using the reciprocal of accumulated temperature during vegetative growing
period as the development rate) were used as the development rate. Base temperatures for calculating the accumulated temperature for winter wheat, rice, maize,
and soybean were set as 0, 8, 8, and 6 ◦C, respectively.
*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

3 RESULTS AND DISCUSSION

3.1 Effect of DOYv on development rate

All cultivars of the four crops had positive relationships
between DOYv and development rate when using Method
1, of which 11 were significant (Table 4). The average R2
values for winter wheat, rice, maize (including the inter-
val planting experiment), and soybean were .39, .44, .33,
and .83, respectively. When using Method 2, the relation-
ships were positive for 10 cultivars, and six of them were
significant. None of the four negative relationships was
significant.
All of the partial correlation coefficients were positive

for Method 1 and Method 2 (Table 4). The partial corre-
lations were significant in eight and seven cultivars for
Method 1 and Method 2, respectively. By using Method
1, the average partial correlation coefficients for the four
crops were .48, .61, .45, and .85, respectively; the corre-
sponding values using Method 2 were .48, .58, .40, and .84,
respectively. These values suggest that the different meth-
ods of representing development rate had little effect on the
partial correlation results and suggest that DOYv explained
almost the same amount of variability in heading and
flowering date as temperature did for the four examined
crops.

3.2 Improved R2 after coupling DOYv
with a linear response function

The R2 value was effectively improved after combining
DOYv in the linear temperature response function for both
Method 1 (Figure 2) and Method 2 (Figure 3). For the case
of using Method 1, the R2 values were improved for all
cultivars of all crops (Figure 2). Average R2 values for the
four crops were improved by .17, .39, .15, and .27, respec-
tively. Averaged over all crops and cultivars, the R2 was
improved by 70%. The dependency between DOYv and
temperature also partially explains the improved R2. The
quadratic polynomial relationship (Equation 3) showed
that after considering this dependency, R2 values for the
four crops were improved by .04, .01, .11, and .21, respec-
tively. Averaged over all crops, the R2 was improved by .07.
Therefore, the dependency between DOYv and tempera-
ture explained one third of the improvement in Equation 3.
Paired t test showed that the differences in R2 between the
plastic and quadratic polynomial relationships were signif-
icant at p < .05.
Similar results were obtained usingMethod 2 (Figure 3).

For this case, using the plastic relationship improved the
average R2 values for the four crops by 0.23, 0.15, 0.33,
and 0.17, respectively, whereas the quadratic polynomial
relationship improved average R2 by .06, .00, .18, and .11,
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F IGURE 2 Coefficients of determination for three kinds of rela-
tionships (linear, polynomial, and plastic) for winter wheat (a) and
for rice, maize, and soybean (b) using the reciprocal of number of
growing days as the development rate (Method 1). *Statistically sig-
nificant at p < .05. **Statistically significant at p < .01. **Statistically
significant at p < .001.

F IGURE 3 Coefficients of determination for three kinds of rela-
tionships (linear, polynomial, and plastic) for winter wheat (a) and
for rice, maize, and soybean (b) using the reciprocal of accumulated
temperature as the development rate (Method 2). The base temper-
atures used in calculating the accumulated temperatures for winter
wheat, rice, maize, and soybean were 0, 8, 8, and 6◦C, respectively.
*Statistically significant at p< .05. **Statistically significant at p< .01.
***Statistically significant at p < .001.

respectively. On average, the plastic and quadratic poly-
nomial relationships improved R2 by 100 and 37%, respec-
tively. In this case, dependency betweenDOYv and temper-
ature also explained about one-third of the improvement.
The paired t test showed that the differences in R2 pro-
duced by the two relationships were significant at p < .05.
These results indicate that DOYv and temperature are two
almost unrelated yet equally important factors affecting
crop development rate and confirm that introducing DOYv
into the linear temperature response function can effec-
tively improve theR2 in accounting for variation of heading
and flowering date.
The Akaike’s information criteria values for Equation 2

were lower than the values for Equation 1 in 11 out of
14 sites (Figure 4a), whereas values for Equation 2 were
also lower than the values for Equation 3 in 13 out of 14
sites (Figure 4b). These results further confirm that it is
cost effective to introduce DOYv into Equation 1 and that
this cost effectiveness is not mainly caused by the linear
relationship betweenDOYv and temperature. Results were
similar when using the reciprocal of accumulated temper-
ature as the development rate.

3.3 Model evaluation

Table 5 shows the values of parameters in the plasticmodel
for all cultivars of the four crops. The impact of DOYv on
development rate (parameter c2 in Equation 2) was posi-
tive for all crops and all cultivars. For winter wheat, rice,
spring maize, and soybean, the average impacts (c2 values)
were 0.02750 × 10−3, 0.00495 × 10−3, 0.00527 × 10−3, and
0.00459 × 10−3, respectively. These values indicate that the
development rate of these crops will be accelerated if the
emergence and jointing dates are delayed, and vice versa.
Averaged over all crops and varieties, the RMSE value

found for the simulation of heading and flowering dates by
the plastic model (2.81 d) was less than that simulated by
the phenology modules in the traditional crop simulation
models (3.39 d) (Figure 5a). Paired t test showed that the
differences in RMSE between the plastic and traditional
models were significant at p< .01. Except for one rice culti-
var (SY397) and one soybean cultivar (TF29), RMSE values
associated with the plastic model were less than simulated
by the traditional models at the other 12 sites. On average,
the RMSE associated with the plastic model for the four
crops were 2.90, 3.44, 2.38, and 2.69 d, respectively, and
the values simulated by the traditional models were 3.76,
3.54, 2.88, and 2.50 d, respectively. In summary, the plas-
tic model decreased simulation error in winter wheat and
maize by about 20%, whereas simulation error for rice and
soybean were similar for both the plastic model and the
traditional model.
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F IGURE 4 Akaike’s information criteria (AICc) values for Equations 1, 2, and 3 for all four investigated crops using the reciprocal of
number of growing days as the development rate. (a) The AICc values for Equation 1 vs. Equation 2. (b) The AICc values for Equation 3 vs.
Equation 2.

TABLE 5 Values of parameters in the plastic model
(Equation 2) for all varieties of winter wheat, rice, maize, and
soybean

Parameter values for the plastic
model (× 10−3)

Crop Variety a2 b2 c2
Winter wheat CZ648 23.921 −3.422 0.04006

XY6 0.466 −0.450 0.02990
5819 13.666 −2.294 0.03620
71321 53.348 −3.311 0.02633
YN15(LZ) −16.359 1.576 0.01602
YN15(FS) 10.672 −1.311 0.02499
7464 2.623 −0.165 0.01904

Rice QG 9.284 −0.441 0.00396
SY397 15.979 −0.985 0.00595

Maize DN248 11.156 0.078 0.00121
TD4 −0.512 −0.098 0.00568
JD101 9.032 −0.350 0.00456
ZD958 73.306 −3.488 0.00962

Soybean TF29 14.962 −0.571 0.00459

Simulation errors associatedwith the plasticmodelwere
less related to temperature (Figure 5b), DOYv (Figure 5c),
and year (Figure 5d) than the simulation errors found for
the traditional models. Simulation errors produced by the
plastic model were not significantly related to tempera-
ture and DOYv and were significantly related to year for
three cultivars (two winter wheat cultivars and one spring

maize cultivar) (Figure 5). However, simulation errors pro-
duced by the traditional models were significantly related
to temperature for four cultivars (one winter wheat culti-
var, two rice cultivars, and onemaize cultivar), to DOYv for
six cultivars (fourwheat cultivars and twomaize cultivars),
and to year for seven cultivars (four wheat cultivars, two
rice cultivars, and one maize cultivar). It can be concluded
that the plastic model reduced the systematic deviation of
phenology simulations.
The plasticmodel better estimated the observed heading

and flowering dates than the traditional models for wheat
(Figure 6a), maize (Figure 6c), and soybean (Figure 6d),
withR2 values of .800, .787, and .875, respectively, but gave a
poorer fit to observed values for rice (Figure 6b), with anR2
value of .467. For all four crops, when the measured head-
ing and flowering dates were delayed by 1 d, the heading
and flowering dates simulated by the plastic model were
delayed by 0.792, 0.516, 0.843, and 1.363 d, respectively (see
slopes of regression lines). These slope values associated
with the plastic model were closer to 1.000 than the slope
values associated with the traditional models for wheat
(0.830), rice (0.644), and maize (0.931) but further from
1.000 for soybean (0.597).
One of themain advantages of the plasticmodel is that it

can produce accurate simulation of heading and flowering
dates in extremely cold and hot years (Table 1). For exam-
ple, winter wheat cultivar YN15 was planted in Laizhou
during 1990–2010. During the entire 21-yr period, 1994 and
2001 had the warmest and coolest growing season tem-
peratures, respectively. In 1994, the jointing date was very
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F IGURE 5 Simulation accuracy of heading and flowering date from the plastic model and four traditional phenology modules applied in
crop models (WOFOST, ORYZA2000, CERES-Maize, and DSSAT-Soybean) for varieties of winter wheat, rice, maize, and soybean. (a) Simula-
tion RMSE. (b) Trend of simulation error against growth period average temperature. (c) Trend of simulation error against day of year (DOY)
of emergence (for rice, maize, and soybean) or jointing (for winter wheat) date. (d) Trend of simulation error against year. Green, blue, and red
symbol colors indicate the trends are statistically significant at p < .05, .01, and .001, respectively

late (DOY 99), and the subsequent wheat growth occurred
at a higher-than-average temperature, causing the grow-
ing season average temperature to be 17.0 ◦C, which was
the highest value of all 21 yr. Effective accumulated tem-
perature in this year was 441 ◦C d−1, which was much
lower than the average value (511 ◦C d−1). Therefore, the
simulation error produced by the traditional model in this
year was very large (−7 d, measured date minus sim-
ulation date) (Figure 7a). In contrast, the later jointing
date in the plastic model indicated larger DOYv, which
led to increased temperature sensitivity and decreased the
needed days to flowering, resulting in a simulation error
of only −1 d. In contrast, the year 2001 had the lowest
average growing season temperature (13.2 ◦C) and a large
effective accumulated temperature (579 ◦C d−1) because it
had a very early jointing date (DOY 85). In this year, the
simulation error produced by the traditional model was
8 d, whereas the corresponding simulation error produced

by the plastic model was still only −1 d. The large dif-
ferences of simulation errors generated by the traditional
model under contrasting conditions led to the significant
relationship between simulation errors and temperature
(Figure 7b) and DOY of jointing date (Figure 7c). Because
the plastic model considered the adaptation of crop devel-
opment to environment, the relationship between the sim-
ulation errors and DOYv, temperature, and year were
greatly reduced (Figure 7a–c).
The results of leave-one-out cross-validation for the plas-

tic and traditional models showed that for 8 of 14 varieties,
the RMSE values associated with the plastic model were
smaller than the values associated with traditional models,
especially formaize (Figure 8). For all fourmaize cultivars,
the plastic model had smaller RMSE than the traditional
models. Figure 8 shows that, the plastic model was gen-
erally better than the traditional models, although it was
somewhat different among crops.
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F IGURE 6 Measured and simulated heading and flowering dates (day of year) for winter wheat (a), rice (b), maize (c), and soybean (d).
Data are from historical field observations for all four crops, and the maize data included observations from an interval planting experiment.
The black points, regression lines, and regression equations are for the traditional model comparison; the red points, lines, and regression
equations are for the plastic model comparison. The dashed line is the one-to-one line. ***Statistically significant at p < .001.

3.4 Discussion

Wu et al. (2019a) developed a plastic model that assumed
that the response of development rate to temperature was
affected by DOY of the start date of RGP. In this study, we
tested whether the DOYv affects the development rate in
VGP. Results verified that DOYv affects the development
rate in VGP. The effect was similar to the results reported
for RGP (i.e., the values of c2 in Equation 2were positive for
all cultivars of all examined crops in both growth periods).
Although coupling DOYv also improved simulation

accuracy in VGP (Figure 5a), the improvement was not as
good as reported in RGP (Wu et al., 2019a). One of the
reasons may be that in VGP, the effect of DOYv is simi-
lar to the effect of photoperiod, a factor that has been well
considered in current models (Bouman et al., 2001; Ceglar
et al., 2019; Jones et al., 2010). For example, in the northern
hemisphere, for a long-day species such as winter wheat,

longer day length will increase the temperature sensitivity.
Because the jointing to flowering period for winter wheat
occurs in the first half of the calendar year (Table 1), the
longer day lengthmeans larger DOYv. In the plasticmodel,
longer day length will also increase the temperature sensi-
tivity because c2 values are positive (Table 5). Therefore,
coupling DOYv in the plastic model has a similar effect as
coupling day length in the traditional models. However,
this similarity will be diminished after considering the c2
values in RGP. Wu et al. (2019a) verified that c2 values are
also positive during RGP for all cultivars. This consistency
in VGP andRGP indicates that the effect of DOYv on devel-
opment rate is similar in both VGP and RGP, and for differ-
ent crops. However, most models assume that there is no
photoperiod response in RGP, including WOFOST (Supit
et al., 1994), ORYZA2000 (Bouman et al., 2001), CERES-
Maize (Jones & Kiniry, 1986), and SPASS (Wang & Engel,
2000). As the results showed, although photoperiod may
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F IGURE 7 Trends of wheat flowering date simulation error
over year (a), growth period average temperature (b), and day of
year (DOY) of jointing date (c) produced by the plastic model and
WOFOST. The black points, regression lines, and regression equa-
tions are for the traditional model; the red points, regression lines,
and regression equations are for the plastic model. *Statistically sig-
nificant at p < .05. ***Statistically significant at p < .001.

F IGURE 8 Root mean square error associated with the plastic
and traditional models calculated by leave-one-out cross-validation.

partially contribute to the plasticity, the plasticity could not
bemainly caused by photoperiod. Additionally, thesemod-
els need to identify the short-day and long-day species and
define the photoperiod sensitivity. In contrast, the plastic
model does not need this information. According to the
rule of Occam’s Razor, among competing hypotheses that
predict equally well, the one with the fewest assumptions
should be selected (Parent et al., 2016; Sinclair & Muchow,
1999). Therefore, the plastic model is preferred over tra-
ditional models because it simulated development rate
throughout the entire development period for the exam-
ined crops using only DOYv to explain the similar effects
of day length for both long-day and short-day species in
both VGP and RGP phases.
In the early stage of VGP, vernalization also affects

the response of winter wheat development to tempera-
ture (Hodges & Ritchie, 1991; Supit et al., 1994; Yan, Cao,
Luo, & Jang, 2000). This effect was not directly consid-
ered by the plasticmodel. However, theoretically, the effect
of vernalization on the development rate can be reflected
by the plastic model. For example, in hot years, jointing
date tends to be advanced, whereas number of vernaliza-
tion days is likely to be less than that in cold years. The
effect of temperature on development rate thus tends to be
decreased, resulting in a delayed flowering date. By using
the plastic model, the advanced jointing date results in
decreased temperature sensitivity, which delays flowering.
Consequently, although vernalization is not directly con-
sidered by the plastic model, the model can achieve a sim-
ilar effect. Furthermore, the effect in this case is very sim-
ilar to the effect of day length (i.e., advanced jointing date
will result in decreased temperature sensitivity). Thus, it
may be possible to combine both effects (vernalization and
photoperiod) in one explanation, just as the plastic model
did.
Based on the following three reasons, the default car-

dinal temperatures were used to optimize the traditional
models rather than calibrating the temperatures. First, car-
dinal temperature values are not independent of other
parameter values (He et al., 2017), such as with P1 and P2
in the CERES-Maize model. For example, if optimum and
maximum temperatures remain unchanged, a lower base
temperature will result in higher P1 and P2. The effect of
adjusting cardinal temperatures can be partially achieved
by adjusting the values of P1 and P2. This dependence
between parameters has also been mentioned previously
by Supit et al. (1994). Second, if the three cardinal temper-
atures were included among the values to be optimized,
model calibration would take more time to optimize the
values of all of the parameters. Third, cardinal temper-
atures have very clear physiological meanings (Porter
& Gawith, 1999; Sanchez et al., 2014). Modifying these
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values should not be based on fitting the predictions to the
observed data.
Two obvious advantages of the plastic model can be

identified. The first advantage is that it provides unbi-
ased predictions of heading and flowering dates (Figures 5
and 7). The unbiased predictions are required to improve
the yield estimates. The second advantage is that themodel
needs fewer parameters and is easy to optimize, both of
which are valuable for model application, especially when
models are applied at regional scales and under climate
change scenarios.
Although the plastic model performed well in simulat-

ing crop phenology, there are three points that users need
to be aware of. The first is that the plastic model did not
simulate the detailedmolecular processes that lead to phe-
nology plasticity. Instead, the model simulated the final
behavior of numerous complicated molecular biological
processes. As a result, the molecular mechanisms of the
model are not clear. However, from a practical point of
view, it may be easier to simulate the final behavior than
to simulate each biochemical process affecting plant devel-
opment. The second point is that the model does not take
into account the effects of soilwater content on plant devel-
opment (Chauhan, Ryan, Chandra, & Sadras, 2019; Liu
et al., 2016). The third point is that even though the model
worked well over a wide latitude range in the northern
hemisphere, model performance in the southern hemi-
sphere is uncertain.
Because temperature sensitivity is plastic with DOYv,

the heading and flowering dates predicted by the plastic
model will not be prolonged or shortened as much as pre-
dicted by traditionalmodels under cold or hot years. There-
fore, the growing season simulated by the plastic model
will remain relatively stable during extreme temperature
events. As a result, it is logical to infer that current esti-
mates of yield loss due to future climate change may be
overestimated (Challinor, Koehler, Ramirez-Vilegas,Whit-
field, & Das., 2016; Liu et al., 2016).

4 CONCLUSIONS

Field observations of crop phenology under actual plant-
ing conditions and from an interval planting experiment
verified that DOYv was positively related to development
rate for four crops (winter wheat, rice, maize, and soy-
bean). Partial correlation analysis (controlling for tempera-
ture) showed that DOYv and temperature were two almost
unrelated yet equally important factors that affect devel-
opment rate. The plastic model achieved better simula-
tion accuracy of heading or flowering dates than tradi-
tional models for wheat and maize and achieved similar
accuracy for rice and soybean. Additionally, simulations

of heading and flowering dates provided by the plastic
model were less biased with DOYv, temperature, and year.
The plastic model explained the mechanisms of temper-
ature and photoperiod with one equation. Advantages of
the plastic model are simplicity, few assumptions, effec-
tiveness, and less biased simulations. These advantages
make this model an ideal tool for predicting regional crop
phenology under varying environmental conditions, and
hence yield response, especially for future climate change
scenarios.
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