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A B S T R A C T

The values of global solar radiation are important fundamental data for potential evapotranspiration estimation,
solar energy utilization, climate change study, crop growth model, and etc. This research tried to explore the
optimal combination of input meteorological factors and the machine learning methods for the estimation of
daily solar radiation under different climatic conditions so as to improve the estimation accuracy. Based on the
correlation between meteorological factors, different meteorological factor input combinations were established
and the support vector machine method was used to estimate global solar radiation at 80 weather stations in four
climatic regions of China mainland. The results showed that, the optimal combinations of input meteorological
factors were different in the four different climatic zones in China mainland. Three meteorological factors of
sunshine hours, extraterrestrial radiation, and air temperature had greater impacts on the solar radiation esti-
mation. Adding the factor of precipitation could obviously improve the estimation accuracy in humid regions,
but not remarkably in arid regions. Wind speed had very little influence on solar radiation estimation. The
accuracies of machine learning methods were better than the Angstrom-Prescott formula and the multiple linear
regression method. Among them, support vector machine and extreme learning machine were more appropriate.
In some sites, the root mean square error of support vector machine method was even 20% less than that of the
Angstrom-Prescott formula. In general, reasonable division of the areas and establishment of appropriate input
combinations of meteorological factors according to the climatic conditions, combined with machine learning
methods, can effectively improve the accuracy of solar radiation estimation.

1. Introduction

Global solar radiation is the main source of energy on the earth, as
well as the basic driving force for various physical and biological pro-
cesses on the earth surface [1]. Many natural phenomena on the earth
are mainly caused by the difference, transformation, and transportation
of solar radiation energy. Global solar radiation is of great importance
to many research fields, such as reference evapotranspiration estima-
tion [2], solar energy utilization [3], climate change [4], and crop
growth models [5]. However, radiation observation equipment is
usually expensive to construct and maintain, which makes solar

radiation observation not as easy as sunshine hours, temperature, pre-
cipitation, and etc [6]. At present, among the more than 2000 national
meteorological stations in China mainland, only about 100 stations
have continuous observations of solar radiation. Thus, the limited
number of existing observation stations of solar radiation can hardly
meet the needs of scientific research and production [7]. Solar energy
as a clean energy has been given a full attention [8]. The mainland of
China has abundant solar energy resources [9] and Chinese government
has also formulated a series of energy policies. Thus, the accurate es-
timation of global solar radiation is helpful for the development of new
energy-related industries in China [10].
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In order to solve the problem of insufficient observations of solar
radiation, previous researchers usually used empirical models [11],
machine learning models [12], and satellite-based methods [13] to
estimate global solar radiation. The empirical model and machine
learning model are more commonly used in practice because of their
low cost and high estimation accuracy [14]. Over the past several
decades, scientists in various countries have established different em-
pirical models to estimate global solar radiation, including sunshine-
hour-based models, temperature-based models, and models combining
various meteorological factors [15]. According to previous studies,
empirical models based on sunshine duration were generally better
than the models based on temperature or other single meteorological
factors [16]. The Angstrom-Prescott formula, which links the relative
sunshine hours with the clear sky index, is the most widely used esti-
mation method in the world. Thereafter, the later empirical models of
solar radiation estimation were more or less based on the transforma-
tion of the Angstrom-Prescott model or the introduction of other me-
teorological factors [17]. In addition, there were many studies to cali-
brate and validate the Angstrom-Prescott model in different parts of the
world [18]. However, traditional empirical models were not able to
deal with the complex non-linear relationship between variables and
other abnormal conditions [19]. In recent years, machine learning
methods have been widely used in many fields with the development of
computer technology [20]. In terms of solar radiation estimation, em-
pirical models were not able to completely meet the different needs
since meteorological data were always incomplete and unavailable in
targeted regions. Research by Tymvios et al. [21] showed that the ac-
curacy of the artificial neural network (ANN) method was better than
the Angstrom formula. Chen et al. [22] compared the support vector
machine (SVM) method with other empirical models and found that the
error of the SVM method was smaller in solar radiation estimation
based on temperature data. Thus, machine learning methods have be-
come a promising way for solar radiation estimation due to its high
accuracy and flexible combination of input variables.

When estimating solar radiation based on other common meteor-
ological data and machine learning methods, it was necessary to select
several relevant meteorological factors as model inputs. Chen and Li
[23] used SVM to estimate solar radiation with the inputs of sunshine
hours, temperature, relative humidity, and vapor pressure. It was found
that the combination of sunshine hours and temperature had the
highest estimation accuracy, while the input combination without
sunshine hours had poor accuracy. The results of the research by Fan

et al. [24] showed that the estimation accuracy of solar radiation by the
input of sunshine duration, temperature, and precipitation was better
than the results of using only sunshine duration. Meenal and Selva-
kumar [25] identified month, latitude, maximum temperature and
sunshine hours as the most influential and relative humidity as the least
influential input parameters in solar radiation estimation. In addition,
some relevant studies showed that the inclusion of precipitation could
help improve the estimation accuracy of solar radiation. Both the
amount of rainfall (mm) and the binary form of rainfall event (1 for
rainfall and 0 for no rainfall) were widely used [26]. The above re-
search showed that different input combinations of meteorological
factors might have great impacts on the estimation results. Yadav and
Chandel [27] proposed that the prediction accuracy of neural network
model depended on input parameter combination, training algorithm
and architecture configuration, which also illustrated the importance of
selecting appropriate input meteorological factors. Due to the different
climate conditions in different regions, the correlation between local
meteorological factors and global solar radiation was different. The
input combinations of the best meteorological factors may also differ
between regions, and the accuracy obtained with the same method of
radiation estimation was also different. Alizamir et al. [28] used six
machine learning models to estimate solar radiation. With the same
method, the estimation errors of the Turkish site were larger than that
of the US site. China has a vast area and complex internal climate [29].
However, previous studies usually focused on a specific region in China
[30] or generally took the whole country as a single region [31], which
did not reflect the differences within China mainland, So it is necessary
to divide China mainland into several different regions based on the
climatic conditions and then conduct the relevant research.

Current research focused mainly on the improvement of radiation
estimation methods, while few studies concentrated on the selection of
meteorological factors required for the models [32]. If there was only
one set of input combinations, it obviously could not meet the esti-
mation requirements under different meteorological conditions. It is
still unclear what are the optimal combinations of input meteorological
factors and the best machine learning methods for solar radiation es-
timation in different climatic regions of China. Based on climatic
characteristics, this study divided China mainland into four different
climatic zones, and applied different methods to estimate daily solar
radiation for each of them. The objectives were to (1) explore the
correlations among different meteorological factors in different climatic
zones of China mainland; (2) to obtain the optimal combinations of

Nomenclature

Variables

Rs global solar radiation (MJ m−2 d−1)
Ra extraterrestrial radiation (MJ m−2 d−1)
n sunshine hours (h)
N maximum possible sunshine duration (h)
Tmax maximum temperature (°C)
Tmin minimum temperature (°C)
Tmean average temperature (°C)
Δt diurnal temperature range (°C)
P Precipitation (mm)
Pt 1 for rainfall > 0; 0 for rainfall < 0
U wind speed (m s−1)
RH relative humidity (%)
dr inverse square of the relative distance earth to sun
ωs sunset hour angle (rad)
φ latitude (rad)
δ solar declination (rad)
J day of the year

Abbreviations

MPZ mountain plateau zone
SMZ subtropical monsoon zone
TMZ temperate monsoon zone
TCZ temperate continental zone
SVM support vector machine
GBDT gradient boosting decision tree
MARS multivariate adaptive regression spline
ELM extreme learning machine
A-P Angstrom-Prescott formula
R2 decision coefficient
RMSE root mean square error
AICc akaike's information corrected criterion
RMSEreduction RMSE reduction value of SVM compared to A-P for-

mulate

Constants

a, b empirical coefficients
Gsc = 0.082 MJ m−2 min−1, solar constant

C. He, et al. Energy Conversion and Management 220 (2020) 113111

2



input meteorological factors required for the solar radiation estimation
based on machine learning methods in different climatic regions of
China mainland; and (3) to assess the estimation accuracies of different
machine learning methods based on the optimal combinations of input
meteorological factors determined above in China mainland. Finally,
the estimation accuracy of daily global solar radiation will be improved
in China mainland.

2. Materials and methods

In this study, China mainland was divided into four different cli-
matic regions, namely the mountain plateau zone (MPZ), the sub-
tropical monsoon zone (SMZ), the temperate monsoon zone (TMZ) and
the temperate continental zone (TCZ) based on local temperature,
precipitation, latitude, and longitude (Fig. 1) [33]. The average alti-
tudes of the four climatic zones were 4236 m, 611 m, 288 m, and 912 m
above sea level, respectively. TCZ is an arid region with an average
annual precipitation of 193 mm; SMZ is a humid region with an average
annual precipitation of 1360 mm; TMZ and MPZ have average annual
precipitations of 591 and 460 mm, respectively.

2.1. Dataset

The meteorological data of a total of 80 meteorological stations
were collected for the four different climatic regions of China mainland
(Fig. 1 and Appendix A), including maximum temperature (Tmax),
minimum temperature (Tmin), average temperature (Tmean), precipita-
tion (P), wind speed (U), relative humidity (RH), and daily global solar
radiation (Rs). Daily extraterrestrial radiation (Ra) and maximum pos-
sible sunshine duration (N) were calculated with site latitude, solar
constant, solar declination, and date of the year [34]. The variable Δt
was the diurnal temperature range, which was defined as the difference
between the daily maximum and minimum temperatures. The variable
Pt was a piecewise function of rainfall event, where Pt= 1 when P > 0
and Pt = 0 when P = 0. The meteorological data were obtained from
the National Meteorological Information Center of China Meteor-
ological Administration. The incomplete and abnormal data were de-
leted from the dataset.

2.2. Solar radiation estimation models

In this study, we investigated six different types of solar radiation
estimation models (Models 1–6), which belonged to three categories of
empirical formulas, machine learning methods, and multiple linear
regression method.

(1) Angstrom-Prescott formula (Model 1)

The Angstrom-Prescott (A-P) empirical model, proposed by
Angstrom [35] and further revised by Prescott [36], is the most widely
used model of global solar radiation estimation (Eq. (1)).

= +R
R

a b n
N

s

a (1)

where Ra and N were calculated with the method recommended by
FAO [34] (Eqs. (2)–(6)).

= ×
+

R G d(24 60/ ) ( sin sin
cos cos sin )

a sc r s

s (2)

= + ×d J1 0.033 cos(2 /365)r (3)

= × J0.409 sin(2 /365 1.39) (4)

= arccos( tan tan )s (5)

= ×N 24 /s (6)

where Rs is the daily global solar radiation, MJ m−2 d−1; Ra is the daily
extraterrestrial radiation, MJ m−2 d−1; a and b are the empirical
coefficients; n is the sunshine duration, h; N is the maximum possible
sunshine duration, h; Gsc = 0.082 MJ m−2 min−1 is the solar constant;
dr is the inverse square of the relative distance earth to sun; ωs is the
sunset hour angle, rad; φ is the latitude, rad; δ is the solar declination,
rad; and J is the day of the year.

(2) Support vector machine (Model 2)

The support vector machine (SVM) algorithm proposed by Vapnik
[37] is a supervised machine learning method for data analysis and
pattern recognition, and it has been widely employed for solar radiation
estimation [38]. The SVM is based on the principle of structural risk

Fig. 1. Distribution of the 80 national meteor-
ological stations (black dots) that have long-term
continuous observations of solar radiation in the
mainland of China. The whole mainland was di-
vided into four different climatic zones, where the
acronym of MPZ represents the mountain plateau
zone, SMZ the subtropical monsoon zone, TMZ the
temperate monsoon zone, and TCZ the temperate
continental zone, respectively. The same below.
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minimization, that is, the empirical risk is minimized and the con-
fidence interval is also small, so it has a good generalization for future
samples. Therefore, this method can better solve the problems of small
samples, nonlinearity and high dimensionality, and is often used for
identification and prediction. In this study, the ‘kernlab’ [39] package in
R language was used to conduct the SVM-based solar radiation esti-
mation.

(3) Gradient boosting decision tree (Model 3)

The gradient boosting decision tree (GBDT) algorithm proposed by
Friedman [40] is an integrated decision tree model based on the
boosting algorithm. The boosting algorithm generates a base learner
based on the residuals from the previous training. Based on boosting,
the GBDT establishes a new decision tree in the gradient direction of
residual reduction. By generating the optimal tree set, the overall pre-
diction performance of the GBDT model is improved, which is bene-
ficial to handle imbalanced event duration data [41]. In recent years,
the GBDT algorithm has also been used in solar radiation estimation
[42]. In this study, the ‘gbm’ [43] package in R language was used to
conduct the GBDT-based solar radiation estimation.

(4) Multivariate adaptive regression spline (Model 4)

The multivariate adaptive regression spline (MARS) algorithm de-
veloped by Friedman [44] is a regression analysis method that has a
strong generalization ability and specializes in processing high-dimen-
sional data. The method uses the tensor product of the spline function
as the basis function, and is divided into three steps: forward process,
backward pruning process and model selection. Its advantages are that
it can process large amounts of data and high-dimensional data, and has
fast calculation and accurate model. Currently, the MARS algorithm has
also been used in estimations of evaporation [45] and solar radiation
[46]. In this study, the ‘earth’ [47] package in R language was used to
conduct the MARS-based solar radiation estimation.

(5) Extreme learning machine (Model 5)

The extreme learning machine (ELM) algorithm is a type of machine
learning system or method based on feedforward neural networks,
which is suitable for supervised and unsupervised learning problems.
The ELM was proposed by Huang et al. [48] of Nanyang Technological
University and published in the IEEE International Joint Conference.
The ELM model consisted of three layers: an input layer, a hidden layer,
and an output layer. The biggest feature of ELM is that it is faster than
traditional learning algorithms under the premise of ensuring learning
accuracy. The ELM algorithm has also been used in solar radiation es-
timation [49]. In this study, the ‘elmNNRcpp’ [50] package in R lan-
guage was used to conduct the ELM-based solar radiation estimation.

(6) Multiple linear regression (Model 6)

The multiple linear regression (MLR) is a common method to study
the relationship between multiple independent variables and a depen-
dent variable. It is also widely used in solar radiation estimation re-
search [51]. The basic task of multiple linear regression analysis is to
establish multiple linear regression equations for dependent variables
and multiple independent variables based on actual observations (Eq.
(7)).

= + + + + +y x x x xk k0 1 1 2 2 3 3 (7)

where, β0, β1, β2, β3 and βk, are the regression coefficients; x1, x2, x3
and xk the correlation parameters; and k is the number of correlation
parameters.

2.3. Determination of the optimal combination of input meteorological
factors and radiation estimation models

Firstly, the correlations among meteorological factors were calcu-
lated based on obtained meteorological data, and then the importance
of meteorological factors in the process of solar radiation estimation
was evaluated. Next, according to the correlations among meteor-
ological factors and solar radiation in different climatic regions of
China, relevant meteorological factors were added successively to form
different combinations of input meteorological factors. Third, SVM was
used to estimate Rs in different climate regions. Fourth, the errors be-
tween the estimated and the observed values of Rs were compared and
the optimal combinations of input meteorological factors were obtained
for different climatic regions. The SVM method was implemented
through the ‘kernlab’ packages in R language [52]. The coefficients of
the Angstrom-Prescott model and the multiple linear regression method
were obtained using the least squares method in R language. Finally,
different estimation methods (Models 1–6) were used to estimate the
global solar radiation in the four different climate zones, and the esti-
mation errors were calculated based on the optimal combination of the
above input meteorological factors. The average error of all weather
stations in each climatic region was calculated as the general error to
evaluate different solar radiation estimation methods. The method with
the minimum error was chosen as the best estimation method in this
region.

For the sake of brevity, this study only took the SVM method as an
example to introduce the main procedures in Rs estimation with the
machine learning method as follows.

(1) Standardize meteorological data at each single site (Eq. (8))

=x x x
x xn

i min

max min (8)

where xn is the normalized data; xi is the raw data; xmax and xmin are the
maximum and minimum values of the raw data.

(2) Determine the ranges of key parameters in the SVM method
through the trial and error approach and then use the grid search
approach to select the optimal parameter values, while the re-
maining parameters were set to default values.

(3) Conduct stratified sampling for each site according to the dis-
tribution of Rs; use the five folds cross validation method to cal-
culate the error of each single site; randomly divide the data into
five completely separated parts, so-called five folds. For each fold of
the five folds (one fold contains 20% of the total data), the re-
maining 80% data were used to construct the model, while its own
20% data were used to evaluate the model constructed.

(4) Repeat the processes of model training and evaluating five times or
conduct five different rounds of trainings and tests; calculate the
mean value of the five evaluation indicators to evaluate the per-
formance of the model constructed.

(5) Calculate the average error of all of the related weather stations in a
given climatic region to represent the general estimation error of
daily global solar radiation in this region under a certain combi-
nation of input meteorological factors. The combination with the
least error was chosen as the optimal combination of input me-
teorological factors for the region.

2.4. Statistical analysis

Four common statistics were used to evaluate the accuracy and
consistency of different estimation models of daily global solar radia-
tion, including the decision coefficient (R2, Eq. (9)), the root mean
square error (RMSE, Eq. (10)), the Akaike's information corrected cri-
terion (AICc, Eq. (11)), and the relative error of RMSE between Ang-
strom-Prescott formula and SVM method (RMSEreduction, Eq. (12)).
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Generally, the closer R2 is to 1, the higher the model fit; the smaller the
RMSE, the smaller the model deviation; AIC was developed by Japanese
statistician Hirotsugu Akaike [53] and was mainly used for the trade-off
between fitness and complexity of the model [54]. AICc is a modified
algorithm proposed by McQuarrie and Tsai [55] on the basis of AIC and
has been used to select the optimal model identified by its minimum
value. In order to better describe the difference between the RMSE for
different methods, this study proposed the concept of RMSEreduction,
which was essentially the relative error of RMSE between A-P method
and SVM method. The larger the RMSEreduction value, the higher the
accuracy of the SVM method compared to the Angstrom-Prescott for-
mula.
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= =
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where Yi is Rs value on the i-th day calculated by the model; Xi is the
measured Rs value on the i-th day; Ȳ is the average of Yi; X̄ is the
average of Xi; n is the data sample size; k and RSS are the number of
parameters and the residual sum of squares from the model, respec-
tively; RMSEA-P is the RMSE value of the Angstrom-Prescott formula;
and RMSESVM is the RMSE value of the support vector machine method.

3. Results

The correlation and replaceability of meteorological factors in the
process of global solar radiation estimation were explored, the predic-
tion accuracy of different meteorological factor input combinations and
different machine learning algorithms were evaluated.

3.1. Correlations among meteorological factors in different climatic zones

The correlations among different meteorological factors and the
correlations between single meteorological factor and Rs were analyzed
for the four different climatic regions of China mainland (Fig. 2). The
relationships between daily global solar radiation Rs and the input

Fig. 2. Correlations among meteorological elements in the four climatic regions of China.
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meteorological factors were comprehensively evaluated, including
sunshine duration hours n, h; maximum possible sunshine duration N,
h; diurnal temperature range Δt, °C; daily average temperature Tmean,
°C; daily maximum temperature Tmax, °C; daily minimum temperature
Tmin, °C; relative humidity RH, %; precipitation P, mm; rainfall event Pt;
average wind speed U, m s−1; and daily extraterrestrial solar radiation
Ra, MJ m−2 d−1. The lower triangle of the matrix indicated the cor-
relation between meteorological elements and the upper triangle in-
dicated the corresponding correlation coefficients. Positive correlation
was shown in red and negative correlation in green. The color intensity
and the size of the sector area were proportional to the correlation
coefficient. The results showed that the correlations among different
meteorological factors in the four different climatic regions were also
different. The rankings of correlations between meteorological factors
and Rs was: n > Tmax > N > Ra > Tmean > Tmin > Δt >
RH > P > Pt > U in the MPZ (or the mountain plateau zone);
n > Δt > Tmax > RH > Pt > Tmean > Ra > N > Tmin > P > U
in the SMZ (or the subtropical monsoon zone);
n > Ra > N > Tmax > Tmean > Tmin > Δt > RH > Pt > P > U
in the TMZ (or the temperate monsoon zone); and
n > Ra > N > Tmax > Tmean > Tmin > RH > Δt > Pt > P > U
in the TCZ (or the temperate continental zone). The meteorological
factors of n, N, Ra, Tmean, Tmax, Tmin were positively correlated with Rs,
while the factors of RH, P and Pt were negatively correlated.

Generally, the correlation between n and Rs was the strongest in
each climatic zone, while the correlation between U and Rs was the
weakest. The correlation ranking of other meteorological factors was
slightly different in different zones. The correlation coefficient between
n and Rs differed obviously since the highest was 0.88 in SMZ and the
lowest was 0.74 in MPZ, namely the SMZ zone was most affected by
sunshine hour n. Since the variable n can reflect the amount of cloud to
some extent, the Rs in the SMZ was remarkably affected by the cloud
amount. At the same time, the MPZ is located on the mountain and
plateau and the weather is relatively sunny. Thus, the Rs in MPZ was

less affected by clouds.
In TMZ and TCZ, Ra and N were the most related meteorological

factors besides n. The correlation coefficients between the two variables
and Rs were 0.62 and 0.62 in TMZ and 0.77 and 0.78 in TCZ, respec-
tively. In MPZ, the correlation coefficients between N, Tmax, Ra and Rs
were 0.56, 0.56 and 0.55, respectively. In SMZ, the correlation coeffi-
cients of Ra, N and Rs were 0.38 and 0.37, respectively, which were
weaker than the correlation between n, Δt, Tmax, RH, Pt, Tmean and Rs.
This indicated that the main meteorological factors affecting Rs were
sunshine hour n and geographical factors in TMZ, TCZ and MPZ, but Rs
was also strongly affected by other meteorological factors (e.g. tem-
perature, air humidity, and precipitation) in SMZ. This is because SMZ
is located on the southeast coast of China, with abundant precipitation
and humid air. These climatic conditions had a greater impact on solar
radiation. In addition, Δt in SMZ was the smallest among the four re-
gions, but the correlation between Δt and Rs was higher than the other
temperature factors. This was probably because Δt could better reflect
the changes of Rs in this region.

In general, except for n and N, the correlations of temperature
(Tmean, Tmax, Tmin), RH with Rs were stronger than the correlations of
precipitation and U with Rs in all of the four climatic regions in China
mainland. The correlation between temperature and Rs was higher in
TCZ than that in other regions, which may be due to the dryer climate
in Northwest China and temperature could more directly reflect the
change of global solar radiation. In SMZ and TCZ, the correlations of RH
and Rs were strong since the correlation coefficients were −0.48 and
−0.51, while the correlation coefficients were −0.2 and −0.29 in MPZ
and TMZ, respectively. The influence of RH on global solar radiation
was weak in MPZ and TMZ regions. However, the correlation between
rainfall events Pt and Rs was −0.44 in SMZ, which was stronger than
the other three regions. This was probably because there was more
precipitation in SMZ region. The correlation between U and Rs was the
lowest in all of the four climatic regions, which indicated wind speed
had limited influence on global solar radiation.

3.2. Replaceability of meteorological factors in solar radiation estimation

The correlation between N and Ra was very strong (Fig. 2) since the
correlation coefficients of N and Ra were close to 1.0 in all of the four
regions. Factors of N and Ra can be obtained from the date and the
geographic information of the weather station. Therefore, they can
replace each other in the process of Rs estimation. Therefore, the
combinations of input meteorological factors including N and Ra were
used to estimate the global solar radiation using the SVM method. The
average RMSE values of model estimation were calculated in the four
different climatic regions (Table 1). Generally, the estimation accuracy
in TCZ region was the highest; TMZ ranked the second; and the

Table 1
Root mean square error (RMSE, MJ m−2 d−1) of global solar radiation (Rs)
estimation with the support vector machine (SVM) method under different
combinations of input meteorological factors of possible maximum sunshine
duration (N), sunshine duration hours (n) and horizontal extra-terrestrial ra-
diation (Ra) in the four different climatic regions of China mainland.

Input combination MPZ SMZ TMZ TCZ

N 5.5021 6.7855 5.8047 4.9406
Ra 5.5005 6.8034 5.8033 4.9407
n + N 2.6488 2.6295 2.3520 2.1036
n + Ra 2.6480 2.6286 2.3495 2.0983
n + N + Ra 2.6455 2.6216 2.3467 2.0929

Fig. 3. Root mean square error (RMSE, MJ m−2 d−1) of global solar radiation (Rs) estimation using the support vector machine (SVM) method under different
combinations of input meteorological factors at the 80 weather stations in China mainland.
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estimation accuracy in MPZ and SMZ were relatively low. In all of the
four climatic regions, the combination of n + N + Ra was better than
the other four combinations (Table 1).

The RMSE values of the 80 meteorological stations in China main-
land were further analyzed under different combinations of input me-
teorological factors (Fig. 3). When only N or Ra was used as the single
input factor, the RMSE values were not ideal, and there were large gaps
between sites. Then, the estimated error significantly reduced after
adding the variable of n. However, the errors were similar for the three
combinations of n + N, n + Ra and n + N + Ra, all between 1.8 and
4.0 MJ m−2 d−1. When n was included, adding N or Ra could result in a
higher estimation accuracy. The combination of n + Ra had a slightly
smaller error than n + N (Table 1). So in the following study, only Ra
was chosen as the main input meteorological factor while N was ne-
glected to reduce the complexity in global solar radiation estimation.

For temperature, four different temperature-related meteorological
factors Tmax, Tmean, Tmin and Δt were investigated in this study.
Generally, the correlations of the three temperature factors Tmax, Tmean
and Tmin with N and Ra were strong, up to 0.84, while the correlations
with other meteorological factors was relatively weak. The correlations
among Δt and Tmax, Tmean and Tmin were very different in the same
climatic region, and there were also great differences among different
climatic regions. The correlations among Tmean, Tmax and Tmin were
close to 1.0. Thus, there was a redundancy in temperature-related
meteorological factors in solar radiation estimation. Based on the re-
placeability of the four temperature-related variables (Table 2), it can
be seen that the estimation error with only Ra as the input factor can be
effectively reduced by adding any of the four factors of Δt, Tmax, Tmean,
and Tmin. For the input combinations with Tmax, Tmean, and Tmin at the
same time, adding Δt had some negative impact on the estimation ac-
curacy. Therefore, Δt was not recommended when Tmax, Tmean and Tmin
were already available. The estimation accuracy of the three-factor
input combination of Ra+ Tmax+ Tmin was higher than that of the two-
factor input combination of Ra + Δt. This was because Δt only reflected
daily temperature changes, while Tmax and Tmin could better reflect the
amount of radiation received by the atmosphere during this period.

When estimating Rs with Ra and Δt, the estimation accuracy could
be slightly improved when Tmax and Tmean were added, namely, the
four-factor combination of Ra + Δt+ Tmax + Tmean could obtain better
estimation accuracy. However, the estimation accuracy was not ob-
viously improved after further adding Tmin. In addition, the estimation
accuracy of the four-factor combination of Ra + Δt+ Tmax + Tmin was
not significantly improved compared with the three-factor combination
of Ra + Δt + Tmax, namely, there was no need to add Tmin. Therefore,
the combinations of Tmax + Tmean + Tmin or Δt + Tmax + Tmean should
be selected among the temperature-related factors to obtain higher
estimation accuracy. Generally, when n was known, the five-factor
combination of n + Ra + Tmax + Tmean + Tmin or
n + Ra + Δt + Tmax + Tmean was the optimal combination of input
meteorological factors for the Rs estimation with SVM method
(Table 2).

In the subtropical monsoon zone or SMZ, the correlation coefficient
between Pt and Rs was −0.44, but this kind of correlation was not
strong in the other climatic regions (Fig. 1). This was because SMZ had
more precipitation than other regions and the impact of precipitation
on solar radiation was more serious. Since the factor of Pt was derived
from precipitation P, the effect of these two meteorological factors on
the accuracy of radiation estimation was further analyzed. Based on the
estimation errors of different combinations of input meteorological
factors including precipitation, it was found that the combination of
Ra + P was more accurate than the combination of Ra + Pt if only Ra
and precipitation were used as input factors (Table 3). Thus, when
temperature or n were available, Pt can be selected as an additional
input factor to improve the estimation accuracy. However, the si-
multaneous use of P and Pt could not obviously improve the estimation
accuracy, but even increase the estimation error. According to the

estimation results of 80 meteorological stations in China mainland
under different input combinations including precipitation related
factors (Fig. 4), there were large difference in estimation accuracy
among different stations. It can be seen that the addition of Δt and n
reduced the error of Ra+ P (or Pt). The combination of n+ Ra+ Pt had
the highest estimation accuracy. Therefore, it was recommended the
precipitation event Pt as the precipitation-related input factor to esti-
mate Rs.

3.3. Determination of the optimal combinations of input meteorological
factors

Based on the different optimal combinations of input meteorological
factors, global solar radiation was estimated with the support vector
machine method in different climatic regions of China mainland. Then
the estimation results were further compared with the estimations by
the multiple linear regression method and Angstrom-Prescott formula
(Table 4). Since Ra was necessary in the estimation of global solar ra-
diation by conventional methods and it also had a great influence on
the estimation accuracy with the SVM method, Ra was added as a
meteorological input factor except for n when estimating Rs with the
SVM method. The results showed that the estimation accuracy of the
input combination of n + Ra was better than that of the Angstrom-
Prescott formula in whole China mainland. The estimation accuracy of
the SVM was generally higher than the multiple linear regression
method under various conditions, which indicated that the SVM
method could estimate global solar radiation more accurately in dif-
ferent climatic regions of China mainland. Overall, the simulation ac-
curacy in the TCZ region was the highest, followed by the TMZ region,
while the accuracies in the SMZ and MPZ regions were relatively poor.
This was probably due to the higher correlation between meteor-
ological factors and Rs in the TCZ region. In SMZ, high estimation ac-
curacy could be obtained only using n, which was consistent with the
high correlation between n and Rs in the SMZ region.

In the same climatic zone, the accuracies of Rs estimation with
different combinations of input meteorological factors were different.
The addition of the same meteorological factor had different effects on
the accuracy of Rs estimation in different regions (Table 4). Generally,

Table 2
Root mean square errors (RMSE, MJ m−2 d−1) of global solar radiation (Rs)
estimations with the support vector machine (SVM) method under different
combinations of input meteorological factors including various temperature
related factors in the four different climatic regions of China mainland.

Input combination MPZ SMZ TMZ TCZ

Ra 5.5005 6.8034 5.8033 4.9407
Ra + Tmax 4.9846 5.2781 5.2191 4.6901
Ra + Tmax + Tmean 4.3140 4.2254 4.3200 4.2734
Ra + Tmax + Tmin 3.9112 3.9227 3.9235 3.7427
Ra + Tmax + Tmean + Tmin 3.7448 3.7771 3.8103 3.4506
Ra + Δt 3.9639 4.2869 4.0471 3.8040
Ra + Δt + Tmax 3.9154 3.9337 3.9288 3.7530
Ra + Δt + Tmax + Tmin 3.9153 3.9308 3.9271 3.7519
Ra + Δt + Tmax + Tmean 3.7663 3.8090 3.8360 3.5137
Ra + Δt + Tmax + Tmean + Tmin 3.7622 3.8025 3.8322 3.5025
n + Ra 2.6480 2.6286 2.3495 2.0983
n + Ra + Tmax 2.6416 2.5631 2.2954 2.0789
n + Ra + Tmax + Tmean 2.6193 2.5148 2.2668 2.0607
n + Ra + Tmax + Tmin 2.6126 2.4885 2.2527 2.0519
n + Ra + Tmax + Tmean + Tmin 2.5946 2.4593 2.2321 2.0294
n + Ra + Δt 2.6253 2.5194 2.2927 2.0853
n + Ra + Δt + Tmax 2.6120 2.4866 2.2571 2.0573
n + Ra + Δt + Tmax + Tmin 2.6122 2.4889 2.2580 2.0579
n + Ra + Δt + Tmax + Tmean 2.5955 2.4590 2.2389 2.0400
n + Ra + Tmax + Tmean + Tmin + Δt 2.5948 2.4601 2.2398 2.0397

Note: The bold italics values in the table are the errors in global solar radiation
estimations based on the recommended optimal combinations of input me-
teorological factors.
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the optimal combination of input meteorological factors was
n+ Ra + Tmax + Tmean + Tmin + RH for the SVM method in MPZ and
TCZ. The estimation accuracy even reduced after adding U in MPZ.
However, the optimal combination of input meteorological factors was
n + Ra + Δt + Tmax + RH + Pt + Tmean + U in SMZ, which was the
combination of all available meteorological elements. In TMZ, the op-
timal combination of input meteorological factors was
n + Ra + Tmax + Tmean + Tmin + RH + Pt. Adding U increased the
complexity of the model but did not improve the accuracy substantially.
After the existing input combination reached a certain accuracy, the
effect of additional variables was not obvious on the improvement of
estimation accuracy. For the multiple linear regression method, it was
usually to combine all meteorological elements to achieve the best
accuracy. However, the SVM method could achieve higher accuracy by
using fewer meteorological factors. The SVM method could reduce the
number of meteorological factors required in the estimation of global
solar radiation. Therefore, the machine learning algorithms such as
SVM were more suitable for the situations with fewer types of or
missing meteorological data.

The accuracy of solar radiation estimation with the SVM method
under the optimal combination of input meteorological factors was
higher than that of the traditional Angstrom-Prescott formula (Table 4).
The accuracies of two methods were then further analyzed (Fig. 5). The
size of green dots in the Fig. 5 represents the RMSEreduction of SVM
method under the optimal combination of input meteorological factors
relative to the Angstrom-Prescott formula in the four climatic regions in
China mainland. RMSEreduction (filled dots) was defined as the ratio (%)
of the RMSE difference between the Angstrom-Prescott formula and the
SVM method to the RMSE of the Angstrom-Prescott formula (Eq. 12).

The larger dot indicated greater improvement of estimation accuracy by
the SVM method compared to the Angstrom-Prescott formula. It can be
seen that the accuracy of Rs estimation was improved by the SVM
method in different climatic regions in whole China mainland. The
improvement of estimation accuracy was more obvious in the SMZ,
followed by TCZ, and the RMSEreduction of many stations in these two
regions were greater than 20%. Since the MPZ was located in the
Qinghai-Tibet Plateau, the special geographical location and climate
conditions made the improvement smaller. The RMSEreduction in MPZ
were all less than 15%. In conclusion, the machine learning method
could effectively improve the estimation accuracy of Rs in relatively
humid regions.

3.4. Comparisons among different machine learning methods

The optimal combinations of input meteorological factors were
applied to the stations in the four different climatic regions of China
mainland. At the same time, different methods (Models 1–6) were used
to estimate the Rs of each station (Fig. 6). Compared with the Angstrom-
Prescott formula and multiple linear regression method, the four ma-
chine learning methods could all effectively improve the estimation
accuracy. Under the same combination of input meteorological factors,
the estimation accuracies of different machine learning methods were
also slightly different. Among the four different machine learning
methods, the RMSE of ELM and SVM in each region were lower than
other methods. Thus, it was recommended to use the ELM or SVM
method to estimate global solar radiation in different climate regions of
China mainland. In addition, among the four different climatic regions,
the estimation accuracy had been improved most obviously through the
machine learning methods in the SMZ region, where the mean of RMSE
was reduced from 2.7615 (Angstrom-Prescott formula) to
2.2850 MJ m−2 d−1 (ELM). This confirmed that the machine learning
method could perform better in the SMZ region. Among the four cli-
mate zones, the estimation error in TCZ was the smallest, and the error
distribution was the most concentrated. The range of box plot of MPZ
was the largest, which was probably because there were only seven
stations in MPZ and the complexity of the Qinghai-Tibet Plateau led to
large differences among the stations. The range of estimation error in
SMZ was relatively large, which was probably because there were many
observation stations in SMZ and the internal climate was complicated.

ELM was the model with the smallest error among the several
methods investigated method. Under the optimal combination of me-
teorological factors, the median of RMSE were 2.50, 2.20, 1.95, and
2.11 MJ m−2 d−1 in MPZ, SMZ, TCZ and TMZ, respectively (Fig. 6).
Considering the geographical location and climatic conditions com-
prehensively, eight representative stations in the four climatic regions
were selected. The estimated Rs based on ELM and the optimal input

Table 3
Root mean square errors (RMSE, MJ m−2 d−1) of global solar radiation (Rs)
estimation by the support vector machine (SVM) method under different
combinations of input meteorological factors including precipitation related
factors of P and Pt in the four climatic regions of China mainland.

Input combination MPZ SMZ TMZ TCZ

Ra + P 4.8423 5.4500 4.8426 4.3529
Ra + Pt 4.8557 5.5276 4.8465 4.3309
Ra + Δt + P 3.8938 3.8997 3.8327 3.6533
Ra + Δt + Pt 3.8861 3.9363 3.8272 3.6388
Ra + Δt + P + Pt 3.8848 3.8354 3.8084 3.6426
n + Ra + P 2.6917 2.5630 2.3440 2.1830
n + Ra + Pt 2.6345 2.5532 2.2754 2.0715
n + Ra + P + Pt 2.6828 2.5468 2.3332 2.1814

Note: The bold italic values in the table are the errors in global solar radiation
estimations based on the recommended optimal combinations of input me-
teorological factors.

Fig. 4. Root mean square error (RMSE, MJ m−2 d−1) of global solar radiation (Rs) estimation using the support vector machine (SVM) method under different
combinations of input meteorological factors at 80 stations in China mainland.
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Table 4
The determination coefficient (R2), root mean square error (RMSE, MJ m−2 d−1), akaike's information corrected criterion (AICc) of daily global solar radiation (Rs)
estimations through support vector machine (SVM), multiple linear regression (MLR), and Angstrom-Prescott formula (A-P) under different combinations of input
meteorological factors in different climatic regions of China mainland.

Input combination R2 RMSE (MJ m−2 d−1) AICc

SVM MLR A-P SVM MLR A-P SVM MLR A-P

MPZ n 0.613 0.542 4.057 4.400 3.799 3.962
n + Ra 0.824 0.811 0.820 2.632 2.737 2.668 2.875 2.965 2.901
n + Ra + Tmax 0.826 0.811 2.615 2.735 2.862 2.964
n + Ra + Tmax + Tmean 0.829 0.811 2.587 2.733 2.839 2.963
n + Ra + Tmax + Tmean + Tmin 0.833 0.813 2.558 2.716 2.816 2.950
n + Ra + Tmax + Tmean + Tmin + RH 0.836 0.814 2.526 2.709 2.790 2.945
n + Ra + Tmax + Tmean + Tmin + RH + Pt 0.836 0.814 2.524 2.707 2.790 2.944
n + Ra + Tmax + Tmean + Tmin + RH + Pt + U 0.837 0.815 2.523 2.702 2.792 2.941

SMZ n 0.802 0.773 3.260 3.468 3.357 3.481
n + Ra 0.872 0.850 0.856 2.610 2.826 2.761 2.905 3.067 3.018
n + Ra + Δt 0.883 0.854 2.485 2.783 2.806 3.036
n + Ra + Δt + Tmax 0.887 0.858 2.445 2.751 2.773 3.014
n + Ra + Δt + Tmax + RH 0.895 0.865 2.356 2.686 2.697 2.966
n + Ra + Δt + Tmax + RH + Pt 0.897 0.867 2.332 2.661 2.675 2.947
n + Ra + Δt + Tmax + RH + Pt + Tmean 0.898 0.868 2.314 2.649 2.660 2.939
n + Ra + Δt + Tmax + RH + Pt + Tmean + U 0.900 0.869 2.293 2.643 2.643 2.935

TMZ n 0.729 0.651 3.864 4.300 3.694 3.909
n + Ra 0.897 0.871 0.891 2.332 2.615 2.402 2.678 2.914 2.739
n + Ra + Tmax 0.903 0.872 2.266 2.608 2.622 2.910
n + Ra + Tmax + Tmean 0.906 0.873 2.229 2.603 2.590 2.907
n + Ra + Tmax + Tmean + Tmin 0.909 0.877 2.187 2.553 2.553 2.870
n + Ra + Tmax + Tmean + Tmin + RH 0.913 0.879 2.148 2.534 2.519 2.856
n + Ra + Tmax + Tmean + Tmin + RH + Pt 0.915 0.882 2.126 2.509 2.498 2.838
n + Ra + Tmax + Tmean + Tmin + RH + Pt + U 0.915 0.882 2.120 2.504 2.493 2.834

TCZ n 0.763 0.657 3.771 4.430 3.652 3.977
n + Ra 0.925 0.906 0.922 2.075 2.326 2.133 2.453 2.685 2.507
n + Ra + Tmax 0.927 0.907 2.048 2.318 2.427 2.679
n + Ra + Tmax + Tmean 0.929 0.907 2.024 2.312 2.404 2.675
n + Ra + Tmax + Tmean + Tmin 0.931 0.913 1.985 2.242 2.366 2.613
n + Ra + Tmax + Tmean + Tmin + RH 0.933 0.914 1.964 2.231 2.346 2.605
n + Ra + Tmax + Tmean + Tmin + RH + Pt 0.933 0.914 1.957 2.226 2.340 2.601
n + Ra + Tmax + Tmean + Tmin + RH + Pt + U 0.933 0.914 1.959 2.224 2.342 2.600

Note: The bold italic symbols in the table were the optimal combinations of input meteorological factors in each climatic region of China mainland.

Fig. 5. RMSEreduction of the SVM method under the optimal combination of input meteorological factors relative to the Angstrom-Prescott formula in the four climatic
regions in China mainland.
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combination were shown in Fig. 7. The eight typical stations had ob-
tained good estimation results, especially the Turpan and Xilinhot sta-
tions in the TCZ, with R2 of 0.955 and 0.942, respectively. R2 of Golmud
station in MPZ was 0.944, while R2 of Changdu station in the same area
was only 0.797, indicating that the internal situation of MPZ area was
complicated and there was a big difference between the stations.

4. Discussion

It is very complicated to estimate the actual solar radiation energy
on the earth's surface due to the atmosphere around the Earth, the
undulating earth surface, and the unevenly distributed regions of land
and sea. When solar radiation penetrates the atmosphere, it will be
weakened by the atmosphere; when the solar radiation reaches the
earth's surface, different reflections will occur due to the different
ground properties. In addition, the earth's atmosphere is also constantly
changing. It reflects, absorbs, and scatters the short-wave radiation of
the sun, and absorbs the long-wave radiation of the ground. At the same
time, the atmosphere itself also emits long-wave radiation. Therefore,
global solar radiation varies not only with latitude and season, but also
with geographical characteristics and atmospheric conditions. To esti-
mate the solar radiation on the earth's surface, the first step was to
investigate the solar radiation energy that reached the upper bound of
the earth's atmosphere, i.e. the extraterrestrial radiation of Ra. The solar
radiation energy at different times and locations is determined by the
astronomical position of the sun to the earth. A day is divided into two
parts, day and night. The duration of radiation available on the earth’s
surface is expressed by possible maximum sunshine duration, or N. Due
to the existence of the atmosphere around the Earth, surface radiation
and extra-terrestrial radiation are very different. Atmospheric trans-
parency and sunny weather conditions can affect global solar radiation,
which is mainly reflected by the meteorological factor of sunshine
hours, or n. The solar radiation reaching the surface is absorbed by the
atmosphere in the form of long-wave radiation or emitted into the air to
cause temperature changes. The heat exchange causes weather changes.
Precipitation, humidity, and wind speed will affect the particulate
matter and cloud volume in the atmosphere. Therefore, the interaction
of various meteorological factors affects solar radiation.

In this study, based on the analysis of correlations among meteor-
ological factors in China mainland, it was found that Rs was strongly
correlated with the meteorological factors of n, N, Ra, temperature and
RH. A study by Benghanem and Mellit [56] in Saudi Arabia found that
the correlation coefficient between n and Rs was 0.94, and the corre-
lation coefficients between n with temperature and RH was 0.68 and

−0.72. Their another study also showed that n played a very important
role in estimating Rs [57]. These studies were consistent with the cor-
relations between Rs and various meteorological factors found in this
study.

In traditional empirical models of global solar radiation (e.g. the
Angstrom-Prescott formula), it is necessary to input both N and Ra.
However, this study showed that when using machine learning to es-
timate global solar radiation, Ra and N are interchangeable. In other
words, using only one of these two factors could meet the estimation
accuracy requirements. In addition, the study also found that in the
process of global solar radiation estimation with machine learning
method, the estimation accuracy could be further improved if the me-
teorological factor Tmean was added. Moreover, different forms of the
same meteorological factor (e.g. Temperature and Precipitation) may
also influence the final estimation accuracy. In previous studies, many
scholars used Tmean as an input factor and achieved good estimation
results [58]. Belaid and Mallet [59] used the SVMmethod to estimate Rs
in Algeria based on different combinations of temperature-related me-
teorological factors (i.e. Tmax, Tmin, Tmean, t), Ra and N. It was found
that the global solar radiation could be effectively estimated based on
the temperature, and the introduction of Ra or N could greatly improve
the estimation accuracy. This result was basically consistent with this
study.

Studies have shown that rainfall could have a certain impact on the
estimation of global solar radiation. Based on 39 stations in Australia,
Liu and Scott [26] used different combinations of rainfall and tem-
perature to estimate global solar radiation. They found that the accu-
racy of estimation could be improved by using Pt instead of P. Similar
result was also obtained in China mainland in this study. Quej et al.
[60] added rainfall factors to the temperature-based estimation model
to improve the accuracy of global solar radiation estimation. Fan et al.
[61] also found that rainfall information had a positive impact on es-
timating daily solar radiation in humid areas in China. However, pre-
cipitation had different effects on different climatic regions of China
mainland in this study. For example, when the combination of
n + Ra + Tmax + Tmean + Tmin + RH was used to estimate global solar
radiation in the MPZ and TCZ regions, accuracy improvement by ad-
ditional precipitation information was very small, but the complexity of
the model was increased. This may be due to the different climatic
characteristics in different regions. The MPZ and TCZ belong to arid
regions with less precipitation, where precipitation cannot sufficiently
reflect the changes of global solar radiation. Therefore, local climatic
conditions need to be considered carefully if rainfall was used as the
input meteorological factor for the global solar radiation estimation.

Fig. 6. RMSE (MJ m−2 d−1) of estimation of
daily global solar radiation through dif-
ferent machine learning methods under the
same optimal combinations of input me-
teorological factors in the four different cli-
matic regions of China mainland. The op-
timal combination of input meteorological
factors were n + Ra + Tmax + Tmean +
Tmin + RH, n + Ra + Δt + Tmax +
RH + Pt + Tmean + U, n + Ra +
Tmax + Tmean + Tmin + RH and
n + Ra + Tmax + Tmean + Tmin + RH + Pt
in MPZ, SMZ, TCZ and TMZ, respectively.
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Fig. 7. RMSE (MJ m−2 d−1) of estimation of daily global solar radiation through ELM method under the optimal combinations of input meteorological factors in
eight typical stations (Golmud, Changdu, Changsha, Guiyang, Tuipan, Xilinhot, Houma and Changchun).
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In previous studies, many scholars chose different combinations of
input meteorological factors to estimate global solar radiation. For ex-
ample, Wu et al. [62] estimated global solar radiation using n, N, Ra,
Tmax, Tmin, RH, and P in humid regions of China. Torabi et al. [63]
estimated the global solar radiation in Iran using n, Tmax, Tmin, Ra and N
as input factors. Bhardwaj et al. [64] used Julian day, n, temperature,
RH, wind speed, and atmospheric pressure to estimate global solar ra-
diation in India. In addition, similar studies were also conducted in
Korea [65], Malaysia [66], and Turkey [46]. However, the combina-
tions of input meteorological factors were very different in the above
studies, which indicated that it was necessary to select the most suitable
combinations of input meteorological factors according to local climate
characteristics in different regions, especially for a country with a large
area and various climates. In this study, China mainland was divided
into four different climate zones. The optimal combinations of input
meteorological factors and the machine-learning estimation methods
were explored for each of the four different climatic zones. However, it
is still unclear whether there exits significant difference in the estima-
tion accuracy within the same climatic zone. Thus, further study is
needed to make sure that the division of the climatic zones matches the
variation of global solar radiation in China mainland.

The Support Vector Machine (SVM) method is one of the most
widely used machine learning methods. In previous studies, the SVM
method has been recommended for global solar radiation estimation
[59]. Therefore, to reduce the computational complexity, this study
only used the SVM as the representative machine learning method to
determine the optimal combination of input meteorological factors in
the four different climatic regions of China mainland. It was assumed
that the optimal combination of input meteorological factors selected
for the SVM method was also valid for other machine learning methods.

This study found that machine learning methods could more accu-
rately estimate global solar radiation in China mainland compared to
traditional empirical models. Previous studies had similar results [67],
mainly because machine learning methods were more capable of
dealing with nonlinear and noisy data, such as extreme weather events
(heavy rain and sand etc.) [12]. Many scholars also conducted com-
parative studies on different machine learning methods. For example, in
the study by Shamshirband et al. [68], the performance of different
machine learning methods ranked from good to bad as ELM >
SVM > GP (genetic programming) > ANN (artificial neural net-
work). Wang et al. [69] showed the ranking was: ANFIS (adaptive
neuro-fuzzy inference systems) > M5Tree > Empirical Model.
Keshtegar et al. [46] found that MARS was superior to RSM (response
surface method), Kriging and M5Tree. Fan et al. [70] used n, N, and Ra
as input meteorological factors and compared the performance of 12
different machine learning algorithms in China mainland. They found
that ANFIS, ELM, SVM, and MARS generally performed better. How-
ever, according to the results of this study, the performance of different
machine learning methods was related to regional climate conditions
and the combinations of input meteorological factors.

This study clarified the differences in solar radiation estimation in
different climatic regions of China mainland, and improved the esti-
mation accuracy of radiation through the best combination of meteor-
ological factors and machine learning algorithms. The results could
help China to better assess and utilize solar energy resources. It also
provided a new way for the solar radiation estimation in regions with
complex climate. In this study, only six representative models were
selected to estimate global solar radiation in China mainland. There are
still many other machine learning methods that were not tested.
Therefore, further study is needed to see whether there are other better
machine learning methods for global solar radiation estimation. In the
application of machine learning method, only the key parameters of the
model itself were optimized in this study, while the other parameters
were set as default values. This procedure simplified the process of
model correction to a certain extent, but further study is also needed to
see whether the solar radiation estimation accuracy could be further

improved through optimizing the remaining model parameters.
Furthermore, some uncommon meteorological factors such as air
pressure and visibility were not considered in this study. The optimal
combination of input meteorological factors was determined when all
common meteorological data were available. However, further study
may be needed to determine the alternative combination of input me-
teorological factors when sunshine hours, temperatures, or other in-
fluential meteorological factors are in scarcity or missing.

5. Conclusions

In this study, using the meteorological data of 80 stations in China
mainland, based on the correlation of meteorological elements, dif-
ferent input combinations of meteorological factor were established to
evaluate the performance of six different estimation models in the four
climatic regions of China mainland. Some main conclusions were drawn
as follows.

In the process of estimating global solar radiation Rs with machine
learning method, the addition of n had the greatest impact on the es-
timation accuracy. Ra could be used to replace N to reduce the number
of input meteorological factors. For temperature-related meteorological
factors, a combination of Tmax + Tmin + Tmean was recommended. If
relative humidity data were available, it was also suggested as an input
meteorological factor. A binary rainfall event Pt (rainfall = 1 and no
rainfall = 0) was recommended as an input factor in humid regions, but
not in arid regions. Wind speed contributed little to the improvement of
estimation accuracy. Geographical location and climatic conditions
should be taken into account to select the optimal combinations of
input meteorological factors for Rs estimation. In MPZ, the combination
of n + Ra + Tmax + Tmean + Tmin + RH was recommended; in SMZ, the
combination of n + Ra + Δt + Tmax + RH + Pt + Tmean + U; in TMZ,
the combination of n + Ra + Tmax + Tmean + Tmin + RH + Pt; and in
TCZ, the combination of n + Ra + Tmax + Tmean + Tmin + RH. No
matter under what kind of combination of input meteorological factors,
the accuracy of machine learning method was higher than the multiple
linear regression method and Angstrom-Prescott empirical formula.
Especially in the SMZ, the advantages of machine learning methods
were particularly obvious. The ELM and SVM methods were re-
commended for global solar radiation estimation in China mainland.
For regions with large areas or complex climatic conditions, there are
certain differences in regional radiation estimates. The accuracy of es-
timation could be effectively improved through dividing China into
different regions and studying each region separately. This study pro-
vided a reference for the selection of appropriate combination of input
meteorological factors and the methods for the estimation of global
solar radiation in different climatic regions of China mainland. This
method can also be applied to other similar climate regions in the world
for further research.
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Appendix A. Basic information about the 80 meteorological stations involved in this study in China mainland. The precipitation in the
table is annual mean value, while the other meteorological factors are daily mean values. The acronym of MPZ represents the mountain
plateau zone, SMZ the subtropical monsoon zone, TMZ the temperate monsoon zone, and TCZ the temperate continental zone,
respectively.

Station
No.

Code Station
name

Climatic
Region

Latitude
(N)

Longitude
(E)

Altitude
(m)

Rs (MJ m−2

d−1)
n
(h)

Tmax
(°C)

Tmean
(°C)

Tmin
(°C)

RH
(%)

P (mm
y−1)

U (m
s−1)

Record
period

1 52,818 Golmud MPZ 36.4 94.9 2808.4 19.1 8.4 13.0 5.3 −1.4 32.4 43.0 2.6 1957–2017
2 52,866 Xining MPZ 36.7 101.8 2296.0 15.9 7.3 14.0 6.0 0.0 56.2 385.5 1.5 1959–2017
3 55,299 Naqu MPZ 31.5 92.1 4508.2 17.6 7.6 7.1 −0.9 −7.6 51.9 444.0 2.6 1961–2017
4 56,029 Yushu MPZ 33.0 97.0 3717.7 16.6 6.8 12.0 3.5 −3.0 53.7 486.3 1.1 1960–2017
5 56,137 Changdu MPZ 31.2 97.2 3316.2 16.8 6.5 16.8 7.8 1.0 50.3 477.6 1.1 1957–2017
6 56,146 Ganzi MPZ 31.6 100.0 3394.4 18.1 6.9 14.8 6.3 0.2 55.8 659.1 1.8 1994–2017
7 56,173 Hongyuan MPZ 32.8 102.6 3492.8 16.8 6.4 10.8 2.1 −4.6 69.4 729.7 2.3 1994–2017
8 56,385 Emeishan SMZ 29.5 103.3 3048.3 12.7 3.9 7.7 3.3 0.5 85.7 1763.2 3.0 1959–2017
9 56,386 Leshan SMZ 29.6 103.8 425.2 9.5 2.9 20.9 17.1 14.3 80.5 1323.1 1.3 1973–1990
10 56,586 Zhaotong SMZ 27.4 103.7 1950.7 14.3 5.2 18.2 11.6 7.4 74.6 723.5 2.5 1961–1990
11 56,651 Lijiang SMZ 26.9 100.2 2382.1 17.0 6.7 19.5 12.9 8.0 62.5 964.0 3.1 1961–2017
12 56,666 Panzhihua SMZ 26.6 101.7 1225.9 16.1 7.4 27.8 20.9 15.7 56.9 816.4 1.4 1992–2017
13 56,691 Weining SMZ 26.9 104.3 2238.6 13.1 4.9 16.3 10.4 6.8 79.8 927.0 3.2 1961–1990
14 56,739 Tengchong SMZ 25.0 98.5 1696.9 15.2 5.9 21.6 15.2 10.6 77.4 1481.0 1.6 1957–2017
15 56,778 Kunming SMZ 25.0 102.7 1889.1 15.1 6.2 21.1 15.2 10.6 71.4 987.1 2.1 1959–2017
16 57,245 Ankang SMZ 32.7 109.0 291.7 11.4 4.6 21.4 16.0 12.2 73.8 802.5 1.4 1990–2017
17 57,461 Yichang SMZ 30.7 111.4 257.5 10.9 4.2 21.6 17.0 13.6 75.3 1144.8 1.3 1957–2017
18 57,494 Wuhan SMZ 30.6 114.1 24.4 12.3 5.3 21.4 16.8 13.2 76.9 1262.4 2.0 1957–2017
19 57,516 Shapingba SMZ 29.6 106.5 259.6 8.6 2.7 22.4 18.6 15.9 78.4 1103.5 1.4 1987–2017
20 57,649 Jishou SMZ 28.2 109.7 255.6 9.6 3.4 21.8 17.0 13.8 79.1 1404.6 1.2 1992–2017
21 57,687 Changsha SMZ 28.1 112.8 120.0 10.7 4.2 21.8 17.6 14.6 77.9 1458.7 2.2 1987–2017
22 57,816 Guiyang SMZ 26.6 106.7 1224.9 10.3 3.2 19.6 15.1 12.1 77.4 1091.7 2.3 1959–2017
23 57,874 Changning SMZ 26.4 112.4 117.8 11.0 3.7 22.8 18.5 15.4 77.4 1421.3 1.9 1992–2017
24 57,957 Guilin SMZ 25.3 110.3 165.6 11.5 4.1 23.4 19.0 16.0 74.9 1870.8 2.4 1957–2017
25 58,238 Nanjing SMZ 31.9 118.9 36.4 12.6 5.5 20.5 15.7 11.9 75.1 1074.0 2.5 1959–2017
26 58,265 Lvsi SMZ 32.1 121.6 6.5 13.2 6.0 19.4 15.8 12.9 78.2 1100.7 3.4 1992–2017
27 58,321 Hefei SMZ 31.8 117.3 28.2 12.3 5.3 20.6 16.1 12.4 75.3 1004.6 2.6 1959–2017
28 58,457 Hangzhou SMZ 30.2 120.2 42.6 11.8 4.8 21.2 16.8 13.4 76.5 1414.9 2.2 1959–2017
29 58,467 Cixi SMZ 30.2 121.3 5.7 12.7 5.6 20.4 16.2 12.9 81.0 1259.0 2.8 1961–1990
30 58,506 Lushan SMZ 29.6 116.0 1165.4 13.2 5.0 15.3 11.6 8.8 78.0 1953.3 5.0 1960–1990
31 58,531 Tunxi SMZ 29.7 118.3 143.9 12.1 4.6 22.4 17.0 13.1 78.1 1806.5 1.3 1992–2017
32 58,606 Nanchang SMZ 28.6 115.9 47.9 12.4 5.1 21.8 17.9 14.9 76.0 1585.9 2.5 1959–2017
33 58,665 Hongjia SMZ 28.6 121.4 5.3 12.7 4.6 22.2 18.0 15.0 77.3 1590.7 2.3 1992–2017
34 58,737 Jian'ou SMZ 27.1 118.3 155.7 13.5 4.6 25.0 19.2 15.4 80.1 1742.2 1.4 1992–2017
35 58,847 Fuzhou SMZ 26.1 119.3 84.8 12.2 4.5 24.6 20.0 17.0 75.3 1389.5 2.6 1959–2017
36 59,082 Shaoguan SMZ 24.7 113.6 122.3 12.3 4.9 25.4 20.5 17.0 75.7 1500.0 1.4 1960–1990
37 59,287 Guangzhou SMZ 23.2 113.5 71.5 11.9 4.6 26.5 22.1 19.0 77.0 1781.5 1.9 1957–2017
38 59,316 Shantou SMZ 23.4 116.7 3.9 14.0 5.6 25.5 21.8 19.0 79.6 1568.4 2.5 1957–2017
39 59,431 Nanning SMZ 22.6 108.2 122.6 12.6 4.4 26.4 21.7 18.5 79.1 1297.3 1.5 1961–2017
40 59,485 Zhongshan SMZ 22.5 113.4 34.5 12.1 4.9 25.7 21.8 18.9 82.9 1801.8 2.1 1965–1990
41 59,644 Beihai SMZ 21.5 109.1 14.0 14.2 5.1 26.8 23.1 20.4 79.8 1828.2 3.3 1993–2017
42 50,136 Mohe TMZ 53.0 122.5 439.7 12.2 6.6 4.8 −4.2 −12.1 68.6 443.3 1.8 1993–2017
43 50,742 Fuyu TMZ 47.8 124.5 163.8 14.1 7.0 9.2 3.4 −1.9 62.9 433.9 3.1 1993–2017
44 50,873 Jiamusi TMZ 46.8 130.3 83.1 12.4 6.6 9.4 3.5 −2.1 66.5 534.4 3.1 1961–2017
45 50,953 Harbin TMZ 45.9 126.6 117.7 12.9 6.7 10.1 4.4 −1.0 65.1 516.3 3.3 1959–2017
46 52,983 Yuzhong TMZ 35.9 104.2 1875.6 15.3 7.0 14.6 7.4 1.6 62.1 359.0 2.1 2005–2017
47 53,487 Datong TMZ 40.1 113.4 1053.6 15.4 7.4 14.1 7.0 0.8 52.3 374.6 2.8 1960–2017
48 53,772 Taiyuan TMZ 37.6 112.6 777.3 14.5 6.9 17.1 10.2 4.2 58.4 442.9 2.1 1959–2017
49 53,817 Guyuan TMZ 36.0 106.3 1754.2 15.2 7.1 13.7 7.3 1.9 60.5 432.9 2.6 1985–2017
50 53,963 Houma TMZ 35.7 111.4 435.1 13.5 6.1 19.6 12.9 7.3 64.5 506.0 1.9 1959–2017
51 54,135 Tongliao TMZ 43.6 122.3 179.7 14.0 8.2 13.1 6.8 1.1 54.3 364.5 3.6 1960–2017
52 54,161 Changchun TMZ 43.9 125.2 237.5 13.6 7.1 11.3 5.7 0.7 62.9 584.6 3.7 1959–2017
53 54,292 Yanji TMZ 42.9 129.5 258.5 13.0 6.3 12.1 5.4 −0.2 64.6 523.5 2.6 1960–2017
54 54,324 Chaoyang TMZ 41.6 120.4 175.3 14.2 7.4 16.1 9.2 2.9 51.7 467.7 2.8 1963–2017
55 54,342 Shenyang TMZ 41.7 123.5 49.5 13.5 6.8 14.1 8.3 3.1 63.5 688.7 2.9 1957–2017
56 54,511 Beijing TMZ 39.8 116.5 32.5 14.4 7.2 18.1 12.5 7.4 56.1 569.0 2.4 1957–2017
57 54,527 Tianjin TMZ 39.1 117.1 4.3 14.0 6.8 18.1 12.7 8.3 61.2 531.4 2.6 1959–2017
58 54,539 Leting TMZ 39.4 118.9 9.7 14.0 6.7 16.9 11.5 7.2 63.9 539.7 2.3 1992–2017
59 54,662 Dalian TMZ 38.9 121.6 92.5 13.7 7.4 14.7 11.1 8.1 64.7 615.5 4.4 1963–2017
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60 54,823 Jinan TMZ 36.6 117.0 171.2 13.5 6.8 19.6 14.7 10.4 57.0 692.1 3.0 1959–2017
61 54,936 Juxian TMZ 35.6 118.8 108.4 13.8 5.9 18.7 12.9 8.2 70.8 777.6 2.4 1990–2017
62 57,131 Jinghe TMZ 34.4 109.0 411.0 12.6 5.2 19.9 14.7 10.6 62.6 521.1 2.5 2006–2017
63 58,141 Huaian TMZ 33.6 118.9 13.7 13.1 5.3 19.7 14.9 11.0 72.3 980.1 2.4 2001–2017
64 59,758 Haikou TMZ 20.0 110.3 64.7 14.0 5.7 28.1 24.2 21.5 83.3 1706.5 2.8 1957–2017
65 50,527 Hailar TCZ 49.3 119.7 650.4 13.9 7.3 5.6 −0.8 −6.6 66.3 353.5 3.2 1960–2017
66 50,834 Suolun TCZ 46.6 121.2 501.0 14.7 7.7 10.6 3.0 −3.5 56.8 447.3 2.8 1992–2017
67 51,076 Altay TCZ 47.7 88.1 736.5 15.2 8.2 10.9 4.6 −1.2 58.1 197.8 2.3 1960–2017
68 51,133 Tacheng TCZ 46.7 83.0 536.0 15.2 7.9 14.8 8.0 2.3 57.4 304.8 2.2 1993–2017
69 51,567 Yandie TCZ 42.1 86.6 1056.5 15.4 8.1 16.6 9.1 2.4 58.2 79.9 1.6 1993–2017
70 51,573 Turpan TCZ 42.9 89.2 35.2 15.4 7.9 21.8 14.8 8.6 39.6 15.0 1.2 1960–2017
71 51,709 Kashi TCZ 39.5 75.8 1386.7 15.7 7.7 18.4 12.1 6.0 50.1 70.4 1.8 1957–2017
72 51,828 Hetian TCZ 37.1 79.9 1376.0 16.2 7.2 19.3 12.9 7.3 41.2 39.1 1.9 1957–2017
73 52,203 Hami TCZ 42.8 93.5 738.3 17.1 9.2 18.1 10.1 3.1 43.4 39.8 1.8 1961–2017
74 52,533 Jiuquan TCZ 39.8 98.5 1478.4 16.6 8.4 15.4 8.1 1.6 46.9 90.7 2.1 1993–2017
75 52,681 Minqin TCZ 38.6 103.1 1368.7 16.6 8.5 16.3 8.6 1.7 44.4 114.1 2.7 1957–2017
76 53,068 Erenhot TCZ 43.6 111.9 964.1 17.3 8.7 12.0 4.4 −2.2 47.2 135.2 4.0 1957–2017
77 53,463 Hohhot TCZ 40.9 111.6 1154.4 16.5 8.3 12.2 5.1 −1.1 54.5 347.1 1.7 1959–1968
78 53,543 Dongsheng TCZ 39.8 110.0 1463.1 16.1 8.3 12.7 7.2 2.6 47.5 380.3 2.8 1992–2017
79 53,614 Yinchuan TCZ 38.5 106.2 1111.6 16.4 7.9 16.3 9.5 3.6 55.2 198.7 2.0 1959–2017
80 54,102 Xilinhot TCZ 44.0 116.1 1003.8 15.4 8.1 10.3 3.2 −3.0 55.7 277.6 3.3 1990–2017
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