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ABSTRACT

Gross primary production (GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems. A set of validated
monthly GPP data from 1957 to 2010 in 0.5° × 0.5° grids of China was weighted from the Multi-scale Terrestrial Model
Intercomparison Project using Bayesian model averaging (BMA). The spatial anomalies of detrended BMA GPP during the
growing seasons of typical El Niño years indicated that GPP response to El Niño varies with Pacific Decadal Oscillation
(PDO)  phases:  when  the  PDO  was  in  the  cool  phase,  it  was  likely  that  GPP  was  greater  in  northern  China  (32°–38°N,
111°–122°E) and less in the Yangtze River valley (28°–32°N, 111°–122°E); in contrast, when PDO was in the warm phase,
the  GPP  anomalies  were  usually  reversed  in  these  two  regions.  The  consistent  spatiotemporal  pattern  and  high  partial
correlation  revealed  that  rainfall  dominated  this  phenomenon.  The previously  published findings  on how El  Niño during
different phases of PDO affecting rainfall  in eastern China make the statistical  relationship between GPP and El Niño in
this study theoretically credible. This paper not only introduces an effective way to use BMA in grids that have mixed plant
function types, but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Niño
and PDO.
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Article Highlights:

•  Bayesian multi-model averaging was used to produce reliable GPP in China in a reasonable way.
•  El Niño during the cool/warm phase of the PDO generally leads to greater/less GPP in northern China and less/greater

GPP in the Yangtze River valley.
•  This result is mostly due to the close relationship between rainfall and growing season GPP in eastern China.
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1.    Introduction

Gross primary production (GPP) is the total amount of
carbon dioxide "fixed" by land plants per unit time through
the  photosynthetic  reduction  of  CO2 into  organic  com-
pounds  (Gough,  2011).  The  capacity  of  terrestrial  GPP  to
partly  offset  anthropogenic  CO2 emissions  is  especially
important for China, where the emissions of fossil fuel CO2

into the atmosphere are high (Gregg et al., 2008). The subtrop-
ical  forests  in  eastern  China  can  take  in  a  considerable
amount of CO2 (Yu et al., 2014), and contribute remarkably
to  the  total  carbon  sequestration  of  Chinese  ecosystems
(Zhang et al., 2019a). The climate in eastern China is domin-
ated by the East Asian Summer Monsoon (EASM), which is
one of the most active components in the global climate sys-
tem and can significantly affect the movement of local rain
belts (Ding et al., 2008). Given the ecological importance of
the monsoon climate in China and the high sensitivity of the
carbon  uptake  of  ecosystems  in  EASM  region  to  rainfall
(Dan  et  al.,  2015; Zhang  et  al.,  2019a),  it  is  important  to
develop  a  deeper  understanding  of  the  response  of  GPP to
the variability in rainfall during the EASM.

Different  modes  of  sea  surface  temperature  (SST)  can
explain  most  of  the  inter-annual  and  inter-decadal  vari-
ations  of  rainfall  in  China  (Yang  and  Lau,  2004).  Two
modes  of  SST  that  reflect  strong  climatic  teleconnections
with the EASM rainfall are El Niño and the Pacific Decadal
Oscillation (PDO) (Ma, 2007). An El Niño event is character-
ized by anomalous warming in the central and eastern equat-
orial  Pacific  Ocean  and  occurs,  on  average,  every  two  to
seven  years.  By  contrast,  the  PDO  (Mantua  et  al.,  1997;
Qian and Zhou, 2014) is marked by an inter-decadal cycle,
and  is  mainly  present  in  the  North  Pacific  (poleward  of
20°N). During the warm phase of the PDO, SST tends to be
anomalously  cool  in  the  central  North  Pacific,  coincident
with  anomalously  warm  SST  in  the  eastern  North  Pacific,
whereas  the  spatial  pattern  of  SST  is  reversed  during  the
cool phase of the PDO.

Because the inter-annual variability in the atmospheric
concentrations of CO2 induced by El Niño is mainly attrib-
uted  to  tropical  terrestrial  ecosystems  (Yang  and  Wang,
2000; Cox et al., 2013; Wang et al., 2013; Liu et al., 2017),
previous studies have primarily focused on how terrestrial car-
bon fluxes in the tropics responding to changes in the Earth’
s  climate  (especially  changes  in  temperature  and  rainfall)
caused by El Niño (Gu and Adler, 2011; Bastos et al., 2013;
Wang  et  al.,  2016; Fang  et  al.,  2017).  The  most  common
way to investigate the decadal variability in the terrestrial car-
bon budget caused by the PDO is to use the long-term telecon-
nection between the PDO indices and specific carbon cycle
variables  (Wharton  and  Falk,  2016; Zhang  et  al.,  2018).
However, this method is unable to reflect the impact of the
variability of local chaotic weather events (Ito, 2011), espe-
cially when the responses of terrestrial carbon cycle to differ-
ent El Niño events are contrasting (Liu et al., 2017; Wang et
al., 2018). Hence, the mixed effects of El Niño and the PDO
on the carbon cycle in the extratropical monsoon regions of

China are still poorly understood.
Even though the spatiotemporal patterns of rainfall anom-

alies over East Asia associated with individual El Niño epis-
odes are variable (Wang et al., 2017), Feng et al. (2014) still
found relatively stable relationships between the EASM rain-
fall  and El  Niño under different  phases of  the PDO. When
the PDO is in a cool phase, with a high-pressure area in the
subtropical  western Pacific clearly experiencing two north-
ward shifts, positive rainfall anomalies move from southern
to northern China. By contrast, when the PDO is in a warm
phase,  a  greater  amount  of  rainfall  is  observed  in  central
China, whereas less rainfall is observed in southern and north-
ern China. How GPP responds to these specific rainfall pat-
terns is still unclear.

The purpose of this study was to determine the relation-
ship  between  the  GPP  and  the  changes  in  rainfall  associ-
ated with El Niño under different phases of the PDO in east-
ern  China.  In  particular,  we  attempted  to  identify  the
regions  driving  this  relationship  and  to  demonstrate  the
response of GPP to El Niño and the PDO. The results may
have  implications  for  how  terrestrial  carbon  dynamics
responding to variabilities in the Earth’s climate. 

2.    Materials and Methods
 

2.1.    MsTMIP GPP and CRU–NCEP Datasets

The rainfall  patterns  described  in  the  fourth  paragraph
of the Introduction were revealed and explained by data span-
ning  from  1957  to  2010.  Given  the  data  consistency,  this
study also focused on the same period and selected the same
El  Niño  years  (see Table  1)  as Feng  et  al.  (2014).  Com-
pared  with  other  approaches,  the  Terrestrial  Biosphere
Model  (TMB)  is  a  preferred  method  to  estimate  carbon
fluxes over such a long period because of the availability of
climate  forcing  data  and  process-based  simulation.  The
monthly GPP products of 15 TMBs in the Multi-scale syn-
thesis and Terrestrial Model Intercomparison Project (MsT-
MIP)  (Huntzinger  et  al.,  2013; Wei  et  al.,  2014)  were
applied here. The MsTMIP version 1.0 dataset includes four
global (0.5° × 0.5° resolution) sensitivity simulations (SG1,
SG2,  SG3  and  BG1)  which  can  systematically  assess  the
impacts of different forcing factors.  The model-driven data
in  MsTMIP  version  1.0  are  climate  variables  (Climate),
land use/land cover changes (LUCC), the atmospheric CO2

concentration (CO2) and nitrogen deposition (N). The time-
varying drivers in the four global sensitivity simulations are
Climate (SG1), Climate + LUCC (SG2), Climate + LUCC +
CO2 (SG3), and Climate + LUCC + CO2 + N (BG1). BG1 only
includes a limited number of models as a result of the lack
of  a  nitrogen  cycle  in  other  MsTMIP  members.  SG3  and
BG1 are presumed to be closer to reality than SG1 and SG2
and were therefore used in this study. The CLASS-CTEM-
N model was excluded because its GPP estimates for China
are much lower than is reasonable (Shao et al., 2016).

The  available  climatology  datasets  from  the  Climate
Research Unit (CRU) (Harris et al., 2014) and the National
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Centers for Environmental Prediction (NCEP)/National Cen-
ter for Atmospheric Research (NCAR) (Kalnay et al., 1996)
cannot  fully  meet  the  spatial  and temporal  requirements  of
MsTMIP. Therefore, a new dataset named CRU-NCEP was
produced  by  combining  the  strengths  of  the  datasets  from
the CRU and NCEP/NCAR as driver data for MsTMIP. The
CRU–NCEP dataset not only maintains a good match to the
observed rainfall in China (Zhao and Fu, 2006), but also cor-
rects the known biases in temperature and downward short-
wave  radiation  in  the  NCEP/NCAR  reanalysis  products
(Wei  et  al.,  2014).  Therefore,  the  globally  gridded  (0.5°  ×
0.5°) and monthly CRU-NCEP dataset was chosen to determ-
ine the relationships between GPP and the particular meteoro-
logical  factors  (rainfall,  temperature,  and  downward  short-
wave radiation). 

2.2.    Bayesian Model Averaging

y

M = (M1, · · ·,MK) M
σ2 Pr

Mk βk

t

Eight  typical  ChinaFLUX  sites  (see  Appendix  A.1)
were  selected  to  validate  modeled  GPP.  After  comparing
with the observed GPP from ChinaFLUX, it was found that
there  were  large  uncertainties  in  the  MsTMIP  GPP  (see
Appendix A.2). Selecting only one model may lead to statist-
ical biases and an underestimation of the uncertainties (Neu-
man, 2003; Raftery et al., 2005). Bayesian model averaging
(BMA) (Hoeting et al., 1999) can effectively solve this prob-
lem. After comprehensively considering the conditional distri-
bution  of  each  ensemble  member,  BMA  takes  the  max-
imum of the probability density function (PDF) as an indi-
vidual model’s weighted coefficient following a training pro-
cess.  Thus,  the  final  weighted  average  results  reflect  each
model’s  optimum  contribution  to  the  quantities  of  interest
(Wasserman,  2000).  We  used  the  MATLAB  toolbox
provided by Vrugt (2016) to implement BMA. The core math-
ematical  expressions  are  as  follows.  If  is  the  quantity  of
interest  on  the  basis  of  the  training  data yT,  and

 is the set of all models with mean  and
variance , then  is expressed as the PDF, the weighted
coefficient of  is defined as , and the PDF of BMA at a
given time  is: 

Pr(yt)=
K∑

k=1

βkPrk(yt

∣∣∣Mk,σ
2
k ) . (1)

The optimum of the likelihood function is: 

f (βk,σk)= argmax
T∏

t=1

Pr(yt) . (2)

yT βkAfter implementation of training with data ,  from
the solutions of Eq. (2) should satisfy the conditions: 

K∑
k=1

βk = 1 ; βk ⩾ 0 . (3)

Mk βTrees,k βGrasses,k βCrops,k

fracTrees fracGrasses fracCrops
β∗k Mk

The  plant  function  types  (PFTs)  were  simply  merged
into three classes (trees, grasses, and crops) when the BMA
was trained during 2003–08 (see Appendix A.3). Before the
weighted coefficients for different models were used at the
regional  scale,  they  needed to  be  further  modified  depend-
ing on the proportion of land cover types in each grid cell. If
the  BMA weighted  coefficients  trained  in  the  ChinaFLUX
sites for  are , , and , and the propor-
tion  of  trees,  grasses,  and  crops  in  each  grid  cell  are

, , and , respectively, then the modi-
fied weighted coefficient  for  in the target grid cell is
defined as: 

β∗k =
wk

K∑
k=1

wk

, (4)

wk = βTrees,kfracTrees + βCrops,kfracCrops + βGrasses,k

fracGrasses

where 
.  The BMA GPP in the target  grid cell  was given

as: 

GPPBMA =

K∑
k=1

β∗kGPPk . (5)

 

2.3.    Data Preprocessing

To highlight the impact of the EASM on GPP, May and
September were defined as the start and end months of the
growing season corresponding to the onset  and withdrawal
months of the EASM. When analyzing the response character-
istics of GPP to El Niño over China and the corresponding
mechanism, GPP and the meteorological data were not only
limited  to  the  growing  season  in  each  year,  but  also  were
detrended  to  minimize  the  possible  influence  of  long-term
trends. Trends were calculated by simple linear regression. 

3.    Results
 

3.1.    Validation  of  the  BMA  GPP  at  the  ChinaFLUX
Sites

The MsTMIP and BMA GPP data in the grid cells con-

Table 1.   Characteristics of the 16 El Niño years in this study.

PDO phase El Niño years and intensities

Warm Major Minor Super Moderate Moderate Major Super Moderate
1957 1976 1982 1986 1987 1991 1997 2002

Cool Minor Major Minor Major Moderate Moderate Minor Major
1963 1965 1968 1972 1994 2004 2006 2009

Note: The intensities of El Niño were categorized as defined in Wang et al. (2017).
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taining ChinaFLUX sites from 2009 to 2010 were chosen to
evaluate  the  rationality  of  using  BMA.  The  efficiency  cri-
teria used in this section are Ef indices (see Appendix A.4).
The Ef indices  for  different  models  are  listed  in Table  2.
BMA performed better than the MsTMIP models in the quali-
fied  grid  cells  corresponding  to  Changbaishan,  Qianyan-
zhou,  Yucheng,  and  Inner  Mongolia,  thereby  proving  its
strength for the typical PFTs at these sites. Even though the
Ef indices  calculated  in  the  grid  cells  for  Dinghushan  and
Haibei were not statistically significant, the relatively small
absolute  values  still  indicated  that  the  magnitude  of  the
BMA  GPP  was  acceptable,  especially  in  the  subtropical
region  where  Dinghushan  is  located.  The  evergreen  broad
leaf  trees  in  Xishuangbanna  and  the  grasses  in  Dangxiong
are rainforests and alpine meadows, respectively, and the neg-
ative Ef indexes  suggested  that  the  manner  in  which BMA
was used in  this  study was unable  to  reduce the uncertain-
ties from these two specific PFTs. 

3.2.    The  Response  of  GPP  to  El  Niño  in  Different
Phases of the PDO

Figure  1 shows  the  average  spatial  anomalies  of  the
BMA GPP and the CRU–NCEP rainfall for the selected El
Niño years with different phases of the PDO. The GPP and
rainfall with large anomalies were mainly distributed in north-
ern  China (32°–38°N,  111°–122°E)  and the  Yangtze  River
valley (28°–32°N, 111°–122°E). The similar spatial distribu-
tion of the GPP and the rainfall  anomalies shown in Fig. 1
indicate that rainfall is the connection between the El Niño
and GPP in eastern China (28°–38°N, 111°–122°E).

The  spatial  anomalies  of  the  GPP averaged from mul-
tiple El Niño years (Fig. 1a, Fig. 1b) leads to the following
hypotheses:  (1)  the  zone  in  which  GPP  was  significantly
affected  by  El  Niño  was  in  eastern  China  (28°–38°N,
111°–122°E);  (2)  when the El  Niño years  were in the cool
phase  of  the  PDO,  GPP  was  higher  in  northern  China

(32°–38°N, 111°–122°E) and lower in the Yangtze River val-
ley  (28°–32°N,  111°–122°E);  and  (3)  when  the  El  Niño
years were in the warm phase of the PDO, the spatial anom-
aly patterns of the GPP in these two regions were reversed.

To  check  whether  these  hypotheses  are  valid,  the
response of GPP to each El Niño year was analyzed. Figure
2 shows  the  spatial  anomalies  of  GPP  in  eight  typical  El
Niño  years  under  the  cool  phase  of  the  PDO.  Except  for
1968 and 1994, the graphs for other years in Fig. 2 all sup-
port  these  hypotheses  and  the  most  positive  anomalies  in
northern  China  (32°–38°N,  111°–122°E)  were  statistically
significant.

Figure 3 shows the spatial anomalies of GPP in eight typ-
ical El Niño years under the warm phase of the PDO. Exclud-
ing  1957  and  1976,  the  positive  anomalies  of  GPP  for  the
remaining  El  Niño  years  were  mainly  distributed  in  the
Yangtze  River  valley  (28°–32°N,  111°–122°E),  which  fur-
ther  verified  the  hypotheses  from  the  averaged  El  Niño
years.  Less  significant  positive  GPP anomalies  were  found
in  the  Yangtze  River  valley.  This  difference  suggests  that
plants in northern China are more sensitive to El Niño than
those in the Yangtze River valley.

The evolution of the zonal-time anomaly (May–Septem-
ber) of rainfall and GPP averaged from 111° to 122°E for typ-
ical El Niño years in the cool and warm phases of the PDO
are shown in Fig.  4 and Fig.  5.  Even when there are  some
deflections, it is still clear that the large anomalies in the rain-
fall  and  GPP  are  synchronized  both  spatially  and  tempor-
ally. This confirms that the close relationship between GPP
and  El  Niño  in  eastern  China  is  related  to  the  north–south
movement of the rain belt. 

3.3.    The  Solid  Relationship  between  GPP  and  Rainfall
in Eastern China

The  inter-annual  relationships  between  meteorological
factors and vegetation activity can be changed in different dec-

Table 2.   Nash–Sutcliffe efficiency index values for GPP simulated by 14 terrestrial biosphere models and Bayesian model averaging at
eight ChinaFLUX sites.

Model Name

Site

Changbaishan Qianyanzhou Dinghushan Xishuangbanna Yucheng Inner Mongolia Haibei Dangxiong

BIOME–BGC 0.84 –0.20 –3.20 –1.68 –0.54 0.29 –0.56 0.82
CLM4 0.82 –8.53 –62.37 –1.34 –0.15 0.46 –0.23 –7.82

CLM4VIC 0.91 –4.49 –61.78 –3.05 –0.37 –0.39 –0.83 –7.74
DLEM 0.42 0.24 –0.87 0.68 0.06 –0.67 –0.53 0.16
GTEC 0.96 –1.54 –3.27 –8.74 –0.07 –2.03 0.60 –5.68
ISAM 0.78 0.76 –2.07 –0.65 –0.52 0.34 –0.53 –1.31

LPJ–wsl 0.94 –0.32 –5.07 –2.22 –0.08 0.06 –0.47 –48.65
ORCHIDEE–LSCE 0.88 0.17 –15.43 –5.06 0.16 0.23 0.51 –44.53

SiB3 0.91 0.52 –14.52 –2.35 0.50 –0.16 –0.68 0.57
SiBCASA 0.89 –0.27 –7.27 –6.30 0.40 0.35 –0.31 0.27

TEM6 0.86 –1.17 –2.17 –1.05 –0.89 0.22 –0.32 0.39
TRIPLEX–GHG 0.56 –1.25 –27.17 –4.54 0.09 0.36 0.01 –10.68

VEGAS2.1 0.49 0.56 –9.17 0.47 –0.16 –0.06 0.19 –1.51
VISIT 0.89 –2.51 –54.13 –1.11 –0.98 –0.20 –0.93 –0.26
BMA 0.95 0.81 –4.62 –1.11 0.27 0.31 –0.01 –0.59
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ades (Piao et al., 2014). The EASM weakened from the late
1970s  but  has  gradually  recovered  since  the  early  1990s
(Liu et al., 2012). Two abrupt climate change points are recog-
nized  in  1978  and  1992  (Ding  et  al.,  2008).  To  determine
whether the relationships between GPP and the particular met-
eorological  factors  (rainfall,  temperature,  and  the  down-
ward  shortwave  radiation)  are  consistent  under  different
EASM intensities, they were compared in different time peri-
ods (1957–78, 1979–92, and 1993–2010).

To  confirm  the  role  of  key  meteorological  factors  for
GPP,  partial  correlations  between  GPP and  rainfall,  down-
ward  shortwave  radiation,  and  temperature  in  China  are
given in Fig. 6. This analysis shows that rainfall dominated
the inter-annual  changes of  the GPP in eastern China from
1957 to 2010. By contrast, the roles of temperature and down-
ward shortwave radiation in the same region were rather lim-
ited,  although  the  effect  of  temperature  was  clearer  in  the
time period 1957–78. The bar diagrams in Fig. 7 show the pro-
portions of partial correlations between GPP and the particu-

lar  meteorological  factors  in  northern  China  and  the
Yangtze River valley, respectively. The highest proportions
of  positive  partial  correlations  are  between  GPP  and  rain-
fall in all periods in Fig. 7, which clearly shows the import-
ance  of  rainfall.  The results  in  this  section further  enhance
the  credibility  of  the  response  characteristics  of  GPP to  El
Niño in eastern China being mostly due to its close relation-
ship with rainfall. 

4.    Discussion

The  mismatch  in  spatial  scale  between  the  observed
GPP at  the flux sites  and the modeled GPP from MsTMIP
in  the  corresponding  0.5°  ×  0.5°  grids  may  lead  to  statist-
ical  errors.  The  monthly  GPP  from  the  MODerate-resolu-
tion Imaging Spectroradiometer (MODIS) in 0.05° × 0.05°
grids and machine learning Model Tree Ensemble (MTE) in
0.5°  × 0.5°grids  (see Appendix A.5)  were chosen to  valid-
ate the quality of the BMA GPP with such errors. From the

 

 

Fig. 1. Spatial anomalies of BMA GPP during the growing season (May–September) averaged from El Niño
years under (a) the cool phase of the PDO and (b) the warm phase of the PDO in China. (c) and (d) are the
same as (a) and (b) respectively, but for rainfall. The anomalies are relative to the mean of the time period
1957–2010.  The  dashed  lines  denote  negative  anomalies  and  the  colored  areas  denote  positive  anomalies.
The  target  zones  (28°–32°N,  111°–122°E;  32°–38°N,  111°–122°E)  are  shown  by  the  rectangles.  GPP  and
rainfall were detrended in advance.
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Fig.  2.  Spatial  anomalies  of  BMA  GPP  during  the  growing  season  (May–September)  for  eight
selected El Niño years under the cool phase of the PDO in China. The anomalies are relative to the
mean of the time period 1957–2010. The blank areas denote negative anomalies and the colored areas
denote  positive  anomalies.  The  target  zones  (28°–32°N,  111°–122°E;  32°–38°N,  111°–122°E)  are
shown by the rectangles. σ is the standard deviation of the BMA GPP anomalies, where ≥1.5σ means
that the positive anomalies are significant. GPP was detrended in advance.

 

 

Fig.  3.  Spatial  anomalies  of  BMA  GPP  during  the  growing  season  (May–September)  for  eight
selected El Niño years under the warm phase of the PDO in China. The anomalies are relative to the
mean of the time period 1957–2010. The blank areas denote negative anomalies and the colored areas
denote  positive  anomalies.  The  target  zones  (28°–32°N,  111°–122°E;  32°–38°N,  111°–122°E)  are
shown by the rectangles. σ is the standard deviation of the BMA GPP anomalies, where ≥1.5σ means
that the positive anomalies are significant. GPP were detrended in advance.
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scatterplots averaged from northern China and the Yangtze
River  valley (see Fig.  8),  we found that  although the amp-
litude of the BMA GPP anomaly was less than the MODIS

GPP  anomaly,  their R2 values  all  passed  99%  confidence
tests.  Compared  with  the  single  model  in  MsTMIP,  BMA
GPP is more similar to the multi-year averaged distribution

 

 

Fig. 4. Latitude–time cross-sections of the (a) rainfall (mm yr−1) and (b) BMA GPP (gC m−2 yr−1) anomalies during
the  growing  season  (May–September)  for  El  Niño  years  under  the  cool  phase  of  the  PDO  in  eastern  China
(28°–38°N,  111°–122°E).  The  dashed  lines  denote  negative  anomalies  and  the  colored  areas  denote  positive
anomalies. GPP and rainfall were detrended in advance.

 

 

Fig. 5. Latitude–time cross-sections of the (a) rainfall (mm yr−1) and (b) BMA GPP (gC m−2 yr−1) anomalies during
the  growing  season  (May–September)  for  El  Niño  years  under  the  warm  phase  of  the  PDO  in  eastern  China
(28°–38°N,  111°–122°E).  The  dashed  lines  denote  negative  anomalies  and  the  colored  areas  denote  positive
anomalies. GPP and rainfall were detrended in advance.
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Fig. 6. Spatial patterns of partial correlations between the growing season (May–September) BMA GPP and (a) rainfall
(RAIN), (b) downward shortwave radiation (DWSR), and (c) temperature (TEMP) in China in 1957–78. (d), (e), and (f)
are  the  same  as  (a),  (b),  and  (c),  respectively,  but  in  1979–92.  (g),  (h),  and  (i)  are  also  the  same  as  (a),  (b),  and  (c),
respectively,  but  in  1993–2010.  Gray  regions  indicate  insignificant  partial  correlations  (P >  0.05).  The  target  zones
(28°–32°N,  111°–122°E;  32°–38°N,  111°–122°E)  are  shown by  rectangles.  The  GPP and  meteorological  factors  were
detrended in advance.

 

 

Fig.  7.  Proportions  of  positive  (+)  and  negative  (–)  partial  correlations  between  the  growing  season
(May–September)  BMA  GPP  and  rainfall  (P),  temperature  (T),  and  downward  shortwave  radiation  (R)  in  (a)
northern  China  (32°–38°N,  111°–122°E)  and  (b)  the  Yangtze  River  valley  (28°–32°N,  111°–122°E)  in  strong
and  weak  East  Asian  Summer  Monsoon  periods  (1957–78,  1979–92,  and  1993–2010).  Gray  bars  indicate  the
proportions of insignificant partial correlations. All data were detrended in advance.
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of MTE GPP, especially in eastern China (see Fig. 9). This
spatiotemporal consistency between BMA GPP and valida-
tion data in Fig. 8 and Fig. 9 not only proves the effective-
ness of validating simulations in coarse grids with site obser-
vations, but also shows the rationality of simply classifying
PFTs as  trees,  grasses,  and crops  when using BMA. There
are  no  rainforests  or  alpine  meadows  in  eastern  China,  so
the  uncertainties  from  these  ecosystems  can  be  neglected.
We  conclude  that  the  quality  of  the  BMA  GPP  in  eastern
China is reliable.

The general consensus is that GPP in the tropics is usu-
ally reduced due to the warm and dry conditions caused by
El Niño (Cavaleri et al., 2017; Yang et al., 2018; Qian et al.,
2019; Yan et al., 2019). By contrast, the current study was car-
ried  out  in  the  temperate  zone  (28°–38°N,  111°–122°E)  of
China.  We  found  that  GPP  was  not  simply  increased  or
decreased,  but  showed  opposite  north–south  anomalies
(divided  by  32°N)  when  El  Niño  occurred  under  different
phases  of  the  PDO.  However,  the  spatial  anomalies  of  the
BMA GPP in eastern China for 1957, 1968, 1976, and 1994
did not  follow the general  pattern seen in  most  selected El
Niño years. This inconsistency suggests that using a combina-
tion of El Niño and the phase of the PDO to predict GPP is
not  completely  reliable.  The  misplacement  of  the  BMA
GPP anomalies  in  eastern  China  for  1968 (minor  El  Niño)
compared  with  2006  (minor  El  Niño),  1994  (moderate  El
Niño)  compared  with  2004  (moderate  El  Niño),  and  1957
(major El  Niño) compared with 1991 (major El  Niño) also
indicates  that  a  classification  of  the  El  Niño  event  as
“strong ”  or  “weak ”  is  not  sufficient  to  judge  the  inter-
annual  variations  in  the  GPP.  The  diversities  in  how  GPP
responds to different  El  Niño episodes further  complement
and  deepen  our  understanding  of  the  nonlinear  climatic
effects of sea surface temperature on local plants.

The inter-annual  variabilities  of  the  GPP derived from
eddy covariance network observations are controlled by rain-

fall in temperate regions (Jung et al., 2011), which is consist-
ent with the results in this study. The different responses of
GPP to  El  Niño in  tropical  and temperate  regions  are  seen
not only for the enzyme-driven land surface models in this
paper, but are also reported for the model driven by remote
sensing  data  (Zhang  et  al.,  2019b).  Specific  terrestrial  bio-
sphere  models  (e.g.,  DLEM,  LPJ,  VEGAS,  VISIT,  CLM,
ISAM, and ORCHIDEE) with a proven ability to reproduce
the  deviations  in  carbon  flux  caused  by  El  Niño  (Wang  et
al., 2016; Chang et al., 2017; Bastos et al., 2018) also took
part  in  MsTMIP and contributed to  the  BMA GPP.  There-
fore, our conclusions based on the BMA GPP are credible.

The GPP in eastern China is difficult to describe quantit-
atively  as  a  result  of  the  uncertainties  in  the  modeled GPP
and  the  variety  of  climatic  effects  from  different  El  Niño
events  (Schwalm  et  al.,  2011),  therefore  the  responses  of
GPP  to  El  Niño  are  only  qualitatively  shown  here.  This
study  only  focused  on  the  inter-annual  relationships
between  different  climate  variables  (rainfall,  temperature,
and  downward  shortwave  radiation)  and  GPP,  so  the  roles
of specific climate changes (e.g., an increase/decrease in the
intensity or frequency of rainfall) were neglected. Given the
complexities of the Earth’s climate system, the physical mech-
anisms in dry episodes associated with El Niño and the result-
ing state of the vegetation in eastern China still require fur-
ther  research.  TBMs simulated  the  physiological  processes
of  crops  more  poorly  than  other  PFTs  that  were  less
affected by human activities (see Appendix A.2). A benefit
from the advantages of the BMA method is that this defect
in  eastern  China  where  crops  occupy a  large  proportion  of
the  area  can  be  minimized  by  weighting  different  models
according  to  their  performance.  Additionally,  the  intensity
of  agricultural  management  (especially  irrigation)  is  diffi-
cult to evaluate at a regional level, so its impacts on the con-
clusions found in this study also need further investigation. 

 

 

Fig.  8.  Anomaly  scatterplots  of  the  monthly  MODIS GPP against  the  monthly  BMA GPP averaged  in  (a)
northern China (32°–38°N,  111°–122°E)  and (b)  the  Yangtze  River  valley (28°–32°N,  111°–122°E)  in  the
time period 2000–10. All of the GPP data were detrended in advance.
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Fig. 9. Spatial patterns of the annual GPP in China averaged from MTE, BMA, and the various MsTMIP model contributors
during 1982−2010.
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5.    Conclusions

We  selected  BMA,  a  method  that  can  integrate  the
advantages of a number of different models into the final res-
ult, to produce a set of long time-series GPP data in China.
When  training  BMA  at  ChinaFLUX  sites  and  applying
weight coefficients in spatial scale, PFTs were simply classi-
fied  as  trees,  grasses,  and  crops.  The  validation  of  BMA
GPP proved this kind of up-scaling method is reliable, espe-
cially in eastern China.

In contrast to the tropics, where it is generally believed
that  local  plant  physiology can be significantly affected by
El  Niño,  this  paper  focused  on  the  neglected  eastern  mon-
soon region of  China.  The spatial  anomalies  of  BMA GPP
averaged  from  the  multiple  El  Niño  years  in  different
phases of PDO produced the following hypothesis: El Niño
during the cool phase of the PDO led to greater GPP in north-
ern  China  (32°–38°N,  111°–122°E)  and  less  GPP  in  the
Yangtze River valley (28°–32°N, 111°–122°E); but El Niño
during  the  warm  phase  of  PDO  reversed  the  GPP  anom-
alies in these two regions. Even though there were some dis-
crepancies, most individual El Niño years supported the hypo-
thesis mentioned above, and therefore the conclusions have
high applicability. It should also be noted that the effects of
El  Niño are  more  significant  in  northern  China  than in  the
Yangtze River valley.

The  synchronized  spatiotemporal  distribution  in  selec-
ted El Niño years and high partial correlation both in strong
and weak periods of  the EASM all  demonstrated that  rain-
fall  linked  El  Niño  and  GPP  in  eastern  China.  Although
EASM systems are complex (Ding and Chan, 2005) and the
movements  of  the  EASM rain  belt  are  difficult  to  forecast
(Gao et al., 2011, 2014; Fan et al., 2012), this study showed
that  we  can  still  predict  how  GPP  will  change  in  eastern
China (28°–38°N, 111°–122°E) when El Niño occurs if we
can identify the phase of the PDO. The results of this study
also provide a reference for future research on the impact of
El  Niño  on  the  carbon  cycle  of  terrestrial  ecosystems  in
China.
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DRsearch. The MOD17A2 products are available from http://files.
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able  in  Zenodo  with  the  identifier http://doi.org/10.5281/zenodo.
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APPENDIX A   Supplementary
Information for Materials and Methods

 

APPENDIX A.1   Observed GPP from ChinaFLUX
The monthly observed GPP data from eight typical flux

measurement  sites  in  the  ChinaFLUX  network  (Yu  et  al.,
2006) were used to validate the modeled GPP. The selected
eddy  covariance  tower  sites  cover  all  the  main  ecosystem
types in China and have been successfully applied to valid-
ate  the  performance  of  different  models  (Li  et  al.,  2013;
Wang  et  al.,  2015; Zhang  et  al.,  2016).  Detailed  informa-
tion about these sites is given in Table A1. 

APPENDIX A.2   Uncertainties in the MsTMIP GPP
The monthly MsTMIP GPP values in the grid cells cor-

responding to the location of each flux site were selected for
comparison  with  the  observed  GPP.  The  statistical  proper-
ties  obtained  in  this  way  only  had  a  credible  significance
when the dominant plant function types (PFTs) in the selec-
ted  grid  cells  were  the  same  as  the  observed  PFTs  at  the
flux  sites  and  their  proportions  were  >50%  (Peng  et  al.,
2015).  The  land  use  and  land  cover  change  maps  used  by
MsTMIP  were  prescribed  by  the  SYNergetic  land  cover
MAP (SYNMAP) (Jung et  al.,  2006). Fig.  A1 displays the
SYNMAP biome type fractions in the grid cells correspond-
ing  to  the  ChinaFLUX  sites  (see Table  A1).  Even  if  we

Table A1.   Information for the eight ChinaFLUX sites used in this study.

Site Latitude (°N) Longitude (°E) Time period Biome type Biome classification

Changbaishan 42.40 128.10 2003–10 DMT Trees
Qianyanzhou 26.74 115.06 2003–10 ENT Trees
Dinghushan 23.17 112.53 2003–10 EBT Trees

Xishuangbanna 21.93 101.27 2003–10 EBT Trees
Yucheng 36.83 116.57 2003–10 CRO Crops

Inner Mongolia 43.33 116.40 2004–10 GRA Grasses
Haibei 37.62 101.32 2003–10 SHB Grasses

Dangxiong 30.50 91.07 2004–10 GRA Grasses

DMT: Deciduous Mixed Leaf Trees; ENT: Evergreen Needle Leaf Trees; EBT: Evergreen Broad Leaf Trees; CRO: Crops; GRA: Grasses; SHB: Shrubs.

1590 THE RESPONSE OF GPP TO EL NIÑO OVER EASTERN CHINA VOLUME 38

 

  

https://nacp.ornl.gov/mstmipdata/
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://doi.org/10.5281/zenodo.3899605
http://doi.org/10.5281/zenodo.3899605
https://nacp.ornl.gov/mstmipdata/
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/GeoTIFF/Monthly_MOD17A2/GeoTIFF_0.05degree/
http://doi.org/10.5281/zenodo.3899605
http://doi.org/10.5281/zenodo.3899605


accounted for the number of mixed trees, the proportion of
the target PFT in the grid cell corresponding to Dinghushan
was  still  <50%  and  did  not  meet  the  requirements  men-
tioned above. The grid cell containing the Haibei site had sim-
ilar problems. Evergreen broad leaf trees (EBT) and shrubs
(SHB)  are  widely  distributed  in  China.  Unfortunately,
Dinghushan and Haibei are the only two sites in China that
share  observations,  respectively,  for  subtropical  EBT  and
alpine SHB in the time period 2003–2010, and therefore can-
not be replaced.

Taylor  diagrams  were  used  to  indicate  how  well  the
modeled  results  matched  the  observed  values  in  terms  of
three  statistics:  the  Pearson  correlation  coefficient  (R),  the
root-mean-square difference (RMSD), and the standard devi-
ation (STD) (Taylor, 2001). The STD and RMSD are propor-
tional to the radial distance from the origin to the observed
point. R is defined as the cosine of the azimuth angle. In gen-
eral, the closer a modeled point is to the observed point, the
better the model performs. The Taylor diagrams in Fig. A2

show  how  closely  the  GPP  from  the  14  MsTMIP  models
matched the observations from 2003 to 2010. The GPP simu-
lations  had  large  uncertainties,  especially  at  YuCheng,
where  the  ground  cover  was  cropland.  This  means  that
simple  equal-weighted  averaging  cannot  correct  the  bias
when  most  models  have  a  poor  performance  for  specific
PFTs.  The  diversity  in  the  multi-model  results  in Fig.  A2
shows the need to use a multi-model averaging method that
can weight each model according to its simulation skill. 

APPENDIX A.3   Merging of PFTs when using BMA
When  use  is  made  of  the  observed  GPP  from  China-

FLUX  to  train  BMA,  the  dominant  PFTs  in  the  qualified
grid  cells  cannot  cover  all  of  the  PFTs  in  the  SYNMAP
legend.  To  reduce  the  errors  caused  by  mixed  PFTs  in  the
grid cells  and the limited number of  ChinaFLUX sites,  the
PFTs at ChinaFLUX sites and used by MsTMIP were categor-
ized  as  trees,  grasses,  and  crops  when  BMA  was  applied.
The detailed classifications of the PFTs at ChinaFLUX sites

 

 

Fig. A1. Biome type compositions in the SYNMAP grids corresponding to the ChinaFLUX sites.
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and SYNMAP legend are listed in Table A1 and Table A2,
respectively. After being trained by the observed GPP at the
grouped ChinaFLUX sites and the MsTMIP GPP in the cor-
responding  grid  cells  during  2003–08,  the  weight  coeffi-
cients of trees, grasses, and crops for different MsTMIP mod-
els were calculated by BMA (see Table A3). 

APPENDIX A.4   Nash–Sutcliffe efficiency index
The  Nash–Sutcliffe  efficiency  index  (Ef; Nash  and

Sutcliffe, 1970) was used to evaluate the performance of the
GPP from BMA and individual model in MsTMIP. Its math-
ematical expression is: 

Ef = 1−

N∑
i=1

(mi−oi)2

N∑
i=1

(oi−o)2

, Ef ∈ (−∞,1] , (A1)

oi o
mi

where  is the ith observed data point,  is the mean of the
observed data, and  is the ith modeled data point. The Ef

values  range between −∞ and 1. Ef values  <0 indicate  that
the  mean value  of  the  observed  time series  is  a  better  pre-
dictor than the model. Ef values between 0 and 1 generally
indicate  that  the  performance of  the model  is  at  an accept-
able level. Ef values equal to 1 indicate a perfect fit. 

APPENDIX A.5   MODIS GPP and MTE GPP
The monthly  MODerate-resolution Imaging Spectrora-

diometer (MODIS) Version MOD17A2 GPP product (Zhao
et al., 2005) was used to evaluate the temporal evolution of
the BMA GPP in the target zones. To reduce the disadvant-
ages caused by the difference in spatial resolution (MODIS:
0.05° × 0.05°; MsTMIP: 0.5° × 0.5°) and land cover classific-
ation  system  (MODIS:  MOD12Q1;  MsTMIP:  SYNMAP),
we only  compared their  spatially  averaged anomalies  from
2000 to 2010.

The  monthly  Model  Tree  Ensemble  (MTE)  GPP

 

 

Fig. A2. Taylor diagrams for GPP simulations from 14 MsTMIP models at eight ChinaFLUX sites. The red dashed lines are
the observed standard deviations at the sites.
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upscaled from FLUXNET observations to global 0.5° × 0.5°
grids during 1982−2010 (Jung et al.,  2011) was selected to
estimate the magnitude of BMA GPP. Considering that the
empirical  relationships  in  machine  learning  algorithm  are
time-sensitive,  we  weakened  the  time  dimension  and  only
compared  the  spatial  patterns  of  multi-year  averaged  GPP
from MTE,  BMA, and MsTMIP to  show the  rationality  of
BMA GPP distribution.
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