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• A machine learning-based model was
developed to predict drought.

• Lagged large-scale climate indices were
adopted as input predictors.

• Growing season drought across all
Australian cropping areas was pre-
dicted.

• Forecasted drought maps matched well
with observed drought maps.

• NINO3.4 SST and MEI were identified as
the most influential indices.
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Recurring drought has caused large crop yield losses in Australia during past decades. Long-term drought fore-
casting is of great importance for the development of risk management strategies. Recently, large-scale climate
drivers (e.g. El Niño-Southern Oscillation) have been demonstrated as useful in the application of drought fore-
casting. Machine learning-based models that use climate drivers as input are commonly adopted to provide
drought forecasts as these models are easy to develop and require less information compared to physical-
based models. However, few machine learning-based models have been developed to forecast drought condi-
tions during growing season across all Australian cropping areas. In this study, we developed a growing season
(Apr.-Nov.) meteorological drought forecasting model for each climate gauging location across the Australian
wheatbelt based on multiple lagged (past) large-scale climate indices and the Random Forest (RF) algorithm.
The Standardized Precipitation Index (SPI) was used as the response variable to measure the degree of
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Random forest
Machine learning
meteorological drought. Results showed that the RF model could provide satisfactory drought forecasts in the
eastern areas of the wheatbelt with Pearson's correlation coefficient r N 0.5 and normalized Root Mean Square
Error (nRMSE) b 23%. Forecasted drought mapsmatchedwell with observed drought maps for three representa-
tive periods.We identifiedNINO3.4 sea surface temperature andMultivariate ENSO Index as themost influential
indices dominating growing season drought conditions across thewheatbelt. In addition, lagged impacts of large-
scale climate drivers on growing season drought conditions were long-lasting and the indices in previous year
could also potentially affect drought conditions during current year. As large-scale climate indices are readily
available and can be rapidly used to feed data driven models, we believe the proposed meteorological drought
forecasting models can be easily extended to other regions to provide drought outlooks which can help mitigate
adverse drought impacts.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Australia is a major global wheat (mainly bread wheat and durum
wheat) producer and exporter (GLNC, 2020). It produces 3% of the
world's wheat production but accounts for nearly 15% of theworld's an-
nual global wheat trade (AEGIC, 2019). Thus, Australian wheat produc-
tion is of central importance to ensure global wheat supply and food
security. Wheat in Australia is mainly grown under rain-fed conditions,
thus the wheat industry is sensitive to climate disasters, especially
drought. Recurring drought events have resulted in large yield losses
in the past decades. For example, the 2018 drought resulted in a 53% re-
duction in winter crop production in eastern Australia compared to the
average of past 20 years (ABARES, 2019). Mitigating the impacts of
drought on crop production has been a major research focus as early
and reliable drought forecasting can assist farmers to undertake man-
agement decisions (e.g. sowing time)whichwill have financial implica-
tions. However, forecasting drought events remains a challenge to the
scientific community because their triggers are complex and their fea-
tures are variable in time and space.

Drought is a normal part of the climate in almost all regions of the
world, which results from prolonged absence or shortage of rainfall in
comparison with normal years (Zarch et al., 2015; Yu et al., 2020).
Australia is the second driest continent on earth because it is located
under the subtropical high-pressure belt, which prevents the lift of air
required for rain (Williams and Stone, 2009). Australia is also a country
prone to drought, as rainfall shows great inter-annual variability
throughout the continent. It is well established that the variability of
Australian rainfall is linked to the climatic anomalies originating from
its surrounding oceans, including the Pacific, Indian, and Southern
Oceans (Risbey et al., 2009). These climatic anomalies have been de-
scribed by several dominant large-scale climate drivers. They include
the Indian Ocean Dipole (IOD) which is expressed by the sea surface
temperature (SST) gradient between the western and eastern tropical
Indian Ocean (Saji and Yamagata, 2003), the El Niño Southern Oscilla-
tion (ENSO) defined by the SST anomalies in the central-eastern equato-
rial Pacific Ocean (McBride and Nicholls, 1983), the Southern Annular
Mode (SAM) which refers to the atmospheric circulation in the mid-
to high-latitudes of the southern hemisphere on interannual timescales
(Marshall, 2003).

The teleconnections between large-scale climate drivers and
Australia's rainfall conditions are among the strongest in the world
(Kirono et al., 2010). Previous studies have suggested that Australia's
extreme hydroclimatic events in the past two decades largely resulted
from the anomalies of these climate drivers and their interactions (Xie
et al., 2019). For example, the 2002–2009 ‘Millennium drought’ was
caused by a combination of long-term upward trend of SAM and
prolonged lack of negative IOD phase (Ummenhofer et al., 2009). Fol-
lowing the Millennium drought, extreme wet periods (2010−2011)
were found to be mostly driven by a sustained strong La Nina event
(Luo et al., 2017), together with a concurrent positive SAM event
(Gergis et al., 2012). The 2015 drought event originated from a strong
El Niño event but was further enhanced by SAM and IOD variability
(L'Heureux et al., 2017; Power and Delage, 2018). The drought events
of recent decades in Australia occurred either across the entire conti-
nent or in specific regions, resulting in severe adverse impacts on crop
production (Dijk et al., 2013). Thus, many studies have focused on em-
pirical relationships between rainfall and large-scale climate drivers in
order to provide timely and reliable climate outlooks and mitigate
drought impacts (Risbey et al., 2009).

It is generally accepted that large-scale climate drivers have varying
influences on rainfall in Australia which is dependent on geographic lo-
cations and seasons (Risbey et al., 2009). For example, the Nino 3.4 SST
variability has been demonstrated to have a predominant impact on
austral autumn rainfall in eastern Australia (van Rensch and Cai,
2014). SAM has been shown to mainly influence southern parts of
Australia (Meneghini et al., 2007). Positive phases of SAM tend to result
in an increase in spring rainfall in southwestWestern Australia andNew
SouthWales (King et al., 2014). There is generally, a negative correlation
between IOD and rainfall from June to October in Western Australia,
Victoria, South Australia, and southern New South Wales (Steptoe
et al., 2018). It should also be noted that these relationships do not act
independently, and each climate driver usually accounts for b20% of
rainfall variability (Gallant et al., 2012; Risbey et al., 2009). Rainfall con-
ditions throughout the Australian continent are generally the result of
the synchronization of these climate drivers (Cleverly et al., 2016).

The teleconnections between large-scale climate drivers and
Australian rainfall provide the scientific basis of data-driven drought
forecast models (Abbot and Marohasy, 2014). Lagged values of large-
scale climate drivers can be adopted as potential predictors of future
drought conditions (Mera et al., 2018; Zhang et al., 2019). In the past
fewdecades, a number of data-driven statisticalmodelswere developed
within different regions of Australia for the forecasting of rainfall or
drought conditions in the next month or season. For example,
Mekanik et al. (2016) developed eight adaptive network-based fuzzy
inference systems models based on lagged values of single or multiple
climate drivers (ENSO, IOD, or Inter-decadal Pacific Oscillation) to fore-
cast spring rainfall in Victoria. Their results suggested that the best
performing models were able to forecast spring rainfall in a 10-year
test period with acceptable correlation coefficients (r = 0.29–0.66)
and low errors (RMSE = 10.9–25.0 mm) in 9 locations of Victoria.
Abbot and Marohasy (2014) used artificial neural networks and lagged
climate variables to forecastmonthly rainfall with 1-month lead time in
3 sites of Queensland and achieved r values of N0.55. The two studies
also demonstrated that statistical models developed using climate
drivers performed better than the state-of-art dynamical model, the
Predictive Ocean Atmosphere Model for Australia (POAMA) developed
and run by the Australian Bureau of Meteorology. Physics-based dy-
namical weather forecasting models are normally considered as the
mainstream approach by scientific community. However, dynamical
models are usually expensive to operate and implement and rely overly
on initial conditions. Despite of substantial technological advances and
research efforts, dynamical models still have similar performance on
seasonal rainfall forecasts in comparison to simple statistical models
(Abbot and Marohasy, 2014). Thus, data-driven statistical models



Fig. 1. The Australianwheatbelt and influential large-scale climate indices fromAustralia's
surrounding oceans. Yellow areas inside the Australian continent denote the Australian
wheatbelt. WA: Western Australia; NT: Norther Territory; QLD: Queensland; SA: South
Australia; NSW: New South Wales; ACT: Australian Capital Territory; VIC: Victoria; TAS:
Tasmania; IOD: Indian Ocean Dipole; SAM: Southern Annular Mode; MEI: Multivariate
ENSO Index; NINO3.4 SST: NINO3.4 sea surface temperature; PDO: Pacific Decadal Oscilla-
tion; SOI: Southern Oscillation Index; TPI: the Interdecadal Pacific Oscillation Tripole
Index. (For interpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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based on large-scale climate drivers can still be used to provide seasonal
rainfall forecasts effectively in various regions of Australia.

The Australian wheatbelt produces about 25 million tons wheat per
year (ABS, 2019). However, wheat yield varies greatly from year to year
and is totally constrained by growing season rainfall. Reliable rainfall
forecast across the wheatbelt is a critical first step to help growers re-
duce yield losses from drought. However, from our knowledge, most
of previous studies were conducted in specific locations of a certain re-
gion, usually a state, and none has ever taken the Australian cropping
areas as the domain. Cropping areas are critical areas that will directly
benefit from reliable rainfall or drought forecasts. Furthermore, most
studies focused on the prediction of next month or next 3 months and
few have ever concentrated on the specific growing season (e.g. Apr.-
Nov.) of the Australian cropping areas (Sacks et al., 2010). Growing sea-
son drought forecasts will provide more preparation time in compari-
son with seasonal forecasts for farmers to develop drought mitigation
strategies. In addition, most previous studies developed linear models
considering up to 9-month lead-time impacts of the climate drivers to
find the predictability (Hossain et al., 2018). Given the complex effects
of climate drivers on Australian rainfall, those linear models might fail
to account for the climate drivers with more lead times. The dominant
driver in a certain location and its nonlinear effect on rainfall also re-
main unknown.

Therefore, from themotivation of better understanding the relation-
ship between growing season rainfall and various lagged large-scale cli-
mate drivers, the present study investigated growing season rainfall in
the Australianwheatbelt as a case study. Instead of forecasting the abso-
lute rainfall amount, we adopted the Standardized Precipitation Index
(SPI) (Deo et al., 2017) as the dependent variable, whichmade the rain-
fall conditions comparable across different geographic regions. More-
over, it is also a commonly used meteorological drought index
evaluating the degree of aridity for a certain location. We implemented
a popular machine learning method, RF, as the regression technique to
build forecasting models, instead of traditional linear models. The pri-
mary objectives of this study are to 1) develop growing season SPI fore-
castingmodels using various lagged large-scale climate drivers for each
climate station throughout theAustralianwheatbelt, 2) identify the best
forecasting model for each location and compare their performance
across the wheatbelt, 3) quantify the effects of the dominant climate
drivers for each station on determining growing season SPI.

2. Materials and method

2.1. Study area

The study areawas the Australianwheatbelt (Fig. 1). It is confined to
a relatively narrow band of land to the southwest, southeast, and east of
the country with a Mediterranean or temperate climate. Actual crop
growing regions across the wheatbelt are about 46 million hectares, ac-
counting for 6% of Australia's total land area (ABS, 2019). Most of
Australia's agriculture, in particular its grain production, is conducted
in the wheatbelt. The most important crop is winter wheat in most re-
gions of the wheatbelt. Winter wheat is normally planted under rainfed
conditions across the wheatbelt. Typical growing season of winter
wheat is from April to November.

2.2. Data

2.2.1. Rainfall data
Long-term (1889 to 2018) historical daily rainfall data were ob-

tained from Scientific Information for Land Owners (SILO) (Long
Paddock, 2019), which is hosted by the Queensland Department of En-
vironment and Science. SILO databases are constructed from observa-
tional records provided by the Australian Bureau of Meteorology. The
databases consist of over 18,000 climate stations across Australia. We
firstly filtered out the stations identified to be located inside the
Australian wheatbelt and ultimately obtained 6726 climate stations
(Fig. S1). Daily rainfall values were then simply summed up into
monthly values for each station. Monthly rainfall series were then
used for calculating SPI in subsequent analysis.

2.2.2. Large-scale climate indices
The Australian continent is surrounded by three oceans, i.e. the Pa-

cific, Indian, and Southern Oceans. Thus, Australia's rainfall conditions
are regulated by the climatic drivers of the three oceans. These climate
drivers include SST fluctuation, air pressure fluctuation, atmospheric
circulation (e.g. Walker and Hadley cells), etc. In the past decades, mul-
tiple indices have been developed to describe various aspects of ocean's
activities. For example, the Southern Oscillation Index (SOI) is calcu-
lated based on the surface air pressure differences between Darwin
and Tahiti, which is one of the key atmospheric indices that gauge the
strength of ENSO-related events in the Pacific Ocean. We selected 7 in-
fluential and commonly used large-scale climate indices as potential
predictors in our study. A brief description of each selected index is
given in Table 1. Monthly data from 1889 to 2018 for each index were
obtained from ESRL (2019).

2.2.3. Wheat yield data
As this study attempted to forecast growing season drought condi-

tions for cropping areas, a typical evaluation criterionwaswhether fore-
casted drought conditions could reflect crop yield for a target year. Since
crops are mainly grown under rainfed conditions across the wheatbelt,
crop yield is likely to be highly correlated with growing season drought
conditions. Thus, we obtained region-level wheat yield observations
from the Australian yield gap map (Yield Gap Australia, 2019) to evalu-
ate the quality of forecasted drought conditions. In this map, the
Australian wheatbelt is divided into 149 SA2 (Statistical Areas Level
2) regions for yield statistics (ABS, 2019). Region-level wheat yield ob-
servations for 2001–2014 are available for each region and were used
in subsequent data analysis.

2.3. Standardized precipitation index

Previous studies in Australia focused on forecasting absolute rainfall
amount for next fewmonths in multiple locations of a certain small re-
gion (Hossain et al., 2019; Mekanik et al., 2016). In this condition, these
locations tended to have similar annual rainfall and interannual



Table 1
Seven large-scale climate indices used in this study.

Name Abbreviation Description Ocean Key reference

Indian Ocean Dipole IOD A sea surface temperature dipole between the western and eastern
tropical Indian Ocean

Indian (Saji et al., 1999)

Southern Annular Mode SAM Pressure dipole between the Antarctic and Southern Hemisphere
midlatitudes

Southern (Thompson and Wallace, 2000)

Multivariate ENSO Index MEI A holistic representation of ENSO-caused atmospheric and oceanic
anomalies using multiple variables

Pacific (Wolter and Timlin, 1998)

Nino3.4 sea surface temperature NINO3.4 Mean SST over the Nino3.4 region (5°N–5°S, 120°–170°W) Pacific (Kaplan et al., 1998)
Pacific Decadal Oscillation PDO A long-lived ENSO-like pattern of Pacific climate variability Pacific (Mantua and Hare, 2002)
Southern Oscillation Index SOI An indication of the development and intensity of El Niño

or La Niña events
Pacific (Horel and Wallace, 1981)

Tripole Index TPI A robust and stable representation of the Interdecadal Pacific
Oscillation phenomenon

Pacific (Henley et al., 2015)
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variability. In our study, we intended to forecast rainfall conditions for a
continent-wide wheatbelt. Average rainfall amount during a given pe-
riod can vary significantly from location to location. Thus, to make it
comparable between locations, we adopted the Standardized Precipita-
tion Index (SPI) as the proxy to evaluate rainfall conditions in each cli-
mate station across the wheatbelt. SPI is a well-reviewed
meteorological drought index and has been recommended as a key
drought index by the World Meteorological Organization (Wilhite,
2006). It is a probability-based indicator that reflects the degree to
which accumulated precipitation for a certain period departs from the
average condition (McKee et al., 1993). It is determined by normalizing
aggregated monthly precipitation based on an equi-probability trans-
formation. In brief, aggregated monthly precipitation series (usually 1,
2, 3, …, or 24 months) is firstly fitted to a probability distribution.
Then the non-exceedance probability related to such aggregated values
is calculated. The corresponding standard normal quantile is defined as
the SPI. In the study, we followed McKee et al. (1993) and adopted a
Gamma distribution function and maximum likelihood method to cal-
culate SPI.

The SPI is a standardized index, usually ranging from −4 to 4. A
value of 0 denotes the median precipitation amount (i.e. normal condi-
tion), while positive values indicate wet conditions (i.e. N2 for ex-
tremely wet) and negative values indicate dry conditions (i.e. b−2 for
extremely dry). SPI can be calculated on various timescales from 1 to
48 months to track dry and wet conditions. In this study, we calculated
SPI at 8-month timescale (Apr.-Nov.) to characterize wheat growing
season drought conditions.

2.4. Bias-corrected random forest

Random forest (RF) was implemented as the regression method to
quantify the relationship between growing season SPI and lagged
large-scale climate indices across the wheatbelt. RF is a popular tree-
based ensemblemachine learning algorithmand can be used to develop
predictive models for both regression and classification purposes
(Breiman, 2001; Chen et al., 2020; Rahmati et al., 2020).We choose ran-
dom forest because its predictive performance can compete with other
commonly used supervised learning algorithms, such as boosted regres-
sion trees (Park et al., 2016) or support vector machine (Naghibi et al.,
2017). Moreover, RF is inherently interpretable. It can provide a reliable
global variable importance estimate (Liaw and Wiener, 2002) and can
also evaluate themarginal effect of a predictor variable on the response
variable (Friedman, 2001).

Ensemble algorithm is a method that generates an averaged result
from multiple learning models. In the case of RF, it first builds a forest
of decision trees using bootstrap aggregating method (Heung et al.,
2014), in which each tree is independently created based on random-
ized subset of predictor variables. All trees in the forest grow to maxi-
mum size without pruning and the mean of the outputs from all of
the trees is determined to be the final outcome (Cutler et al., 2007).
Due to the ensemble algorithm, RF is able to effectively reduce the un-
certainty, leading to better performance compared to single tree-
based approaches (Hastie et al., 2009).

RF predictions are averaged values of all trees' outputs. This is a valu-
able feature that enables RF to avoid abnormal predicted values. How-
ever, when dealing with extreme conditions, RF predictions may have
biases. For example, predictions tend to be underestimatedwhen obser-
vations are large, while overestimated when observed values are small.
As our study focused on forecasting of growing season drought condi-
tions which can be considered as extreme conditions, an effective bias
correction approach was needed in order to produce reliable forecasts.
In our study, an approach developed by Zhang and Lu (2012) was
adopted to estimate and correct bias of the original RF model. This ap-
proach is simple and efficient and its performance with real data is sat-
isfactory (Feng et al., 2019; Zhang and Lu, 2012). Detailed processes of
this bias-correction approach are summarized below.

1) Use training dataset to fit an RF model Ytrain = RF(Xtrain), in which
Xtrain and Ytrain denote independent and dependent variables from
the training dataset.

2) Obtain the predicted values Ŷ train from the RF model above and cal-

culate the residuals by rtrain ¼ Ytrain−Ŷ train.
3) Use the training dataset as independent variables and the residuals

as the dependent variable to fit an RF model rtrain = RFres
(Xtrain,Ytrain).

4) Obtain predicted values (Ytest) based on the test dataset and the RF
model fitted in step (1).

5) Use the RFres model fitted in step (3) with independent variables in
the test dataset and predicted values from step (4) to calculate the
estimated residuals rtest = RFres(Xtest,Ytest).

6) Correct bias by adding the estimated residuals to the predicted
values Ybias−correction = Ytest + rtest.

2.5. Model development and evaluation

There are 6726 climate stations across the wheatbelt, and growing
season drought conditions may vary greatly among the stations. More-
over, the impacts of a certain climate driver also vary in different regions
(Risbey et al., 2009). Thus, we intended to build a growing season SPI
forecasting model for each station separately. As the response variable,
wheat growing season SPI was derived from the monthly rainfall data
of each of 6726 stations during 1889–2018. Predictor variables for all
stations were large-scale climate indices prior to the growing season
(Apr.-Nov.). Previous studies usually used lagged climate indices of pre-
vious 3 months to forecast rainfall in Australia (Mekanik et al., 2016). In
the present study, we adopted lagged climate indices of previous
12 months (Apr.n-1-Mar.n, n is the year for which growing season SPI
is forecasted), to explore whether large-scale climate drivers with lon-
ger lead time still had impacts on rainfall conditions of next year.
Thus, 84 (7 indices * 12 months) predictor variables were involved in
the forecasting model for each climate station.
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Including 84 predictor variables in a single forecasting model might
be susceptible to increased computation time and over-fitting problems
because of the “curse of dimensionality” (Feng et al., 2019). Thus, iden-
tifying the most informative subset of predictor variables for each cli-
mate station was necessary. In the present study, we adopted the
Boruta approach (Kursa and Rudnicki, 2010) to exclude redundant pre-
dictor variables. This approach is designed as awrapper built around the
Random Forest algorithm. It iteratively excludes the variableswhich are
proved to be less relevant than random probes by a statistical test and
capture all important predictor variables in the dataset with respect to
the dependent variable. Detailed descriptions of the Boruta approach
can be found in Kursa and Rudnicki (2010). We applied this approach
for each climate station prior to developing the SPI forecasting model
using the “Boruta” package in R software (R Core Team, 2019).

For each climate station, the dataset was randomly divided into two
independent datasets, the calibration dataset (80%) and the validation
dataset (20%). Then the RF model was fitted using the calibration
dataset and was evaluated using the validation dataset for each station.
We used default values of two parameters in the RF model, i.e. mtry:
total number of input predictors divided by 3 and ntree: 500. This pro-
cess was executed 100 times to assess the stability of the model. The
Pearson's correlation coefficient (r) and normalized Root Mean Square
Error (nRMSE) were used for the evaluation of model performance:

r ¼
∑i¼1

n Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
∑i¼1

p n
Oi−O

� �2 ffiffiffiffiffiffiffiffiffiffiffiffi
∑i¼1

p n
Pi−P
� �2 ð1Þ

nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑i¼1

n

Pi−Oið Þ2
r

Omax−Omin
� 100% ð2Þ

where n is the number of samples, Oi and Pi are observed and predicted
values,O andP are themean of observed and predicted values,Omax and
Omin are maximum and minimum observed values. r measures the
strength of a linear association between predicted and observed values.
While nRMSE represents the relative standard deviation of the residuals
(prediction errors). Generally, themodel performs increasinglywell as r
approach 1. For nRMSE, if it is lower than 10.0%, performance of the
model is considered excellent; higher than 10.0% but lower than
20.0%, good; higher than 20.0% but lower than 30.0%, fair; higher than
30.0%, poor (Dettori et al., 2011; Nouri and Homaee, 2018). In addition,
we also conducted a model test procedure by forecasting growing sea-
son SPI of several target years (2016, 2017 and 2018) using the model
developed based on all available data from previous years for each tar-
get year. This procedure could help evaluate the performance of the
Fig. 2. Time series of centennial (1889–2018) growing season SPI for all climate stations across
The black linewithin each box, two box boundaries, and whiskers below and above each box in
linked up themean values from all distributions using a continuous thick black line. Then, altern
on the red and blue shaded areas under and above y = 0 line. (For interpretation of the referen
RF model in practical drought forecasting. In this procedure, nRMSE
and the Q-Q (Quantile-Quantile) Plot (Tsai and Yang, 2005) between
forecasted values andobserved valueswere used to evaluatemodel per-
formance. The Q-Q Plot presents a quantile-quantile plot of the
quantiles of forecasted values and the quantiles of observed values. If
the two kinds of values come from a same distribution, then points in
the plot follow the y = x line.

3. Results

3.1. Descriptive statistics of SPI and climate indices

Long term growing season SPI was calculated for all climate stations
across the wheatbelt. The distribution of SPI values from all climate sta-
tions in each year was illustrated using a box shown in Fig. 2. Red and
blue shaded areas in Fig. 2 reflect dry and wet periods in the history.
There was great inter-annual variability of growing season SPI in the
wheatbelt. Years with serious dry conditions occurred frequently over
the past hundred years, such as 1902, 1940, 1982, and 2002. Each period
usually lasted for 1–8 years and then an opposite period occurred. This
alternation phenomenon might relate to oscillation activities occurred
in the surrounding oceans of Australia. In addition, we also noticed
that the interval between 10th percentile and 90th percentile was
large and stretched across the y = 0 line in most years. This meant
that drought conditions could vary greatly in different climate stations
in a same year given such a broad area. Thus, exploring the relationships
between growing season drought conditions and oceanic oscillation ac-
tivities in each climate station separately was necessary.

We then calculated Pearson's correlation coefficients at all climate
stations to give a preliminary outlook of the relationships between
growing season SPI and each selected climate indices. In general, MEI
and NINO3.4 were positively correlated with growing season SPI, but
SOI was negatively correlated with SPI (Fig. 3). While for other indices,
correlation coefficients depended on lagged months. For example, TPI
had negative correlations with SPI in adjacent months (Mar. and Feb.)
with growing season but positive correlations with earlier months.

The italic number below each correlation coefficient value in Fig. 3
indicates the number of stations with a significant correlation. For ex-
ample, there were 2611 sites where January SOI had a significant corre-
lation with growing season SPI. NINO3.4 in antecedent May and TPI in
antecedent July also significantly correlated with SPI in many stations.
Large-scale climate indices of previous yearmight also have prospective
impacts on growing season drought conditions of current year. In addi-
tion, the absolute r values were small and usually around 0, which indi-
cated that the teleconnections between climate drivers and SPI were
weak. Pearson's correlation only measures the strength of a linear
the wheatbelt. The box for each year reflects the distribution of SPI values from all stations.
dicate median, 25th and 75th percentiles, and 10th and 90th percentiles, respectively.We
ation of dry andwet periods during the past hundred years can be clearly illustrated based
ces to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Pearson's correlation coefficients between growing season SPI and lagged large-scale climate indices based on all climate stations across the Australia wheatbelt. 12-month (Jan.-
Mar. in target year and Apr.-Dec. in antecedent year) values of 7 climate indices prior to the growing season were used. Mean value of correlation results of all climate stations for each
index is shown as gradient colour, while 10th~90th values of correlation results are given in text. The italic number below each value indicates the number of stations showing significant
correlation (P b 0.05). Months labels with red colour and blue colour indicate months of target year and antecedent year respectively (A same rule is also applied to other Figures and
Tables). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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association between two data series. There may be other relationships
(e.g. nonlinear) thatwewould use the RF algorithm to explore in subse-
quent analysis.

3.2. Model performance

We developed drought forecasting models for each individual cli-
mate station. Mean values of two model performance metrics (r and
nRMSE) from 100 runs of each station's model are shown in Fig. 4.
10th and 90th percentile values of the two metrics are present in
Fig. S2 in the Supplementary material. Overall, the bias-corrected RF
model performed better in the east of Australia than in the west. r and
nRMSE values in the east were mostly above 0.5 and below 23% respec-
tively, compared to 0.3 and 27% in the west. Thus, growing season
drought could be better forecasted in eastern Australia using lagged
Fig. 4.Model performance metrics (Pearson's correlation coefficient (r) and normalized Root M
models and with lagged large-scale climate indices. Results were averaged values of two stati
climate station.
climate indices. This might be due to that most climate indices used in
this study were from the Pacific Ocean, but western Australia is geo-
graphically far away from the Pacific and is less affected by the Pacific
(Risbey et al., 2009).

We also conducted a model validation process by forecasting grow-
ing season drought conditions of a target year using the model devel-
oped based on all available data from previous years. Observed and
forecasted SPI values for three recent and representative years 2016,
2017, and 2018 are shown in Fig. 5. As 2016 was a wet year, 2017 was
a near normal year, and 2018 was a dry year (Fig. 2), these forecasting
results could evaluate whether the RF model could potentially provide
effective drought forecasts upon years with different drought condi-
tions. As shown in Fig. 5, RF-forecasted drought conditions were gener-
ally consistent with observed drought conditions during the wet, the
normal, and dry years. Two metrics, the Q-Q Plot and nRMSE, were
ean Square Error (nRMSE)) for forecasts of growing season SPI using random forest (RF)
stical metrics based on 100 independent runs of model development procedure for each



Fig. 5. Comparison between observed and RF-forecasted growing season drought conditions for three representative years, 2016, 2017, and 2018. Normalized Root Mean Square Error
(nRMSE) and Q-Q (Quantile-Quantile) plots of observed and RF-forecasted SPI values across the Australian wheatbelt are used to evaluate model performance.
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used to compare observed and forecasted drought conditions quantita-
tively (Fig. 5). The Q-Q Plot indicated a good match between the fore-
casted and observed drought conditions for each year, as points
generally followed the y = x line. This meant that overall drought
level was generally well captured by the RF model. Meanwhile, nRMSE
also suggested fair predictions for each year, as nRMSE were all below
30%.

3.3. Dominant large-scale climate index

The RFmodel can provide a list of variables' importance values based
on each variable's relative influence on model accuracy (Breiman,
2001). Averaged importance values for each involved climate index
based on 100 runs were used to determine the dominant climate
index for a certain station. Spatial distribution of these dominant
climate indices is presented in Fig. 6. This figure could provide insights
on the dominant climate index of different zones affecting growing sea-
son drought conditions. The lagged NINO3.4 as the most important
index had broadly spread influence in nearly all zones of the wheatbelt.
In particular, NINO3.4 in Oct., Dec., and Jul. of antecedent year were the
dominant indices in modulating growing season drought conditions of
current year in N2500 climate stations (Tables S1–3). It was interesting
to find that NINO3.4 in Jan-Mar mainly affected drought conditions in
eastern Australia, while NINO3.4 in antecedent year was dominant in
southern and southwestern Australia. MEI, another index from the Pa-
cific, also had dominant impacts on drought conditions in many sta-
tions. MEI in months adjacent to growing season tended to have
greater effects on drought conditions compared to MEI in earlier
months. By contrast, MEI in last year dominated SPI change in most
southern and southwestern Australia. In addition, we also found that



Fig. 6. Spatial distribution of locations dominated by each laggedmonthly climate index. Results were obtained based on 100 independent runs of model development procedure for each
station. Mean variable importance values generated from the RF model were used to determine the most important climate index for each station.
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monthly IOD and SAMwere recognized as the most important in many
stations in southwestern Australia. This is consistentwith Fig. 1, as these
two climate drivers affect Australia from west to east.

As presented above, the RFmodel identified dominant climate index
in affecting growing season drought conditions in each climate station.
Investigating the dynamical responses of drought conditions to the
change of dominant climate index in each station can help obtain a
quick outlook of possible growing season drought conditions. Marginal
effects (grey lines in Fig. 7) of dominant climate index on growing
season SPI for each stationwere obtained from the RFmodel. The nature
of the dependence between the response variable and the selected pre-
dictor variable could be described by the trends of the lines. In Fig. 7, we
used actual values of each index instead of scaled values for a more in-
tuitive presentation of the effects of dominant climate index on SPI. In
general, growing season SPI of stations with a same dominant index
showed similar patterns to the dominant index, as denoted by a similar
trend of grey lines in each small plot of Fig. 7. MEI and NINO3.4were the
two most critical indices as denoted above and they followed “U”



Fig. 7. Partial dependence of growing season SPI on dominant large-scale climate indices. The RFmodel can offer partial dependence of the change in the dependent variable for a selected predictor variable, when considering the average impact of all
other predictor variables. We obtained partial dependence results of the dominant climate index (Table S1 and Fig. 6) from one run of the RF model using all available data (1889–2018) for each station. Partial dependence results of stations with a
same dominant climate index were grouped. Top three months (Table S1) of each kind of climate indices are shown in each small plot above. Grey line in each small plot represents partial dependence results for all climate stations with a same
dominant climate index. Red line is the averaged line based on all grey lines in each small plot. n is the number of climate stations from Table S1 for each subplot. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.) 9
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pattern relationship with growing season SPI. Drought conditions
tended to occur in affected stations when MEI was around 0 and
NINO3.4 was around 26–27 °C, both of which represented normal
ENSO patterns. The marginal effects of other indices depended on
months. For example, TPI inMar. of current year and Nov. of antecedent
year had negative impacts on SPI, while July TPI in antecedent year had
positive impacts.
3.4. Correlation between forecasted SPI and crop yield

As we managed to forecast growing season drought conditions in
this study, a typical evaluation criterion is whether forecasted drought
conditions can reflect crop yield of target year. Thus, we calculated
Pearson's correlation coefficients between forecasted SPI values and
region-levelwheat yield records. Before calculation,wheat yield records
(2001–2014) for each region were firstly detrended using a simple and
effective method, first-difference (Feng et al., 2018), to exclude yield
trends caused by non-climatic factor. This method was adopted using
the following equation:

ΔXn ¼ Xn−Xn−1; n ¼ 2001;2002;…;2014 ð3Þ

where ΔXn denotes the first different of X at year n. Growing season SPI
values for each year were forecasted by the RF model developed based
on available lagged climate indices before forecasting year for each sta-
tion. Then, forecasted SPI series of stations within a same SA2 region
were aggregated and also detrended to calculate correlation coefficient
with detrended yield series. We also calculated correlation coefficients
between detrended observed SPI values and region-level wheat yield
as benchmarks. As shown in Fig. 8(a), wheat yields were generally
highly correlated (r N 0.54) with observed SPI in most regions of the
wheatbelt. This means that wheat yield was largely subjected to
drought conditions in thewheatbelt. Forecasted SPI showed higher cor-
relationswithwheat yields in the east of Australia than in thewest. This
is consistentwith the results of Fig. 4, as the RFmodel tended to provide
better drought forecasts in eastern Australia. Specifically, wheat yield in
the southeastwas highly correlatedwith forecasted SPIwith correlation
coefficients N0.6. However, poor correlations were also found in the
northeast of the wheatbelt. This might be due to that these regions are
summer dominant rainfall regions and wheat is predominantly grown
on stored water from preceding summer.
Fig. 8. Pearson's correlation coefficients between detrended wheat yield and detrended (a) obs
season SPI was forecasted by the RF model using available lagged climate indices before a targ
region were aggregated and then detrended to calculate correlation coefficients with detrende
4. Discussion

Australia is naturally a drought reoccurring continent. Frequent
drought disasters in the past hundred years have caused great losses
to agricultural production. In this study, we made use of the prognostic
features of large-scale climate indices to forecast drought conditions of
wheat growing season in the Australian crop belt. The results of model
performance show that the bias-corrected RF model could provide ac-
ceptable drought forecasts with r N 0.5 and nRMSE b 23% in most parts
of the wheatbelt (Fig. 4). This performance is consistent with previous
studies that adopted similar data driven models as well as operational
dynamical models. For example, Mekanik et al. (2016) used 3-month
lagged NINO3.4, SOI, and IOD indices and adaptive network-based
fuzzy inference systems models to forecast spring rainfall in 9 stations
of southeast Australia. They obtained r values of 0.29–0.66 for the test-
ing period (2000–2009), which outperformed the benchmark model
method used in their study, the POAMA dynamical model. The
POAMAmodelwas previously used by Australian government to gener-
ate officialweather forecasts (McIntosh et al., 2007). Although the abso-
lute performance of the POAMAmodelwasnot excellent, it can still help
stakeholders minimize losses and maximize profits in potentially “bad”
seasons (Stone et al., 1996; Asseng et al., 2012a; Asseng et al., 2012b).
Our proposed model focused on drought forecasts of longer lead time
and showed comparable performance, thus it could provide valuable in-
formation for stakeholders across the wheatbelt to develop drought
mitigation planning in advance. In addition, our research also demon-
strates that using machine learning based data driven models can be a
simple and effective way to provide drought outlooks in regions of
interest.

The RF model in our study had better performance in the east of
Australia than in thewest (Fig. 4). This might be due to that we adopted
more indices from the Pacific and these indices had greater prospective
impacts on growing season rainfall. However, Western Australia is less
affected by oceanic oscillation phenomena from the Pacific as it is geo-
graphically far away from the Pacific (Risbey et al., 2009). Meanwhile,
available indices from its surrounding oceans (Fig. 1, IOD, the Indian
Ocean and SAM, the Southern Ocean) might not be able to provide suf-
ficient information for theprediction of growing season rainfall inWest-
ern Australia (Fig. 4). It is possible that there are some influential but
undiscovered oceanic activities from the Indian Ocean or the Southern
Ocean that affect growing season rainfall. In addition, the intensity of
oceanic activities from the IndianOcean has increased during recent de-
cades. For example, the major driver of several main droughts in 20th
century in Australia was attributed to increased occurrences of positive
erved and (b) forecasted growing season SPI for SA2 regions from 2001 to 2014. Growing
et year for each station. Observed and forecasted SPI series of stations within a same SA2
d yield series. Values larger than 0.54 indicate significant correlations (P b 0.05).
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IOD events rather than ENSO related phenomena (Cai et al., 2012;
Nguyen-Huy et al., 2018; Yuan and Yamagata, 2015). Therefore, more
efforts should be made on exploring potential oscillation activities
from the Indian or Southern Oceans.

Current available large-scale climate indices have different impacts
on growing season drought conditions in different zones of the
wheatbelt. From the linear correlation results (Fig. 3), we found that
SOIwas the dominant index that affected growing season SPI. However,
it was not identified as the most important index by the RF model. In-
stead, NINO3.4 and MEI were determined as the two most critical indi-
ces across the wheatbelt. This might be due to some nonlinear impacts
from these two indices captured by the RFmodel. Multiple pieces of ev-
idence have pointed out the nonlinear relationships between rainfall
anomalies and ENSO events (Mekanik et al., 2013; Power et al., 2017).
We also found that each index affected particular zones more than
others (Fig. 6). For example, MEI, NINO3.4, SOI, and TPI from the Pacific
Ocean could influence rainfall conditions of the whole wheatbelt as
commonly recognized (Nicholls, 1985; Power et al., 1999). IOD and
SAM mainly affected zones in Western Australia. These two climate
drivers affect Australia from west to east (Fig. 1), thus they are likely
to exert more impacts on rainfall conditions in western zones (Risbey
et al., 2009). PDO also mainly affected zones in Western Australia,
which might be because that warm PDO phases tend to coincide with
anomalously wet periods in Western Australia (Mantua and Hare,
2002). In addition, some climate indices, reflecting Jul.-Dec. of anteced-
ent year, such asMEI andNINO3.4,were identified as dominant inmany
climate stations (Table S1).Moreover, index of earliermonths tended to
affect zones that are geographically distant from the index's originating
ocean. For example, NINO3.4 in previous Apr.-Jun. was the dominate
index in many stations in Western Australia (Fig. 6). These results indi-
cate that lagged impacts of oceanic oscillation activities on rainfall con-
ditions may depend on geographical distance.

Quantifying the dynamical responses of drought conditions to the
change of dominant climate index in each station can help obtain a
quick outlook of possible growing season drought conditions. It is inter-
esting to find that NINO3.4 and MEI both had nonlinear “U” pattern re-
lationshipwith growing season SPI (Fig. 7). NINO3.4 indices inDec., Oct.,
and Jul. of last year around 26–27 °C are likely to bring dry growing sea-
son of current year for most zones of the wheatbelt, while MEI indices
around 0 tend to cause growing season drought. In addition, a certain
index of different leadmonthsmight present differentmarginal impacts
on growing season conditions. For example, SOI in lastMay had positive
impacts, which is consistent with our current knowledge on SOI (Stone
and Auliciems, 1992), while SOI in current Feb. had negative impacts
(Fig. 7). Thus, actual impacts of climate indices on growing season
drought conditions depend on lead months. These results can help us
gain a deeper understanding of the impacts of large-scale climate indi-
ces on rainfall conditions.

Drought is commonly considered as the main factor causing yield
losses in rainfed cropping region across the world (Zampieri et al.,
2017). Therefore, it is necessary to test the relationship between fore-
casted SPI and wheat yield, which could provide valuable information
for guiding agricultural practices. In this study, high correlation coeffi-
cients were found between model-forecasted SPI and observed wheat
yield records in southeast of thewheatbelt (Fig. 8). As drought forecasts
can be made at the end of March, farmers can have enough time to de-
velop agronomic strategies to reduce drought-induced yield losses dur-
ing crop growing season of Apr.-Nov., such as selecting appropriate
cultivar or sowing date. Many previous studies have built direct rela-
tionships between preceding large-scale climate indices and yield of a
certain crop (Anwar et al., 2008; Rimmington and Nicholls, 1993;
Schillerberg et al., 2019) and demonstrated strong correlation between
them. Our study focused on growing season drought forecasting, which
could provide warning information for different kinds of crops. Never-
theless, all these studies demonstrate that use of large-scale climate in-
dices can potentially help developing agricultural planning.
Our present study obtained comparable growing season drought
forecasting results for theAustralianwheatbelt based onmachine learn-
ing technique and large-scale climate indices. Data of all available years
were involved to develop the forecasting model. We treated each cli-
mate station independently to run the RF model for growing season
drought forecast as thismay provide valuable information for each indi-
vidual farm in the Australian wheatbelt. Our results were obtained
without considering spatial autocorrelation (Legendre, 1993). Future
studies that accounts for spatial autocorrelation may help strengthen
the results. Statistical models normally assume stationary relationships
between the response and predictor variables. However, the impact of a
given climate driver may shift over time (Ummenhofer et al., 2009).
Various oceanic oscillation activities can also interact with each other
and cause complex climate conditions with less predictability (Sein
et al., 2015). In addition, extreme temperature can also contribute to
the occurrences of drought events and is also subjected to the effects
of oceanic oscillation activities in Australia (White et al., 2014). There-
fore, future studies should pay more attention to non-stationary
predictor-response relationships or interactions among climate drivers
and use drought indices with more climate factors considered in order
to obtain more reliable long-term drought forecasts.

5. Conclusions

The study developed a growing seasonmeteorological drought fore-
casting model for the Australian wheatbelt using machine learning
technique andmultiple lagged large-scale climate indices. Observed cli-
mate data and regional wheat yield records were adopted as reference
data to evaluate the performance of the drought forecasting model. Re-
sults indicate that oscillation activities from Australia's surrounding
oceans could largely account for growing season drought in eastern
wheatbelt. The bias corrected random forecast model was able to pro-
vide satisfactory drought forecasts in eastern parts of study area. How-
ever, the model performed poorly in the west of the wheatbelt, which
highlights more research to explore oscillation phenomena occurring
in the Indian or Southern Oceans.

NINO3.4 andMEIwere identified as the twomost critical indices that
dominate growing season drought conditions across the wheatbelt.
Both indices had “U” pattern relationship with growing season drought
conditions. It is important to have this partial dependence plot of SPI
and climate indicators because the threshold of each index could be ac-
quired to generate immediate drought probability. In addition, we
found large-scale climate drivers had lagged impacts on growing season
drought conditions. Indices in previous year could also potentially affect
drought conditions in current year.

Australia is a major grain producer and exporter in the world. Reli-
able growing season drought forecasting can effectively help stake-
holders reduce drought-induced yield losses, which is of great
importance for both national food supply and global food security. We
believe the drought forecasting model developed in this study can pro-
vide valuable information for Australian farmers and policy makers.
Moreover, the proposed forecasting model could also easily be imple-
mented in other similar rainfed regions as input data are readily
available.
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