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A B S T R A C T

Projecting the likely change of potential evapotranspiration (ETp) under future climate scenarios is crucial for
quantifying the impacts of climate change on the hydrologic cycle and aridity conditions. However, there are
different sources of uncertainty in projecting future ETp that may arise from global climate models (GCMs),
emission scenarios, and multiple ETp models used. In this study, we developed three random forest-based (RF-
based) ETp models with solar radiation and air temperature at eight climatic stations in southeastern Australia.
With Penman model as the benchmark, their performance was firstly compared with four empirical models
(Jensen-Haise, Makkink, Abtew, and Hargreaves), which requires the same meteorological inputs. In general, the
RF-based ETp models showed better performance in ETp estimates across all stations, with coefficients of de-
termination (R2) ranging from 0.68 to 0.92, root mean square errors (RMSE) ranging from 0.58 mm day−1 to
1.46 mm day−1, and relative mean bias errors (rMBE) ranging from −16.10% to 9.73%. The RF-based and
empirical models were then used to project future ETp for the eight stations based on statistically downscaled
daily climatic data from 34 GCMs under two different representative concentration pathways (RCP4.5 and
RCP8.5). All models indicated that ETp was likely to increase at the eight stations. The ensemble increases of
mean ETp across eight stations ranged from 33 mm year−1 (2.1%, 2040s) to 129 mm year−1 (9.2%, 2090s) and
from 43 mm year−1 (2.8%, 2040s) to 248 mm year−1 (17.6%, 2090s) under RCP4.5 and under RCP8.5, re-
spectively. In addition, we also quantified uncertainties in ETp projections originating from ETp models, GCMs,
RCPs, and their combined effects using the analysis of variance (ANOVA) method. Results showed that RCP-
related uncertainty contributed the most to projected ETp uncertainty (around 40% for most stations) while
GCM-related and ETp model-related uncertainties accounted for roughly equal amounts of projected ETp un-
certainty (10%–30%). This study demonstrated the better performance of RF-based ETp models. It is advisable to
use multiple ETp models driven by various GCMs under different RCPs to produce reliable projections of future
ETp.

1. Introduction

The hydrological cycle has intensified in the last century and the
rate of intensification for the coming century is accelerating due to
climate change (Durack et al., 2012; Pan et al., 2015). This may lead to
a global shift in aridity or make dry regions become drier while wet

regions become wetter (Chen et al., 2017). Thus, it is important to in-
vestigate the influence of climate change on the water cycle. As one of
the most important components of hydrological and climatological
processes, evapotranspiration (ET) accounts for around 70% of pre-
cipitation falling on land and consumes more than 50% of the solar
energy absorbed by the earth (Guo et al., 2017; Pan et al., 2015;
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Vicente-Serrano et al., 2014). Thus, ET is a very useful indicator to
analyse the changing behaviour of the hydrologic regime (Wang et al.,
2017b).

However, ET is not easy to measure. For instance, although lysi-
meters are frequently used to directly measure ET, they are sparsely
distributed around the world because they are expensive and laborious
to manage (Azhar and Perera, 2011). Therefore, ET is generally esti-
mated by various empirical models that estimate either potential eva-
potranspiration (ETp) or reference evapotranspiration (ET0) (Almorox
et al., 2015). ETp represents the maximum possible evapotranspiration
rate from a well-watered, vegetative surface (Donohue et al., 2010;
McMahon et al., 2016), and is regarded as the optimum measurement of
evaporative demand from actual land surfaces under specified me-
trological conditions (Zheng et al., 2017). In fact, ETp (rather than
actual ET) has been widely used as an important input to various hy-
drological models (Thompson et al., 2013) and aridity indexes
(Sheffield et al., 2012). In general, ET models can be classified into four
categories according to their input requirements, i.e. temperature-based
models (Hargreaves et al., 1985), radiation-based models (Jensen and
Haise, 1963; Makkink, 1957), mass transfer-based models (Mahringer,
1970), and combination models (Penman, 1948). Among them, the
Penman model and the FAO56 Penman-Monteith (PM-FAO56) model
are two variants of the Penman-Monteith-type models. They are both
physically-based models (Milly and Dunne, 2016; Yang et al., 2019)
that can accurately estimate ET across various climate conditions
(Donohue et al., 2010; Milly and Dunne, 2016). Therefore, they are
widely used as benchmarks to assess the performance of other ETp/ET0
models. In contrast to the Penman model, PM-FAO56 considers the
surface conductance of a reference crop, and provides estimates of ET0
while the Penman model provides estimates of ETp. Both of these
models require the complete set of climatic data, which may limit their
use in some regions. In the particular case of future ET projection,
downscaled climatic data, such as wind speed and relative humidity,
may not be reliable (Randall et al., 2007), thus limiting the use of
Penman-Monteith-type models.

Compared with the Penman model, simplified empirical ETp models
require fewer climate inputs to offer acceptable estimates (Almorox
et al., 2015). These empirical ETp models (e.g., temperature-based
models) may be preferable for future ETp projection because GCM-si-
mulated temperature is considered to have higher confidence than
other climatic variables (CSIRO and BOM, 2015; Randall et al., 2007).
For instance, Kay and Davies (2008) used both the Penman-Monteith
model and a temperature-based model to estimate ETp of Britain with
climate data from five GCMs and eight regional climate models. They
demonstrated that ETp estimated by the temperature-based model with
temperature from a climate model matched MORECS ETp (a gridded
dataset of estimated ETp based on observed climatic data with the
Penman-Monteith model) better than ETp estimated by the Penman-
Monteith model with climate model data. Similarly, Ravazzani et al.
(2014) adopted a temperature-based model and an energy balance-
based ETp model which requires a complete set of climate data to
quantify the influence of climate change on water resources in Northern
Italy. They found that a simple temperature-based ETp model is suffi-
ciently accurate for analysing the climate change effects on hydro-
logical regimes.

In addition to empirical ETp models, newly emerging machine
learning techniques have recently been used to estimate ETp (Feng
et al., 2018; Kisi, 2015; Kişi, 2013; Kisi and Alizamir, 2018;
Mehdizadeh, 2018; Tabari et al., 2012; Wang et al., 2017a). The major
advantage of machine learning techniques is that they are capable of
tackling non-linear relationships between the dependent and in-
dependent variables without requiring knowledge of the internal vari-
ables (Fan et al., 2018; Mehdizadeh, 2018). Performance comparisons
between machine learning techniques and conventional empirical
models for estimating ET have been widely reported. For instance,
Tabari et al. (2012) evaluated the performance of support vector

machines (SVM), adaptive neuro-fuzzy inference systems (ANFIS),
multiple linear regression, multiple non-linear regression, four tem-
perature-based ET0 models, and eight radiation-based ET0 models for
estimating ET0 compared with the PM-FAO56 model in a semi-arid
highland environment in Iran. They found that SVM and ANFIS per-
formed better than the regression-based models and the corresponding
conventional ET0 models (i.e., models requiring the same climatic in-
puts). In the Poyang Lake Watershed, Lu et al. (2018) adopted three
tree-based machine learning methods including M5Tree, random forest
(RF), and gradient boosting decision tree (GBDT) and four empirical
models to estimate pan evaporation from 2001 to 2015. They found
machine learning models, especially GBDT and RF, showed great po-
tential for estimating daily pan evaporation regardless of the input
combination. In Spain, Shiri et al. (2012) assessed the performance of
Gene Expression Programming (GEP), ANFIS, Hargreaves, and
Priestley-Taylor for calculating daily ET0 compared with the PM-
FAO56 model and found that both GEP and ANFIS performed better
than the two conventional models. In summary, machine learning
models generally outperformed conventional empirical models (i.e., for
models requiring the same climatic inputs) in accurately estimating ET.
However, their use in projecting future ETp is still rare.

Another widely discussed problem in the estimation of future ETp is
related to the uncertainty generated by various ETp models, GCMs, and
emission scenarios (Bae et al., 2011; Wilby and Harris, 2006; Xu et al.,
2014). For instance, Wang et al. (2015) found that the directly down-
scaled ETp values from HadCM3 and ETp estimated by PM-FAO56 and
Hargreaves models would all increase under future climate scenarios in
the Hanjiang River Basin. However, the magnitudes of the ETp in-
creases varied greatly among these ETp models, up to 70 mm year−1.
Other researchers (Arnell and Gosling, 2013; Kay and Davies, 2008)
also reported that the projected ETp under future climate scenarios
could be significantly different due to the differences in GCMs and ETp
models, indicating the large uncertainty in future ETp projections.
Thus, it is necessary to quantify the uncertainty originating from var-
ious sources in order to evaluate the reliability of ETp projections.
Thompson et al. (2014) concluded that GCM-related uncertainty was
about 3.5 times larger than ETp model-related uncertainty for the
projection of river flow in the Mekong River Basin. For the projection of
future global ETp with various ETp models and GCMs, Kingston et al.
(2009) claimed that ETp model-related uncertainty was equal to or, in
some circumstance, greater than GCM-related uncertainty. However, to
our knowledge, few studies have systematically quantified the un-
certainties originating from conventional ETp models as well as ma-
chine learning-based models, GCMs, emission scenarios, and their
combined effects.

Australia is a water-scarce and drought-vulnerable country
(Howden et al., 2014; Verdon-Kidd and Kiem, 2009). The warming
climate may exacerbate the water-scarce situation in this region.
Therefore, studying the likely change of ETp in Australia is necessary
for the development of proposals and policies for adapting water
management to climate change. In this study, we first proposed a ma-
chine learning method to estimate ETp in southeastern Australia and
used multiple ETp models driven by statistically downscaled climate
data from a large number of GCMs to quantify the impacts of climate
change on ETp. The objectives of this study were to 1) assess the per-
formance of machine learning-based ETp models for estimating daily
ETp; 2) explore the likely change of future ETp in the study area based
on various ETp models; and 3) quantify the contributions of different
sources of uncertainty, including GCMs, ETp models, emission sce-
narios, and their combined effects, to the uncertainty in future ETp
projections. This research will provide a good reference for researchers
to better understand the performance of machine learning-based ETp
models in projecting future ETp. Additionally, knowledge of the un-
certainty in future ETp projections would also help researchers to un-
derstand the potential bias in projecting the hydrological cycle and
water availability under future climate scenarios.
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2. Materials and methods

2.1. Study area

New South Wales (NSW) is located in southeast Australia (Fig. 1). It
accounts for 10.4% of the Australian land area (8.1 × 105 km2) and has
a population of more than eight million, making NSW the most popu-
lous state in Australia. The production of agricultural crops in NSW is
important to the agricultural industry in Australia. For instance, wheat
grown in NSW accounts for 28% of the total wheat-planted area in
Australia (Feng et al., 2019b). However, topography and climatic
characteristics in NSW vary greatly from east to west, making it vul-
nerable to climate change. In general, NSW can be divided into four
distinct geographical sections based on their natural features, namely

the east coast, the mountains, the central plains, and the western plains.
Climatically, the east coast and the mountains are characterized by
humid or sub-humid climates while the central and western plains ex-
perience semi-arid or arid climates. Average annual rainfall gradually
increases from 50 mm year−1 in the westernmost region to
1500 mm year−1 on the east coast. Similarly, average annual tem-
perature gradually increases from around 10 °C in the southeast to
greater than 20 °C in the northwest.

Climate in NSW is expected to change under the influence of future
global warming. For instance, temperature in NSW is projected to rise
by 2.1 °C by 2070 while annual rainfall is likely to decrease (CSIRO and
BOM, 2015; Vaze et al., 2008). Furthermore, extreme weather events
such as heatwaves and droughts may occur more frequently (Feng et al.,
2019a), which might exacerbate water scarcity in NSW and result in

Fig. 1. The location of eight stations in New South Wales, Australia, and their elevations (m) determined by digital elevation model (DEM).

Table 1
Geographical and long-term average meteorological information for eight stations in New South Wales, Australia. The values in parentheses are the standard
deviations for each variable.

Lon Lat DEM Ta Rsb RHc Windd VPDe Rainfall ETp AIf Period
(°E) (°S) (m) (°C) (MJ m−2 d−1) (%) (m/s) (kpa) (mm) (mm)

Tibooburra 142 −29.4 183 20.8 (0.7) 20.8 (0.7) 48.1 (4.4) 2.4 (1.0) 1.8 (0.2) 248 (143) 2133 (267) 0.12 (0.08) 1953–2014
Wilcannia 143.4 −31.6 75 19.5 (0.5) 19.7 (0.6) 55.3 (3.7) 2.7 (0.6) 1.6 (0.2) 272 (126) 2072 (173) 0.14 (0.07) 1957–2014
Cobar 145.8 −31.5 260 19.0 (0.7) 19.4 (0.7) 54.4 (4.6) 2.1 (0.5) 1.5 (0.2) 397 (156) 1865 (171) 0.22 (0.10) 1963–2014
Gunnedah 150.3 −31 307 18.3 (0.6) 18.6 (0.7) 63.3 (3.3) 1.8 (0.3) 1.1 (0.1) 632 (161) 1639 (102) 0.39 (0.11) 1951–2014
Murrurundi 150.8 −31.8 466 15.5 (0.5) 17.5 (0.7) 71.2 (2.7) 1.6 (0.4) 0.9 (0.1) 857 (197) 1429 (122) 0.61 (0.17) 1965–2014
Paterson 151.6 −32.6 30 18.0 (0.5) 16.9 (0.5) 71.5 (1.9) 2.3 (0.5) 0.9 (0.1) 930 (196) 1533 (107) 0.61 (0.15) 1968–2014
Sydney 151.2 −34 6 17.9 (0.7) 16.4 (0.5) 68.6 (3.0) 3.1 (0.8) 0.8 (0.1) 1123 (309) 1551 (154) 0.74 (0.25) 1950–2014
Coffs Harbour 153.1 −30.3 5 18.7 (0.5) 17.4 (0.6) 72.6 (1.6) 2.7 (0.4) 0.7 (0.1) 1720 (467) 1539 (85) 1.13 (0.34) 1952–2014

a Air temperature.
b Solar radiation.
c Relative humidity.
d Wind speed.
e Vapor pressure deficit.
f Aridity index calculated as rainfall/ETp.
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new water management challenges. Thus, it is necessary to project ETp
changes under future climate scenarios to predict the effects of climate
change on water resource management and drought prediction.

Eight stations in NSW (Fig. 1) were selected for examination in this
study because they have complete sets of climate data that are required
for the Penman model to estimate daily ETp. Geographic information,
ETp-related climate variables, annual rainfall, and aridity index of these
stations are shown in Table 1.

2.2. Climate data and downscaling method applied

Historical daily climate data during the research period, including
maximum temperature (Tmax), minimum temperature (Tmin), maximum
and minimum relative humidity (RHmax and RHmin, respectively),
rainfall, and solar radiation (Rs), were obtained from the Scientific
Information for Land Owners (SILO) patched point dataset (https://
www.longpaddock.qld.gov.au/silo/datadrill/index.php). In addition,
wind speed data were obtained from the Bureau of Meteorology (BOM,
http://www.bom.gov.au/). The percentage of missing daily wind speed
data was less than 5% for each station. To estimate the missing wind
speed values, we first used years with consecutive daily wind speed to
calculate the long-term average wind speed for each day of the year.
Then we used the average wind speed for the i-th (i ranges from 1 to
365) day of the year as the proxy wind speed for that day of the year
with a missing value. To project ETp under future climate scenarios, we
downscaled 34 GCMs (Table 2) from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) dataset to extract daily Tmax, Tmin,
rainfall, and Rs from 1900 to 2100 based on the statistical downscaling
method developed by Liu and Zuo (2012).

Statistical downscaling is an effective method to downscale the raw

monthly climatic data from GCMs at coarse spatial resolutions to a finer
spatial and temporal scale. Firstly, the monthly climatic data from
GCMs were downscaled to specific sites using the inverse distance
weighted interpolation method. Then bias correction was applied to the
monthly values of climatic factors for each site. Thirdly, we used a
stochastic weather generator to produce daily climatic factors for each
site. The detailed information about this method has been described by
Liu and Zuo (2012). This study used the downscaled data to project
future ETp with the chosen empirical and machine learning-based ETp
models under RCP4.5 and RCP8.5 climate scenarios.

For data downscaled from 34 GCMs, we defined the period from
1990 to 2014 as the baseline period. The near future projected period
was defined as 2026 to 2050 (2040s); the medium projected period was
from 2051 to 2075 (2065s); and the far future period was 2076–2100
(2090s).

2.3. The Penman model

As mentioned in the Introduction, the Penman model is widely used
as a benchmark to assess the performance of other ETp models. In this
study, we also assessed the performance of other models against the
Penman model. The mathematical expression of the Penman model is
shown in Eq. (1):
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where ETp,Penman (mm day−1) is Penman-calculated ETp. △ (kPa °C−1)
is the slope of the saturation vapor pressure curve, determined by air
temperature (T), as shown in Eq. (2); γ (kPa °C−1) is the psychrometric
constant; Rn (MJ m−2 day−1) is net radiation determined according to
Allen et al. (1998) and shown in Eq. (3). G (MJ m−2 day−1) is soil heat
flux density, assumed to equal zero for periods of a day or longer (Allen
et al., 1998; Irmak et al., 2012); u2 (m s−1) is wind speed at 2 m height;
es (kPa) is saturation vapor pressure, determined by air temperature; ea
(kPa) is actual vapor pressure, determined by air temperature and re-
lative humidity; (es-ea) (kPa) is saturation vapor pressure deficit; and λ
is the latent heat of vaporisation of water, which is calculated as a
function of T, value of 2.45 MJ kg−1 for T around 20 °C.
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where T (°C) is mean daily air temperature at 2 m height.
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where Rns (MJ m−2 day−1) is the shortwave radiation, as shown in Eq.
(4); Rnl (MJ m−2 day−1) is the longwave radiation, as shown in Eq. (5),
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where α is albedo, which is influenced by the surface characteristics
and the angle or slope of the ground surface. For a green vegetation
surface, α varies from 0.20 to 0.25. In this study, α = 0.23, as re-
commended by Allen et al. (1998) for a hypothetical green surface. Rs

(MJ m−2 day−1) is the solar radiation.

⎜ ⎟

⎜ ⎟= × × ⎛
⎝

+ + + ⎞
⎠

× − × ⎛
⎝

× − ⎞
⎠

−R T T

e R
R

4.903 10 ( 273.06) ( 273.06)
2

(0.34 0.14 ) 1.35 0.35

nl

a
s

so

9 max
4

min
4

(5)

where Tmin (°C) and Tmax (°C) are the minimum and maximum tem-
perature, respectively; Rso (MJ m−2 day−1) is the clear-sky radiation,
estimated by extraterrestrial radiation (Ra).

2.4. Four empirical ETp models

Priestley and Taylor (1972) and Samani (2000) reported that air

Table 2
Identifying information for 34 global climate models (GCMs). GCMs were used
for statistically downscaling outputs for eight stations across New South Wales,
Australia, under the RCP4.5 and RCP8.5 scenarios.

Model ID Name of GCM Abbr. of GCM Institute ID Country

1 ACCESS1-0 AC1 CSIRO and BoM Australia
2 ACCESS1-3 AC2 CSIRO and BoM Australia
3 BCC-CSM1-1 BC1 BCC China
4 BCC-CSM1-1-m BC2 BCC China
5 BNU-ESM BNU GCESS China
6 CanESM2 CaE CCCMA Canada
7 CCSM4 CCS NCAR USA
8 CESM1-BGC CE1 NSF-DOE-NCAR USA
9 CESM1-CAM5 CE2 NSF-DOE-NCAR USA
10 CESM1-WACCM CE5 NSF-DOE-NCAR USA
11 CMCC-CM CM2 CMCC Europe
12 CMCC-CMS CM3 CMCC Europe
13 CNRM-CM5 CN1 CNRM-GAME France
14 CSIRO-Mk3-6-0 CSI CSIRO-QCCCE Australia
15 EC-EARTH ECE EC-EARTH Europe
16 FIO-ESM FIO FIO China
17 GISS-E2-H GE1 NASA GISS USA
18 GISS-E2-H-CC GE2 NASA GISS USA
19 GISS-E2-R GE3 NASA GISS USA
20 GFDL-CM3 GF2 NOAA GFDL USA
21 GFDL-ESM2G GF3 NOAA GFDL USA
22 GFDL-ESM2M GF4 NOAA GFDL USA
23 HadGEM2-AO Ha5 NIMR/KMA Korea
24 INM-CM4 INC INM Russia
25 IPSL-CM5A-LR IP1 IPSL France
26 IPSL-CM5A-MR IP2 IPSL France
27 IPSL-CM5B-LR IP3 IPSL France
28 MIROC5 MI2 MIROC Japan
29 MIROC-ESM MI3 MIROC Japan
30 MIROC-ESM-CHEM MI4 MIROC Japan
31 MPI-ESM-LR MP1 MPI-M Germany
32 MRI-CGCM3 MR3 MRI Japan
33 NorESM1-M NE1 NCC Norway
34 NorESM1-ME NE2 NCC Norway
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temperature and solar radiation could explain at least 80% of variations
in ETp (Almorox et al., 2015). Most GCMs have reliable prediction of air
temperature. Therefore, we also adopted commonly used temperature-
based and radiation-based models to compare their performance with
random forest-based ETp models, and to project future ETp. The tem-
perature-based model used in this study was the well-known Har-
greaves (HS) model, and the three radiation-based models were Jensen-
Haise (JH), Makkink (Mak), and Abtew (Ab). Their mathematical ex-
pressions were as follows:

= × − +ET R T T T0.0023 0.408 ( ) ( 17.8)p HS a, max min
0.5 (6)

= +ET T R0.0102( 3)p JH s, (7)
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parameters in these models have the same definitions as used above
in the Penman model.

2.5. Random forest-based ETp models

Random forest (RF) is one of the tree-based machine learning
methods developed by Breiman (2001). Compared with most well-es-
tablished machine learning methods (e.g., artificial neural networks
and SVM), RF only needs two parameters: the number of decision trees
(ntree) and the number of variables (mtry). Moreover, RF has a strong
predictive power to deal with non-linear and hierarchical relationships
between the predictors and the response. In fact, RF has been widely
used for classification and regression tasks (Fan et al., 2018; Heung
et al., 2014; Wang et al., 2018b). Thus, we adopted RF as a re-
presentative machine learning technique to estimate ETp in this study.
Briefly, around 2/3 of the original data were randomly chosen as the
“bootstrapped” dataset to generate numerous decision trees (ntree) with
a random subset of the total variables (mtry) each step. Thus, a variety
of decision trees were generated that formed the “Forest”. The re-
maining original data (around 1/3), which were not chosen to build the
“bootstrapped” dataset (known as the “Out-of-Bag Dataset”) were used
for validation. Based on the “Forest”, the projector used predicted data
and ran those data through all of the decision trees. The final prediction
was the average of the results of all trees. More information about RF
can be found in Breiman (2001), and a schematic diagram of RF is
shown in Fig. S1.

This study adopted the “randomForest” package in R (Liaw and
Wiener, 2002) (https://cran.r-project.org/web/packages/
randomForest/index.html) to develop RF-based ETp models with ob-
served historical climatic data. The daily climatic data from 1950 (or
the starting year of the station shown in Table 1) to 2000 were used to
train RF-based ETp models while the data from 2001 to 2014 were used
to test these RF-based ETp models. Three RF-based ETp models
(Table 3) were developed, namely RF1 based on Tmax, Tmin, and Rs to
compare with JH and Mak; RF2 based on Tmax, Tmin, and extra-terres-
trial solar radiation (Ra) to compare with HS; and RF3 based on Tmax

and Rs to compare with Ab. We set ntree as 500 to ensure that every
input row would be predicted a few times. The default value of mtry is
generally around 1/3 of the number of input variables (p) (Guio Blanco
et al., 2018). Because of the small number of input variables in the
current study, we used mtry values which were somewhat larger than
0.33p. The number of predictors in our study was 3 for RF1 and RF2,
and 2 for RF3. Thus, we set mtry as 2 for RF1 and RF2, and 1 for RF3.

2.6. Model evaluation

Performance (with regards to estimates of ETp rates) of RF-based
(RF1, RF2, and RF3) and empirical (JH, Mak, HS, and Ab) ETp models

was evaluated against the Penman model with the commonly used
statistical parameters: coefficient of determination (R2), root mean
square error (RMSE, mm day−1), and relative mean bias error (rMBE,
%). These parameters were calculated via the following equations:
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where ETp Penman i, , and ETp others i, , are the i-th day ETp calculated by
Penman model and other ETp models aforementioned, respectively. A
high-performing model will have R2 close to 1, RMSE close to
0 mm day−1, and rMBE close to 0%.

2.7. Future ETp projection

Both the validated RF-based (RF1, RF2, and RF3) and the four
empirical (JH, Mak, HS, and Ab) ETp models were used to project fu-
ture ETp with downscaled daily climatic data from 34 GCMs under
RCP4.5 and RCP8.5 climate scenarios. Daily ETp values were then
summed to obtain annual ETp for each GCM at the eight stations. The
ETp change for a certain future period was the difference between the
mean annual ETp for that period and the mean annual ETp for the
baseline period.

2.8. Contribution analysis of uncertainty in future ETp projections

The analysis of variance (ANOVA) technique has been widely used
to quantify the contribution of different sources in uncertainty analysis
(Aryal et al., 2019; Su et al., 2017; Tao et al., 2018; Wang et al., 2018a).
This technique is able to partition the total observed variances into
different sources, thus identifying the contribution of different sources
to the total variance. Compared with other commonly used methods
(e.g., recursive models, parameter identification, and Bayesian ap-
proaches) in uncertainty analysis (Ashraf Vaghefi et al., 2019; Freni
et al., 2009), the ANOVA method requires fewer assumptions and
considers the interactive contributions of different sources of the un-
certainty to the total variance (Ashraf Vaghefi et al., 2019; Yip et al.,
2011). Thus, we used a three-way (three factors) ANOVA to quantify
the relative contribution of GCMs, RCPs, and ETp models to the un-
certainty in ETp projections. A three-way ANOVA can be split into

Table 3
The input requirements of seven ETp models used in this
study.

Models Inputs

RF1 Tmax
a, Tmin

b, Rs
c

Jensen-Haise (JH) Tmax, Tmin, Rs

Makkink (Mak) Tmax, Tmin, Rs

RF2 Tmax, Tmin, Ra
c

Hargreaves (HS) Tmax, Tmin, Ra
d

RF3 Tmax, Rs

Abtew (Ab) Tmax, Rs

a Maximum air temperature.
b Minimum air temperature.
c Solar radiation.
d Extraterrestrial solar radiation.
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seven fractions that include the three main effects and the four inter-
action effects. The total sum of squares (SST) was calculated as:
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3. Results

3.1. Performance of ETp models during the historical period

Historical ETp estimation (2001–2014, Fig. 2) indicated that RF-

based ETp models generally outperformed the corresponding empirical
ETp models (i.e., empirical ETp models which required the same in-
puts). Specifically, RF-based ETp models generally produced greater R2,
smaller RMSE, and smaller absolute rMBE than the corresponding
empirical ETp models did at nearly all eight stations. For example,
consider the results for the RF1, JH, and Mak models. Their R2 values
all ranged from 0.80 to 0.90. However, the RMSE of RF1 ranged from
0.58 mm day−1 to 1.31 mm day−1, generally lower than that of JH
(from 0.76 mm day−1 to 1.42 mm day−1) and Mak (from
0.99 mm day−1 to 2.28 mm day−1). Moreover, ETp values calculated
by RF-based models generally followed the Penman model, while other
empirical models (e.g., MaK and HS) tended to underestimate ETp
(compare blue regression lines with red 1:1 lines in Fig. 2). Even at
stations where nearly all RF-based and empirical models under-
estimated ETp, such as at Cobar and Sydney, RF-based models still
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Fig. 2. Scatter plots of the Penman-calculated daily ETp (mm day−1) vs ETp calculated by RF-based and empirical ETp models during the model testing stage
(2001–2014) for each of eight stations in New South Wales, Australia. The units for RMSE and rMBE are mm day−1 and %, respectively. Blue lines are linear
regression lines and red lines are 1:1 lines.
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performed better, showing better consistency with the Penman model.
The better performance of RF-based models may be explained by their
ability to deal with non-linear processes between response variable and
predictors. In addition, RF1 and RF3 showed similar performance at the
eight stations, indicating that Tmin might not be a key factor influencing
the accuracy of RF-based ETp models. Again, these two models per-
formed better than RF2 which might denote that Rs instead of Ra was a
more important factor for estimating ETp with RF-based ETp models.

3.2. The change of climatic factors under future climate scenarios

Consistent increases were observed in Tmax (Fig. 3a) and Tmin

(Fig. 3b) irrespective of RCP scenarios and stations. Specifically, the
increases of mean Tmax ranged from 0.61 °C by the 2040s to 2.33 °C by
the 2090s under RCP4.5 while the range for mean Tmin was 0.88 °C

(2040s) to 2.02 °C (2090s). Under RCP8.5, larger increases were found
in both Tmax and Tmin than under RCP4.5 for a certain future period. For
instance, the range of increases of mean Tmax and mean Tmin under
RCP8.5 were 0.79 °C (2040s) to 4.58 °C (2090s) and 1.10 °C (2040s) to
4.39 °C (2090s), respectively. Moreover, as time increased into the fu-
ture period, the increase in Tmax and Tmin became larger. Similar in-
creasing trends were also found in Rs, independent of stations. Mean Rs

(Fig. 3d) was projected to increase by 0.08–0.32 MJ m−2 day−1 under
RCP4.5 and 0.01–0.29 MJ m−2 day−1 under RCP8.5.

In contrast to the uniform increase in Tmax and Tmin was the obvious
difference found among stations in the direction and magnitude of
change of ΔT over time (Fig. 3c). For instance, mean ΔT at Murrurundi
increased by 0.14–0.31 °C under RCP4.5 and by 0.12–0.18 °C under
RCP8.5 whereas it decreased by 0.36–0.61 °C under RCP4.5 and by
0.45–1.52 °C under RCP8.5 at Coffs Harbour. ΔT is related to the degree

Fig. 3. Projected changes in Tmax (°C), Tmin (°C), Tmax-Tmin (°C), Rs (MJ m−2 day−1), and rainfall (mm year−1) in the near future (2026–2050, 2040s), the
medium future (2051–2075, 2065s), and the far future (2076–2100, 2090s) at eight stations in New South Wales, Australia, under RCP4.5 and RCP8.5 scenarios
based on 34 GCMs compared with baseline values (1990–2014). Lower and upper box boundaries indicate the 25th and 75th percentiles, respectively. The black lines
and dots inside the box mark the median and mean, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, respectively.
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of cloud cover (Allen et al., 1998) and is a good indicator of solar ra-
diation and relative humidity (Allen et al., 1998; Kingston et al., 2009).
In particular, ΔT is an important input for the HS model. The variance
change of ΔT may influence the change of ETp estimated by the HS
model. There was no uniform direction in the change of rainfall over
time (Fig. 3e). The ranges of mean rainfall change were
−34 mm year−1 to 9 mm year−1 under RCP4.5 and from
−14 mm year−1 to 26 mm year−1 under RCP8.5.

3.3. ETp and its change under future climate scenarios

As expected, ETp estimated by all models showed obvious increases
under RCP4.5 and RCP8.5 scenarios at all stations except Coffs Harbour
where the HS-calculated ETp showed a slight change (Fig. 4 & Fig. 5).
However, both the future ETp (Fig. S3 & Fig. S4 provided in
Supplementary material) and the increasing magnitude showed large
differences among ETp models for each station regardless of RCP sce-
narios. In general, RF-based models projected higher future ETp and
larger increases than empirical ETp models did for all stations. For in-
stance, RF1 generally projected the largest increase of mean ETp among
models for a given future period, ranging from 49 mm year−1 (3.2%,
2040s) to 164 mm year−1 (11.7%, 2090s) under the RCP4.5 scenario,
and from 64 mm year−1 (4.1%, 2040s) to 346 mm year−1 (24.1%,
2090s) under the RCP8.5 scenario. In contrast, mean ETp projected by
Mak generally showed the smallest increase, ranging from
27 mm year−1 (1.3%, 2040s) to 69 mm year−1 (4.9%, 2090s) under
RCP4.5, and from 28 mm year−1 (1.4%, 2040s) to 113 mm year−1

(8.0%, 2090s) under RCP8.5. Influenced by the change differences of
Tmax, Tmin, and Rs (Fig. 3a, 3b, and 3d, respectively), ETp projected by
any given model also showed larger increases under the RCP8.5 sce-
nario than under the RCP4.5 scenario for any given future period.

Again, ETp increases became larger as time into the future period in-
creased. The ensemble increases of mean ETp across eight stations
ranged from 33 mm year−1 (2.1%, 2040s) to 129 mm year−1 (9.2%,
2090s) under RCP4.5, and from 43 mm year−1 (2.8%, 2040s) to
248 mm year−1 (17.6%, 2090s) under RCP8.5.

3.4. Contribution of climatic factors to ETp change

In order to determine the relationships between the change of ETp
and changes of meteorological factors, multiple linear regression was
performed for each station using changes of Tmax, Tmin, Rs, and rainfall
as independent variables and changes of ETp as the dependent variable.
Our analysis showed that changes in Tmax, Tmin, Rs, and rainfall gen-
erally accounted for more than 92.0% of the ETp change, and the
change of rainfall had only a slight influence in ETp for most stations
(Table 4). We also found that relationships between the change of Tmax,
Tmin, and Rs and the change of ETp could be grouped based on the input
requirements of ETp models. In general, compared with Tmax and Tmin,
a unit increase of Rs led to a larger increase of ETp projected by RF1,
JH, and Mak. In contrarst, the largest ETp increases (ranging from
64.0 mm year−1 to 116.7 mm year−1) projected by RF2 and HS were
caused by a unit increase of Tmax, while changes in Tmin and Rs were
negatively related to ETp changes. Lastly, for RF3 and Ab, one unit
increase in Rs and Tmax could contribute roughly equally to the change
in ETp.

3.5. Contribution of different sources to the uncertainty of ETp projections

Both ranges of future ETp and ETp differences among models and
RCP scenarios indicated the existing uncertainty in future ETp projec-
tions. Thus, we used ANOVA to quantify the relative contributions of

Fig. 3. (continued)
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GCMs, ETp models, and RCP scenarios to the uncertainty of ETp pro-
jections (Fig. 6). The RCPs accounted for around 40.0% of the un-
certainty of ETp projections at all stations except the humid stations
(Sydney, Coffs Harbour), indicating the dominant role of RCPs in the
uncertainty of ETp projections. Following RCPs, the contribution of
GCMs to uncertainty ranged from 16.7% to 28.8% among the eight
stations. The ETp models contributed less than 16.0% to uncertainty at
most stations. However, at Sydney and Coffs Harbour, the contribution
of ETp models to uncertainty was roughly equal to or even higher than
that observed for RCPs.

4. Discussion

Our study found that RF-based models produced ETp values that
were much closer to Penman-calculated ETp during the historical
period, indicating that RF-based ETp models generally outperformed
empirical ETp models (Fig. 2 & Fig. S2). For the empirical ETp models,
JH-calculated ETp was close to RF-calculated ETp during both the
historical and future periods, whereas the rest of the empirical ETp

models produced relatively lower ETp (Fig. 2, Figs. S2–S4). Though the
use of RF-based models for projecting future ETp is rare, their good
performance in estimating historical evapotranspiration has been re-
ported by other researchers (Fan et al., 2018; Feng et al., 2017). For
instance, Feng et al. (2017) compared the performance of RF-based and
generalized regression neural networks (GRNN)-based models in esti-
mating daily ET0 against the PM-FAO56 model based on two different
input combinations. They found that the RF-based models (with R2

ranging from 0.89 to 0.98) generally outperformed the GRNN-based
models. Although there is no strong evidence to guarantee which model
is more reliable for predicting future ETp (Kay and Davies, 2008), the
use of RF-based ETp models is still advisable due to the following
reasons. Firstly, these models have more flexibility for adding climatic
inputs to improve their accuracy (Fan et al., 2018). Thus, when reliable
climatic parameters are available, it is more feasible and efficient to
train RF-based models than to calibrate empirical ETp models. Sec-
ondly, the testing and training of RF-based ETp models are more easily
accomplished and it is possible to efficiently do cross-station validation.
In contrast, one of the most commonly used methods to improve

Fig. 4. Projected ETp changes for four arid/semi-arid stations in New South Wales, Australia in the near future (2026–2050, 2040s), the medium future (2051–2075,
2065s), and the far future (2076–2100, 2090s) under RCP4.5 and RCP8.5 scenarios based on 34 GCMs compared with baseline ETp (1990–2014). Lower and upper
box boundaries indicate the 25th and 75th percentiles, respectively. The black lines and dots inside the box mark the median and mean, respectively. The lower and
upper whiskers indicate the 10th and 90th percentiles, respectively.
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performance of simplified empirical models is to re-calibrate the em-
pirical coefficients based on a linear relationship against observed ET or
Penman-Monteith-type models (Droogers and Allen, 2002; Tabari and
Talaee, 2011). However, these coefficients are generally location-spe-
cific and may result in less accurate performance in another region.
Even if empirical coefficients are calibrated for a certain station, the
updated coefficients may vary with time due to climatic changes and
variations (Nouri and Homaee, 2018).

ETp projected by all models showed an overall increase under future
climate scenarios and the increase was the largest at the end of the 21st
century under the RCP8.5 scenario (Fig. 4 & Fig. 5). The increases in
Tmax, Tmin, and Rs all contributed to the upward trend of ETp (Pan et al.,
2015; Scheff and Frierson, 2014), as shown in Table 4. Although ETp
increases under future climate scenarios have been widely reported
(Dong et al., 2020; Gharbia et al., 2018; Pan et al., 2015; Scheff and
Frierson, 2014; Tao et al., 2015; Wang et al., 2017b; Wang et al., 2015),
large variances and uncertainties were observed in the magnitudes of
the increases. At the global scale, Scheff and Frierson (2014) adopted
the PM-FAO56 model with climatic data from 13 GCMs to project the

future ETp. They found ETp generally increased 10.0% to 45.0% by the
end of the 21st century. Also at the global scale, Pan et al. (2015)
adopted the Dynamic Land Ecosystem Model to project future global
terrestrial evapotranspiration under the A2 and B1 emission scenarios.
They found that compared with the 2000s, terrestrial evapotranspira-
tion by the 2090s would increase 14.0% under the A2 scenario and
4.5% under the B1 scenario. In the Shannon River catchment, Ireland,
Gharbia et al. (2018) adopted the Hamon model with climatic data
from multi-GCMs to project future ETp and found that ETp could in-
crease up to 13.5% by the 2080s compared with ETp in 1961–2014. In
Australia, Johnson and Sharma (2010) used outputs from five GCMs to
drive the PenPan model and projected open body water evaporation in
the future. They claimed that the average increase in open body water
evaporation in 2070 would be approximately 7% under the A2 scenario
and 5% under the B1 scenario. In our study, the RF-based ETp models
generally produced a roughly comparable increase in ETp to that of the
above-mentioned studies, ranging from 2.1% to 11.7% under RCP4.5
and from 4.8% to 24.1% under RCP8.5 by the end of 21st century. As
CSIRO and BOM (2015) indicated, there was high confidence in the

Fig. 5. Projected ETp changes for four humid/sub-humid stations in New South Wales, Australia, in the near future (2026–2050, 2040s), the medium future
(2051–2075, 2065s), and the far future (2076–2100, 2090s) under RCP4.5 and RCP8.5 scenarios based on 34 GCMs compared with baseline ETp (1990–2014). The
lower and upper box boundaries indicate the 25th and 75th percentiles, respectively. The black lines and dots inside the box mark the median and mean, respectively.
The lower and upper whiskers indicate the 10th and 90th percentiles, respectively.

L. Shi, et al. Journal of Hydrology 584 (2020) 124756

10



increase of ETp during this time period, but only medium confidence
was found for the magnitude of the increase.

The large uncertainty in future ETp projections may be due to dif-
ferences in GCMs (Teng et al., 2012), ETp models (Kingston et al.,
2009), and RCPs (Wilby and Harris, 2006). Our study found that the
dominant reason leading to uncertainty in ETp projection was attribu-
table to the differences in the RCP scenarios, accounting for around
40% of the uncertainty (Fig. 6). This result is likely due to the fact that
predicted changes of the major inputs (e.g., Tmax, Tmin, and Rs) for ETp
models were clearly different under the different RCPs (Fig. 3). It is well

known that the GCMs we used in this study project raw monthly cli-
matic data such as air temperature and solar radiation that include
uncertainties and biases that are attributable to differences between
GCMs and climate variables. However, we applied an improved statis-
tical downscaling method (Liu and Zuo, 2012) that effectively corrected
biases in the GCM-projected climate variables and matched observed
climate whilepreserving the inter-annual and intra-seasonal vari-
abilities of GCM projections (Liu et al., 2017). This approach effectively
minimised the additional uncertainty from the downscaling method
while the projected climate change signals were maintained for our

Table 4
Regression coefficients for changes in ETp (ΔETp, mm year−1) with changes in maximum temperature (ΔTmax, °C), minimum temperature (ΔTmin, °C), solar
radiation (ΔRs, MJ m−2 day−1), and rainfall (ΔP, mm year−1) in a multiple liner regression model (ΔETp = a ΔTmax + b ΔTmin + c ΔRs + d ΔP); units for a and b
are mm year−1 °C−1; units for c are mm year−1 (MJ m−2 d−1)−1; units for d are mm year−1 mm−1. ***:p < 0.001, **:p < 0.01; *:p < 0.05.

Sites Models a b c d R2 Sites Models a b c d R2

Tibooburra RF1 37.3*** 45.5*** 69.9*** −0.010 0.996 Murrurundi RF1 56.4*** 12.4*** 51.6*** 0.022 0.994
JH 39.8*** 36.5*** 110.2*** −0.001 0.999 JH 36.9*** 26.3*** 81.0*** −0.006 0.999
Mak 11.0*** 10.6*** 78.7*** 0.004 0.999 Mak 11.9*** 8.9*** 70.9*** −0.002 1.000
RF2 69.2*** −12.6*** −12.6** −0.082** 0.987 RF2 81.5*** −22.0*** −10.9* 0.034 0.985
HS 92.4*** −54.5*** −6.5** −0.025* 0.994 HS 78.9*** −42.6*** −0.5 0.023*** 0.996
RF3 63.5*** −3.0** 67.9*** −0.044** 0.997 RF3 65.4*** −7.8*** 47.8*** 0.022* 0.996
Ab 57.6*** −3.4*** 86.5*** −0.003 0.999 Ab 50.4*** −4.9*** 70.5*** 0.007 0.999
Ensemble 53.0*** 2.7*** 56.3*** −0.023* 0.998 Ensemble 54.5*** −4.2*** 44.4*** 0.014* 0.997

Wilcannia RF1 44.2*** 45.4*** 61.4*** −0.040 0.997 Paterson RF1 55.4*** 7.1* 63.5*** 0.043** 0.981
JH 39.2*** 33.9*** 94.5*** −0.023* 0.999 JH 37.1*** 25.4*** 90.6*** 0.002 0.999
Mak 11.0*** 10.2*** 74.1*** −0.003 1.000 Mak 11.5*** 8.5*** 73.0*** 0.000 1.000
RF2 64.0*** 1.1 −6.7* −0.062* 0.992 RF2 87.5*** −29.4*** −12.0 0.035 0.958
HS 87.7*** −47.3*** −3.3* −0.036* 0.993 HS 90.3*** −54.0*** 0.4 0.006 0.996
RF3 67.6*** −0.5 60.5*** −0.032** 0.999 RF3 66.5*** −15.9*** 56.7*** 0.022 0.984
Ab 55.8*** −3.0*** 79.2*** −0.017 0.999 Ab 50.1*** −4.3*** 73.5*** 0.003 0.999
Ensemble 52.8*** 5.7*** 51.4*** −0.031** 0.999 Ensemble 56.9*** −8.9*** 49.4*** 0.016* 0.993

Cobar RF1 48.4*** 29.9*** 49.6*** −0.010 0.998 Sydney RF1 44.5*** 12.2*** 63.5*** 0.017** 0.992
JH 37.0*** 34.0*** 94.5*** −0.019* 0.999 JH 37.4*** 23.9*** 89.6*** 0.003 0.999
Mak 10.3*** 10.6*** 74.5*** −0.003 1.000 Mak 11.4*** 8.3*** 72.8*** 0.000 1.000
RF2 72.5*** −15.7*** −4.6*** −0.040*** 0.997 RF2 85.2*** −40.6*** −11.3* 0.018 0.919
HS 87.3*** −51.1*** −4.3* −0.029* 0.991 HS 101.2*** −67.5*** 0.3 0.012*** 0.981
RF3 69.8*** −3.5*** 47.3*** −0.025** 0.999 RF3 62.4*** −10.7*** 61.7*** 0.009* 0.996
Ab 53.1*** −2.9** 76.7*** −0.016* 0.998 Ab 50.1*** −5.1*** 67.7*** 0.004** 0.999
Ensemble 54.0*** 0.2 47.7*** −0.020*** 0.999 Ensemble 56.0*** −11.3*** 49.2*** 0.009** 0.996

Gunnedah RF1 34.6*** 37.1*** 56.7*** −0.013 0.996 Coffs Harbour RF1 47.5*** 13.3*** 66.5*** 0.007** 0.998
JH 39.5*** 29.6*** 91.5*** −0.011 0.999 JH 38.4*** 27.1*** 90.6*** 0.001 0.999
Mak 11.7*** 9.5*** 73.6*** −0.002 1.000 Mak 11.7*** 9.2*** 73.0*** 0.000 1.000
RF2 70.2*** −12.6*** −5.3** 0.006 0.992 RF2 116.7*** −52.5*** −15.8*** 0.010 0.951
HS 86.1*** −49.3*** −1.6 0.016* 0.994 HS 106.3*** −66.0*** −2.8 0.008** 0.964
RF3 66.4*** −6.6*** 53.3*** −0.003 0.998 RF3 68.7*** −7.1*** 60.7*** 0.005* 0.998
Ab 53.8*** −4.2*** 74.5*** 0.001 0.999 Ab 51.9*** −3.1*** 67.8*** 0.002* 0.999
Ensemble 51.8*** 0.5 49.0*** −0.001 0.998 Ensemble 63.0*** −11.3*** 48.6*** 0.005** 0.998

Fig. 6. The contribution of uncertainty sources to the change of ETp.
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analysis of GCM uncertainties. In addition, we also found that the
predictions of both climatic factors (Fig. 3) and ETp (Fig. 5-Fig. 6 &
Figure S3-Figure S4) showed wider ranges under RCP8.5 than under
RCP4.5, especially for the 2090s. This might indicate that GCMs be-
haved more differently from each other under RCP8.5 in the future
(Shen et al., 2018), which might also contribute to the dominant role of
RCPs in uncertainty of ETp projection. Following RCPs, GCM-related
and ETp model-related uncertainty contributed roughly equally to ETp
uncertainty, ranging from 10% to 30% (Fig. 6). Similar to our results,
Kingston et al. (2009) projected global ETp with six alternative ETp
models driven by data from five GCMs. They found that ETp model-
related uncertainty was of a similar magnitude or, in some cases,
greater than GCM-related uncertainty. Since ETp is an important input
to hydrological models, the uncertainty in ETp projection may also
influence hydrological projections (Thompson et al., 2014), thus re-
ducing the confidence in predictions of water availability in the future.
To deal with the uncertainty in future ETp projections, we recommend
using multiple GCMs to drive various ETp models under different RCP
scenarios, so that a relatively reliable projection is produced.

Quantifying the future increase in ETp can provide insights into
future water availability and agricultural production in NSW. For in-
stance, increased ETp indicates that atmospheric evaporative demand
will be higher under future climate scenarios. However, both our study
(Fig. 3e) and other studies (Chiew et al., 2009; Vaze and Teng, 2011)
suggested that annual rainfall in NSW will not show significant in-
creases in the future. With the combined influence of increasing ETp
and normal or even decreased rainfall, there is a high possibility that
runoff in NSW would decrease and this region would be drier (Teng
et al., 2012). As Nicholls (2004) put it, rising temperatures and in-
creasing ETp, even without decreasing rainfall, would increase the se-
verity of droughts in Australia. Similarly, Feng et al. (2019a) projected
changes of drought across the wheat belt of NSW with climatic data
from 28 GCMs under RCP8.5. They found that decreasing rainfall
combined with increasing temperature may lead to an expansion (from
west to east) of the winter-spring drought-prone areas. Furthermore, we
found that the increase in ETp at the traditionally arid stations (e.g.
Tibooburra and Wilcannia, Fig. 4) was larger than at the humid stations
(e.g., Sydney & Coffs Harbour, Fig. 5), which might indicate that the
traditionally dry areas might become drier at a faster rate than the
humid areas.

One limitation of this study is that we did not consider the influence
of increasing atmospheric CO2 on stomatal conductance. A higher CO2

concentration will result in greater surface resistance (rs). This may
offset the magnitude of the ETp increases caused by the warming cli-
mate. In a recent study, Yang et al. (2019) developed an equation to
describe the relationship between rs and atmospheric CO2 concentra-
tion. Based on the equation, they revised the PM-FAO56 model to
consider the influence of increasing atmospheric CO2. Their research
offered a new perspective to assess the comprehensive impact of cli-
mate change on ETp and should be considered in future studies.

5. Conclusions

This study developed RF-based ETp models and assessed their per-
formance against four empirical ETp models (JH, Mak, HS, and Ab),
with the Penman-calculated ETp as a benchmark. The RF-based models
and the four empirical ETp models were used to project ETp at eight
stations across NSW using climatic data from 34 GCMs under the
RCP4.5 and RCP8.5 scenarios. Study results indicated that RF-based
models generally outperformed the empirical ETp models in estimating
historical daily Penman ETp. All of these models projected that ETp
would increase over time. However, the increased ETp estimates pro-
duced by the RF-based models better matched results obtained in other
studies. The ensemble increases of mean ETp across eight stations
ranged from 33 mm year−1 (2.1%, 2040s) to 129 mm year−1 (9.2%,
2090s) under RCP4.5, and from 43 mm year−1 (2.8%, 2040s) to

248 mm year−1 (17.6%, 2090s) under RCP8.5. Results of this study
suggested that RF-based ETp models should be used for future ETp
projections. Results also indicated that there is a higher possibility of
water scarcity in NSW in the future, and adaptation measures will be
necessary to deal with the effects of potential drought on agricultural
production. Furthermore, differences in RCPs accounted for around
40% of the uncertainty in future ETp projections due to the great dis-
parity in the expected temperature increases among the different
emission scenarios. The large uncertainty in the projected increases of
ETp highlights the necessity of adopting multiple model ensemble to
project future ETp under different RCPs so that more reliable projec-
tions can be produced. For future work, other machine learning
methods should be tested to project future ETp. Future studies should
also consider the influence of increasing atmospheric CO2 on ETp
projections, and additional downscaling methods could be used to
quantify their contribution to the uncertainty in ETp projections.
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