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A B S T R A C T   

Accurate and timely crop yield forecasts can provide essential information to make conclusive agricultural 
policies and to conduct investments. Recent studies have used different machine learning techniques to develop 
such yield forecast systems for single crops at regional scales. However, no study has used multiple sources of 
environmental predictors (climate, soil, and vegetation) to forecast yields for three major crops in China. In this 
study, we adopted 7-year observed crop yield data (2013–2019) for three major grain crops (wheat, maize, and 
rice) across China, and three major data sets including climate, vegetation indices, and soil properties were used 
to develop a dynamic yield forecasting system based on the random forest (RF) model. The RF model showed 
good performance for estimating yields of all three crops with correlation coefficient (r) higher than 0.75 and 
normalized root means square errors (nRMSE) lower than 18.0%. Our results also showed that crop yields can be 
satisfactorily forecasted at one to three months prior to harvest. The optimum lead time for yield forecasting 
depended on crop types. In addition, we found the major predictors influencing crop yield varied between crops. 
In general, solar radiation and vegetation indices (especially during jointing to milk development stages) were 
identified as the main predictor for winter wheat; vegetation indices (throughout the growing season) and 
drought (especially during emergence to tasseling stages) were the most important predictors for spring maize; 
soil moisture (throughout the growing season) was the dominant predictor for summer maize, late rice, and mid 
rice; precipitation (especially during booting to heading stages) was the main predictor for early rice. Our study 
provides insights into practical crop yield forecasting and the understanding of yield response to environmental 
conditions at a large scale across China. The methods undertaken in this research can be easily implemented in 
other countries with available information on climate, soil, and vegetation conditions.   

Abbreviations: ML, Machine learning; RF, Random Forest; NDVI, Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; SBD, Soil Bulk 
Density; SPEI, Standardized Precipitation Evapotranspiration Index; PDSI, Palmer Drought Severity Index; DEF, Climate water deficit; AET, Actual evapotranspi-
ration; TXx, Highest daily maximum temperature; TD30, Tropical days; TNn, Coldest daily minimum temperature; FD0, Frost days; RX1day, Annual maximum 1-day 
precipitation; SDII, Ratio of total precipitation to wet day number. 
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1. Introduction 

Grain crop yield forecasting is considered to be a key responsibility 
for food-related policy making, especially in light of soaring food de-
mand resulting from the growing global population and increased 
standards of living (Tilman et al., 2011). Wheat (Triticum aestivum L.), 
maize (Zea mays L.), and rice (Oryza sativa L.) are the three major food 
crops around the world (Gao et al., 2019; Grundy et al., 2016), ac-
counting for an estimated 42.5% of the world’s food calorie supply 
(FAO, 2018). Of the three crops, wheat is the most important staple 
grain crop in China, and its production accounts for 18.0% of the global 
wheat production (Cao et al., 2020). In contrast, maize and rice pro-
duction in China account for 21.4% and 30.0% of global production 
respectively (FAO, 2017). As a large agricultural country with more than 
1.3 billion people, China must spare no effort to maintain and increase 
its grain crop production in order to meet the demands of a continuously 
increasing population in the face of shrinking arable cropland area 
(Yang et al., 2015). 

Crop yields are significantly affected by climate and soil conditions 
(Alexandrov and Hoogenboom, 2000; Chakrabarti et al., 2014; Wang 
et al., 2016). For example, extreme high-temperature events, defined by 
short periods of daily maximum temperature greater than 33 ◦C, can 
greatly affect wheat and maize grain number at the early grain-filling 
stage (Barlow et al., 2015; Dawson and Wardlaw, 1989). Extreme cold 
events with daily minimum temperature less than 0 ◦C are closely 
related to crop sterility and abortion of formed grains during the flow-
ering stage (Barlow et al., 2015). Drought and flood can also affect crop 
yields significantly. For instance, extreme drought affects root growth 
and architecture, and can result in great yield losses (Schwalbert et al., 
2020); floods can directly destroy farmland, and can also cause water-
logging that is harmful to soil health and that will result in significant 
yield reductions (Li et al., 2019b). Soil properties have been recognized 
as important factors in agricultural climate change impact studies 
because the water and nutrient storage capacities of soils enable them to 
sustain crop growth in some years during periods of adverse conditions 
(Folberth et al., 2016; Wang et al., 2018). Thus, these soil and climatic 
variables can provide necessary information about the potential yields 
of crops, and can be used as inputs to forecast crop yields. 

In addition, remote sensing data with different vegetation indices 
have provided good opportunities to estimate crop yields at different 
spatiotemporal scales due to their easy accessibility by users (Kouadio 
et al., 2014). Normalized Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI) based on MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) data are two commonly-used in-
dicators used to monitor crop growth (Kouadio et al., 2014; Son et al., 
2014). In China, previous studies have used different remote sensing 
data to estimate crop yields (Wu et al., 2013; Zhang et al., 2020a; Zhao 
et al., 2013). For instance, Chen et al. (2018) used remote sensing data to 
derive crop phenology and leaf area index, and assimilated these two 
parameters into a crop model to improve the accuracy of winter wheat 
yield estimation at a regional scale in the North China Plain. They re-
ported that R2 was increased from 0.26 to 0.42 and RMSE decreased 
from 1012 kg/ha to 737 kg/ha. Wang et al. (2020) developed a 
satellite-based biophysical model (BEPS) to derive the actual rice yields 
and their spatial patterns in northeast China. They found that the BEPS 
model provided reliable estimates of rice yields in this region, with 
nRMSE less than 20.0% at the county level. Nevertheless, most of the 
previous studies only used climate data (Chen et al., 2020; Lecerf et al., 
2019) or remote sensing data (Johnson et al., 2016; Mkhabela et al., 
2011), and few studies have considered multi-source environmental 
data (e.g., climate, vegetation, and soil conditions). 

Three major methods have been used to forecast crop yields: (1) field 
observations, (2) process-based biophysical crop simulation models, and 
(3) statistical models (Feng et al., 2020). Firstly, crop yield can be 
forecasted by crop growth information collected from field-measured 
data. For example, Nandram et al. (2013) forecasted maize yield 

based on a large farmer interview survey. However, this method is costly 
in terms of the time, workforce, and financial commitment required, and 
only provides a short time lag for decision-makers (Feng et al., 2020). 
Moreover, field survey methods do not fully consider all of the envi-
ronmental factors affecting yield such as soil, climate, and vegetative 
development. 

Secondly, biophysical crop models have been widely used to estimate 
and forecast yields (Donatelli and Confalonieri, 2011; Thorp et al., 2012; 
Whish et al., 2015). They can provide a deep understanding of physio-
logical processes, and reflect the impact of interactions between crop 
and environmental variables (Feng et al., 2019; Zhang et al., 2020b). For 
example, Chen et al. (2020) used the DSSAT-CERES-Maize model to 
forecast maize yields and achieved an accurate estimation with absolute 
relative errors < 8.0% when lead time was about 35 days prior to har-
vest. However, the effects of extreme climate-related processes are 
usually simplified or may not even be included in most crop models 
(Barlow et al., 2015; Xie et al., 2017), resulting in overestimation of the 
impacts of climate change on grain yield. Moreover, crop growth models 
usually require a substantial amount of field observation data for cali-
bration and validation at a local scale before the models are used for 
long-term simulations (Burke and Lobell, 2017; Leroux et al., 2019). 

Thirdly, compared with field survey methods and biophysical crop 
models, statistical regression-based models have the advantages of low 
cost and easy application, and are commonly used to estimate crop yield 
(Basso and Liu, 2019; Feng et al., 2018). Regression-based models 
include both linear regression and non-linear regression models. Some 
previous studies have used linear regression models to predict crop 
yields or have analyzed the relationship between crop yields and climate 
factors (Lobell and Field, 2007; Singh et al., 2010; Tao et al., 2008). 
However, linear regression models often had poorer performance than 
non-linear regression models given that crop yields have nonlinear re-
lationships with multi-environmental factors (Feng et al., 2019; Jeong 
et al., 2016; Li et al., 2019c; Wei et al., 2014). 

Machine learning is a new innovative approach using computational 
methods to “learn” information directly from data without relying on a 
predetermined equation as a model. It has been widely used to estimate 
or forecast crop yields by integrating multiple sources of environmental 
data (Cai et al., 2018; Puig et al., 2015). For example, Li et al. (2007) 
estimated corn and soybean yields using remote sensing data with 
multivariate regression and artificial neural network (ANN) techniques 
in the Midwestern and Great Plains regions of the United States. They 
found higher accuracy with ANN (r = 0.73–0.97 and RMSE=518–1281 
kg/ha) than with multivariate regression (r = 0.58–0.93 and 
RMSE=868–1681 kg/ha). Cai et al. (2019) combined remote sensing 
and climate data with machine learning methods to estimate wheat yield 
in Australia, and their method had good performance (R2=0.75). Filippi 
et al. (2019) used a random forest (RF) model to estimate wheat and 
barley grain yields using a multi-layered farm survey dataset in western 
Australia. Their results showed that the model could predict crop yield 
accurately, and had potential application in other regions where 
field-monitored data are available. Of the various machine learning 
methods, RF has been widely applied because it has high predictive 
capability and can provide feature importance for each variable to 
explain results (Everingham et al., 2016; Sonobe et al., 2014; Zhang 
et al., 2017). For instance, Han et al. (2020) used multi-source data in 
machine learning methods (Support vector machine (SVM), Gaussian 
process regression (GPR), and RF) to forecast winter wheat yield in 
China. They found RF performed best among these three machine 
learning methods. Maya Gopal and Bhargavi (2019) predicted paddy 
crop yields based on different machine learning methods (ANN, SVM, 
K-Nearest Neighbor, and RF) in southern India, and their results also 
showed that RF had better accuracy. 

In China, there is an urgent need for a reliable yield forecasting 
system to support farmers and policy-makers. Most previous studies 
forecasted crop yields based on a single factor. However, even though 
crop yields are impacted by multiple factors, there have been few studies 
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that have forecasted crop yields in China by using multi-source envi-
ronmental factors. Recently, there have been a few studies forecasting 
crop yields using multi-source variables. For instance, Han et al. (2020) 
forecasted winter wheat yield using multi-source data and machine 
learning methods (SVM, GPR, and RF). Their model can successfully 
forecast winter wheat yield with 1–2 months lead times (R2=0.75 and 
nRMSE<10.0%). Cao et al. (2020) forecasted winter wheat yield in 
China using multi-source data in machine learning methods, and re-
ported a similar accuracy as observed by Han et al. (2020). Although, 
these wheat yield forecasting methods are very important so that 
stakeholders can develop early strategic decisions in their respective 
roles, their works were only limited to one single crop at some repre-
sentative regions. However, farmers and policy-makers would prefer a 
crop yield forecasting system with the ability to forecast yields for many 
different crops over all of China. The studies reported by Han et al. 
(2020) and Cao et al. (2020) did not consider northwest China, an 
extremely important wheat production area, and thus, their methods 
have limited application to this region. 

To bridge this gap, we developed a dynamic crop yield forecasting 
system based on multiple-source environmental variables for major 
grain crops across China (winter wheat, spring maize, summer maize, 
early rice, mid rice, and late rice), and investigated the key predictors 
determining crop yield. The results of this study will provide valuable 
information for policy-makers and farmers to better manage risks in 
order to increase agricultural production in China. The specific objec-
tives of this study were to: (1) employ the random forest machine 
learning technique to create multiple models to predict yields of the 
three major crops using multi-source environmental data across the 
major grain-producing areas of China; (2) identify the optimum lead 
time with acceptable accuracy of yield forecast for different crops; (3) 
determine the most important predictors affecting crop yields. 

2. Data and methods 

2.1. Study area 

Climate zones in China range from temperate to sub-tropical 
monsoon with four distinctive seasons. However, actual climate condi-
tions vary greatly in different regions due to the large area and topo-
graphical diversification (Piao et al., 2010). For instance, annual 
precipitation in southern China (more than 1200 mm) is higher than in 
northern China (less than 600 mm), and much higher than in north-
western China (less than 200 mm) (Yao et al., 2018). This means that 
crops in different regions of China can be subjected to substantially 
different climate conditions (Tao et al., 2008). Thus, to better forecast 
crop yields in this study, we divided China into seven sub-regions 
(Fig. 1a) based on climate conditions as well as geolocation, tempera-
ture, precipitation, vegetation, and soil information (Zhao, 1983). 
Sub-region VI is not a main crop production area and lacks the corre-
sponding crop yield data. Thus, we did not consider it in our analysis. 
See detailed information for the seven sub-regions in Yao et al. (2018) 
and Li et al. (2019a). 

2.2. Data 

2.2.1. Crop data 
The crop yield trial data (including wheat, maize, and rice during 

2013–2019) were collected from the National Grain Crop Growth 
Monitoring stations. These plot-scale experiments were conducted at 
each station. There were 3–5 plots (around 1 m2 [1 m wide, 1 m long] 
plots for wheat and rice, and around 54 m2 [3.6 m wide, 15 m long] plots 
for maize) that were randomly selected to determine one observed yield. 
In addition, 20 crop ears (maize) or heads (rice and wheat) were 
randomly selected from each plot to measure kernel number per ear and 
100 (for maize) or 1000 (for rice and wheat) grain weight. Management 
practices were performed in keeping with local farmers’ practices. These 
trial data were not available for all seven years at each station. Hence, 
there were a total of 873 samples for winter wheat, 597 for spring maize, 

Fig. 1. Locations of seven sub-regions of China (a) and the locations of field trial sites for winter wheat (b), maize (c), and rice (d) across China.  
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509 for summer maize, 304 for early rice, 571 for mid rice, and 321 for 
late rice. These field trial data had experienced no significant techno-
logical changes in the past seven years. Thus, no de-trending approach 
was implemented to exclude the effects of various factors that were not 
reproduced by modelling. The number and spatial distribution of sites 
are shown in Table 1 and Fig. 1. 

In this study, we considered using six main growth stages for each 
crop (Table 2). The growth period data were collected from the nearest 
agricultural meteorology stations from the China Meteorological Data 
Sharing Network (http://data.cma.cn/). We calculated the multi-year 
average of these six growth-stages as triggered successively to forecast 
events at each station. The days after planting during the six growth 
stages varied among the different crops and study regions. (Figure S1). 
In general, the winter wheat growing season is about 190–250 days. 
Winter wheat is planted from late September to early November, and 
harvested around early June. The maize growing season is about 
100–130 days. Spring and summer maize are planted from April to May 
and around early June, respectively, and harvested around early 
September and late September, respectively. Early rice is planted in late 
March and harvested in July, constituting a growing season of about 
100–120 days. Early rice and late rice are usually continuously cropped. 
Thus, the planting date of late rice is after the early rice harvest, 
constituting a growing season of about 110–125 days. The planting date 
of mid rice is about April-May, and the growing season is about 130–170 
days. 

2.2.2. Climate data and extreme climate indices 
Current climate data (precipitation, temperature, and actual sun-

shine hours) for field trial sites from 2013 to 2019 were obtained from 
the nearest weather stations from the China Meteorological Data 
Sharing Network (http://data.cma.cn/). The sunshine hours were used 
to calculate the shortwave radiation (Rs) based on a relationship given in 
Allen et al. (1998): 

RS =
[
as + bs

(n
N

)]
Ra (1)  

where Ra is the extraterrestrial radiation; n and N are actual and 
maximum possible sunshine hours; originally as is 0.25 and bs is 0.50. 
For better accuracy, the calibrated values of as and bs at 48 stations using 
measured daily Rs reported by Chen et al. (2004) were used here for the 
nearby stations using the Thiessen polygon method (Yao et al., 2018). 
More information is provided in Supplementary Materials. This dataset 
used interpolation methods based on the WorldClim dataset, CRU Ts4.0, 
and the Japanese 55-year Reanalysis (Abatzoglou et al., 2018). 

We selected seven extreme climate indices as predictors for fore-
casting crop yields (Table 3), including two extreme hot indices (i.e., 
TXx and TD30), three extreme cold indices (i.e., TNn, FD0, and CD10 
(12)), and two extreme precipitation indices (i.e., RX1day and SDII). 
Five extreme climate indices (TXx, TNn, FD0, RX1day, SDII) were rec-
ommended by the Expert Team on Climate Change Detection and 
Indices (http://etccdi.pacificclimate.org/docs/ETCCDMIndicesCompar 
ison1.pdf). Frost days for winter wheat are defined by FD0 with mini-
mum temperature less than 0 ◦C. However, the minimum temperature 
during the maize and rice growing seasons is greater than 0 ◦C in most 

areas. Therefore, to reflect the occurrence and impact of low- 
temperature conditions on maize and rice, we defined two cold tem-
perature indices: number of cold days with minimum temperature lower 
than 12 ◦C (CD12) for maize and 10 ◦C (CD10) for rice (Soltani, 2012). 
TD30 is a user-defined index in our study because of its crucial biological 
implications and its suitability for each region of China. To calculate the 
stage-specific extreme climate indices at each site, we used the crop 
growth period information, including dates and duration for each crop 
growth stage (Table 2 and Figure S1). Therefore, each growth stage had 
six extreme indices (TXx, TD30, TNn, FD0 (CD10 or CD12), RX1day, 
SDII). 

Three drought indices were also involved in this study, including 
Standardized Precipitation Evapotranspiration Index (SPEI), Palmer 
Drought Severity Index (PDSI), and Climate Water Deficit (DEF). PDSI 
considers the soil and evaporation, and is more suitable for revealing 
agricultural drought conditions. SPEI is based on the water balance, and 
can monitor drought conditions associated with water demand (Vice-
nte-Serrano et al., 2010). Monthly SPEI was used as an explanatory 
predictor. DEF can effectively integrate the combined effects of solar 
radiation, evapotranspiration, and air temperature on watershed con-
ditions given available soil moisture derived from precipitation (Ste-
phenson, 1998). 

We extracted monthly AET, DEF, and PDSI data for each study site 
based on the Google Earth Engine (GEE) platform and calculated the 
monthly site-scale SPEI based on its definition (Table 3), then selected 
the value in the month that was closest to each crop growth stage. For 
other site-scale climate indices, we derived their values based on the 
definitions in Table 3 at each growth stage for each site. 

2.2.3. Vegetation data 
Vegetation indices (e.g., NDVI and EVI) can reflect the crop growth 

condition (Han et al., 2020; Kouadio et al., 2014; Wu et al., 2013). 
Therefore, in this study, NDVI and EVI were used as additional pre-
dictors in crop yield forecasting. Moreover, these indices have wide 
coverage and high resolution, and can easily be applied in other regions 
(Son et al., 2014). Here, the NDVI and EVI (2013–2019) data were 
downloaded from the MOD13A1 V6 (https://lpdaac.usgs.gov/produ 
cts/mod13a1v006/), with 16-day repeat and 500 m spatial resolution. 
We extracted NDVI and EVI values for each study site based on the GEE 
platform. Then we calculated the average of NDVI and EVI for each crop 
growth stage at each site. 

2.2.4. Soil data 
The soil moisture data were downloaded from the Global Land Data 

Assimilation System (GLDAS). Using advanced land surface modeling 
and data assimilation techniques, GLDAS generates optimal fields of 
land surface states and fluxes (https://ldas.gsfc.nasa.gov/gldas/) by the 
GEE platform. The soil moisture data at 0–10 cm, 10–40 cm, 40–100 cm, 
and 100–200 cm were used in this study. The soil moisture data have 
been evaluated by comparison with measured values, and were found to 

Table 1 
The number of field trial sites for six types of crops in six different sub-regions of 
China identified in Fig. 1.  

Crop types Sub-region 
I II III IV V VII 

Winter wheat 12 \ \ 131 77 \ 
Spring maize 10 16 50 26 48 5 
Summer maize \ \ \ 123 27 \ 
Early rice \ \ \ \ 61 32 
Mid rice \ \ 29 8 90 4 
Late rice \ \ \ \ 61 32  

Table 2 
Six growth-stages used for wheat, maize, and rice. The days after planting (DAP) 
for different growth stages in different regions are shown in Figure S1.  

Time 
interval 

Crop 
Winter wheat Maize (spring and 

summer maize) 
Rice (early, mid, and 
late rice) 

T1 planting- 
emergence 

planting-emergence planting-emergence 

T2 emergence- 
tillering 

emergence-three leaves emergence-tillering 

T3 tillering- 
jointing 

three leaves-six leaves tillering-booting 

T4 jointing- 
heading 

six leaves-tasseling booting-heading 

T5 heading-milk tasseling-milk heading-milk 
T6 milk-maturity milk-maturity milk-maturity  
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be accurate across China (Liu and Zhao, 2018; Liu et al., 2019). The areal 
resolution of this dataset was 0.25◦ × 0.25◦, and the temporal resolution 
was three hours. In this study, we calculate the average of soil moisture 
over each crop growth stage at each site. The unit of soil moisture data is 
kg/m2. In order to unify the unit, the soil moisture values at different 
depths were converted to m3 m − 3 (%) by the following equation: 

θ =
ω

ρ × h
× 100% (2)  

where, θ is the volumetric soil water content (%); w is the GLDAS soil 
moisture (kg/m2); ρ is the density of water (kg/m3), ρ = 1000 kg/m3; h is 
the soil layer thickness (m). 

2.3. Modeling methodology 

2.3.1. Random forest and modeling framework 
The RF model is an ensemble learning method for regression based 

on constructing a multitude of decision trees (Breiman, 2001). The 
regression tree was constructed independently, and was based on in-
dependent samples of the original dataset. The RF model can roughly 
estimate both linear and nonlinear relationships. Moreover, RF can also 
provide reliable information about the feature importance of each var-
iable and effectively estimate test error with low computational cost of 
the training model (Stefan, 2018). We assessed the relative importance 
through the “%IncMSE” from the RF model. The%IncMSE indicates the 
mean decrease of accuracy (test by mean square error) in nodes that use 
a variable in the RF model when values of the variable are randomly 
permuted (Feng et al., 2018). Some previous studies have shown that the 
performance of the RF model is usually better than many other machine 
learning methods in the field of agricultural studies (Feng et al., 2019; 

Wang et al., 2018). 
We optimized the two RF model hyperparameters: number of vari-

ables randomly sampled as candidates at each split (mtry) and number of 
trees to grow (ntree). The range of mtry was defined from 1 to the number 
of variables with 1 interval, and the range of ntree was set from 200 to 
1200 with 200 intervals. In this study, we selected the optimum 
hyperparameters with the smallest error for each RF model (Table S1). 
The optimal mtry and ntree were chosen by the ‘tuneRF’ function that uses 
Out-Of-Bag (OOB) data to perform unbiased internal validation. Since 
random forest uses bootstrap to construct each "tree", one-third of data 
normally are not involved in construction of "trees", and these data are 
called OOB data (Breiman, 2001). The ‘tuneRF’ function calculates OOB 
error based on different mtry, and relatively lower OOB errors indicate 
better model performance (Breiman, 2001). In this study, we used 
‘tuneRF’ by setting different ntree in order to optimize mtry. The RF model 
and ‘tuneRF’ function were implemented by R (version 3.6.0) software 
(www.r-project.org) using the ‘randomForest’ package (https://cran. 
r-project.org/web/packages/randomForest/index.html). The data 
analysis code in this study is available (https://github.com/llinch 
ao/yield_forecast). 

We developed a yield forecasting system based on multi-source 
environmental data using the RF algorithm. We first aggregated the 
multi-source environmental variables into six groups by different 
growth stages (from T1 to T6) for each crop type. The forecasting events 
were then triggered successively at each growth stage, and the pre-
dictors were added with crop growth progression. The forecasting events 
were then triggered successively at each growth stage, and the pre-
dictors in each phase were added with crop growth progression. 
Therefore, the number of predictors increased with progressing phases 
from T1 to T6. To demonstrate the most important predictors at different 

Table 3 
Environmental variables used in crop yield forecast during 2013–2019 in China.  

Type Term Definition ResolutionResolution Data source     
Temporal Spatial  

Climate Weather data Pr (mm) Total precipitation daily site http://data.cma.cn/ 
Same as above 
Same as above   

Tmean ( ◦C) Mean temperature daily site    
Rad (MJ/m2) Mean shortwave radiation* daily site    
AET (mm) Actual evapotranspiration monthly 0.1◦ × 0.1◦ http://www.climatologylab.org/terraclimate. 

html 
Same as above 
Same as above  

Drought 
Indices 

PDSI Palmer Drought Severity Index monthly 0.1◦ × 0.1◦

DEF (mm) Climate water deficit monthly 0.1◦ × 0.1◦

SPEI Standardize Precipitation 
Evapotranspiration Index 

monthly site Calculated by Vicente-Serrano et al. (2010)  

Extreme 
temperature 

CD10(12) (Day) Number of days with daily Tmin <10 
(12) ◦C 

Growth 
stage 

Site User defined   

TD30 (Day) Number of days with daily Tmax 

>30 ◦C 
Growth 
stage 

Site User defined   

FD0 (Day) Number of days with daily Tmin <0 ◦C Growth 
stage 

site Defined by Expert Team on Climate Change 
Detection and Indices 
(http://etccdi.acifificclimate.org/docs 
/ETCCDMIndicesComparison1.pdf)   

TNn ( ◦C) Lowest daily Tmin Growth 
stage 

site    

TXx ( ◦C) Highest daily Tmax Growth 
stage 

Site   

Extreme 
precipitation 

RX1day (mm) Annual maximum 1-day Pr Growth 
stage 

Site Same as above   

SDII (mm/day) The ratio of total Pr to wet day number 
(≥ 1 mm) 

Growth 
stage 

Site Same as above 

Vegetation  NDVI Normalized Difference Vegetation 
Index 

16-day 500 m https://lpdaac.usgs.gov/products/mod 
13a1v006/   

EVI Enhance Vegetation Index 16-day 500 m Same as above 
Soil  Soil moisture 

(kg/m3) 
Soil moisture 3-hour 0.25◦ ×

0.25◦

https://ldas.gsfc.nasa.gov/gldas/  

* Sunshine hours were used to calculate the shortwave radiation based on a relationship given in Allen et al. (1998). 
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stages, the relative importance of each covariate was calculated by 
averaging them throughout phases. For instance, the relative impor-
tance of NDVI at T3 is averaged by NDVI at T1 (NDVI_1), NDVI at T2 
(NDVI_2), and NDVI at T3 (NDVI_3). In this study, the stage-specific 
variables (e.g., extreme climate indices, vegetation indices, and soil 
moisture) were considered (refer to Table 3), and therefore, our yield 
forecasting system could dynamically forecast the crop yields at the end 
of several targeted growth stages (T1-T6) as the growing season pro-
gressed to maturity. In our yield forecasting system, we developed an 
individual RF model for each crop type. In addition, the forecasting 
events based on T1-T6 (Table 2) varied for different crops (Figure S1). 
The overall modeling framework is shown in Fig. 2 and demonstrates 
how we developed each individual RF model based on multiple pre-
dictors at different growth stages (T1-T6, see Table 2). 

2.3.2. Model performance assessment 
The leave-one-year-out cross validation method (Molinaro et al., 

2005) was used to evaluate the model performance for the six crops 
(winter wheat, spring maize, summer maize, early rice, mid rice, and 
late rice). In this study, we used Pearson’s correlation coefficient (r) and 
normalized root mean square error (nRMSE) to assess model perfor-
mance. The equations are written as follows: 

r =

∑n

i=1
(x(i) − x)(y(i) − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x(i) − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(y(i) − y)2

√ (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x(i) − y(i))2

n

√
√
√
√
√

(4)  

nRMSE =
RMSE

x
(5)  

where y(i) and x(i) are the ith forecasted and observed yield values, 
respectively; y and x represents the mean of forecasted and observed 
values; n is the number of samples. 

In this study, we used the ‘ggplot2’ R package to make figures 
(Wickham, 2011). Spatial distributions of field trial sites were mapped 
using the ArcGIS 10.3 software. 

3. Results 

3.1. Accuracy of yield forecasts 

The wheat, maize, and rice yields varied in each sub-region (Fig. 3). 
Observed values of, winter wheat yield ranged from 1952 to 8804 kg/ 
ha, spring maize ranged from 2997 to 17,370 kg/ha, summer maize 
ranged from 4127 to 10,889 kg/ha, early rice ranged from 4607 to 8853 
kg/ha, mid-season rice ranged from 5291 to 12,185 kg/ha, and late rice 
ranged from 4811 to 9436 kg/ha. The median winter wheat yield in the 
North China Plain (sub-region IV) was higher than in sub-regions I and 
V. The median spring maize yields followed the order of sub-region 
VII<V<IV<II<III<I. The median summer maize yield in sub-region IV 
was higher than in sub-region V. The median yields of early rice were 
similar in sub-regions V and VII, and late rice yields in sub-region V were 

Fig. 2. Schematic overview of data input and output for the RF model developed in this study. T1 to T6 represent the six growth stages for each crop type (Table 2).  
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higher than in sub-region VII. The median mid rice yields followed the 
order of sub-region VII<V<III<IV (Fig. 3). The reasons for the yield 
variability are likely attributable to differences in soil, weather condi-
tions, drought, extreme climate events, etc. Therefore, forecasting crop 
yields based on multi-source environmental variables will be a valuable 
contribution. 

To better understand the stability of model performance, we showed 
r and nRMSE values at different lead times for the six crop types across 
all (left out) years (Fig. 4 and Table S2). Model performance, as stated 
above, was evaluated by r and nRMSE. Fig. 4 shows the cross-validation 
accuracy metrics for the forecasted yield of six crops based on the RF 
model across all (left out) years including 2013–2019. The performance 
of the model generally improved as the predictive period approached 
the end of the growing season (i.e., r gradually increased and nRMSE 
decreased with time). The forecast of winter wheat yield was relatively 

poor at T1 (r = 0.65 and nRMSE=14.6%), and forecast accuracy greatly 
increased at and after T3 (tillering-jointing). The value of r increased 
from 0.65 (T1) to 0.81 (T3) and nRMSE decreased from 14.6% (T1) to 
11.4% (T3). The forecast of spring maize yield was relatively accurate 
because the r values went from 0.71 (T1) to 0.84 (T6), but the nRMSE 
values were relatively high (16.2–20.4%). The performance of summer 
maize yield forecast greatly increased from T1 (0.68) to T4 (0.77) and 
nRMSE decreased from 11.3% (T1) to 10.4% (T4). The accuracy of yield 
forecasts for early rice increased significantly at T4. The r of forecasted 
mid rice yield increased from 0.68 (T1) to 0.84 (T6), and the nRMSE 
decreased from 9.6% (T1) to 7.2% (T6). The r of forecasted late rice 
yield increased greatly from 0.68 (T1) to 0.79 (T6), and the nRMSE 
decreased from 9.8% (T1) to 8.4% (T6). In general, the RF model had 
satisfactory performance, and most crops had r higher than 0.75 and 
nRMSE lower than 18.0% before the end of the growing season. Thus, 

Fig. 3. Distribution of measured crop yields in six different sub-regions of China during 2013–2019. Box boundaries in the violin plot indicate the 25th and 75th 
percentiles of crop yields, whiskers below and above the box indicate the 10th and 90th percentiles. The black lines within each box indicate the median value. The 
violin plot outlines illustrate kernel probability density, i.e., the width of the shaded area represents the proportion of the crop yield data located there. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Model performance at different forecasting times (growth stages) for six crop types based on the evaluation for each (left out) year during 2013–2019. The 
filled bars represent the mean values of r and nRMSE; the error bars represent the standard errors for seven years. 
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results show that the RF model using multi-source data can forecast crop 
yields accurately, and indicate that this yield forecasting approach can 
provide reliable yield projections. Also, the stability of our yield fore-
casting system increased as accuracy increased from T1 to T6 for each 
crop. 

The model’s performance in different sub-regions for each crop is 
shown in Figures S2-S4. Model performance was evaluated across all 
(left out) years at once for each sub-region due to the limited number of 
sampling points in some years. Our results showed that model perfor-
mance was varied in different sub-regions even for the same crop. This 
was mainly due to differences in the number of sampling points used in 
each subregion (Table 1). For instance, the r values of the summer-maize 
model in sub-region V (r = 0.73–0.78 during T1-T3) were higher than 
sub-region IV (r = 0.58–0.65 during T1-T3), while the nRMSE values 
were similar. Nonetheless, the r of the summer maize model in sub- 
region IV showed a great increase during T4-T6 and reached similar 
results between sub-region IV and V at T6. Generally, the predictive 
capacity of each RF model showed a gradual increase as the growing 
season progressed towards maturity in most sub-regions. 

3.2. The optimum lead time provided by yield forecasts 

Based on the accuracy of the yield forecasts for the six crops at 
different growth stages, the optimum lead time provided by the yield 
forecasting system could be identified. In general, forecast accuracy 
increased with crop growth and development, and the rate of increase 
slowed down at later growth stages. In order to reveal the magnitude of 
changes observed for each model performance during T1 to T6, we 
normalized the r and nRMSE from 0% to 100% (expressed as rn and 
nRMSEn), as illustrated in Fig. 5 (see method details in Feng et al. 
(2020)). For instance, the greatest increase in model performance 
occurred during T2 to T3 for winter wheat, in which rn increased by 
62.7% and nRMSEn decreased by 67.5% (Fig. 5). However, model ac-
curacy increased slightly after T4. Therefore, T4 can be selected as an 
appropriate lead time in yield forecasts. As another example, the fore-
cast accuracy for early rice increased greatly at T4 (booting to heading, 
rn increased by 56.7% and nRMSEn decreased by 60.5%), while after T4, 
there was only a slight improvement (rn increased by 5.7% and nRMSEn 
decreased by 17.7%). Generally, most crops could reach a satisfactory 
model performance. 

In general, crop yields can be satisfactorily forecasted with the RF 
model (Table S3, Fig. 5) at around one to three months prior to harvest 

for winter wheat (r = 0.81–0.85, nRMSE=10.5–11.4%); one to two 
months before harvest for spring maize (r = 0.79–0.81, 
nRMSE=17.1–17.9%), summer maize (r = 0.77–0.79, 
nRMSE=10.2–10.4%), early rice (r = 0.71–0.72, nRMSE=7.4–7.5%), 
mid rice (r = 0.78–0.82, nRMSE=7.6–8.3%), and late rice (r =
0.76–0.78, nRMSE=8.6–8.9%). 

3.3. Predictor importance 

The feature importance of each predictor variable was used to reflect 
the contribution of different predictors to forecast yield (Fig. 6). In 
general, Pr, Soil, and VIs were identified to be major predictors for yield 
forecasting. However, the major predictors varied for different crops. 
For instance, soil moisture was the major predictor for winter wheat 
yield forecasts during T1-T2. After T3, solar radiation (Rad) and VI were 
the main predictors for winter wheat yield forecasts. The main yield 
predictors for spring maize were vegetation indices (NDVI and EVI) and 
drought indices (DI) especially during T2-T5. Soil moisture and VI were 
the main predictors for summer maize yield throughout the growing 
season. Pr (throughout the growing season, especially at T4) and ETH (at 
T6) were the most important predictors for early rice yield forecasts. Soil 
moisture was the main predictor for mid rice and late rice throughout 
the growing season. In addition, extreme cold event (ETC) was also 
identified as important yield predictor for late rice during T1-T2. In this 
study, we found the importance of NDVI and EVI in forecasting yield 
were not highly ranked for rice (early rice, mid rice, and late rice). 

4. Discussion 

4.1. Model performance 

Many studies have estimated wheat, maize, and rice yields by crop 
models (Li et al., 2014; Palosuo et al., 2011), statistical methods (Fan 
et al., 2020; Jiang et al., 2020), and hybrid approaches using a bio-
physical model and machine learning techniques (Feng et al., 2019). 
Silvestro et al. (2017) estimated winter wheat yield using remote sensing 
data (LAI and canopy cover) with two crop models (AquaCrop and a 
simple algorithm with the ensemble Kalman filter) at Yangling located 
in northwest China, and the lowest nRMSE (18.0%) was found using 
their simple algorithm model. Comparing their results with our work, 
we had a higher accuracy (nRMSE=10.4%) of yield estimation. Liu et al. 
(2017a) estimated maize yields in the North China Plain using the 

Fig. 5. Normalized values of the model performance measures (rn and nRMSEn) at six time-intervals (growth stages) for winter wheat, spring maize, summer maize, 
early rice, mid rice, and late rice using the RF-based forecasting model to predict crop yield in China (2013–2019). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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DSSAT model (r = 0.67–0.85 and nRMSE=26.8–29.8%). These values 
were similar to our r values (0.84 for spring maize and 0.79 for summer 
maize), but we found lower nRMSE (16.2% for spring maize and 10.1% 
for summer maize) with our work. Guo et al. (2020) predicted rice yields 
using phenology and climate data in machine learning models in China, 
and reported r values of 0.49–0.57, while our study had better perfor-
mance (r = 0.73, 0.84, and 0.79 for early rice, mid rice, and late rice, 
respectively). Son et al. (2014) incorporated NDVI, EVI, and rice yield 
statistics into a quadratic regression model to estimate rice yields in 
South Vietnam during the spring–winter (r = 0.79–0.84 and 
nRMSE=6.9–8.1%) and summer–autumn (r = 0.63–0.75 and 

nRMSE=5.4–6.7%), and these values were similar to our results (r =
0.73–0.84 and nRMSE=7.2–8.4%). In summary, our study was able to 
achieve similar or even better performance in yield prediction for 
different crop types than most previous studies. 

In addition, our work found that model performance varied for 
different sub-regions and crop types. This finding was mainly because 
our yield forecasting system was data-driven, and therefore, the crop 
type data, data volume, and data quality were key factors in determining 
model accuracy (Peng et al., 2020). In our study, the number of trial data 
sets, variability of crop yields, climate conditions, and the size of the 
study area were variable in each sub-region (Table 1 and Fig. 3). These 

Fig. 6. The relative importance of predictor variables at different time intervals for six crop types. The importance of each variable was based on the percentage 
increase of mean square error from the RF model. We normalized relative importance values so that they summed to 100%. (AET: actual evapotranspiration; EPI: 
extreme precipitation indices (RX1day and SDII); ETC: extreme cold temperature indices (cold days (FD0, CD10, or CD12) and TNn); ETH: extreme hot temperature 
indices (TD30 and TXx); Rad: shortwave radiation; Soil: soil moisture; Pr: precipitation; VI: vegetation indices (NDVI and EVI); DI: drought indices (SPEI, PDSI and 
DEF); Tmean: mean temperature). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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variations can impact model performance regionally. In addition, model 
performance also varied with years. It is interesting to note that model 
performance for early rice in T1-T3 was low in 2013–2019 (Table S2). 
This result was largely due to the relatively small number of trial data 
sets for early rice (304 sets of trial data) compared with other crop types 
(Fig. 1 and Table 1). 

4.2. Wheat yield forecasts 

In this study, we forecast winter wheat yield with satisfactory ac-
curacy (r = 0.81–0.85, nRMSE=10.5–11.4%) at one to three months 
lead time. This result was consistent with a previous study of Cao et al. 
(2020) that forecast winter wheat yields over the North China Plain 
during 2001–2015 based on multi-source environmental parameters and 
three machine learning approaches. In our study, the important pre-
dictor for winter wheat yield during T1-T2 (planting-tillering) stages 
was soil moisture (Fig. 6). This may be because drought stress impacts 
the potential tillering capacity of wheat. Moreover, a dry soil condition 
often affects the development of the coleoptile and first tillers, and thus 
influences the tiller number per plant (Blum et al., 1990). Forecast ac-
curacy was greatly increased at T3, probably because of stabilized wheat 
growth after tillering (e.g., fertilization) (Otteson et al., 2008). More-
over, during the tillering stage, wheat had already produced the 
important yield trait of number of tillers. Therefore, during these stages, 
the farmer should give greater attention to irrigation and nitrogen 
management, both of which can greatly impact tiller number (Blum 
et al., 1990; Otteson et al., 2008). In addition, number of wheat tillers 
can also be improved by selecting the optimum seeding rate based on an 
appropriate target plant density (Bastos et al., 2020). After the T3, ra-
diation and vegetation indices were determined to be the main pre-
dictors determining wheat yield. Solar radiation is one of the primary 
limiting factors in wheat yield after T3 because winter wheat biomass is 
produced by photosynthesis in green plant tissues, especially during 
T4-T5 (jointing to milk development stages) (Li et al., 2008; Mu et al., 
2010), and photosynthesis rate is mainly influenced by solar radiation. 

4.3. Maize yield forecasts 

The optimum lead time was around one to two months for spring 
maize (r = 0.79–0.81, nRMSE=17.1–17.9%) and summer maize (r =
0.77–0.79, nRMSE=10.2–10.4%). Meng et al. (2014) forecast maize 
yields in northeastern China based on remote sensing data and regres-
sion methods, and their results showed that the lead time was 55–60 
days after the stage of seeding establishment, and the accuracy 
(nRMSE=7.3–16.9%) was similar to our results. However, they did not 
consider additional environmental variables (e.g., drought and extreme 
climate events), and their work was limited to county-level rather than 
field level. In this study, drought indices were identified as the main 
predictors, most especially around the tasseling stage, meaning that 
drought during this time interval was the main influence on spring 
maize yield. Many previous studies have also found that the spring 
maize tasseling stage is a highly drought-sensitive period (Atteya, 2003; 
Gao et al., 2017). Supplemental irrigation at the tasseling stage can in-
crease the post-silking water consumption percentage that results in 
more water and soil nitrogen allocated for grain growth and develop-
ment, ultimately reducing the risk of yield losses (Gao et al., 2017). In 
addition, our results also showed that the forecast accuracy for summer 
maize was greatly increased at T4 (six leaves-tasseling), and increased 
slightly during T5-T6. The explanation for this result is that after the 
tasseling stage (T4) the canopy is fully developed with maximum ca-
pacity for radiation interception (Chen et al., 2020), and therefore, the 
forecast of the final yield is more certain. 

4.4. Rice yield forecasts 

Notably, no such forecast model as we have reported here has been 

established for rice across China. We expect within-season yield fore-
casting for rice can fill the knowledge gap for the rice industry in China. 
Generally, rice yield can be forecasted with a satisfactory accuracy at 
different lead times (Fig. 4 and Table S3). Soil moisture was one of the 
main factors causing instability in crop yield (Rossato et al., 2017; Singh 
et al., 2017). In this study, soil moisture was identified as the most 
important predictor for determining mid rice and late rice yield 
throughout the entire growing season. This was because soil water 
conditions not only influence pollen and embryo development (Royo 
et al., 2006), but also affect the translocation of photosynthate for 
aboveground growth and underground growth, especially during the 
grain filling stage (Chaves et al., 2002). In addition, low temperature 
was also identified as one of the main influence factors for late rice yield 
forecasts. This is because low temperatures may influence the number of 
tillers (during T1-T2), cause pollen abortion (during T3-T4), and retard 
rice growth (Moldenhauer and Slaton, 2001). Our work also showed that 
yield forecast accuracy was increased greatly for early rice at T4 (Fig. 5). 
This result was probably because T4 (booting-heading) is sensitive to 
climate conditions, and has been identified in previous studies as the key 
stage in determining rice yield formation, which has been reported in 
previous studies (Asch et al., 1999; Chang et al., 2005; Fageria, 2007). 
Therefore, producers should optimize the nutrient management prac-
tices especially at these stages. For instance, Sui et al. (2013) found that 
high N application at the early vegetative stage can increase the number 
of panicles. In addition, adjusting the proportion of N application at 
different growth stages can improve the source-sink conflict associated 
with yield development, and consequently increase rice yield. In this 
study, vegetation indices were the main predictors for wheat and maize 
yield, but were found to be not highly important for rice yield predic-
tion. This result may be due to the unclosed rice canopy and soil back-
ground features, both of which impact the canopy spectral sensor, thus 
further influencing these vegetation indices used in estimating rice yield 
(Liu et al., 2017b). 

Generally, our within-season yield forecasting system can support 
these stakeholders to monitor the dynamics of crop yields and provide a 
scientific basis for establishment of policy and risk management. 
Nevertheless, there is a trade-off between model performance and lead 
time in the yield forecasting system (Feng et al., 2020). Therefore, 
stakeholders could select the optimal forecast lead time based on 
different purposes. 

4.5. Limitations and future framework 

We developed a yield forecasting system in this study to predict crop 
yields for three major crops in China. However, there are some limita-
tions in this modelling work. Firstly, we did not consider and account for 
field management options (e.g., irrigation and fertilization) due to 
insufficient observed data, and this may have effects on the accuracy of 
yield forecasts. Secondly, cultivar selection is also an important man-
agement factor determining crop yields (Xiao et al., 2020). Different 
genotypes will have significant impacts on yield in different growing 
regions. However, we did not include different cultivar types in our 
model due to lack of data. Thirdly, we did not use the observed 
phenological data to accurately incorporate crop growth stage into the 
model. Feng et al. (2020) acquired crop phenology information by 
dynamically running biophysical model simulations and developed 
machine learning models by using stage-specific predictors. Therefore, 
developing a hybrid approach using a biophysical model and machine 
learning technique might be a good choice in the future to improve the 
accuracy of crop yield forecasts (Feng et al., 2019; Shahhosseini et al., 
2021). 

5. Conclusions 

We developed yield forecasting systems for three major crops with a 
machine learning method using multi-source environmental variables 
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and different field trial sites across China. Our study showed that using 
machine learning driven by multi-source environmental variables can 
provide satisfactory crop yield forecasts. Overall, our model perfor-
mance for each crop was comparable with results from previous studies. 
We found that yield could be satisfactorily forecast at around one to 
three months prior to harvest for winter wheat (r = 0.81–0.85, 
nRMSE=10.5–11.4%); one to two months before harvest for spring 
maize (r = 0.79–0.81, nRMSE=17.1–17.9%), summer maize (r =
0.77–0.79, nRMSE=10.2–10.4%), early rice (r = 0.71–0.72, 
nRMSE=7.4–7.5%), mid rice (r = 0.78–0.82, nRMSE=7.6–8.3%), and 
late rice (r = 0.76–0.78, nRMSE=8.6–8.9%). We expect that the 
different lead times identified by our machine learning forecast model 
can provide valuable information for farmers and policy-makers to 
reduce the risk of yield loss before the end of the growing season. We 
also identified the main predictors that determine wheat, maize, and rice 
yields. Generally, solar radiation and vegetation indices (especially 
during jointing to milk development stages) were identified as the main 
predictor for winter wheat; vegetation indices (throughout the growing 
season) and drought (especially during emergence to tasseling stages) 
were the most important predictors for spring maize; soil moisture 
(throughout the growing season) was the dominant predictor for sum-
mer maize, late rice, and mid rice; precipitation (especially during 
booting to heading stages) was the main predictor for early rice. Our 
future work will develop a hybrid approach using a biophysical model 
and a machine learning technique to improve the accuracy of crop yield 
forecasts. 
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