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A B S T R A C T   

Many studies have shown that solar-induced fluorescence (SIF) has a good potential to predict gross primary 
production (GPP) of vegetation. What we measured by remote sensing or near-surface platforms is top-of-canopy 
(TOC) SIF (SIFtoc), which is not necessarily equal or proportional to total emitted SIF (SIFtot) from the entire 
canopy due to the (re)absorption and scattering effects. However, photosynthesis, the process that plants use to 
fix carbon from the atmosphere, occurs at the entire vertical canopy. Here, by using the recollision theory, we 
calculated SIFtot at 760 nm from the measured SIFtoc, hyperspectral reflectance (R), canopy interception (i) and 
leaf albedo (ωl). Among them, both SIFtoc and R can be obtained from concurrent TOC spectral measurements; i 
and ωl in the near-infrared region can be estimated from the open access datasets with a good accuracy. Our 
result confirms that the measured SIFtoc only accounts for a small fraction of SIFtot: the above-the-canopy sensor 
can only “see” on average 22.9% of SIFtot at Harvard Forest. SIFtot has the following advantages over SIFtoc in 
estimating GPP: (1) SIFtot improves the diurnal estimate of canopy GPP, especially capable to capture the midday 
depression of photosynthesis which may cause the large discrepancies between SIFtoc and GPP on a diurnal basis, 
(2) SIFtot produces a stronger correlation with GPP from plants with complex canopy structure or under sky 
conditions with more diffuse irradiance, and (3) the SIFtot-GPP relationship shows a stronger resilience to en-
vironmental stresses. The fluorescence escape ratio (fesc), the ratio between SIFtoc multiplied by π and SIFtot, is 
mostly determined by the sun-canopy-sensor geometry and leaf inclination distribution. The effect of LAI and the 
leaf chlorophyll concentration on fesc is marginal at the 760 nm wavelength. Our results suggest that converting 
SIFtoc into SIFtot provides a better tool to understand and estimate GPP.   

1. Introduction 

Photosynthesis is one of the most important processes in the Earth 
by which green plants converts CO2 in the atmosphere, and water and 
inorganic nutrients in soils into organic compounds and O2. During this 
process, absorbed solar energy has three pathways including energy 
consumed in photosynthesis, heat loss, and chlorophyll fluorescence 
emissions at longer wavelengths or called solar-induced chlorophyll 
fluorescence (SIF). SIF is sourced from two photosystems named 
Photosystems I and II (PS I and PS II, Porcar-Castell et al., 2014): SIF 
from Photosystem I is mainly in the near-infrared (NIR) range 
(> 700 nm) with one peak at around 740 nm; SIF emitted from Pho-
tosystem II covers almost the complete SIF spectrum from 640 to 
850 nm with two peaks at about 685 and 740 nm, respectively. Because 
SIF emissions are part of the photosynthesis process, many recent 

studies have reported that SIF is closely linked to photosynthesis ac-
tivities. For example, Frankenberg et al. (2011) found a strong corre-
lation between the global annual SIF retrieved from the Greenhouse 
Gases Observing Satellite (GOSAT) and gross primary productivity 
(GPP) extrapolated from the Max Planck Institute for Biogeochemistry 
(MPI-BGC) model. Guanter et al. (2014) showed that SIF observations 
from Global Ozone Monitoring Instrument 2 (GOME-2) compared well 
with estimates of GPP at both site and large continuous spatial levels.  
Yang et al. (2015) and Yang et al., 2017a found that ground-based 
measurements of SIF emission had a good performance in predicting 
plant photosynthesis from leaf to canopy scales. 

GPP is produced from all the leaves in the canopy, while top-of- 
canopy (TOC) SIF (SIFtoc) observed with a given field of view by 
ground-based, airborne or spaceborne sensor is only a portion of total 
emitted SIF from the entire canopy (SIFtot), reflecting partial GPP 
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mostly occurred on top of the canopy. Thus, SIFtoc may produce a poor 
correlation with GPP for ecosystems with a dense canopy. Furthermore, 
vegetation canopy structure plays an important role in regulating ca-
nopy leaving SIF signals. For example, Liu et al. (2016) reported that 
SIFtoc of winter wheat was closely related to leaf area index (LAI), or-
ientation of leaves and viewing directions. Van Wittenberghe et al. 
(2015) found that leaf structure had a strong impact on bidirectional 
SIF emission properties in the NIR domain. A model-based study 
(Verrelst et al., 2015) also showed that large part of the variability in 
SIFtoc was related to variations in LAI and leaf angle distribution (LAD). 
All these findings suggest that the ignorance of effects of leaf optical 
properties and canopy structure on the behaviors of the radiative 
transfer of SIF in canopy may cause large uncertainties in interpreting 
relationships between SIFtoc and plant photosynthetic activity. 

Because of the discrepancy of SIFtoc and SIFtot, many efforts have 
been made to reduce variations in SIF-GPP correlations caused by ve-
getation canopy structure and varying sun-canopy-sensor geometry. For 
example, SIF observations with normalizing solar zenith angle are 
found to have stronger correlations with GPP (Frankenberg et al., 2011;  
Joiner et al., 2011). Liu et al. (2016) corrected directional variations in 
SIF by using a modified bidirectional reflectance distribution function 
model. He et al. (2017) developed a geometric-optical bidirectional 
reflectance model to correct the impact of angular of SIF observation 
and they showed that angular normalized SIF observations had a better 
performance to predict GPP than original SIF observations. Alter-
natively, SIFtoc may be downscaled to either leaf or photosystem level. 
By considering the absorption and scattering of SIF emission within the 
canopy, SIFtoc may be downscaled to total emitted fluorescence by all 
leaves. Moreover, it can be further downscaled to total emitted fluor-
escence by all photosystems if the absorption process within the leaf is 
also accounted for. Retrieval of SIF signals emitted from the whole 
canopy is important to estimate canopy GPP: total emitted fluorescence 
at either leaf or photosystem level better represents SIF emission in-
tegrated over all the leaves within the canopy which may be more 
comparable to photosynthetic activity. For example, Liu et al. (2019) 
downscaled SIFtoc to the photosystem level by using the Random Forest 
(RF) model and showed that SIF emitted from photosystems produced a 
stronger relationship with absorbed photosynthetically active radiation 
(APAR). However, its performance depended on selecting inputs for the 
RF model and the representativeness of the training datasets. 

The similarity between the bidirectional SIF emission and re-
flectance (Liu et al., 2016) suggests that directional reflectance may 
have a good potential to express the scattering/(re)absorption processes 
of SIF signals travel through vegetation canopy. For instance, Yang and 
van der Tol (2018) showed that canopy scattering of SIF emission in the 
NIR domain can be represented by TOC reflectance. In this study, by 
using the concept of recollision probability to describe the radiative 
transfer of SIF emission within the canopy (Smolander and Stenberg, 
2005; Stenberg et al., 2016), we first expressed the leaf level SIF 
emission (SIFtot) at 760 nm from measurements of SIFtoc and directional 
reflectance factor (R). We also examined the effect of leaf pigments and 
canopy structure on the variations of the fluorescence escape ratio (fesc) 
of SIF at 760 nm which is defined as the ratio between SIFtoc multiplied 
by π and SIFtot (i.e. SIFtoc × π/SIFtot). We then evaluated the perfor-
mance of SIFtot in estimating canopy GPP at the forest research site. The 
impacts of LAI, ratio of diffuse irradiance, radiation saturation, the il-
lumination geometry and the meteorological variables on the SIFtot-GPP 
relationship were also analyzed. 

2. Materials and methods 

2.1. Study site and measurements 

Our study site is located at the Harvard Forest, Petersham, 
Massachusetts, USA (42°32′07.2″N 72°11′23.4″W). The dominant forest 
types are American beech (Fagus grandifolia Ehrh), red oak (Quercus 

rubra) and red maple (Acer rubrum L). The mean stand age is about 
80 years and forest height is around 20 m. At the Harvard forest, carbon 
and water fluxes are continuously measured at the Environmental 
Measurement Station (EMS). We acquired hourly GPP for the EMS 
tower in 2014 from Long-Term Ecological Research (LTER) website. 
The canopy photosynthetically active radiation (PAR, μmol m−2 s−1) 
and the fraction of diffuse PAR were obtained by the quantum sensor 
(PQS-1, Kipp & Zonen B.V., Delft, Netherlands) at the EMS tower. The 
other meteorological variables used in this study including air tem-
perature (Tair, °C), air pressure (P, hPa), wind speed (u, ms−1), atmo-
spheric vapor pressure (ea, hPa) and atmospheric CO2 concentration 
(Ca, ppm) were measured at the 30-m meteorology tower which is 
about 1.4 km from the SIF measurement site. 

The SIF observation system located on the walk-up tower has started 
to measure canopy-level SIF emission from 2013 (Yang et al., 2015). 
The main components of the SIF system are: one spectrometer 
(HR2000+, OceanOptics, Inc., Dunedin, Florida) and two fiber optics. 
The spectrometer has a spectral resolution of 0.13 nm for the spectral 
region from 680 nm to 775 nm. One optic points upward to collect 
incident irradiance (E, W m−2 nm−1) and other points downward to the 
forest to collect up-welling radiance (L, W m−2 sr−1 nm−1). The sensor 
collected irradiance/radiance every 5 s. In 5 min intervals, the system 
provided one irradiance measurement and the average of 59 canopy 
radiance measurements. The dark current correction was also im-
plemented for every measurement. We used the Spectral Fitting Method 
(SFM) (Meroni et al., 2010; Zhao et al., 2014) to retrieve both R and 
SIFtoc from irradiance/radiance (see Section 3.4). The system is installed 
5 m above the top of canopy and the viewing zenith angle is 30 degree 
(θv = 30°) to avoid the obstruction due to the tower (Yang et al., 2015). 
All observations had an angular FOV of 25° which made its footprint 
cover a round with the diameter of 5 m at the top of canopy (Fig. 1). In 
2014 when we collected data for this study, irradiance/radiance were 
measured from early May to late October at a 5-min time step (Yang 
et al., 2017a). Since we focus on SIF and R at 760 nm and the direction 
of observation is fixed, we will not explicitly include λ and Ωo in the 
following text unless they are needed otherwise. 

We used the destructive method (Yang et al., 2017b) to measure the 
leaf chlorophyll concentrations (Cab, ug cm−2) and carotenoid content 
(Ccar, ug cm−2) weekly in spring (DOY (day of year) 133–167) and 
autumn (DOY 261–301), and biweekly in summer (DOY 261–301) in 
2014. At each filed work, 12 leaves were sampled from the upper ca-
nopy and leaf discs were then punched from leaves. Chlorophyll and 
carotenoid were extracted by frozen leaf discs in a cold mortal using 
acetone/MgO mixture. After centrifugation, a spectrophotometer (Shi-
mazu UV-1201, Kyoto, Japan) was then used to measure the absorbance 
of the supernatant at 470, 645 and 662 nm. Cab and Ccar were estimated 
from the absorption spectrum. Also at each field work, more leaves 
were collected to calculate dry matter content (Cdm, mg cm−2) and leaf 
water thickness (Cw, mm). More information in estimating these vari-
ables can be found in Yang et al. (2017b). We also measured LAI values 
at a daily time step during spring and autumn and bi-weekly intervals 
during the growing season. The Cab, Ccar, Cdm, Cw and LAI time series 
were linearly interpolated into a daily time step for the next analysis. 

2.2. Calculation of the total emitted SIF (SIFtot) 

Yang and van der Tol (2018) showed that fesc, the fluorescence es-
cape ratio (Mohammed et al., 2019), can be expressed as: 

=
×

f R
i l

esc (1) 

where R is the directional reflectance factor, i is canopy interceptance, 
and ωl is leaf albedo. Note that Yang and van der Tol only considered 
the condition for direct sunlight as the TOC light source in developing 
Eq. (1). In practical applications, however, both the direct sunlight and 
diffuse skylight are present. 
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In this study, we used the Monte Carlo ray-tracing based Weighted 
Photon Spread (WPS, Zhao et al., 2015) model and the method pro-
posed by Yang et al. (2017c) to show that Eq. (1) still holds with a good 
accuracy when both direct sunlight and diffuse skylight are present at 
TOC (see Appendix and supplementary information). Accordingly, the 
canopy interceptance (i) is obtained by combining the interceptance of 
direct and diffuse solar radiation: 

= × + ×i i f i f(1 )s d d d (2) 

where is and id represent the canopy interceptance for direct and diffuse 
solar irradiance, respectively; fd is the fraction of diffuse solar irra-
diance at TOC; is is wavelength independent and depends on direction 
of solar beam and canopy structure. By using the Beer-Lambert law of 
light extinction (Monsi and Saeki, 2005), is for a canopy is expressed as: 

=i e1s
CI LAI G( )/coss s (3) 

where CI is a clumping index (Chen and Black, 1992); θs is solar zenith 
angle (SZA); G(θs) is the projection of a unit leaf area onto the surface 
normal to the direction of beam and is determined by the distribution of 
leaf inclination angles (see below). id can be expressed as (Stenberg, 
2007): 

= × × ×× ×i e d1 2 cos sind
CI

s s s0

/2 LAI G( )/coss s
(4)  

Similarly, the relationship between SIFtot and SIFtoc can be extended 
to a more general condition in real near surface remote sensing with the 
presence of both the direct sunlight and diffuse skylight (see Appendix): 

= × × ×i
R

SIF SIF
tot

toc l
(5)  

SIFtot is leaf total emitted fluorescence flux density free of (re)ab-
sorption, in unit of mW m−2 nm−1, while SIFtoc is SIF signal measured 
by the sensor, in unit of mW m−2 sr−1 nm−1. Both R and SIFtoc can be 
obtained from measurements of irradiance and radiance provided by a 
spectrometer (see below). ωl varies at different wavelengths and is a 
function of leaf biophysical and structural properties. 

From Eqs. (2), (3) and (4), fd, CI and G(θs) should be determined to 
estimate i. We assumed that fd can be represented by the fraction of 
diffuse PAR. Previous studies (Chen et al., 2005; Leblanc et al., 2005) 
showed that CI value is linearly correlated with normalized difference 
between normalized hotspot and darkspot (NDHD) index. To estimate 
NDHD index, a bidirectional reflectance distribution function (BRDF) 
model should be selected to describe surface anisotropic features. 
However, different BRDF models may yield considerably different 
NDHD results (Maignan et al., 2004). By evaluating a variety of BRDF 
models, Wei and Fang (2016) used the best NDHD configuration to 
produce the global 500 m 8-day CI maps from MODIS BRDF parameter 
data (MCD43A1) (Schaaf et al., 2002). These CI maps are provided at 
National Earth System Science Data Sharing infrastructure (http:// 
www.geodata.cn), we exacted the 8-day CI time series in 2014 and 
interpolated it into a daily time step. 

Leaf inclination distribution should be defined to calculate the G- 
function (Wang et al., 2007). We selected the distribution function 
proposed by Verhoef (1998) to describe proportion of leaf inclination 
angles at the study site. Although we did not measure leaf inclination 
angle in this study, another study (Raabe et al., 2015) which was also 
conducted at the Harvard Forest in 2015 showed that the leaf inclina-
tion angle distribution was plagiophile in the spring but remained 
planophile during the rest of the growing season. Note that LAD is 
mainly decided by species type and phenological stage. Considering 
that there was no large difference in the climate conditions between 
2014 and 2015, it is reasonable to use the same LAD in this study. 
Accordingly, LIDFa and LIDFb, two parameters defining LAD (Wang 
et al., 2007), were assumed to be 0 and − 1 in the spring and they were 
set as 1 and 0 in the rest of the study period (Verhoef, 1998). 

2.3. Estimation of ωl 

We used the PROSPECT model (Feret et al., 2008) to simulate ωl at 
the study site. PROSPECT considers the impacts of leaf biochemical and 
leaf structural properties on the leaves reflectance and transmittance 
within the spectral range of 400–2500 nm. These properties were as-
signed actual measurements whenever available, otherwise their de-
fault values were used. The interpolated daily Cab, Ccar, Cdm and Cw 

(Fig. S1) were used in the PROSPECT simulation (Section 3.1); the rest 
two properties including senescent material (Cs, fraction) and antho-
cyanins content (Cant, ug cm−2) were kept fixed at their default values. 
PROSPECT uses the leaf structure parameter (N) to account for the 
impact of the mesophyll structure on leaf optical properties. We as-
sumed that N remained relatively constant and It (N = 1.7) was equal 
to the ratio of reflectance and transmittance of the leaves measured at 
the study site in 2012 (Yang et al., 2016). 

2.4. Estimation of R and SIFtoc 

The up-welling radiance received by the sensor contains two cou-
pled contributions: one is from reflected solar irradiance and the other 
is from SIF emission. However, it is only possible to distinguish from 
each other at absorption lines in the atmosphere or at spectral bands 
where solar irradiance is significantly low (Fraunhofer lines) (Meroni 
et al., 2009). In this study, we retrieved SIF emission using SFM at the 

Fig. 1. Directional SIF emission at 760 nm (SIFtoc, mW m−2 sr−1 nm−1) mea-
sured by the sensor at a height of 5 m above top of forest canopy. The view of 
zenith and field of view (FOV) of the sensor is 30° and 25°, respectively. The 
light red region represents the sensor's footprint (m2) on the top of forest ca-
nopy. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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O2-A absorption line within the spectral range of 757.00–771.00 nm. 
Around the absorption line (λab), both R and SIFtoc can be expressed by 
the Taylor polynomials (Zhao et al., 2014): 

= + +R b b b( ) ( ) ( )ab ab cab ab cab0 1 2
2 (6)  

= + +b b bSIF ( ) ( ) ( )toc ab ab cab ab cab3 4 5
2 (7)  

(757–771 nm)ab

where b0,b1, b2, b3, b4 and b5 are six unknown coefficients in the above 
two equations; λcab, the central wavelength of the O2-A absorption line, 
was set as 761 nm in this study. At the sensor, TOC radiance (L, W 
m−2 sr−1 nm−1) contains contribution from both fluorescence and 
reflected solar energy: 

= +L E R( ) SIF ( ) ( ) ( )
ab toc ab

ab ab
(8) 

where E (W m−2 nm−1) represents down-welling solar irradiance. By 
substituting Eq. (6) and (7) into Eq. (8), we have: 

= +

+ + + +

L E b E

b E b b b b

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

ab ab cab
ab

ab cab
ab

ab
ab cab

ab cab

2
2

1 0 3 4 5

2 (9)  

To determine the unknown six coefficients in Eq. (9), one should 
have at least six measurements within the O2-A absorption region. The 
sensor which has a spectral resolution of 0.13 nm provided samples 
much more than six within the O2-A absorption line and the least 
squares method was used to retrieve the above six coefficients. We 
excluded measurements with poor fitting performance for Eq. (9) 
(R2  <  0.99) from the further analysis (Yang et al., 2015). 

After determining the coefficients in Eq. (9), we can estimate in-
stantaneous R and SIFtoc at 760 nm with Eq. (6) and (7). Because 
measurement of incident light may contain more uncertainties in the 
first hours after sunrise and the hours before sunset, we only used R and 
SIFtoc acquired between 9 a.m. and 4 p.m. local time. Instantaneous R 
and SIFtoc were averaged into hourly scales. Either R or SIFtoc may have 
abnormal variations due to moving clouds and winds (alter the LAD). 
The smooth filter with a 3-h window was used to remove outliers of 
hourly SIFtoc (beyond/below 100% of the local average) and we finally 
obtained 984 hourly observations. 

3. Results 

After showing several key time series at the study site in 2014, we 
evaluated the temporal variation in SIFtoc, SIFtot, and fesc, and the per-
formance of SIFtoc and SIFtot in predicting GPP using linear regression. 
The impacts of LAI, the illumination conditions, the sun-canopy-sensor 
geometry and the environmental factors were then analyzed. All the 
regression coefficients are significant (p  <  0.05). The coefficient of 
determination (R2) and root mean square error (RMSE) were used to 
quantify the accuracy of the regression models. 

3.1. Time series 

The time series of daily LAI and CI are shown in Fig. 2a. LAI rose 
rapidly in the spring and early summer which increased from 0.8 to 3.9 
between DOY 128 and 170 (Fig. 2a); LAI values showed small varia-
tions during the maturity period in June, July and early August 
(Fig. 2a). Leaves started to drop in the late of August and LAI values 
decreased with a much faster rate from the middle of September which 
reached a minimum at 0.55 on DOY 312 (Fig. 2a). In contrast, the CI 

time series generally kept stable at around 0.6 during the period of DOY 

128 and 314 (Fig. 2a). The CI values showed a slight increase trend 
when LAI values were relatively low: they increased to about 0.7 in the 
early spring and late autumn seasons (Fig. 2a). 

The time series of i and ωl are plotted with an hourly time step 
(Fig. 2b). The seasonal variation of i generally followed the phenolo-
gical stages of LAI changes: its values increased rapidly from about 0.26 
to more than 0.8 from the early spring to the end of May; they remained 
more than 0.9 during the most time of the summer season and they 
decreased from about 0.8 to 0.3 during October. The time series of i also 
contained stronger short-term variations (Fig. 2b), showing that i is also 
the function of solar zenith angle (Eq. (4)). In contrast, ωl demonstrated 
a much more stable trend during the whole study period (Fig. 2b): it 
remained almost constant at around 0.88 (Fig. 2b). 

Daily SIFtoc, R, SIFtot and fesc during the daytime (9 a.m. and 4 p.m. 
local time) and their standard deviations across the season are plotted 
in Fig. 3. The appearance of missing values, for example a gap period in 
the early summer, were mostly owing to the power failure. The time 
series of SIFtoc contained the obvious phenological transitions (Fig. 3a): 
it increased in the spring as the photosynthetic activity increased; it 
remained around 1 mW m−2 sr−1 nm−1 with moderate variations in 
the summer and it began to decrease in the early autumn. By contrast, R 
had a much smaller temporal variability: it increased rapidly in the 
early spring and maintained a long period of the summer plateau with 
the average of around 0.19 (Fig. 3b). Note that canopy-level reflectance 
is typically lower than that at the leaf level due to contribution from 
woody component in forest canopy. SIFtot also showed a similar phe-
nological trend to SIFtoc (Fig. 3c): it changed rapidly in both spring 
development and autumn senescence; its values varied between 
8 mW m−2 nm−1 and 16 mW m−2 nm−1 during most of the summer 
time. fesc had strong fluctuations during the whole study period and it 
had no obvious phenological changes (Fig. 3d). Its values varied in the 
range between 0.09 and 0.66 with a mean of 0.229, indicating that the 
sensor only received on average 22.9% of total emitted SIF. Although 
the model-based result (Yang and van der Tol, 2018) showed that the 
scattering of total emitted SIF increased with LAI, our result showed 
variations in LAI had no dominating impact on fesc in the NIR region. 

The mean diurnal courses of SIFtoc, GPP, SIFtot and fesc were also 
calculated from the hourly datasets in 2014 (Fig. 4). To make Fig. 4, we 
only used the days which had valid values for all these four variables 
during the whole period from 9 a.m. to 4 p.m. All of them showed the 
clear diurnal patterns: they had low values at the hours of the early 
morning and late afternoon and high values around midday (Fig. 4). 
However, SIFtoc did not exactly track the diurnal shapes of the SIFtot and 
GPP: SIFtoc had the steeper morning increase and afternoon decline with 
a peak at 12:00 p.m. (Fig. 4a), while GPP had a less variation around 
noon (Fig. 4b). In contrast, SIFtot better reproduced the diurnal course 
of GPP: both remained relatively stable between 11:00 a.m. and 
2:00 p.m. (Fig. 4 b,c). Although fesc did not contain a clear seasonal 
trend (Fig. 3d), it had a similar diurnal pattern to SIFtoc: both had their 
maximum values at noon (Fig. 4 a,d). Further, fesc showed a more 
asymmetric pattern: it showed an increasing trend in the morning 
hours, but it had higher values and remained more stable in the after-
noon. 

3.2. The performance of SIFtoc and SIFtot in estimating GPP 

Fig. 5 provides the correlation coefficient (R2) and root-mean- 
square error (RMSE) between GPP and SIFtoc and SIFtot at an hourly and 
daily time step. Overall, SIFtot had a better performance than SIFtoc in 
predicting GPP at an hourly scale: SIFtoc and SIFtot accounted for 50.9% 
(RMSE = 0.30 g C m−2 h−1, Fig. 5a) and 63.6% (RMSE = 0.25 g C 
m−2 h−1, Fig. 5b) of variance in hourly GPP, respectively. The daily 
time step further enhanced the performance of both SIFtoc and SIFtot. 
However, the longer time step tended to reduce the predictive 
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advantage of SIFtot: SIFtoc determined 66.1% (RMSE = 1.90 g C 
m−2 day−1, Fig. 5c) of the variability in the daily GPP time series, 
whereas SIFtot produced the modest improvement by explaining 71.4% 
(RMSE = 1.72 g C m−2 day−1, Fig. 5d). 

One important assumption in deriving Eq. (5) is that the contribu-
tion of soil reflectance is negligible. Also, the main motivation to use 
SIFtot is to improve the correlation between SIF signals and GPP for 
dense canopies. Therefore, it is necessary to investigate how LAI affects 
the relationships between GPP and these two SIF-related variables. In 
order to do so, we separated hourly SIF (SIFtoc and SIFtot) and GPP into 
three groups according to LAI values: (1) low: LAI ≤ 2.0, (2) medium: 
2.0  <  LAI ≤ 3.5 and (3) high: LAI ≥ 3.5. 

LAI had a complex impact on the relationship between SIF emission 
and GPP (Table 1). SIFtoc governed 46.5% (RMSE = 0.21 g C m−2 h−1) 
of variability in hourly GPP when LAI is medium, while the correlations 
between SIFtoc and GPP deteriorated under either low or high LAI 

values: the R2 decreased to 0.26 (RMSE = 0.08 g C m−2 h−1) and 0.32 
(RMSE = 0.16 g C m−2 h−1), respectively (Table 1). Conversely, the R2 

between SIFtot and GPP showed an increasing trend as LAI increased: 
SIFtot was also a weak predictor with R2 = 0.27 (RMSE = 0.08 g C 
m−2 h−1) for the low LAI values, confirming the negative effect of soil 
reflectance when the canopy was sparse, but it became a good predictor 
with an R2 of 0.53 (RMSE = 0.19 g C m−2 h−1) in the medium LAI 
group. Moreover, the denser canopy further enhanced the predictive 
advantage of SIFtot: SIFtot obtained a further increase in its performance 
in estimating GPP with R2 = 0.57 (RMSE = 0.17 g C m−2 h−1) when 
LAI was higher than 3.5 (Table 1). To remove the influence of the soil 
background, we only analyzed data with LAI ≥ 2.0 in the rest of this 
study unless otherwise explicitly stated. 

Fig. 2. Time series of daily (a) leaf area index (LAI m2 m−2) and (a) clumping index (CI), the markers to indicate the filed measurements; time series of hourly (b) 
canopy interception (i) and (b) leaf albedo (ωl) at the study site in 2014. i was not estimated when solar zenith angle was higher than 85°. 
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3.3. The impacts of the variations in the illumination conditions 

Both GPP and SIF emission may be altered in response to the var-
iations in the illumination conditions including the fraction of diffuse 
radiation and radiation saturation. Higher fraction of diffuse radiation 
may cause leaves in the middle and bottom canopy layers receive more 
solar irradiance and consequently enhance carbon sequestration by 
plants (Gu et al., 1999). On the other hand, an increase in diffuse 
fraction is typically accompanied by a decrease in both direct and total 
incoming irradiance (Lu et al., 2017) which likely causes a reduction in 
SIF emission, especially SIFtoc. When the intensity of solar radiation is 
higher than a specific threshold, both SIF and GPP may not increase 
with increasing irradiance level due to light saturation effect. Under 
this saturation condition, the variation of the SIF-GPP correlation de-
pends on whether light stress equally affect GPP and SIF (Porcar-Castell 
et al., 2014). In this section, we used the fraction of diffuse PAR to 
assess how changes in diffuse radiation affect the predictive power of 
SIFtoc and SIFtot: all data were separated by using a threshold of 0.5 in 
the fraction of diffuse PAR. To examine the effect of radiation satura-
tion, we set 1300 μmol photons m−2 s−1 as the saturation point (Lu 

et al., 2018). 
The results indicated that more diffuse radiation generally yielded 

the stronger SIFtoc-GPP and SIFtot-GPP relationships. When the diffuse 
fraction of the radiation was higher than 0.5, the R2 between SIFtoc and 
GPP increased by 0.10 and 0.07 in the intermediate and high LAI 
groups, respectively (Table 2). The predictive capability of SIFtot also 
received the limited improvements by 0.01 and 0.08, respectively 
(Table 2). However, the result also showed that higher LAI values did 
not exaggerate the benefit of diffuse radiation in enhancing the SIFtoc- 
GPP relationship. The higher proportion of diffuse radiation led to an 
increase of 0.10 in the R2 between SIFtoc and GPP in the medium green 
LAI, while it caused a smaller improvement of only 0.07 in the dense 
vegetation canopy (Table 2). In contrast, the benefit of higher diffuse 
fraction for SIFtot was further enhanced in the high LAI group: its R2 

achieved the more improvement of about 0.07 than that obtained for 
the moderate LAI values (Table 2). Both the SIFtoc-GPP and SIFtot-GPP 
relationships were deteriorated by the PAR saturation with the different 
magnitudes. When the PAR saturation occurred, SIFtoc showed the weak 
correlations against GPP with R2 less than 0.20 (Table 2). The R2 be-
tween SIFtot and GPP also decreased by 0.21 and 0.27 when LAI is in the 

Fig. 3. The mean (the red points) and standard deviations (the error bars) of (a) top of canopy SIF emission (SIFtoc, mW m−2 sr−1 nm−1), (b) directional reflectance 
(R), (c) total emitted SIF emission (SIFtot, mW m−2 nm−1) and (d) the fluorescence escape ratio (fesc) to the direction of the sensor. All the four variables are for 
760 nm and have a daily time step. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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intermediate and high groups (Table 2). However, SIFtot demonstrated a 
stronger resistance to the radiation saturation: it can still predict nearly 
30% of variation in GPP when PAR was higher than 1300 μmol photons 
m−2 s−1 (Table 2). 

3.4. The impacts of the illumination geometry 

In this section, we evaluated the impacts of the sun-canopy-sensor 
geometry on the relationship between GPP and SIFtoc/SIFtot. Since the 
viewing direction of the observation system was fixed, we were unable 
to evaluated the impact of the view geometry and therefore we focused 
this study on the illumination geometry in this study. 

First, we examined the influence of varying solar zenith angle (SZA, 
°) on the SIFtoc-GPP and SIFtot-GPP relationships. At the study site, the 
daytime SZA varied in the range of 19.1°–82.5°. Because the number of 
measurements with high SZA was limited, we only considered data with 
SZA between 20°–60°. To collect sufficient data for the regression 
analysis, the data were binned with an increment of 4° in SZA. Overall, 
the R2 of SIFtot-GPP showed a generally stable trend as the solar zenith 
angle increased, but its values achieved the maximum of 0.63 
(RMSE = 0.28 g C m−2 h−1) when the SZA is the same to the viewing 

zenith angle (30° in this case) (Fig. 6). In contrast, the R2 of SIFtoc-GPP 
showed much stronger variations at varying SZA (Fig. 6): it increased 
from 0.3 at a sun angle of 20° and the best predictive linear model for 
the GPP with R2 of 0.55 (RMSE = 0.31 g C m−2 day−1) was obtained at 
SZA = 30°. The correlation between SIFtoc and GPP decreased as SZA 
increased when SZA varied in the range of 30°-50°, but SIFtoc started to 
produce a good correspondence of GPP when SZA  >  50° (Fig. 6). 

Next, we particularly assessed how the hotspot effect (The shadow 
of the SIF tower is discussed in the supplementary information, Text S1) 
which describes an obvious increase in reflectance when viewing and 
the Sun directions coincide affected the predictive strength of SIFtoc and 
SIFtot. SIF signals with sun azimuth angles between 178° - 182° (the 
view azimuth angle of the sensor is 180°) were assumed to be ap-
proximately located in the solar principal plane. As expected, both 
SIFtoc and SIFtot had a higher R2 with GPP as SZA approached the hot-
spot direction. In the exact hotspot direction (SZA = 30° in the solar 
principal plane), SIFtot and SIFtoc achieved their maximal R2 of 0.57 and 
0.52 (RMSE = 0.23 and 0.25 g C m−2 h−1), respectively (Fig. 7). In 
fact, the performance of SIFtoc in the hotspot direction was superior to 
that when all the daytime datasets were included (Table 1). SIFtot was a 
better predictor for GPP than SIFtoc in the principal plane when SZAs 

Fig. 4. The mean diurnal courses (9 a.m. to 4 p.m. local time) of (a) top of canopy SIF emission (SIFtoc, mW m−2 sr−1 nm−1), (b) gross primary production (GPP, g C 
m−2 h−1), (c) total emitted SIF emission (SIFtot, mW m−2 nm−1) and (d) the fluorescence escape ratio (fesc) in the direction of the viewing direction at the Harvard 
Forest site in 2014. SIFtoc, SIFtot and fesc are for 760 nm. The shaded area represents the standard deviation of the mean (solid line). 
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varied between 20° and 50° (Fig. 7), while their performance was more 
comparable for the higher SZA (> 50°). Particularly, SIFtoc can explain 
almost the same variability in hourly GPP to SIFtot when SZA ranged 
from 56° to 60° (Fig. 7). 

3.5. The impacts of the meteorological variables 

We examined how the meteorological variables including vapor 
pressure deficit (VPD, kPa) and air temperature (Tair, °C) affected the 

performance of SIFtoc and SIFtot in estimating GPP. By using the median 
of daytime VPD and Tair as the two thresholds (0.75 kPa for VPD, 
18.1 °C for Tair), all the data were divided into four groups. We found 
that Tair in 2014 had no obvious impact on the performance of SIFtoc 

and SIFtot when VPD values were in the low group (Fig. 8). For the two 

Fig. 5. The scatterplots between hourly GPP (g C m−2 h−1) and (a) hourly SIFtoc (mW m−2 sr−1 nm−1), (b) hourly SIFtot (mW m−2 nm−1); the scatterplots between 
daily GPP (g C m−2 day−1) and (c) daily SIFtoc and (d) daily SIFtot. The red lines are linear regression between two variables. The coefficient of determination (R2) and 
root mean square error (RMSE) are also provided. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

Table 1 
The effects of leaf area index (LAI, m2 m−2) on the performance of top of ca-
nopy SIF emission at 760 nm (SIFtoc, mW m−2 sr−1 nm−1) and total emitted SIF 
emission at 760 nm (SIFtot, mW m−2 nm−1) in predicting GPP (g C m−2 h−1). 
All the datasets had an hourly time step and were from between 9 a.m. and 
4 p.m. local time. The values are the coefficients of determination (R2) from the 
linear regression analysis. The last line shows the R2 between SIFtoc and SIFtot.        

All LAI ≤ 2.0 2.0  <  LAI ≤ 3.5 LAI ≥ 3.5  

SIFtoc 0.51 0.26 0.46 0.32 
SIFtot 0.64 0.27 0.53 0.57 
(SIFtoc, SIFtot) 0.73 0.74 0.79 0.60 

Table 2 
The effects of the illumination conditions including fraction of diffuse radiation 
(fd) and radiation saturation (Sat) on the coefficient of determination (R2) be-
tween the hourly SIFtoc (mW m−2 sr−1 nm−1) and SIFtot (mW m−2 nm−1) and 
the hourly GPP (g C m−2 h−1) by using the linear regression analysis. All da-
tasets belong to the period between 9 a.m. and 4 p.m. local time.        

SIFtoc SIFtot  

2.0  <  LAI ≤ 3.5 fd ≤ 0.5 0.42 0.57 
fd  >  0.5 0.52 0.58 
No Sat 0.45 0.49 
Sat 0.12 0.28 

LAI  >  3.5 fd ≤ 0.5 0.30 0.48 
fd  >  0.5 0.37 0.56 
No Sat 0.29 0.54 
Sat 0.20 0.27 
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groups with VPD ≤ 0.75 kPa, SIFtot showed the stronger predictive 
strength than SIFtoc by explaining about 10% more variability in hourly 
GPP (Fig. 8). In comparison to Tair, VPD exerted a stronger negative 
influence on the link between GPP and SIF emission. The R2 between 
SIFtoc and GPP decreased to 0.43 (RMSE = 0.27 g C m−2 h−1) and 0.35 
(RMSE = 0.30 g C m−2 h−1) for the two groups with VPD  >  0.75 kPa, 
while SIFtot showed a more stable performance with R2 of 0.61 
(RMSE = 0.23 g C m−2 h−1) and 0.54 (RMSE = 0.25 g C m−2 h−1) for 
the high VPD condition (Fig. 8). Especially, SIFtot owned a predictive 
advantage for the group with the most stressful group (VPD  >  

0.75 kPa and Tair  >  18.1 °C): SIFtot still accounted for 53.4% 
(RMSE = 0.25 g C m−2 h−1) of GPP variability, whereas SIFtoc ex-
plained only 35.2% (RMSE = 0.29 g C m−2 h−1) (Fig. 8). 

4. Discussion 

4.1. Soil background contamination 

TOC SIF also contains the contribution of emitted SIF photons 

reflected by the soil. Thus, Eq. (5) is only valid for either dense canopy 
or black soil condition. The soil background contamination was the 
main reason for the poor correlations between SIFtoc/SIFtot and GPP 
when the canopies were sparse (Table 1). The recent studies (Badgley 
et al., 2017; Zeng et al., 2019) showed that the negative impact of soil 
brightness can be reduced by using the NIR reflectance of vegetation 
which was defined as the product of NIR reflectance and the normalized 
difference vegetation index (NDVI). More specifically, Eq. (5) may be 
improved by replacing R with NDVI×R. Note that NDVI used in Eq. (5) 
should be acquired with the same or near sun-canopy-sensor geometry 
to SIFtoc/R. In this study, NDVI is estimated from reflectance measured 
by the narrowband silicon photodiode sensors also mounted on the 
walk-up tower (Yang et al., 2015). The performance of incorporating 
NDVI into SIFtot (SIFtot-NDVI) was provided in the supplementary in-
formation (Table S1). Overall, SIFtot-NDVI provided the moderate im-
provement in predicting GPP when LAI values were low. It is also 
worthwhile to mention that the advantage of SIFtot-NDVI diminished 
with the increase in LAI values (Table S1). When LAI values were high, 
the incorporation of NDVI was not necessarily favorable (limited soil 

Fig. 6. The coefficients of determination (R2) between GPP 
and SIFtoc (mW m−2 sr−1 nm−1) and SIFtot (mW m−2 nm−1) 
as a function of solar zenith angle (SZA, °). Each point was 
binned every 4° of SZA. Both SIFtoc and SIFtot are for 760 nm. 
All the datasets had an hourly time step and were collected 
during the period from 9 a.m. to 4 p.m. local time. 

Fig. 7. The effects of solar zenith angle (SZA, °; θs) in the solar 
principal plane on the coefficients of determination (R2) be-
tween GPP and SIFtoc and SIFtot. SIF measurements with sun 
azimuth angles between 178°–182° were assumed to be ap-
proximately located in the solar principal plane. Note that the 
sensor was north-facing (the viewing azimuth angle of the 
sensor is 180°) and had the fixed viewing zenith angle (θv) of 
30°. Each point was binned every 4° of SZA. For example, the 
R2 at SZA of 30° was the mean of all R2 values at SZA of 
28–32°. These datasets have an hourly time step and were 
collected during the period from 9 a.m. to 4 p.m. local time. 
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background contamination). In turn, the negative effect of using NDVI 
(the different sun-canopy-sensor geometry) may deteriorate the per-
formance of SIFtot-NDVI. More importantly, soil background con-
tamination was not removed in extracting SIFtoc from TOC radiance (Eq.  
(8)). Consequently, both SIFtoc and SIFtot contained soil signals over 
sparse canopies, which can't be solved by incorporating NDVI. A 
method is needed to filter out soil signals in retrieving SIF from TOC 
radiance. 

4.2. Variations of fesc 

The fact that the fluorescence escape ratio (fesc) did not exhibit a 
seasonal variation (Fig. 3d) suggested that fesc in the NIR region was 
largely independent of Cab (Fig. S1a) and LAI (Fig. 2a). As shown in 
Appendix, fesc is a function of ωl and two variables related to canopy 
structure, namely the directional escape probability (ρ) and the re-
collision probability (р). As we have shown before, the response of ωl to 
changing Cab is very small in NIR region (Fig. 2b). At the same time, ρ 
and р are influenced by canopy structure and they showed the different 
responses (i.e. cancelling) to variations in LAI: ρ decreased with in-
creasing LAI, but its effect on fesc is compensated by an increase in р 
which is positively related to LAI. Although the previous study 
(Colombo et al., 2018) also reported that Cdm (Fig. S1c) had a negative 
effect on fesc in the NIR, our results showed that its magnitude was 
relatively weak. 

In contrast, fesc demonstrated a clear diurnal pattern and it arrived 
its maximum in the hotspot direction (Fig. 4d), both of which supported 
that LAD and the sun-canopy-sensor geometry had a strong effect on fesc 

(van der Tol et al., 2019). However, more sophisticated modelling 
works are needed to quantify the role of solar zenith angle, viewing 
direction and the different LADs in controlling fesc. The fraction of sunlit 
leaves in view of the sensor is proportional to fesc. When environmental 
stress is absent or weak, higher fesc typically means better correlation 
between SIFtoc and GPP. 

4.3. The mechanisms of the better performance of SIFtot 

As shown in Section 4.1, SIFtot has a better performance than SIFtoc 

in mimicking the diurnal cycle of GPP. Short-term environmental 
stresses including strong incoming irradiance and high air temperature 

may occur more frequently around midday when carbon assimilation 
by plants is largely reduced to avoid photoinhibition and water loss. 
Accordingly, the diurnal patterns of GPP may exhibit the so-called 
midday depression of photosynthesis (Hirasawa and Hsiao, 1999; Liu 
et al., 2017) which explains the stable or even decreasing trend in GPP 
around 12 p.m. (Fig. 4b). However, NPQ does not significantly vary in 
response to these short-term photoinhibited circumstances (Damm 
et al., 2010) and in consequence, SIFtoc was well correlated with the 
diurnal variability of PAR without showing the obvious saturation 
phenomenon at noon (Fig. 4a, Yang et al., 2018). Their different re-
sponses to the increasing stress level at solar noon is the main reason for 
the weaker SIFtoc-GPP correlations at a diurnal basis. In comparison to 
SIFtoc, SIFtot was better able to capture the diurnal pattern in GPP: the 
time series of hourly SIFtot also contained a plateau during the period 
between 11 a.m. and 3 p.m. local time (Fig. 4c). The explanation is that 
SIFtot accounted for the overall response of all the leaves to environ-
mental stresses and only rarely was plant photosynthetic activity ne-
gatively affected by these stresses at the scale of the whole canopy. 
Compared to top level leaves, solar radiation received by the other 
lower level leaves tended to remain at a relatively low level such that 
SIFtot unlikely had a distinct peak around noon hours. The mean diurnal 
course of fesc also contained a peak at 12:00 p.m.: it indicated that the 
sensor can “see” the most of total SIF emission at noon (Fig. 4d). The 
observation system was north-facing, allowing measurements acquired 
at around noon were in or near the hotspot region, which in turn made 
the sensor directly see the larger illuminated area on the canopy than in 
other directions. Also note that low SZA at mid-day leads to a deeper 
penetration of radiation inside the canopy which may lead to an in-
crease in SIFtot and a correspondingly lower fesc. However, our result 
showed that whether and to what extent illuminated area of the canopy 
is within the FOV of the sensor was the primary factor controlling the 
magnitude of fesc. We also found an asymmetric pattern in the diurnal 
course of fesc: fesc was higher in the afternoon than that in the morning 
for the same SZAs (Fig. 4d). The similar asymmetric reflectance tra-
jectories about solar noon may be attributed to the variations in canopy 
geometry due to species, planting, water stress and wind direction. 
Although the diurnal variation of SZA was symmetric for morning and 
afternoon, it did not necessarily result in the symmetry of fesc on a 
diurnal basis (Fig. 4d). Beyond SZA, fesc also depended on other factors 
related to the sun-sensor geometry, understory and forest scene. For 

Fig. 8. The effects of vapor pressure deficit (VPD, kPa) and air 
temperature (Tair, °C) on the coefficients of determination 
(R2) between GPP and SIFtoc (green, mW m−2 sr−1 nm−1) 
and SIFtot (dark green, mW m−2 nm−1). All the datasets have 
an hourly time step and are from 9 a.m. to 4 p.m. local time. 
(For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this ar-
ticle.) 
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example, the relative azimuth angle between sun and sensor is not 
symmetric over the study site for morning and afternoon. 

The regression results showed that SIFtot provided the more accurate 
GPP estimates than SIFtoc (Table 1). In comparison to SIFtoc collecting 
SIF signals mainly from top leaves, SIFtot better represents SIF emission 
from all layers of the vegetation canopy. Because an increase in LAI 
values leads to a less contribution of background soil to TOC re-
flectance, the dense forest canopy tends to improve the performance of 
SIFtot in predicting canopy GPP (Table 1). The decrease in the correla-
tion between SIFtoc and SIFtot under the high LAI values also confirmed 
that their discrepancies became apparent in the complex canopy struc-
ture (Table 1). Also with an increase in LAI, canopy GPP tends to have a 
weaker correlation with carbon uptake by top level leaves such that the 
advantage of SIFtot should be more pronounced for the dense vegetation 
canopy. Similarly, an increase in the proportion of diffuse PAR makes 
more complete canopy participate in photosynthesis, causing leaves 
deeper in the canopy contribute more to the total GPP. Altogether, 
carbon enhancement in the mid-and lower-parts of the canopy in re-
sponse to diffuse PAR is more prominent in the dense closed canopy. 
SIFtoc, however, had a weak connection with photosynthesis in the 
other inner leaves, which explained why its performance decreased 
under high LAI levels, particularly when the fraction of diffuse radia-
tion was more than 0.50 (Table 2). It also explained why SIFtot was 
better to capture the increase trend in GPP caused by more diffuse ra-
diation, especially for the high LAI group (Table 2). 

Compared to SIFtot, the R2 between SIFtoc and GPP exhibited a 
higher variability at changing SZAs (Fig. 6), showing the SIFtoc-GPP 
relationship was more sensitive to SZA. SZA alters not only the amount 
of radiation reaching vegetation canopy surfaces but also the light 
distribution in the canopy. Because SIFtoc had a limited sensitivity to the 
variations in SIF emission and GPP inside the canopy, a SIFtoc-GPP 
model was still a strong function of SZA, especially when it was devel-
oped for a forest site. The vegetation hotspot effect tended to improve 
the performance of both SIFtoc and SIFtot in predicting GPP (Fig. 7). In 
the hotspot direction, more SIF radiance from sunlit leaves can escape 
and thus observed by the sensor without experiencing the scattering 
and absorption processes in the canopy, which explains why both SIFtoc 

and SIFtot obtained these improvements. In consequence, the relation-
ship between GPP and SIF was more closely coupled in near hotspot 
directions. But, it is worth noting that the hotspot effect for a north- 
facing sensor occurs at around noon hours. Thus, the environmental 
stresses caused by high air temperature and/or high VPD may more 
frequently occur at midday, which may in turn weaken the link be-
tween SIF emission and photosynthesis. However, the favorable en-
vironmental conditions in 2014 suppressed the negative impacts asso-
ciated with the hotspot effect. Apart from the hotspot direction, the R2 

between SIFtoc and GPP showed an increase trend at high solar zenith 
angles (> 50°) (Fig. 7). Larger SZA, or a more horizontal solar beam, 
travels less deeply into the vegetation canopy than a more vertical solar 
beam. Accordingly, the importance of considering the SIF transfer 
process inside the canopy tended to decrease at high SZA, which di-
minished the difference between SIFtoc and SIFtot (Fig. 7). 

Under the adverse meteorological conditions, SIFtot also produced 
the better correlations with GPP than using SIFtoc (Fig. 8). This im-
provement is attributed to accounting for the vertical variability of the 
meteorological factors within different layers of the canopy. In other 
words, not all the leaves in the canopy experience the same stress level 
represented by the above-canopy meteorological variables. For example, 
the upper leaves have a higher leaf temperature because it is more 
exposed to stronger light radiation. Also, higher leaf temperature and 
less soil water availability more likely cause top layer leaves have a 
higher leaf-to-air VPD than that in lower leaves. Thus, upper leaves may 
suffer higher stress level than lower canopy leaves (Damm et al., 2010). 
As a consequence of more stress-induced NPQ, SIFtoc (sensing the top of 

canopy) had a weaker link with GPP which was integrated from the 
entire vertical canopy during a period of environmental stress. The 
above interpretation also suggests that cautions should be taken when 
one uses TOC SIF datasets (e.g. SIFtoc) to detect the impacts of heat 
wave on plants (Yoshida et al., 2015). Without reflecting the response 
of lower canopy layers to heat stress, SIF emitted from the top of ve-
getation canopies may overestimate the severity of heat wave events, 
especially in their early stage. 

4.4. Implication for developing SIF-GPP models 

Although SIFtot had a better performance in predicting GPP, several 
factors must be considered to develop a large-scale SIF-GPP model with 
it. To estimate SIFtot from SIFtoc, LAI, CI, LAD, ωl and fd are needed (Eq.  
(5)). fd can be estimated from cloud fraction (Gu et al., 1999); both LAI 
and CI are provided on an 8-day basis with a spatial resolution of 
500 m. Previous studies (van der Tol et al., 2016; Verhoef et al., 2018) 
showed that TOC reflectance spectra contain important information on 
pigment content (e.g., chlorophyll content) and canopy structural 
parameters (e.g., leaf angle distribution). Leaf angle distribution has an 
important impact on reflectance spectra in the range of 720–1150 nm 
(Verrelst et al., 2015). Thus, LAD may be estimated by inversion of a 
vegetation canopy reflectance model (Hu et al., 2018). ωl is mainly con-
trolled by leaf structure and a variety of leaf biochemical constituents 
including: Cab, Cdm and Cw: Cab can be estimated from reflectance at red 
bands (Dash and Curran, 2004); Cdm accounted for over 40% of the 
variability in the 770–950 nm spectral window and Cw determined 
more than 50% variance of reflectance between 1340 and 1390 nm 
(Verrelst et al., 2015). Altogether, hyperspectral reflectance between 
400 and 1400 nm should be simultaneously acquired to estimate ωl. 
However, it is also worthwhile to note that ωl in the NIR region is 
primarily determined by leaf development phase rather than the con-
centrations of these constituents (Fig. 2). 

Consistent to the previous studies (Kohler et al., 2018; Liu et al., 
2016; Zhao et al., 2016; Yang and van der Tol, 2018), this study con-
firmed that SIFtoc had strong directional variations. One important ap-
plication of satellite SIF datasets is to upscale site-level SIF-GPP re-
lationship to regions with a regression model trained by tower-based 
GPP/SIF measurements (Guanter et al., 2014). Most of long-term site- 
level SIF measurements have a fixed observation direction, however, 
satellite SIF datasets are provided with different viewing geometries 
(the glint/target modes). It means that a SIF-GPP regression model 
based on SIFtoc may only have a good performance when remotely 
sensed SIF inputs have the identical or similar illumination and view 
geometries to those used in training this model (Zhang et al., 2018). 
Considering the anisotropy of the canopy SIF emission is highly similar 
to that of canopy reflectance (Liu et al., 2016), it is possible to correct/ 
normalize bidirectional variation in the emitted SIF with the BRDF 
reflectance models. For instance, the MODIS BRDF/albedo products 
(Schaaf et al., 2002) may have a good potential to account for the bi-
directional variation in SIF emission. Although the initial experiment 
showed the BRDF reflectance model successfully captured the BRDF 
characteristics of canopy-level SIF emission (Liu et al., 2016), more 
efforts should be made to quantify the impacts of direction of incoming 
irradiance and ratio of diffuse light (Liu et al., 2016). 

The potential of SIF emission in predicting GPP may be better 
exploited by either downscaling to a more photosynthetically relevant 
level or incorporating fluorescence radiance at different wavelengths. 
By establishing the relationship between SIF emitted by the chloroplast 
and SIF measured at the canopy level with the Random Forest model,  
Liu et al. (2019) downscaled TOC SIF to the photosystem level. Without 
experiencing the absorption processes inside the leaves, SIF at the 
photosystem level may have a better performance in estimating GPP 
than SIFtot. SIF emission at the photosystem level also has no directional 
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effect such that the impact of the canopy structure and varying sun- 
sensor geometry is minimal. However, the RF model was trained by the 
dataset simulated by Soil-Canopy Observation, Photochemistry and 
Energy fluxes (SCOPE, Version 1.70) model (van der Tol et al., 2009). 
Thus, its performance was subject to uncertainties due to the model 
deficiencies, inaccurate parameters and unrealistic assumptions, etc., 
and the selection of appropriate inputs for the RF model also relied on 
subjective experiences. More experiments are needed to quantify the 
leaf internal absorptance (Porcar-Castell et al., 2014) which links SIFtot 

to SIF at the photosystem level. The integration of red SIF or even full 
SIF spectrum into SIFtot may provide more information for plant phy-
siological state (Zhao et al., 2018). However, SIF emission in the red 
wavelengths has a much stronger absorption effect such that the 
method to calculate SIFtot by SIFtoc with the recollision probability does 
not hold. 

The variation in SIFtoc is affected by leaf pigment content, canopy 
structure, illumination condition, physiological status and viewing di-
rection. The first three factors jointly determine the amount of radiative 
energy absorbed by plants and physiological status regulates the par-
titioning of absorbed solar energy into the three pathways including 
photosynthesis. Although SIFtot produced a stronger correlation with 
GPP by incorporating the impacts of canopy structure and viewing di-
rection, it still contained non-physiological information. Thus, it may 
lead to a bias to directly use SIFtot as an early indicator of forest phy-
siological condition. The previous study (Celesti et al., 2018) showed 
that physiological information may be extracted from SIFtoc with the 
help of TOC reflectance. Specifically, several key biogeophysical vari-
ables were retrieved by inverting the SCOPE against measurements of 
TOC reflectance spectra (Yang et al., 2019). After determining these 
variables (or in other words, discriminating the impacts of non-phy-
siological factors), one may develop a more robust relationship between 
SIFtoc and physiological variables such as fluorescence yield. Similarly, 
physiologically related variations may be also extracted from SIFtot, 
while more efforts are needed to collect sufficient training samples and 
to reduce the uncertainties caused by parameterization equifinality 
(Tang and Zhuang, 2008). 

4.5. Limitation 

Several important assumptions are needed to estimate SIFtot: (1) 
reflectance from soil background is negligible such that SIFtot may have 
a poor correlation with GPP at sparse vegetation. Therefore, SIFtot tends 
to have a poor performance in estimating GPP in grasslands because its 
soil layer may have a large impact on TOC reflectance. SIFtot may also 
have a poor performance for ecosystems with relatively low fractions of 
vegetation cover such as savanna. Their understory layer may have a 
negative impact on the similarity between the SIF emission and re-
flectance, (2) reflected solar radiation and SIF emission measured by a 
sensor in fact interacts with both green foliage and non-green material 
(i.e. trunks and branches). However, the spectral invariant theory only 
considers green foliage matter only (Knyazikhin et al., 2013). Because 
the contribution from trunks and branches to canopy scattering is ig-
nored, the method may have more uncertainties for forest types with 
large trunks, and (3) the canopy is homogeneous in structure and bio-
chemistry. For example, Eq. (5) requires all layers in the vertical canopy 
profile have the same optical properties. In reality, however, these 
properties are heterogeneous in the vertical direction, even for crops or 
grasslands. The assumption of the vertical homogeneity used in this 
study may cause large biases in TOC reflectance and fluorescence (Zhao 
et al., 2016). 

5. Conclusion 

We found that SIFtoc in this study only accounted for on average 
22.9% of the total SIF emission. Without taking into account these 

effects, SIFtoc may have a poor performance to estimate GPP for plants 
with dense canopies. The approach proposed in this study is able to 
better exploit the potential of SIF signals by integrating total SIF 
emission from the whole canopy. Under the assumption that soil re-
flectance is negligible and leaves in the canopy have the same optical 
properties, SIFtot can be represented as a function of four variables in-
cluding SIFtoc, R, i and ωl. All of them are available in most remote 
sensing applications: SIFtoc and R are obtained from concurrent mea-
surements of irradiance/radiance; ωl in the NIR region and i can be 
estimated from the open access datasets. 

SIFtot was a better predictor of GPP at the forest study site as shown 
in the following three aspects: (1) SIFtot was more capable of reprodu-
cing the diurnal variation of GPP, especially the midday depression of 
photosynthesis, (2) SIFtot better represented the SIF emitted from all the 
layers of the canopy, which made it more suitable to estimate GPP from 
dense vegetation and (3) SIFtot captured the vertical variability of ca-
nopy photosynthesis such that the SIFtot-GPP model had a stronger re-
silience to environmental stresses. The rationale for achieving these 
improvements relies on the high similarity in the bidirectional char-
acteristics between directional reflectance and SIF signals. In other 
words, TOC reflectance conveys information on the scattering/(re)ab-
sorption processes of emitted SIF. 

We also showed the illumination geometry have the important im-
pact on the relationship between SIF emission and GPP. The dis-
crepancy between SIFtoc and SIFtot decreased as sun zenith angle in-
creased. This decrease was associated with the less free path that 
photons may travel within the canopy at high sun zenith angle. We 
found that the hotspot effect tended to enhance the correlations be-
tween SIF emission and photosynthesis. As the solar zenith angle ap-
proached the hotspot direction, the sensor can see more directly illu-
minated areas of the canopy. However, more environmental stresses 
possibly associated with the hotspot effect may deteriorate the SIFtoc/ 
SIFtot-GPP relationships. 

The predictive power of SIFtot may be further enhanced by either 
integrating SIF signals emitted from other fluorescence spectral region 
or downscaling to the photosystem level. However, the (re)absorption 
effect become more pronounced in other SIF spectral region, which may 
cause more uncertainties in estimating SIFtot. Also, more experiments 
are required to better quantify the scattering and (re)absorption effects 
occurred inside leaves. Although these works are still needed, SIFtot 

provides a simple but effective way to build more robust SIF-GPP 
models, especially for ecosystems with complex canopy. 
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Appendix A 

The photon–canopy multiple interactions start from the canopy interceptance (i): the fraction of incident solar radiation (Ei) that arrives at the top 
of canopy are intercepted by the leaves (Fig. A1). Ei is always composed of two components: direct sunlight (Es) and diffuse skylight (Ed). The 
intercepted photons are scattered (transmitted and reflected) inside the canopy; the recollision probability (р) is the probability by which a scattered 
photon will interact with another foliage element again (Smolander and Stenberg, 2005). To account for the probability of the scattering event, leaf 
albedo (ωl) is also needed 

Fig. A1. The absorption and scattering processes of solar irradiance (a) and SIF emission (b) within the canopy with non-reflecting background. i is the canopy 
interceptance of incident solar irradiance (Ei), Ei is composed of direct sunlight (Es) and diffuse skylight (Ed), р is the recollision probability, ρ is the directional escape 
probability, ωl is the leaf albedo. Photons may experience a number of interactions (N) before exiting the canopy. The radiance received by the sensor (LO) contains 
the contribution of photons exiting the canopy in the direction of the sensor. The fluorescent photons are excited in these scattering events with flux density of F1, 
F2…, FN, and their summation is the total SIF emitted by all leaves (SIFtot). The top-of-canopy SIF emission (SIFtoc) contains the contribution of fluorescent photons 
which escape the canopy to the sensor in the observation direction with a probability of fesc. 

The intercepted photons then experience one (canopy interceptance, no interaction again) or more scattering events (N) in the canopy and their 
energy can be represented as Ei × i × (ωl)N × (р)N-1. The scattered photons escape the canopy and contribute to the TOC sensor with the total of πLO 

(Fig. A1a). Thus, the directional escape probability (ρ) which describes a leaf within the canopy that can be viewed outside in a specific viewing 
direction is further needed (Huang et al., 2007; Fig. A1). In practical applications of near surface remote sensing, incoming irradiance always 
contains both direct sunlight (subscript “s”) and diffuse skylight (subscript “d”) components. R can be calculated as: 

(A1)  

where fd is the fraction of diffuse solar radiation at TOC. By rearranging Eq. (A1), we obtain: 

= × × ×
×

+ × × ×
×

R f i
p

f i
p

(1 )
1 1s d s

l

s l
d d d

l

d l (A2)  

The derivation of Eqs. (A1) and (A2) requires three assumptions: (1) the contribution of soil background is negligible (‘black soil’), (2) all the 
leaves in the canopy have the same ωl, and (3) both ρ and р remain constant with different scattering orders. 

The fluorescent photons are also excited within the canopy and experience multiple interactions. The initial fluorescence flux density excited by a 
total number of N photon packets can be denoted as F1, F2…, FN (Fig. A1b), with the total amount of SIFtot. Considering that the excited SIF photon 
may experience zero or more scattering orders before exiting the canopy, the fluorescence escape ratio fesc, which quantifies the probability by a 
fluorescence photon escaping the canopy to the TOC sensor can be computed as: 

= × + + + … + × + + + …f f p p p f p p p(1 ) [ ( ) ( ) ] [ ( ) ( ) ]d s s l s s l s s l s d d d l d d l d d l desc
2 3 2 3 (A3)  
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By assuming that leaf emits isotropic fluorescent radiance over its abaxial or adaxial surfaces, SIF radiance received by the sensor at TOC (i.e. 
SIFtoc) can be calculated as: 
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In other words, SIFtoc can be related to SIFtot by (Fig. A2b): 

=
f

SIF SIFtoc tot
esc

(A6)  

By combining Eqs. (A2), (A4) and (A6) and assuming рs = рd and ρs = ρd, one can obtain the following relationship between SIFtoc and SIFtot: 

= × × ×i
R

SIF SIF
tot

toc l
(A7)  

Next, we used the Monte Carlo ray-tracing based Weighted Photon Spread (WPS, Zhao et al., 2016) and the method proposed by Yang et al. 
(2017c) model to prove that рs ≈ рd and ρs ≈ ρd. The WPS model is a three-dimensional (3-D) radiative transfer model that used the Monte Carlo 
method to simulate photon transport in a plant canopy. The detailed information for the WPS simulations is summarized in Table S2. Based on 
empirical evidence and mathematical considerations (Goel, 1988), leaf inclination angle distributions can be described using six typical types: 
erectophile, planophile, spherical, uniform, plagiophile and extremophile. In this study, we considered these six types of leaf angle distributions 
(LADs) for five different LAI values (1, 2, 3, 4, and 5). 

As we showed in supplementary information, the recollision probability of direct sunlight (рs) is close to that (рd) of diffuse skylight (рs ≈ рd) for 
these six LADs under five different LAIs (1, 2, 3, 4, and 5) (Fig. S2-S6); the directional escape probability of direct sunlight (ρs) and diffuse skylight 
(ρd) is also close to each other (ρs ≈ ρd) (Fig. S7-S11). At the first or two scattering orders, their difference is very small for their recollision 
probability (Fig. S2-S6) and directional escape probability (Fig. S7-S11), respectively. In the higher order scattering, both р and ρ remain almost 
constant and the percentage of diffuse radiation has a minimal impact on both of them (Fig. S2-S11). The simulation results show that the recollision 
probability and directional escape probability for direct solar irradiance is close to those for diffuse, and both of them converge their effective values 
when interaction order increases. 

According to the method used by Yang et al. (2017c), we also computed the effective p (pe) and effective ρ (ρe) with the following equations: 

(A8)  

The values of pe and ρe are provided in Table S3 and Table S4 for the different leaf inclination distributions in the LAI range from 1 to 5. The 
comparisons for them under direct and diffusive illumination are illustrated in Fig. S12 and Fig. S13. We also calculated the coefficient of de-
termination (R2), the root-mean-squared error (RMSE) and the relative root-mean-square error (rRMSE, %) for pe and ρe under the direct sunlight and 
diffuse skylight, respectively. The results (Table S5) show that pe remains almost the same for direct light to the diffuse incoming light conditions 
(R2  >  0.99 and rRMSE  <  1.2%). Also, ρe under direct sunlight is close to that under direct sunlight (R2  >  0.97 and rRMSE  <  4.8%). All together, 
we can conclude that the corresponding p and ρ under direct and diffuse irradiance are quite close to each other: we can assume рs = рd and ρs = ρd 

in real applications. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.112083.  
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