
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Quantifying future drought change and associated uncertainty in
southeastern Australia with multiple potential evapotranspiration models

Lijie Shia,b, Puyu Fengb,c, Bin Wangb,c,⁎, De Li Liub,d,⁎, Qiang Yuc,a,e,⁎

a School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
bNSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
c State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
d Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
e College of Resources and Environment, University of Chinese Academy of Science, Beijing 100049, China

A R T I C L E I N F O

This manuscript was handled by Corrado
Corradini, Editor-in-Chief, with the assistance
of Juan V. Giraldez, Associate Editor

Keywords:
Standardized precipitation evapotranspiration index
Drought projection
Climate change
Potential evapotranspiration model
Uncertainty

A B S T R A C T

Projection of drought under a changing climate is important for drought risk assessment. Changes in pre-
cipitation (P) and potential evapotranspiration (ETp) are expected to influence future drought occurrence. Thus,
it is important to include both factors to accurately quantify change in drought frequency under future climate
scenarios. Standardized precipitation evapotranspiration index (SPEI) is a widely used index in drought as-
sessment because it considers the influence of both P and ETp on drought. Thus, in this study we used SPEI to
quantify change in drought frequency under two different emission scenarios (RCP4.5 and RCP8.5) in the wheat
belt of southeastern Australia with climatic data downscaled from 34 global climate models (GCMs). We also
investigated whether differences ETp models would make a difference on drought projection. Therefore, we
employed five different traditional ETp models (Penman, Jensen-Haise, Makkink, Abtew, Hargreaves) and three
random forest (RF)-based models to calculate SPEI in this study. Results showed that drought, especially
moderate and severe drought, would occur more frequently under future climate scenarios and the increased
frequency was generally greater in spring and winter than in summer and autumn. Severe drought occurring in
spring would increase by 3.1%–21.7% under RCP4.5 and 5.2%–41.0% under RCP8.5. In autumn, the likely mean
increase of severe drought frequency was 0.7%–13.0% under RCP4.5 and 2.7%–27.9% under RCP8.5.
Differences in the projected increase of drought frequency were found among the different ETp models. In
general, RF-based ETp models, which projected larger increases in ETp, generally also projected larger increases
in drought occurrence. A multilinear regression relationship was built between changes in drought frequency
and changes in ETp and P. The regression showed that the increased drought frequency was a combined result of
the increasing ETp and decreasing P, and that the increasing ETp might be the more dominant factor. The
contribution of GCMs, RCPs, different ETp models, and their interaction to the uncertainty in drought projection
was quantified with the use of analysis of variance. Results showed that GCMs and their interaction with RCPs
were the dominant factors influencing uncertainty in drought projection.

1. Introduction

Drought is a recurring and insidious extreme climate event, which is
primarily induced by a prolonged period of deficiency in precipitation
(Asadi Zarch et al., 2015). In general, drought can be classified as
meteorological (prolonged period of shortage in precipitation), agri-
cultural (insufficient soil moisture to meet crop growth), hydrological
(shortage of ground and surface water), or socioeconomic drought
(failure of water resource systems to meet demands of people and their

activities) (Ayantobo et al., 2017). These droughts can occur in almost
all climatic regimes and cause various kinds of damage to human so-
ciety, such as reduced water supply and crop failure (Asadi Zarch et al.,
2015; Mishra and Singh, 2010). For example, the 2006 drought in
Australia reduced winter cereal crop production by 36% and resulted in
economic loss of AUD$3.5 billion (Wong et al., 2010). Given that in-
creases in air temperature and changes in patterns of precipitation can
influence the occurrence of drought events (Mishra and Singh, 2010;
Svoboda et al., 2012), it is necessary to project the likely change in
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drought occurrence due to climate change so that agricultural produ-
cers and policy makers can take actions to mitigate its dire impacts.

The most common method to study drought change is adopting
appropriate drought indices. In general, a drought index is a prime
variable derived from one or multiple meteorological or hydrological
factors, such as precipitation (P), temperature (T), and potential eva-
potranspiration (ETp) (Asadi Zarch et al., 2015). It is estimated that
more than 160 drought indices have been developed to detect, monitor,
and characterize different types of drought (Niemeyer, 2008). Among
them, the widely used drought indices include the Rainfall Anomaly
Index (RAI), the Standardized Precipitation Index (SPI), the Reclama-
tion Drought Index (RDI), and the Palmer Drought Severity Index
(PDSI). Each of these indices has its strengths and weaknesses. For in-
stance, SPI can monitor drought at various timescales, ranging from one
month to 72 months (Mckee et al., 1993). However, SPI is based on
precipitation alone and fails to consider other variables such as tem-
perature that may also trigger drought events (Svoboda et al., 2012).
Thus, SPI may not be suitable for identifying possible changes in
drought occurrence and severity under a changing climate, as in-
creasing temperature can have significant effects on drought severity
(Vicente-Serrano et al., 2010). In contrast, PDSI is generally cited as a
physical index based on soil moisture balance. However, PDSI shows
low sensitivity to the variation of ETp because of the standardization
procedure of soil water budget anomalies (Cook et al., 2014; Vicente-
Serrano et al., 2015), which may make PDSI less suitable under the
scenario where ETp changes are considered. In the last decade, the
standardized precipitation evapotranspiration index (SPEI), based on
the balance between P and ETp (Vicente-Serrano et al., 2010), has been
widely used in drought assessment (Potop et al., 2012; Stagge et al.,
2015; Vicente-Serrano et al., 2010). Compared with PDSI, SPEI shows
equal sensitivity to precipitation and ETp (Vicente-Serrano et al., 2015).
Therefore, it might be a better choice for investigating the influence of
different ETp models on drought projection. In addition, the multi-
scalar characteristics of SPEI enable it to identify different drought
types and effects under a changing climate (Vicente-Serrano et al.,
2010). Relatively short-term precipitation anomalies generally influ-
ence soil moisture conditions, while longer-term precipitation anoma-
lies influence streamflow (Svoboda et al., 2012). Thus, 1- or 2- month
SPEI is generally used to assess meteorological drought; anywhere from
1-month to 6-month SPEI is used for agricultural drought (Labudová
et al., 2017; Parsons et al., 2019); and any other longer-term SPEI is
able to assess hydrological drought (Beguería et al., 2014; Svoboda
et al., 2012). The use of 3-month SPEI in seasonal agricultural drought
assessment is common in literature (Feng et al., 2018a, 2019; Gao et al.,
2017). Feng et al. (2019) combined remotely-sensed factors with 3-
month SPEI and found that wheat yields showed high correlation with
the 3-month SPEI-assessed drought conditions in southeastern Aus-
tralia. Based on both 3-month and 12-month SPEI, Yu et al. (2014)
assessed changes of drought characteristics from 1951 to 2010 in China
and concluded that severe and extreme drought areas have increased by
~3.72% per decade since the 1990s.

Despite the extensive usage of SPEI, there is still controversy re-
garding which equation should be used to estimate ETp (Beguería et al.,
2014; Sheffield et al., 2012; Stagge et al., 2014). Originally, Vicente-
Serrano et al. (2010) suggested the use of the Thornthwaite (Th)
equation, which only requires monthly mean temperature
(Thornthwaite, 1948). However, recent studies have indicated that the
Th equation underestimates ETp in arid and semiarid regions and
overestimates ETp in humid equatorial and tropical regions (Kumar
et al., 1987; Valipour, 2015). Moreover, this equation leads to an
overestimation of ETp with increasing air temperature and might not be
suitable for climate change studies (Sheffield et al., 2012). Yao et al.
(2019) compared the effects of different ETp models on drought as-
sessment based on SPEI in China. They found that the differences of ETp
models had greater effects on drought assessment in arid regions than in
humid regions. Similarly, Beguería et al. (2014) analyzed the sensitivity

of SPEI to three different ETp models and also found that drought as-
sessment was more affected by ETp model choice in arid areas. Thus,
selecting an appropriate model to estimate ETp is of great importance
for obtaining reliable drought assessment. The physically-based
Penman model can normally estimate ETp with high accuracy, but it
requires multiple climatic factors as inputs that are sometimes not
available. Other empirical models require less input information but are
inevitably limited in accuracy. Recently, machine learning methods
have gained attention and have shown good performance in ETp esti-
mation (Fan et al., 2018; Shi et al., 2020). For instance, Tabari et al.
(2012) developed multiple machine learning methods including sup-
port vector machines (SVM), adaptive neuro-fuzzy inference system
(ANFIS), multiple linear regression (MLR), and multiple non-linear re-
gression (MNLR) to estimate reference evapotranspiration in Iran. They
found that SVM and ANFIS showed better performance than empirical
evapotranspiration models when provided with the same input in-
formation. However, to the best of our knowledge, there is no study that
has been conducted to investigate the influence of ETp estimated by
machine learning-based methods on drought assessment with SPEI.

Another problem related to future drought projections is un-
certainty (Touma et al., 2015). Climate projections, emission scenarios,
and drought indices can all result in uncertainties in drought projec-
tions. Quantifying the sources of uncertainty throughout the entire
process is crucial for reliable climate change impact assessment (Burke
and Brown, 2008; Lu et al., 2019; Taylor et al., 2012). Burke and Brown
(2008) projected global changes in drought based on four indices under
two different CO2 scenarios. They found that the increase of areas af-
fected by drought varied from 5% to 45% among different indices,
which indicated that there are large uncertainties in future drought
projections from drought indices. Similarly, Touma et al. (2015)
adopted SPI, the Standardized Runoff Index (SRI), SPEI, and the Supply-
Demand Drought Index (SDDI) with data from 15 GCMs to project
change in drought under RCP8.5 at global scale. In their study, drought
changes projected by SPEI and SDDI were stronger than changes pro-
jected by SPI and SRI, demonstrating index-related uncertainty in
drought projection. In addition to drought indices, the differences in
climate projections, emission scenarios, and ETp models may also result
in uncertainty in drought assessment (Aryal et al., 2019; Shi et al.,
2020). Lu et al. (2019) projected changes of drought based on soil
moisture anomalies using climate data from 17 global climate models
(GCMs) and found that the GCMs contributed more than 80% to the
uncertainty in the process. However, the contribution of different ETp
models to uncertainty in drought projections has rarely been in-
vestigated.

The wheat belt in New South Wales (NSW) in southeastern Australia
is vulnerable to drought. Under a warming climate, drought is likely to
occur more frequently in the future (Feng et al., 2018a, 2019; Kirono
et al., 2011; Kirono and Kent, 2011). For instance, based on the 3-
month SPEI, Feng et al. (2018a) projected that more frequent and more
severe winter-spring droughts were likely to occur in this region, and
that these droughts will affect more areas. Similarly, Kirono et al.
(2011) adopted RDI with climatic data from 14 GCMs to project
drought in Australia and found that more occurrences of drought were
likely to happen across NSW in the future. However, these studies
generally focused on the projection of future drought without quanti-
fying the uncertainty in their projections. Therefore, not only was our
study designed to better understand future changes in drought under
different future climate scenarios, but it was also designed to assess the
associated uncertainties of future drought projections. An additional
objective of our study was to use SPEI driven by different ETp models
with climatic data downscaled from multiple GCMs under different
emission scenarios (RCPs) to investigate the influence of ETp models on
drought projection. Our objective was to answer three questions:

(1) How do different ETp models influence SPEI at different locations in
southeastern Australia?
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(2) How will drought be changing in the future under different sce-
narios?

(3) What is the dominant factor determining the uncertainty of future
drought projections?

2. Materials and methods

2.1. Study area

The study was designed to assess the effects of climate change on
drought in the New South Wales (NSW) wheat belt, in southeastern
Australia. Winter wheat (Triticum aestivum L.) grown in this region ac-
counts for 28% of the total wheat-planted area in Australia (Feng et al.,
2019). However, this region is vulnerable to climate change due to its
diverse climate conditions (Wang et al., 2018). In the past decades,
wheat yield showed high variation, ranging from 0.62 t ha−1 to
2.75 t ha−1, mainly as a result of precipitation variability and drought
occurrence (Wang et al., 2015). Therefore, accurate drought projections
for this region will be important for predicting both the economy and
food supply of NSW.

Temperature in the NSW wheat belt generally increases from the
southeast to the northwest while precipitation gradually increases from
the southwest to the southeast (Feng et al., 2018a). Gunnedah (31.0°S,
150.3°E) and Wagga Wagga (35.2°S, 147.5°E) are two representative
sites in the NSW wheat belt (Fig. 1) that are located in the northeast and
southeast, respectively. More importantly, these two sites have long-
time series of observed climatic data, including air temperature, solar
radiation, relative humidity, precipitation, and wind speed. Both sites
experience hot summers and cold winters, but differ in air temperature
and annual precipitation. Gunnedah is warmer than Wagga Wagga,
with temperature ranging from 12.2 °C to 24.6 °C compared with
temperature at Wagga Wagga ranging from 8.9 °C to 22.2 °C. Average
annual precipitation values at Gunnedah and Wagga Wagga are
640 mm and 583 mm, respectively. Detailed information for these two
sites is shown in Table 1.

2.2. Climatic data

Historical climatic data and future climate scenarios were used to
drive ETp models and then for subsequent calculation of the SPEI. For
the historical period, observed daily precipitation (P, mm day−1),

maximum and minimum air temperature (Tmax and Tmin, °C), maximum
and minimum relative humidity (%), and solar radiation (Rs,
MJ m−2 day−1) at the two sites were obtained from the Scientific
Information for Land Owners (SILO) patched point dataset (https://
www.longpaddock.qld.gov.au/silo/datadrill/index.php) (Jeffrey et al.,
2001). Historical observed daily wind speed (m s−1) at these sites was
obtained from the Bureau of Meteorology (BOM, http://www.bom.gov.
au/). Climatic data for future climate scenarios was obtained using a
statistical downscaling method developed by Liu and Zuo (2012) to
extract daily Tmax, Tmin, P, and Rs in the period of 1900–2100 from 34
GCMs under the RCP4.5 and RCP8.5 scenarios. A bias correction was
conducted to ensure that downscaled GCM climatic data matched well
with the historical climatic data (Liu and Zuo, 2012). In this study, we
compared the SPEI driven by downscaled GCM data with SPEI driven
by observed climate data in the historical period (1971–2010), using a
qq-plot technique. Results showed that the simulations with down-
scaled GCM data matched well with the observations, as shown in Fig.
S1 and S2 (Supplementary material). The downscaled data were di-
vided into three periods, namely the baseline period from 1971 to 2010,
the near future period from 2021 to 2060 (2040s), and the further fu-
ture period from 2061 to 2100 (2080s).

2.3. Calculation of potential evapotranspiration

When air temperature, relative humidity, solar radiation, and wind
speed are all available, the Penman model is able to accurately estimate
ETp (Milly and Dunne, 2016), and has been widely used as a benchmark
to estimate performance of other simplified ETp models (Donohue
et al., 2010). However, future projections of climatic data downscaled
from GCMs, such as wind speed and relative humidity, may not be
available or may have low reliability, thereby limiting the use of the
Penman model (Guo et al., 2017). In contrast, simplified ETp models
such as temperature-based and radiation-based models may have more
advantages for future ETp projection because of greater confidence
associated with downscaled air temperature than for other climatic data
(Randall et al., 2007). In this study, the physically-based Penman model
(Penman, 1948), the radiation-based Jensen-Haise (JH), Makkink
(Mak), and Abtew (Ab) models, and the temperature-based Hargreaves
(HS) model were used to estimate daily ETp. Their mathematical
equations are shown in Table 2.

In addition to these traditional ETp models, we also developed
machine learning-based ETp models with the use of the random forest
(RF) method. RF has been widely used in evapotranspiration estimation
(Fan et al., 2018; Feng et al., 2017). One of the advantages of the RF
method is that it only requires two parameters to train the model: the
number of decision trees (ntree) and the number of variables (mtry)
(Breiman, 2001). Three RF-based (RF1, RF2, and RF3) ETp models were
developed based on different input combinations to compare with the
traditional ETp models. RF1 required the same input as JH and Mak
(Tmax, Tmin, and Rs); RF2 required the same input as HS (Tmax, Tmin, and
Ra [extra-terrestrial radiation]); and RF3 required the same input as Ab
(Tmax and Rs). The historical climate data (1950/1951–2014) were se-
parated into a set to train the RF models (1950/1951–2000) and a set to
test the RF models (2001–2014). In the training process, ntree was set as
500 to guarantee that every input row would be predicted a few times.
The value of mtry was set as 2 for RF1 and RF2, and 1 for RF3 based on
the rule that mtry is generally around 1/3 of the number of input
variables (Guio Blanco et al., 2018). More information on the devel-
opment of RF models can be found in Breiman (2001). The “random-
Forest” package in R (Liaw and Wiener, 2002) (https://cran.r-project.
org/web/packages/randomForest/index.html) was used to develop RF-
based ETp models in this study.

2.4. Calculation of standardized precipitation evapotranspiration index

The SPEI was developed by Vicente-Serrano et al. (2010) based on a

Wagga

Fig. 1. Location of the two study sites in the wheat belt of New South Wales
(NSW), Australia.
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monthly climatic water balance, (i.e., P - ETp), and therefore SPEI ac-
counts for the influence of water demand on drought. In this study, five
traditional (Penman, JH, Mak, HS, and Ab) and three machine learning-
based (RF1, RF2, and RF3) models were used to estimate daily ETp. The
monthly ETp was the accumulation of daily ETp. ETp values estimated
from these models were used to calculate SPEI in order to investigate
the influence of different ETp models on drought assessment with SPEI.
Similar to SPI, SPEI can also be used to assess drought at different time
scales (Potop et al., 2012). Three months with P-ETp significantly lower
than the normal level will generally result in a decrease in soil moisture,
thus leading to crop failure and the occurrence of agricultural drought
(Vicente-Serrano et al., 2011). Therefore, a 3-month SPEI can describe
soil water conditions during crop growing seasons. In this study, a 3-
month time period was used to calculate seasonal SPEI based on the
accumulated monthly water balance. For instance, spring SPEI was
based on the accumulated water balance from September to November
while summer SPEI was based on the accumulated water balance from
December to February. Based on the SPEI values, drought was classified
as one of three different levels: mild drought (−1 < SPEI ≤ −0.5),
moderate drought (−1.5 < SPEI ≤ −1), and severe drought
(SPEI ≤ −1.5). Detail information on the calculation of SPEI can be
found in Vicente-Serrano et al. (2010).

2.5. Contribution analysis of uncertainty in future drought projection

Differences in GCMs, RCPs, and ETp models can lead to un-
certainties in future drought projections. The analysis of variance
(ANOVA) technique is capable of partitioning the total observed var-
iances into different sources, thereby identifying the contributions of
different sources to the total variance (Aryal et al., 2019). The ANOVA
method not only quantifies the relative contributions of different
sources to the total variance, but also considers the interactive con-
tributions of different sources of the uncertainty to the total variance
(Yip et al., 2011). Therefore, we used a three-way (three factors)
ANOVA to quantify the relative and interactive contributions of GCMs,
RCPs, and ETp models to the uncertainties in drought projections under
future climate scenarios (Morim et al., 2019). A three-way ANOVA can
be split into seven fractions that include the three main effects and the

four interaction effects. The total sum of squares (SST) was calculated
as Eq. (1):

⏟

⏟

= + +

+ + + +

SST
SS SS SS

SS SS SS SS

GCMs RCPs ETp models

main effects

GCMs RCPs GCMs ETp models RCPs ETp models GCMs RCPs ETp models

interaction effects

,

: : , : , : : ,

(1)

3. Results

3.1. Droughts occurring in the historical period

Fig. 2 shows the frequency of seasonal drought occurring in the
period of 1971–2010 at Gunnedah and Wagga Wagga. Differences in
the frequency of mild, moderate, and severe droughts were observed
among ETp models. The frequency of mild drought in spring (left col-
umns of upper two panels of Fig. 2) estimated by the Penman model
was about 20% at both sites while the other ETp models produced
lower frequencies at Gunnedah and higher frequencies at Wagga
Wagga. However, the differences in total drought frequency among ETp
models were not great (lower two panels of Fig. 2). For instance, the
frequency of seasonal drought estimated by the Penman model was
generally equal to that estimated by other ETp models at Gunnedah. In
addition, mild (−1 < SPEI ≤ −0.5) and moderate
(−1.5 < SPEI ≤ −1) droughts happened more frequently than severe
droughts (SPEI ≤ −1.5) during the historical period. The average
frequency of mild drought at Gunnedah ranged from 9% (in winter) to
20% (in spring) while the corresponding values for severe drought
ranged from 2% (in summer) to 6% (in spring).

Differences in ETp estimated by different models are shown in
Fig. 3. The RF-based ETp models generally produced similar values as
the Penman model. In contrast, the other ETp models generally pro-
duced smaller ETp values. However, the underestimated seasonal ETp
did not always produce less drought occurrence. This may indicate that
drought assessment was mainly dominated by precipitation while ETp

Table 1
Geographical and long-term averaged meteorological information for Gunnedah and Wagga Wagga, Australia. The geographical information includes longitude
(Lon), latitude (Lat), and elevation (DEM). The meteorological information includes air temperature (T), solar radiation (Rs), relative humidity (RH), wind speed
(Wind), precipitation (P), and potential evapotranspiration (ETp).

Sites Lon
(degrees)

Lat
(degrees)

DEM
(m)

T
(°C)

Rs
(MJ m−2 day−1)

RH
(%)

Wind
(m/s)

P
(mm year−1)

ETp (mm year−1) Period

Gunnedah 150.3 −31.0 307 18.5 18.6 63.2 1.8 640 1650 1951–2014
Wagga Wagga 147.5 −35.2 212 15.5 17.5 67.2 2.0 583 1522 1950–2014

Table 2
Potential evapotranspiration (ETp) models used in this study. The Penman model was used as the benchmark to develop and train the RF-based models and to assess
the performance of the RF-based and the empirical ETp models. ETp estimated by the four empirical ETp models was compared with ETp estimated by the RF-based
models which required the same inputs. Specifically, JH and Mak were compared with RF1; HS was compared with RF2; and Ab was compared with RF3.

Model References Formula Notes

Penman Donohue et al. (2010)
= − +

+ +

+ −ET R G( )p γ n
γ

γ
u es ea

λ
0.408Δ
Δ Δ

6.43(1 0.536 2)( ) Open water evaporation, often referred to as Penman potential evaporation

Abtew Abtew (1996)
=ET 0.01786p

RsT
λ
max ETp from a grass surface

Hargreaves Hargreaves et al. (1985) = × − +ET R T T T0.0023 0.408 ( ) ( 17.8)p a max min 0.5 ETp from a grass surface

Jensen-Haise Jensen and Haise (1963) = +ET T R0.0102( 3)p s ETp from an alfalfa surface

Modified Makkink Hansen (1984)
=

+
ETp 0.7

γ
Rs
λ

Δ
Δ

ETp from a grass surface

Note: △ (kPa °C−1): the slope of the saturation vapor pressure curve; γ (kPa °C−1): the psychrometric constant; Rn (MJ m−2 day−1): net radiation; G
(MJ m−2 day−1): soil heat flux density, assumed to equal to zero for periods of a day or longer (Allen et al., 1998); u2 (m s−1): wind speed at 2 m height; es (kpa):
saturation vapor pressure; ea (kpa): actual vapor pressure; λ (MJ kg−1): the latent heat of vaporization of water, equal to 2.45 MJ kg−1 at 20 °C; Tmax (°C): maximum
air temperature; Tmin (°C): minimum air temperature; T (°C): air temperature; Rs (MJ m−2 day−1): solar radiation; Ra (MJ m−2 day−1): extra-terrestrial radiation.
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played only a minor role in the historical period.

3.2. Projected changes of climatic factors under future scenarios

Minimum (Tmin) and maximum (Tmax) air temperatures were all
expected to increase under future climate scenarios (Fig. 4, upper pa-
nels, a1, a2 and b1, b2). The magnitudes of temperature increases were
different in different seasons. Larger mean increases of both Tmin and

Tmax were generally found in spring and winter. Moreover, the in-
creases in temperature were larger in the 2080s than in the 2040s. By
the 2080s (2061–2100), Tmax was likely to increase by 1.72 °C to
2.33 °C under RCP4.5 and by 3.22 °C to 4.08 °C under RCP8.5. The
corresponding increases of Tmin ranged from 1.73 °C to 2.48 °C under
RCP4.5 and from 3.26 °C to 4.64 °C under RCP8.5. Similar to the
temperature increases, solar radiation (Rs) was also projected to in-
crease (Fig. 4, lower left panels, c1 and c2) and the Rs increases in the

Fig. 2. Frequency of seasonal droughts occurring in the period from 1971 to 2010 at Gunnedah and Wagga Wagga, Australia, using eight potential evapo-
transpiration models. RF1, RF2, and RF3 (random forest models 1, 2, and 3, respectively); JH (Jensen-Haise); Mak (Makkink); HS (Hargreaves); Ab (Abtew). Mild,
moderate, and severe drought classifications are based on standardized precipitation evapotranspiration index values as described in Section 2.3 of the paper.
Drought refers to the total of all drought classifications.

Fig. 3. Mean seasonal potential evapotranspiration (ETp, mm year−1) from 1971 to 2010 at Gunnedah and Wagga Wagga, Australia calculated by eight ETp models.
RF1, RF2, and RF3 (random forest models 1, 2, and 3, respectively); JH (Jensen-Haise); Mak (Makkink); HS (Hargreaves); Ab (Abtew).
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further future period were larger. Regarding seasonal variation, Rs in
winter showed the largest mean increases followed by the increases in
spring and autumn Rs, which were generally close. The increases in Rs

during winter by the 2080s were 0.36 MJ m−2 day−1 at Gunnedah and
0.44 MJ m−2 day−1 at Wagga Wagga under RCP4.5, and
0.52 MJ m−2 day−1 at Gunnedah and 0.82 MJ m−2 day−1 at Wagga
Wagga under RCP8.5.

The projected changes in P showed seasonal variation under future
climate scenarios (Fig. 4, lower right panels, d1 and d2). Specifically,
summer P was projected to increase at both sites. The mean increase of
summer P ranged from 1.14% to 5.49% under RCP4.5 and ranged from
6.93% to 18.10% under RCP8.5. In contrast, spring and winter P was
likely to decrease. The maximum mean decreases of spring and winter P
were 9.72% and 14.34%, respectively. Even though the predicted au-
tumn P in the future was observed to be similarly variable as predicted
for other seasons, the mean values of autumn P under future scenarios
were close to those in the baseline period.

3.3. Projected changes of potential evapotranspiration under future climate
scenarios

ETp projected by all models was likely to increase under future
climate scenarios, although the magnitudes of increase varied among
models (Fig. 5). In general, RF-based models (followed by JH and Ab)
produced larger ETp increases, whereas Mak and HS yielded smaller
increases. Moreover, the ETp increases showed similar seasonal varia-
tion with that of temperatures, i.e., larger increases were generally
observed in spring and winter, whereas smaller increases were observed
in summer and autumn. By the 2080s (2061–2100), the mean increases
in spring ETp ranged from 4.6% to 15.6% under RCP4.5 and from 7.7%
to 26.9% under RCP8.5; the mean summer ETp values were likely to
increase by 2.9% to 10.1% under RCP4.5 and by 3.5% to 16.1% under

RCP8.5; in autumn, the projected increase of mean ETp ranged from
2.9% to 11.2% under RCP4.5 and from 3.6% to 22.7% under RCP8.5;
and the likely increases in mean winter ETp ranged from 7.5% to 23.3%
and 13.1% to 44.0% under RCP4.5 and RCP8.5, respectively. Results of
the multiple linear regression (Fig. 6, ΔETp (%) = a0 * ΔTmax

(°C) + b0 * ΔTmin (°C) + c0 * ΔRs (MJ m−2 day−1)) showed that
changes in ETp could be almost entirely explained by changes in Tmax,
Tmin, and Rs. However, the sensitivity of ETp models to these climatic
factors varied. In general, models requiring the same inputs showed
similar sensitivity to the same climatic factors. For instance, ETp esti-
mated by RF1, JH, and Mak was more sensitive to changes in Rs than to
changes in Tmax or Tmin. In contrast, a unit increase in Tmax led to a
larger increase in ETp estimated by HS and RF2 than Rs did.

3.4. Projected changes in drought frequency and their relationship with
climatic factors

Compared with the baseline period (1971–2010), droughts, espe-
cially moderate (Fig. 7, upper right panels) and severe (Fig. 7, lower left
panels) droughts, were projected to occur more frequently in the future
(Fig. 7 and Fig. S3). The amount of increase projected by different ETp
models was different. Compared with traditional ETp models, RF-based
models generally produced larger increases than traditional ETp
models, except for JH which projected similar or even larger increases.
For example, RF1 projected that summer severe drought would increase
by 28.4% on average by the 2080s under RCP8.5 at Wagga Wagga
while the corresponding increase projected by Mak was 5.7%. In ad-
dition, the increase of drought frequency under RCP8.5 was larger than
that observed under RCP4.5. Severe drought occurring in spring would
increase by 3.1% to 21.7% under RCP4.5 and by 5.2% to 41.0% under
RCP8.5. Frequency of winter severe drought was likely to increase by
4.5% to 20.9% under RCP4.5 and by 7.9% to 37.4% under RCP8.5. The

Fig. 4. Projected changes in maximum (Tmax, °C, a1, a2) and minimum (Tmin, °C, b1, b2) air temperature, solar radiation (Rs, MJ m−2 day−1, c1, c2), and
precipitation (P, %, d1, d2) in the 2040s and 2080s at Gunnedah (a1, b1, c1, d1) and Wagga Wagga (a2, b2, c2, d2), Australia, under RCP4.5 and RCP8.5 scenarios.
Lower and upper box boundaries indicate the 25th and 75th percentiles, respectively. The black line and dot inside each box indicate the median and mean,
respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, respectively.
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increased frequency of summer and autumn droughts was smaller than
the increased frequency of spring and winter droughts. By the 2080s,
the maximum mean increase of summer severe drought would be
18.3% under RCP4.5 and 28.4% under RCP8.5. The corresponding in-
creases for autumn severe drought would be 13.0% under RCP4.5 and
27.9% under RCP8.5.

Changing P pattern and increasing ETp were expected to exert their
influence on frequency of drought occurrences under future climate
scenarios. To investigate the contribution of changes in climatic factors
to drought frequency, multiple linear regression was performed after
checking for multicollinearity among independent factors based on the
variance inflation factor (VIF). In this study, independent factors with
VIF values greater than 10 (Supplementary Table S1) were discarded to
minimize the influence of multicollinearity (Feng et al., 2018b). Thus,
only ETp and P were retained while Tmin, Tmax, and Rs were discarded
to build the regression relationship (ΔF (%) = a * ΔP (%) + b * ΔETp
(%)) between changes in drought frequency and changes in climatic
factors. Fig. 8 shows that changes in P and ETp mainly (generally
greater than 80% contribution) explained the change in the frequency
of severe drought at both locations. In addition, a unit increase in ETp
generally caused a larger increase in drought frequency than caused by
a unit decrease in P. For example, the ETp regression coefficient (b)
ranged from 1.09 to 1.84 among ETp models for severe drought in
spring at Gunnedah (Fig. 8), while the absolute value of the P coeffi-
cient (a) ranged from 0.36 to 0.46. The larger absolute values of re-
gression coefficients for ETp compared with P indicated that changes in
ETp were the major factor resulting in greater frequency of drought.

3.5. Uncertainty analysis in drought projection

The contributions of different sources of variation and their inter-
actions to the total uncertainty in projecting drought frequency are
shown in Fig. 9. GCMs and their interaction with RCPs (GCMs:RCPs)

contributed the most to the total uncertainty independent of drought
level, season, and site. The uncertainty contribution of GCMs and
GCMs:RCPs ranged from 19.2% to 53.0% and from 17.2% to 44.3%,
respectively. The contribution of RCPs to severe drought and the in-
teraction of GCMs, RCPs, and ETp models (GCMs:RCPs:Models) to mild
and moderate droughts were also large. In contrast, the contribution of
ETp models to the total uncertainty was negligible, generally< 5.0%.
The results of this uncertainty analysis indicated that the projection of
drought under future climate was only slightly influenced by the dif-
ferences in ETp models, but greatly influenced by GCMs and RCPs.

4. Discussion

This study used SPEI computed from P and ETp estimated by dif-
ferent ETp models to project the potential change in drought occurrence
under the RCP4.5 and RCP8.5 climate scenarios for two sites in the
wheat belt of southeast Australia. In addition, the sensitivity of SPEI to
different ETp models and the contribution of different sources to the
uncertainty of drought projection were also analyzed. During the his-
torical period, the total occurrence of drought showed little difference
among different ETp models (Fig. 2). However, differences among ETp
models could be found in the frequency of mild, moderate, and severe
droughts. In contrast, differences in the increase in drought frequency
projected by different ETp models was larger during the future period
(Fig. 7 and Fig. S3). The differences generally indicated that RF-based
models projected larger increases in drought frequency (especially for
severe drought) than traditional ETp models did. This pattern was also
found in the projection of increases in ETp (Fig. 5), i.e., ETp models
which produced larger increases in ETp in the future also projected
larger increases in drought frequency in the future. Yao et al. (2019)
assessed the influence of different ETp models on drought monitoring in
China with the use of SPEI. They concluded that the accuracy of ETp
models played only a minor role in drought assessments at wetter sites

Fig. 5. Projected changes in potential evapotranspiration (ETp, %) in the near future (2021–2060, 2040s) and further future (2061–2100, 2080s) at Gunnedah and
Wagga Wagga, Australia, under RCP4.5 and RCP8.5 scenarios based on 34 GCMs compared with baseline values (1971–2010). Lower and upper box boundaries
indicate the 25th and 75th percentiles, respectively. The black line and dot inside each box mark the median and mean, respectively. The lower and upper whiskers
indicate the 10th and 90th percentiles, respectively.

L. Shi, et al. Journal of Hydrology 590 (2020) 125394

7



where P was greater than 500 mm year−1, while ETp models made a
large difference in drought assessment at drier sites. The mean histor-
ical annual P at our study sites was slightly greater than 500 mm, but it
was projected to decrease (Fig. 4, d1 and d2) under future climate
scenarios. This can explain why the influence of different ETp models
on drought projection was greater in the future periods. Additionally,
other studies (Asadi Zarch et al., 2017, 2015; Cook et al., 2014) have
shown that ETp was more important to future drought projection than
to historical drought assessment. For instance, Asadi Zarch et al. (2015)
used both SPI (based only on P) and RDI (based on ETp and P) to assess
changes in global drought. They found that there was a significant
agreement in drought assessment between SPI and RDI only in histor-
ical periods. However, a significant difference was observed in future
drought projection between the two methods, and RDI projected more
occurrences of drought in the future than SPI did. They stated that
“agreement between SPI and RDI is affected and decreases remarkably
over time”. Therefore, it is necessary to include ETp in future drought
projection studies and attention should also be given to ETp model use.

Increases in drought frequency at Wagga Wagga were generally
larger than those observed at Gunnedah (Fig. 7). This may be explained
by the greater increases in temperature and solar radiation at Wagga
Wagga. Additionally, precipitation is likely to be somewhat less at
Wagga Wagga than at Gunnedah in the future (Fig. 4, d1 and d2).
During the historical period, Wagga Wagga was also slightly drier than
Gunnedah. Thus, the greater increase in drought is likely to present
greater challenges to agricultural production at this site. In addition to

the increase in future drought projected by offline indices, direct GCM
outputs, such as soil moisture and runoff, have also supported the in-
crease in future drought on a large scale (Zhang et al., 2018; Zhao and
Dai, 2015, 2017). For instance, Zhao and Dai (2015) used sc_PDSI, soil
moisture in the 0–10 cm surface soil layer, and runoff from 14 GCMs to
project drought under the RCP4.5 scenario at global scale. They found
that all of these measures projected increases in drought over most land
areas. Although general increases have been widely reported across the
world, the magnitudes of the increases have varied among studies (Dai,
2013; Dai and Zhao, 2017; Milly and Dunne, 2016; Naumann et al.,
2018). Based on 12-month SPEI with the Penman-Monteith model,
Naumann et al. (2018) projected that drought magnitudes could double
for 30% of the global landmass with 1.5 °C warming. Meanwhile, they
found that water supply–demand deficit could increase by fivefold for
Australia if contemporary warming rates continue. However, Milly and
Dunne (2016) reported that ETp-dependent metrics may overpredict
drought increases. Similarly, Yang et al. (2018) found that regardless of
the obvious drying atmosphere trend for the 21st century, surface
runoff was likely to increase across most of the global land area. In our
study, the increases in drought varied greatly depending on seasons,
ETp models, and climate scenarios (Fig. 7). The discrepancies among
these studies demonstrate the need for further research studies in
drought projection. The discrepancies also indicate that drought pro-
jection is partially influenced by drought definition and the indices
used. The results of our study provide a substantial contribution to the
debate on the effect of different ETp models on drought quantification.

Fig. 6. Regression coefficients for changes in ETp (ΔETp, %) at Gunnedah and Wagga Wagga, southeast Australia, with changes in Tmax (ΔTmax, °C), Tmin (ΔTmin, °C),
and Rs (ΔRs, MJ m−2 day−1) in a multiple liner regression model (ΔETp (%) = a0 * ΔTmax (°C) + b0 * ΔTmin (°C) + c0 * ΔRs (MJ m−2 day−1)) for seven ETp models;
***:p < 0.001, **:p < 0.01; *:p < 0.05. RF1, RF2, and RF3 (random forest models 1, 2, and 3, respectively); JH (Jensen-Haise); Mak (Makkink); HS (Hargreaves);
Ab (Abtew). Units for a0 and b0 are % °C−1; units for c0 are % (MJ m−2 day−1)−1. The color legend represents the values of a0, b0, and c0.
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Fig. 7. Changes in the frequency of seasonal mild drought (upper left panels, −1 < SPEI ≤ −0.5), moderate drought (upper right panels, −1.5 < SPEI ≤ −1),
severe drought (lower left panels, SPEI ≤ −1.5), and the total drought (SPEI ≤ −0.5) in the near (2021–2060, 2040s) and further (2061–2100, 2080s) future
periods compared with the baseline period (1971–2100) at Gunnedah and Wagga Wagga, Australia. The calculation of SPEI was based on seven ETp models driven by
downscaled climatic data from 34 GCMs under RCP4.5 and RCP8.5 scenarios. Data presented are changed mean frequency in the 40-year values for the 34 GCMs
compared with that of the baseline period. RF1, RF2, and RF3 (random forest models 1, 2, and 3, respectively); JH (Jensen-Haise); Mak (Makkink); HS (Hargreaves);
Ab (Abtew).

Fig. 8. Regression coefficients for changes in frequency of seasonal droughts (ΔF, %) at Gunnedah and Wagga Wagga, Australia with changes in precipitation (ΔP, %)
and potential evapotranspiration (ΔETp, %) in a multiple liner regression model (ΔF (%) = a * ΔP (%) + b * ΔETp (%)) for seven ETp models; ***:p < 0.001,
**:p < 0.01; *:p < 0.05. RF1, RF2, and RF3 (random forest models 1, 2, and 3, respectively); JH (Jensen-Haise); Mak (Makkink); HS (Hargreaves); Ab (Abtew).
Coefficients a and b are dimensionless. The color legend represents the values of a and b.
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According to our study, more frequent and severe drought under
future climate scenarios was generally the result of a combined effect of
increasing ETp and decreasing P (Fig. 8) and the increase of ETp might
play a major role in the increase of drought in the future period. Similar
to our study, Cook et al. (2014) also found that declines in P would push
the climate towards drought while the increased ETp would amplify the
precipitation-induced drought. The projected increase in drought oc-
currence will inevitably lead to decreased crop yields and cause more
challenges to cropping systems (van Dijk et al., 2013; Lobell et al.,
2015). Because spring and winter are key growing seasons for wheat
and canola (Brassica napus L.) in this region of Australia and because
these crops are mainly grown under rainfed conditions, they will be
more vulnerable to drought-induced yield losses in the future (Feng
et al., 2020; Luo et al., 2005). Thus, measures should be taken to
minimize the negative influence of droughts. Breeding new crop vari-
eties that have greater drought tolerance, use of irrigation, and chan-
ging planting date are three possible measures that could mitigate
drought-induced yield loss (Chenu et al., 2011; Watson et al., 2017).

This study found that differences in GCMs and their interaction with
RCPs (GCMs:RCPs) contributed the most to the uncertainty in the
process of drought projection (19.2%–53% and 17.2%–44.3%, respec-
tively; Fig. 9). Lu et al. (2019) found that differences in GCMs could
account for more than 80% of the uncertainty in drought projection
based on soil moisture anomalies. The large contribution of GCMs
might be due to the differences in P projected by different GCMs. For
instance, Hawkins and Sutton (2011) found that GCMs generally played
a dominant role among GCMs, RCPs, and the random, internal varia-
tions in climate with regard to the uncertainty of P projection for lead
times longer than 30 years. Different RCPs generally resulted in dif-
ferent temperature predictions, which would influence ETp prediction.
Shi et al. (2020) found that RCP differences could explain around 40%
of the uncertainty in ETp projection. This may explain why the
GCMs:RCPs interaction also played a key role in the uncertainty of
drought projection in our study. The dominant contribution of GCMs
and GCMs:RCPs to drought assessment highlighted the importance of
using a wide range of GCMs and different emission scenarios to avoid
the underestimation of the total uncertainty. For policymakers, the less

uncertainty that there is in drought projections, the more reliable are
the measures that can be recommended. Therefore, the possibility of
reducing uncertainty in drought projection should be investigated in
the future. The availability of more and more GCMs from CMIP6 might
provide the possibility of reducing such uncertainty through the con-
sideration of more environmental factors, the use of more advanced
numerical simulation methods, and the generally higher resolution
(Eyring et al., 2016).

A few limitations in our study should be acknowledged. In addition
to SPEI, there are other drought indices such as RDI (Tsakiris et al.,
2007), and their sensitivity to different ETp models was not reported in
this study. Therefore, more drought indices should be included in future
studies to better understand the comprehensive influence of evapo-
transpiration on drought. In addition, the influence of enriched CO2

environment on drought projection is complex (Berdugo et al., 2020;
Vicente‐Serrano et al., 2020). There were two reasons for why we did
not consider CO2 fertilization in our study. First, we used the open-
water Penman model rather than the reference crop Penman-Monteith
model to calculate ETp instead of ET0 or actual evapotranspiration.
Second, increasing atmospheric CO2 concentration is expected to in-
fluence plant structure (e.g., leaf size, root length), and function (e.g.,
stomatal resistance, vegetation evapotranspiration) (Pritchard et al.,
1999; Yang et al., 2019). Thus, the effects of enriched CO2 on drought
projection should ideally involve a consideration of other biophysical
factors such as plant development and their response to the changing
meteorological factors (Sheffield et al., 2012). The biophysical model-
ling component was not considered in our study. Recently, Yang et al.
(2019) modified the Penman-Monteith model by adding a trained re-
lationship between CO2 and surface resistance to consider the influence
of elevated CO2 on ET0. They adopted the modified and the original
Penman-Monteith model, and direct outputs from 16 GCMs to project
global drought under RCP8.5 based on PDSI, and observed that the
degree of increase in drought was much smaller with the modified
Penman-Monteith model because the elevated CO2 offset the ET0 in-
crease caused by increased temperature (Yang et al., 2020). Their study
sets an example for future studies to comprehensively assess the influ-
ence of climate change on drought with consideration of plant response

Fig. 9. Contribution (%) of GCMs, RCPs, and ETp models to the uncertainty in drought frequency projection at Gunnedah and Wagga Wagga, Australia for each
season. Results for mild, moderate, and severe drought are shown from inward to outward circles, respectively. Contributions larger than 15% are shown by numbers
in the figure.
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to elevated CO2. However, elevated CO2 will not only lead to partial
stomatal closure (reducing evapotranspiration) but will also lead to
larger leaf size (Pritchard et al., 1999) (increasing evapotranspiration).
Additionally, as Berdugo et al. (2020) reported in their response to
Keenan et al. (2020), the positive effect of CO2 fertilization on vege-
tation growth and evapotranspiration may be dampened or even re-
versed by the effects of increased soil temperature, continued drying,
and extreme climatic events in the future. In this context, there is a need
to consider other important factors when exploring the impacts of cli-
mate change and CO2 fertilization on future drought.

5. Conclusions

This study used SPEI to project possible changes of drought under
two different emission scenarios (RCP4.5 and RCP8.5) for two locations
in the wheat belt of southeastern Australia based on climate data
downscaled from 34 GCMs. Three newly developed random forest (RF1,
RF2, and RF3) models and five traditional potential evapotranspiration
(ETp) models were used to calculate SPEI to investigate the influence of
ETp models on drought assessment. The influence of ETp models on
drought assessment with SPEI was evident for future periods even
though little difference was observed among these ETp models in the
historical drought assessment period. Generally, RF-based ETp models
which projected larger increases in ETp also projected larger increases
in drought frequency. This finding emphasized the necessity of using
drought indices which include both P and ETp to predict drought under
a changing climate. A greater increase in frequency of moderate and
severe droughts was predicted than for mild droughts. The increased
occurrence of droughts showed seasonal variations, with larger in-
creases in spring and winter and smaller increases in autumn and
winter. For instance, the maximum mean increase of frequency of se-
vere drought in spring was 21.7% under RCP4.5 and 41.0% under
RCP8.5 by the 2080s, while the corresponding increase for autumn
severe drought was 13.0% under RCP4.5 and 27.9% under RCP8.5. The
projection of droughts under future climate scenarios was accompanied
by uncertainties. Our study showed that the uncertainty was mainly due
to differences in GCMs (19.2%–53%) followed by the interaction of
GCMs with RCPs. Despite the uncertainty, results from our study
highlight the necessity of identifying mitigation and adaptation stra-
tegies to deal with the potential negative impacts caused by more
moderate and severe droughts in the future.
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