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Climate change, particularly increasingly variable rainfall and 
increased frequency and intensity of extreme temperatures, 
is anticipated to adversely affect crop production in many 

parts of the world1–3.
A climate–crop modelling approach, in which process-based 

crop models are driven by climate data derived from global cli-
mate models (GCMs), has been applied extensively to quantify the 
magnitude of climate change impacts on crop yields4,5. The use of 
process-based crop models enables consideration of the complex 
and nonlinear physiological responses of crops to climate and soil 
conditions6, and thereby supports the development of effective cli-
mate change adaptation strategies. For example, previous studies 
have used climate–crop modelling to optimize agronomic manage-
ment5,7 and design crop ideotypes with adaptive traits to cope with 
climate change8.

Downscaling raw GCM climate data is an essential step in cli-
mate–crop modelling. The change factor (CF) method (also called 
the delta method) is a simple approach that is used widely in down-
scaling due to its ease of implementation and low computational 
cost9. This approach utilizes future monthly rainfall and tempera-
ture change from the GCMs to perturb historical daily data without 
changing the distribution of rainfall and temperature. At the other 
end of the spectrum, dynamical downscaling is a sophisticated 

approach that usually takes boundary conditions from GCMs to 
generate a physically consistent, high-resolution representation of 
the climate over the region of interest. However, dynamical down-
scaling is computationally expensive and therefore impractical to 
apply to large ensembles of GCM simulations. Statistical downscal-
ing is a method of intermediate complexity that uses a statistical 
model built from observed relationships between local synoptic sit-
uations and the large-scale climate data. This is more realistic than 
the CF method but computationally less demanding than dynami-
cal downscaling10.

An understanding is needed of the major sources of uncertainty in 
yield change so as to develop strategies to reduce the total uncertainty. 
Uncertainty in crop yield projections from the climate–crop model-
ling approach is primarily reported in relation to imperfect models, 
input data, assumptions and representation of processes11. Of these, 
input datasets for both GCMs and crop models are important sources 
of uncertainty. The former relies on assumptions about future emis-
sions of greenhouse gases, atmospheric aerosols and land-surface 
properties. These assumptions will affect the climate projections 
from GCMs modelling physical processes between the atmosphere, 
the land surface and the oceans based on different emission scenar-
ios, resulting in uncertainty in the projected climate data. The latter 
includes daily climate data downscaled from different GCMs using 
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different downscaling methods and information describing agricul-
tural management practices (for example, sowing time, crop rotation 
and fertilization rates). These inputs influence the performance of 
crop models, leading to uncertainty in simulated yields.

Uncertainty due to crop models can be a primary source of 
uncertainty in the assessment of climate change impacts for agri-
cultural systems (https://agmip.org/). For example, research at four 
representative sites across wheat-growing regions worldwide found 
that uncertainty in the change in wheat yield estimated by 27 avail-
able crop models is greater than that estimated by the 17 GCMs4. 
Similarly, another study that used seven crop models forced with 
eight GCMs to quantify uncertainty in climate change impacts on 
barley yield in Europe12 found that crop model structure (for exam-
ple, the physiological processes included, and how they are mod-
elled) provides a greater source of uncertainty in yield change than 
the GCMs. A common feature of these studies is that they applied 
a CF downscaling method to produce the future daily climate data 
that drove the crop models4,12,13. However, using a CF method may 
lead to a biased estimation of the contribution of uncertainty.

Sources of uncertainty seem to vary between studies. A grow-
ing number of studies have now reported downscaling as a major 
source of uncertainty in hydrological studies14,15. Gao et al.16 showed 
that the selection of GCM is the dominant source of uncertainty, 
followed by downscaling data. However, Chen et al.9 concluded that 
uncertainty due to downscaling is greater than uncertainty in the 
GCMs used in simulating extreme streamflow. Although their con-
clusions varied, these studies demonstrate the importance of rec-
ognizing uncertainty from downscaling/bias-correction methods 
in representing future climate scenarios in hydrologic simulations. 
Comparable studies of agricultural systems have examined the effect 
of different downscaling/bias-correction methods on the outputs of 
a single biophysical crop model in Australia17,18. However, we are 
not aware of any agricultural study so far that has assessed the direct 
and interactive effects of different downscaling data options on the 
cascade of uncertainty within the climate–crop modelling chain. 
Moreover, the dominant source of uncertainty in agricultural yield 
under future climate might differ depending on selected study sites.

In our study, we selected two major wheat-growing countries 
with contrasting growing conditions—China and Australia—to 
investigate the sources of uncertainty with different downscaling 
techniques when assessing the impacts of climate change on wheat 
yield. Future yield changes were simulated using eight crop models 
driven by 32 GCMs under four different atmospheric carbon dioxide 
(CO2) concentrations (corresponding to the periods 2021–2060 and 
2061–2100 under two Representative Concentration Pathways—
RCP4.5 and RCP8.5) with two downscaling datasets, generated 
by statistical downscaling and the CF method. We quantified the 
contribution of different sources of uncertainty in the prediction of 
future yield change, as a step towards reducing the uncertainties, 
to enable robust climate–crop modelling to inform reliable climate 
change adaptation strategies.

Results
Projected climate change. We first explored the projected changes 
in climate variables resulting from the combination of the GCMs 
and downscaling methods. Figure 1 shows changes relative to the 
1961–2000 baseline for growing season mean temperature, rainfall 
and solar radiation for the four study sites from the GCM ensemble 
for the different RCPs, future time periods and downscaling meth-
ods. Overall, the changes in each climate variable were similar for 
the change factor (CF) and statistical downscaling (SD) methods. 
Supplementary Table 1 shows that the results for individual GCM 
projections for all climate scenarios were highly correlated between 
the two methods.

All GCMs projected warmer temperatures for both RCPs for all 
four sites, with the most substantial warming occurring in the 2080s 

under RCP8.5 at Zhangbei, China (2.6–6.0 °C across all GCMs and 
both CF and SD, Fig. 1a). The CF and SD downscaling methods 
projected similar increases in growing season mean temperature at 
Balranald, Australia, but the SD method projected a slightly greater 
temperature difference than CF at Wagga, Australia. Some GCMs 
showed greater increases in temperature at Zhangbei and Changwu 
compared to the two Australian sites. The CF method generally pro-
jected greater temperature increases than SD at the two Chinese sites.

Unlike the results for temperature, the projected growing sea-
son rainfall changes differed between the Australian and Chinese 
sites (Fig. 1b). In the Australian sites, changes in projected growing 
season rainfall varied widely with GCM, with some GCMs simulat-
ing increases and some simulating decreases. The range of changes 
increased with climate forcing (that is, the projection under 
RCP8.5 was greater than with RCP4.5, and the 2080s projection 
was greater than the 2040s projection). Overall, the multi-GCM 
ensemble mean showed a decrease in rainfall of around 5% for 
both Australian sites, regardless of the RCP, time period or down-
scaling method. By contrast, almost all GCMs simulated a wetter 
future in Chinese sites, with ensemble mean rainfall increasing by 
around 10%, irrespective of climate forcing scenario or downscal-
ing method. The multi-GCM ensemble mean changes indicated an 
increase in rainfall when increasing climate forcing for both down-
scaling methods. The difference between the 10th and 90th per-
centiles of rainfall projections for RCP8.5 in the 2080s was larger 
at Balranald (46%) and Wagga (42%) than at Zhangbei (24%) and 
Changwu (35%) (Fig. 1b).

Almost all GCMs projected an increase in growing season solar 
radiation, with ensemble means ranging from 1.5% to 3.6% over cli-
mate scenarios at Balranald and from 1.8% to 4.5% at Wagga. The 
magnitude of these changes increased with climate forcing (Fig. 1c). 
However, there were some differences in the direction of radiation 
change among the GCMs for the Chinese sites, which depended 
mainly on the time period. Specifically, at both sites and for both 
RCPs, radiation decreased in the 2040s and increased in the 2080s, 
except for Changwu by the 2080s under RCP8.5. The two down-
scaling methods gave similar changes in the multi-GCM ensemble 
mean for radiation.

Projected yield change. We next evaluated the influence of climate 
data on wheat yields derived from alternative crop models (a full 
list of the models is provided in Supplementary Table 2). Projected 
changes in the simulated wheat yield (%) at the four study sites under 
RCP4.5 and RCP8.5 relative to the baseline climate of 1961–2000 
are shown in Fig. 2 for each crop model and crop model ensemble 
mean. The boxplots show the differences of projected yield changes 
across the 32 GCMs for each climate scenario (Fig. 2). At each 
location, simulated yield had bidirectional changes, depending on 
the combination of GCM and crop model used. An exception was 
Changwu, where almost all combinations of GCM and crop model 
showed yield increases. Generally, the trend of the yield changes 
across the GCM ensemble was the same between SD and CF, 
although there were exceptions (for example, APSIM and CropSyst 
for Balranald, CERES and WNMM for Zhangbei). Overall, the pat-
tern of yield increases and decreases across the GCM ensemble was 
unaffected by climate forcing scenario, with the notable exception 
of OLC and STICS. In Australia, the range of the projected yield 
changes across the 32 GCMs was larger at Balranald, a dry site, than 
at Wagga, a relatively wet site, especially for APSIM, AquaCrop and 
Nwheat crop models. For example, the 10th to 90th percentile range 
in yield change under RCP8.5 in the 2080s for APSIM was 59% at 
Balranald and 31% at Wagga for SD. Similar patterns were found for 
the Chinese sites, with the drier site, Zhangbei, having larger varia-
tion in projected yield changes, except for with the CERES model.

To demonstrate the different responses of the crop models to 
climate change, we assessed the importance of changes in each of 
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the climatic variables (rainfall, radiation, temperature and CO2 
concentration) to wheat yield change using the random forest (RF) 
approach19. In contrast to methods such as multiple linear regres-
sion (Supplementary Fig. 1), RF accounts for nonlinear responses 
to the climate variables and untangles the influence of correlated 
variables. This was necessary, as a collinearity analysis showed 
notable covariance between mean temperature and CO2 concentra-
tion (Supplementary Table 3). RF was applied to the change in yield 

for each crop model, site and downscaling method separately. The 
results were similar for both SD and CF, but varied between site and 
crop model, especially for the Chinese sites. Overall, growing sea-
son rainfall change was the most important factor in determining 
yield change for all eight crop models and all four sites except OLC 
at Balranald (Fig. 3a) and Wagga (Fig. 3b), regardless of downscal-
ing method. At Zhangbei, the dominant variable was mean temper-
ature for CropSyst, Nwheat, OLC, STICS and WNMM crop models, 
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Fig. 1 | Projected climate change in wheat-growing season from 32 GCMs based on two downscaling methods at four study sites. a, Projected mean 
temperature (°C) change. b, Projected rainfall (%) change. c, Projected solar radiation (%) change. Projections are for the 2040s (2021–2060) and the 
2080s (2061–2100) under RCP4.5 and RCP8.5 compared to the baseline (1961–2000). Box boundaries indicate the 25th and 75th percentiles across 32 
GCMs, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The black lines and crosshairs within each box indicate 
the multi-model median and mean, respectively. S1: RCP4.5_2040s, S2: RCP4.5_2080s, S3: RCP8.5_2040s and S4: RCP8.5_2080s. Balranald and Wagga 
are in southeastern Australia. Zhangbei and Changwu are in northern China. CF: change factor, SD: statistical downscaling.
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and all four variables had similar importance for APSIM for both 
SD and CF (Fig. 3c). The most important variable was either mean 
temperature or CO2 concentration for AquaCrop and CERES mod-
els. By contrast, at Changwu, rainfall and CO2 concentration were 
each leading factors for approximately half of the eight crop models, 
while mean temperature was the most important variable for one 
model for each downscaling method (AquaCrop for SD, OLC for 
CF; Fig. 3d).

The contribution of uncertainty to yield change. We analysed 
the different contributions to the total uncertainty of future yield 
change for each downscaling technique. At each of the four study 
locations, we partitioned the total uncertainty of projected yield 
into seven sources of uncertainty caused by GCM, crop model, 
climate scenario and the interactions between these three factors 
(Methods and Fig. 4). GCM was the largest source of uncertainty 
in yield changes at the Australian sites, regardless of downscaling 
method. At Wagga, GCM downscaled with SD and CF respectively 
contributed to 50% and 44% of the total uncertainty at Balranald, 
32% and 37% for SD and CF, respectively. The uncertainty from 
the interaction of GCM and climate scenario (GCM × Scen) was 
also large for both sites. The second largest source of uncertainty at 
the two Australian sites was the crop model. Crop models further  

contributed to uncertainty by their interactions with GCM uncer-
tainty (GCM × Model), especially at Wagga. In contrast to the 
Australian sites, crop model was the most important source of 
uncertainty at the two Chinese sites, regardless of downscaling 
method (Fig. 4c,d). At Changwu, the second largest share of total 
uncertainty was the interactions of GCM and crop model (16% for 
SD and 12% for CF). Overall, the uncertainty introduced by climate 
scenario was minor for all four locations except Changwu, where it 
contributed 12% for SD and 7% for CF.

Generally, the contributions to uncertainty were broadly simi-
lar between the SD and CF downscaling methods at all locations. 
A notable exception to this was at Changwu, where crop models 
contributed to 53% of the total uncertainty when CF was used 
and only 34% when SD was used (Fig. 4d). This is probably due 
to differences in the behaviour of WNMM and OLC between the 
two downscaling methods for Changwu. Supplementary Table 
4 shows that the correlations between the yield changes for the 
two downscaling methods were relatively low for these models 
for Changwu.

The contribution to uncertainty from individual crop models 
was evaluated by consecutively removing each of eight crop models, 
then comparing the difference of projected yield changes between 
the full crop model set and that without the particular model  
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Fig. 2 | Projected wheat yield change and crop model ensemble means in response to climate change at four study sites. a–d, Projected wheat yield 
changes and crop model ensemble means for Balranald (a), Wagga (b), Zhangbei (c) and Changwu (d). The yield projections included eight crop models 
(APSIM, AquaCrop, CERES, CropSyst, Nwheat, OLC, STICS, WNMM) and crop model ensemble means based on 32 GCMs downscaled using two methods 
(CF, change factor; SD, statistical downscaling) in the 2040s (2021–2060) and the 2080s (2061–2100) under RCP4.5 and RCP8.5, compared to the baseline 
(1961–2000). Box boundaries indicate the 25th and 75th percentiles across 32 GCMs, and whiskers below and above the box indicate the 10th and 90th 
percentiles. The black lines and crosshairs within each box indicate the multi-model median and mean, respectively. S1, RCP4.5_2040s; S2, RCP4.5_2080s; 
S3, RCP8.5_2040s; S4, RCP8.5_2080s.
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(Fig. 5). Positive differences indicate that the model will increase 
degrees of uncertainty. AquaCrop, OLC and STICS each added a 
large degree of uncertainty at multiple sites for both downscaling 
methods. Adding APSIM, CERES or CropSyst made a small change 
for either downscaling method. However, the largest changes for 
SD, from Nwheat at Changwu (+19%) and from OLC at Wagga 
(+14%), were not replicated for CF.

We assessed the contribution to uncertainty from individual 
GCMs using the same method as used for crop models. The results 
show that the influence of each GCM on total uncertainty was 
always less than 5% (Supplementary Fig. 2).

Discussion
In this study, we have assessed the relative contribution to uncer-
tainty of crop yield response to climate change from biophysical 
crop models, GCMs and climate scenarios with two downscaling 
techniques. We found that the relative contributions to uncertainty 
depend on locations, but not on the downscaling methods used. 
In contrast to previous studies, we found that crop models are not 
always the dominant source of uncertainty; the relative contribution 
to uncertainty from crop models and GCMs varies with location, 
and for some locations, GCM uncertainty is more important than 
crop models uncertainty.

The projections for future climate changes indicated increased 
growing season rainfall at the two Chinese sites (Fig. 1b). By con-
trast, at the Australian sites, changes in projected growing season 
rainfall were inconsistent in direction and showed larger differ-
ences between the GCMs, especially by the 2080s under RCP8.5. 
This is consistent with results from CSIRO and BoM20, which show 
large uncertainty in projected rainfall for Australia, while rainfall in 
China is expected to increase by 8–12% by the end of the twenty-first 
century based on Coupled Model Intercomparison Project Phase 5 
(CMIP5) climate model projections21. We note that, although the 
Australian sites showed a negative correlation between rainfall 
and radiation, presumably due to cloud cover, this was not seen in 
Zhangbei in the 2080s. Similar projections to the results at Zhangbei 
in the 2080s have been reported for other sites in China22,23 and may 
be due to an increase in large rainfall events.

We found that differences in yield change uncertainty are largely 
due to uncertainty in GCM-projected future rainfall change across 
locations. Regions with high natural variability (as in Australia) 
tend to be regions where projected rainfall is uncertain because 
the models vary more when describing the natural variability. The 
GCMs contribute larger uncertainty to future yield changes in these 
regions. There is also a stronger influence of growing season rain-
fall in the Mediterranean climate at the Australian sites than the 
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more temperate climate at the Chinese sites. This was supported by 
our variable importance analysis (Fig. 3), which showed that rain-
fall change was the most important variable in determining yield 
in the Mediterranean climate of the Australian sites for almost all  
crop models.

The uncertainty from crop models in predicted yield response 
demonstrates the importance of using multiple crop models to 
inform climate change adaptation, rather than relying on a single 
model that performs well in a specific region under particular 
agro-ecological conditions. In our study, although the crop mod-
els were calibrated to reproduce historical average yields, we found 
substantial differences between the yield responses to climate 
changes simulated by the models, including an inconsistent direc-
tion of change in some cases (for example, between AquaCrop 
and STICS at Balranald and Zhangbei, Fig. 2a,c). In addition, the 
relative importance of different climate variables can vary between 
crop models (for example at Changwu, Fig. 3d). We found that 
inconsistencies between crop models relate to divergence in the  

interactions between temperature, atmospheric CO2 content and 
seasonal rainfall. Across the crop models, processes related to water 
use and energy balance are simulated differently, adding addi-
tional uncertainty from the model structure and parameters12,24,25. 
Moreover, our approach of sequentially removing each individual 
model from the ensemble clearly revealed differences between mod-
els (Fig. 5). For a model to be included in the ensemble, it must be 
suitable for the local conditions. Models may need to be calibrated 
to meet this criterion. However, despite calibrating the models to 
give similar performance for the baseline period, we found crop 
models giving divergent results under climate change scenarios. 
The inconsistency among crop models mainly lies in the discrep-
ancy between the interactions of increased temperature and CO2 
fertilization and variable seasonal rainfall24. Further work is needed 
to validate and refine the physiological responses to climate change 
of different models.

Improvements are clearly needed in crop models. For example, 
multiple linear regression found that the lowest R2 occurred in OLC 
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for CF at Changwu (Supplementary Fig. 1). The OLC model was 
sensitive to temperature change (Fig. 3d), but it does not include a 
vernalization response. Therefore, future warming projected by CF 
(Fig. 1a) resulted in early flowering in winter, and low temperature 
caused the failure of seed formation, which led to increased uncer-
tainty. The challenge is to identify the improvements needed in the 
model to simulate an accurate response to a changing climate. In 
addition, we need a deeper understanding of how model structure 
affects uncertainty, especially with respect to the components of 
crop models that are sensitive to changes in climate and atmospheric 
CO2 concentrations. This recommendation is consistent with other 
recent studies. For example, Ahmed et al.26 identified that different 
process-based crop models vary in the simulation of crop response 
to CO2 concentration, with greater difference under water-stressed 
conditions. They recommend the use of ensembles to improve the 
accuracy in modelled responses to CO2. More experimental work is 
needed to investigate the interacting effects of increased tempera-
ture and water deficit with elevated CO2 concentration27.

Although previous studies have focused on uncertainties arising 
from crop models and GCMs, downscaling uncertainty has been 
ignored in most assessments of climate change impact on agricul-
ture4,24. In this study, we have explored two statistical downscaling 
approaches (CF and SD) to translate coarse-resolution monthly data 
from GCMs to site-specific daily data. Although the magnitude of 
future multi-year change of rainfall, temperature and radiation was 
comparable between CF and SD (Fig. 1 and Supplementary Table 
1), the SD method had greater future changes in the distribution 
and temporal sequencing of daily values of the climate variables. 
The simulated yields were sensitive to this difference in some cases, 
especially at the two Chinese sites (Fig. 2c,d). Despite this, over-
all, differences in downscaled climate inputs did not add much 

uncertainty to yield change (Figs. 2 and 4). Only two downscaling 
techniques were included in this study. If more downscaling types, 
such as dynamical downscaling or statistical methods that use daily 
GCM data, were to be considered, we would expect greater down-
scaling uncertainty and greater impacts of the downscaling method 
on the relative magnitude of GCM, crop modelling and climate sce-
nario uncertainties.

A previous study on uncertainties in future wheat yield changes 
found that a greater proportion of the uncertainty was due to the 
crop models than the GCMs at all four sites (located in Argentina, 
India, Australia and the Netherlands)4. Mismatch in the size of crop 
and climate ensembles is normally a practical limitation that applies 
in all climate–crop modelling studies. However, in our study, the 
difference in the size of crop and climate model ensembles is not 
the dominant source of variation. The contribution depends on 
the location (reflecting natural variability). We found that the rela-
tive contribution of the uncertainties due to GCMs and crop mod-
els was not consistent across the four study sites. The differences 
could be partly explained by downscaling methods, Asseng et al.4 
kept radiation constant in their CF method, as they assumed that 
uncertainties with projecting radiation change are too large among 
GCMs from CMIP3 in their study regions. More importantly, their 
southwest Australian site is in a region with less uncertain rainfall 
projections than our sites in southeast Australia20.

An important limitation of our study, and other climate–crop 
modelling studies, relates to how well the variance in climate and 
yield change results based on the ensembles of GCM and crop model 
simulations reflects how uncertainty in climate and yields will 
change in reality. Our consideration of downscaling uncertainty was 
limited to two downscaling methods. We used RCP4.5 and RCP8.5 
to consider uncertainties in forcing of the climate system, but these 
are unlikely to sample all the uncertainty related to climate forcing, 
especially regional forcing due to atmospheric aerosols and chang-
ing land-surface properties. There are other potentially important 
sources of uncertainty that we have not addressed in our simula-
tions. For example, we did not address the interannual variation of 
climate variables and yield. Furthermore, agricultural management 
practices (such as sowing time, crop rotation and fertilization rates) 
influence yields and are potential sources of uncertainty that were 
not examined in this study, where we used one management regime 
for each location. Different approaches for deriving required climate 
data (for example, sunshine hours translating to solar radiation) 
can also introduce uncertainty. In addition, all simulations for each 
location were based on one soil type, representative of each loca-
tion. Folberth et al.28 found that estimated climate change effects on 
yield vary between soil types as soil characteristics can either buffer 
or amplify climate impacts. Wang et al.29 quantified contributions 
of GCMs, RCPs, soil types and nitrogen application rates to uncer-
tainty in wheat yield change in southeastern Australia and found 
that soil properties have large impacts on yield change, especially 
in the locations with summer-dominant rainfall. In addition, the 
choice of calibration methods could have some impacts on param-
eter optimization30. Tao et al.12 found that model parameterization 
uncertainty can play an important role in yield projections. More 
subtly, in common with other climate–crop modelling studies6,31, we 
have assessed variability across our model ensembles by weighting 
each model equally, yet the interdependence in multi-model ensem-
bles could be addressed further by other approaches32,33.

Studies of climate change impacts on agricultural productivity 
should be interpreted with caution if they are based on a single crop 
model forced with data from a limited number of GCMs. Given the 
response of current crop models to climate, our study supports the 
use of an ensemble of multiple crop models and GCMs, and high-
lights the need for further work to validate and refine the responses 
to changing climate of different crop models. The use of locally 
validated climate and crop models to ensure sound projections is 
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critical to inform the development of climate change adaptation 
strategies for cropping systems.

Methods
The study sites. Four sites representing important climatic zones of rain-fed 
wheat production in Australia and China were selected for inter-continental 
comparison (Supplementary Fig. 3 and Supplementary Table 5). In southeastern 
Australia, Balranald and Wagga Wagga (abbreviated here as ‘Wagga’) have a 
Mediterranean-type climate with a hot and dry summer and a cooler winter. Spring 
wheat is grown from April to November. The mean annual rainfall (1961–2000) 
in Balranald is 346 mm, of which 71% falls between April and November. Wagga 
has an annual mean rainfall of 595 mm, 71% of which falls in the growing 
season. Changwu in northwestern China and Zhangbei in northern China have 
a continental monsoon climate. In Changwu, winter wheat is grown during the 
September to June growing season. The annual rainfall in Changwu is 582 mm, 
with 64% falling in the growing season. In Zhangbei, spring wheat is grown during 
the April to August season. The annual rainfall in Zhangbei is 388 mm, with 80% 
falling in the growing season.

Historical climate data and observed yield data. Daily maximum temperature 
(Tmax), minimum temperature (Tmin), rainfall and solar radiation (Rad) are 
required as climate inputs to the crop models. Some models also use wind and 
humidity data, but these were not available from our downscaled GCM datasets. 
Directly observed daily Tmax, Tmin and rainfall data for the period 1961–2000 
were obtained from China’s Meteorological Administration (CMA; http://www.
cma.gov.cn/en2014/). Daily Rad data were also obtained from CMA, calculated 
from observed sunshine hours using the method of Angstrom34. Daily data 
for Balranald and Wagga for 1961–2000 were downloaded from a database of 
historical climate records for Australia, the Scientific Information for Land Owners 
(SILO; https://legacy.longpaddock.qld.gov.au/silo/about.html)35. CMA and SILO 
are both observation-based climate datasets. We conducted a homogeneity test36 
for historical climate data and found that rainfall, solar radiation and maximum 
and minimum temperature in the wheat-growing season for all four sites were 
considered homogeneous and could be used for driving crop models.

Observed average wheat yields for specific cultivars at Changwu (3.8 t ha−1) and 
Zhangbei (1.6 t ha−1) were obtained from local agro-meteorological experiment 
stations that are maintained by the Chinese Meteorological Agency. Australian 
wheat yields were obtained from national variety trials (https://www.nvtonline.
com.au/) for Wagga (3.0 t ha−1) and Balranald (1.8 t ha−1) (Supplementary Table 5). 
These yields were used as references to adjust each crop model to acquire cultivar 
parameter values.

Future climate projection. Change factor method. The CF method has been widely 
used in many climate change impact-related uncertainty studies to downscale 
GCMs4,12,13. To apply the CF method, we first obtained the GCM historical 
(1961–2000) and future monthly temperature, rainfall and solar radiation data 
for a specific site using an inverse distance-weighted (IDW) interpolation method 
based on its distance from the geographic centre of the four nearest GCM grid 
cells37. Change factors for temperature were then calculated for calendar months by 
subtracting the model means of the historical period from the future temperatures. 
For solar radiation and rainfall, change factors were derived from the ratio of future 
means to historical means. These change factors were then added (temperature) 
or multiplied (rainfall and radiation) in relation to observed daily climate series to 
derive daily climate projections for each site. A major disadvantage of this method 
is that downscaled and observed climate series differ only with regard to their 
respective absolute values. Other features of the data, such as the frequency of 
rainfall events in a given month, remain unchanged.

Statistical downscaling technique. Statistical downscaling has been widely used to 
provide daily climate data to drive crop models in the assessment of climate change 
impacts on agricultural yield. We used the SD model NWAI-WG, developed by 
Liu and Zuo10, to downscale GCM monthly gridded data to daily climate data 
for each of our four study sites. SD consists of three major components: spatial 
downscaling, bias correction and temporal downscaling. Spatial downscaling 
used IDW interpolation as described above for the CF method, and then applied 
bias correction to result in bias-corrected monthly data using a relationship 
derived from observations and GCM data for a historical training period, in this 
case 1961–2000. Finally, daily maximum and minimum temperature, rainfall 
and radiation sequences for each site were downscaled from the bias-corrected 
monthly GCM projections using a modified version of the stochastic weather 
generator38. Liu and Zuo10 provide a detailed description of SD. The method has 
been widely used and evaluated in China and Australia5,22,23,39–41. The SD method of 
Liu and Zuo10 uses only GCM monthly climate data and historical observed data 
for the variables of interest. The major advantage of this SD method, particularly 
in comparison with more computationally demanding dynamical downscaling, is 
that it can be easily applied to any location for which a long-term daily historical 
climate record is available42. Unlike CF, SD reproduces changed daily patterns in all 
climate variables.

The main structural difference in bias correction between SD and CF is that SD 
uses quantile mapping to correct the biases in the distribution of monthly GCM 
data. The technique not only corrects the mean biases, but also corrects bias in 
the magnitude of interannual variations to some extent17. It retains the temporal 
sequencing of the monthly GCM data and has temporal sequencing of daily data 
defined by a weather generator. CF has no biases relative to the observations and 
retains their temporal sequencing, but future changes in climate are limited to 
changes in the mean climate.

Crop model simulations. Eight wheat simulation models—APSIM, AquaCrop, 
CropSyst, DSSAT-CERES, DSSAT-Nwheat, OLC, STICS and WNMM (the 
New South Wales Department of Primary Industry version)—and the resultant 
eight-model ensemble were used in this study (Supplementary Table 2). These 
models were considered appropriate for our study because they have been tested 
in many regions of the world where dryland wheat is grown. Specifically, they 
all respond in daily time steps to the major climate variables of rainfall (water 
supply), solar radiation, temperature and atmospheric CO2 concentration. The 
models differ in terms of several key physiological processes, such as leaf area/
light interception, light utilization, phenology, biomass accumulation and 
partitioning, grain formation and response to water, nitrogen and temperature 
stress (Supplementary Table 6).

Cultivar selection, crop management (including sowing window and nitrogen 
application rates) and soil properties were site-specific, based on local conditions 
and experimental records (details are provided in Supplementary Methods 
and Supplementary Tables 7 and 8). The crop models were calibrated using the 
site-specific observed yield. We first calibrated for wheat phenology, especially for 
flowering dates (Supplementary Table 5). We then adjusted each cultivar’s other 
parameters based on local cultivar knowledge to simulate historical average yield 
comparable to the observed yield (error range within 0.1 t ha−1) for all crop models 
(Supplementary Fig. 4). This allowed future changes in yield simulated by different 
crop models to be compared. The adjusted parameters of each cultivar are listed for 
each model in Supplementary Tables 9–16.

Crop model simulations were run for the historical baseline period 1961–2000 
and future periods 2021–2060 (abbreviated as 2040s) and 2061–2100 (2080s). 
The initial soil conditions were reset each year to exclude any ‘carry-over’ 
effects from previous seasons. Soil characteristics, genetic coefficients and crop 
management settings were kept constant for all three periods. For the future 
periods, simulations were run for two RCPs (RCP4.5 and RCP8.5). The RCPs 
describe future trajectories for the energy imbalance of the climate system due to 
change in atmospheric greenhouse gas concentrations and other anthropogenic 
climate forcers43. RCP8.5 is consistent with rapidly increasing CO2 concentrations 
throughout the 21st century, whereas RCP4.5 is consistent with more moderate 
increases in CO2 concentrations. For both RCPs, simulations were performed with 
climate data downscaled from 32 GCMs of CMIP5 (Supplementary Table 17)44. 
Representative annual atmospheric CO2 concentrations were estimated for each 
RCP for each year (Supplementary Methods).

Analyses and partitioning uncertainty. Our analysis used an approach analogous 
to the Morim et al.45 analysis of uncertainties in wind–wave projections due to 
GCMs, wave models and RCPs. We assessed uncertainties in wheat yield changes 
due to the eight crop models, 32 GCMs, four climate forcing/CO2 concentration 
scenarios (RCP4.5 for the 2040s, RCP8.5 for the 2040s, RCP4.5 for the 2080s 
and RCP8.5 for the 2080s) and associated interactions among them for each 
downscaling method and site using a three-way analysis of variance (ANOVA). 
We did not quantify uncertainty from the downscaling method. Note that, in 
this analysis, for simplicity in notation, we refer to the climate forcing/CO2 
concentration scenarios as ‘climate scenarios’ or ‘Scen’. The ANOVA model allows 
the total sum of the squares (SST), a measure of the total uncertainty in yield 
changes across all simulations for each downscaling method and site, to be split 
into sums of squares due to three main factors (SSGCM, SSScen and SSModel) and their 
four interactions (SSIGCM × Model, SSIGCM × Scen, SSIModel × Scen and SSIGCM × Model × Scen) as

SST ¼ SSGCM þ SSModel þ SSScen þ SSIGCM ´Model þ SSIGCM ´ Scen þ SSIModel ´ Scen
þ SSIGCM ´Model ´ Scen

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
The wheat data and parameters for each crop model used in this study are available 
in Supplementary Tables 5 and 9–16. The detailed downscaling climate data and 
yield data simulated by each crop model that support the findings of this study are 
available from the corresponding author upon request.

Code availability
The detailed R code for data processing and illustration is available from the 
corresponding author upon reasonable request. The executable source code 
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and pseudo-code of the crop models used in this study are available from their 
respective owners, as listed in Supplementary Table 2.
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