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A B S T R A C T   

In recent decades, agroecosystem models have been developed to simulate agricultural nitrous oxide (N2O) 
emissions. Coefficients of determination (R2) and root mean square error (RMSE) are widely used as metrics to 
assess the explanatory power and simulation accuracy of models and to provide perspectives on model 
improvement as models evolve. This study aimed to determine whether the fitting accuracy of three agro-
ecosystem models to simulate agricultural N2O emissions improved with advancing versions of the models. We 
used several quality evaluation criteria to extract 94 and 97 reported R2 and RMSE values, respectively, from 32 
published articles related to the use of three of the most-used agroecosystem models in the research field of N2O 
emissions [i.e., DNDC (DeNitrification-DeComposition), DayCent, and APSIM (Agricultural Production Systems 
sIMulator)]. Results showed that there was (1) no significant improvement in simulating N2O emissions between 
DNDC9.3 and DNDC9.5; and (2) no significant difference between the simulation abilities of the original models 
and the user-defined revised models for these widely-used models. These findings may be mainly a result of the 
offsetting consequences of changes in publication bias and increased focus on complex agricultural issues. The 
study also found that the simulation accuracy of DNDC was better under conditions of higher annual mean 
temperature and soil bulk density and lower soil total nitrogen, mainly caused by the formulas and data used to 
build and validate the model. The study results suggest that the suitability of a model for simulating N2O 
emissions depends on the climatic and soil conditions at the location of its application. Improving the simulation 
accuracy of agroecosystem models will require further targeted corrective and development actions in the future.   

1. Introduction 

Nitrous oxide (N2O) is a greenhouse gas that has a long atmospheric 
lifetime (~121 yr) and a great global warming potential [100-yr global 
warming potential (GWP100) of 298; GWP20 of 268] (Aliyu et al., 2018; 
Xu-Ri et al., 2019). Agriculture is the largest anthropogenic source of 
N2O emissions, accounting for 56–81% of the total gross anthropogenic 
emissions and 25–39% of the total global emissions (Davidson and 
Kanter, 2014; Aliyu et al., 2018). N2O emissions from agriculture are 
determined by several factors, including climate and geographical 
conditions, soil properties, and agricultural management. To estimate 
the impacts of these factors on agricultural N2O emissions, two ap-
proaches are usually taken: (1) empirical statistical models based on 
historical observation data; or (2) process-based agroecosystem models 

(Cannavo et al., 2008; Brilli et al., 2017). Compared with statistical 
regression models, process-based agroecosystem models generally 
simulate a suite of biogeochemical processes (e.g., ammonia volatiliza-
tion, nitrification and denitrification, plant growth, organic matter 
decomposition, and fermentation), enabling computation of nitrogen 
transport and transformations in soil–plant–atmosphere ecosystem, and 
mechanistically representing the effects of different environmental 
variables and management measures on N2O emissions (Brilli et al., 
2017; Giltrap et al., 2020). In recent decades, these agroecosystem 
models have rapidly developed and been updated with parameter cor-
rections, equation modifications, and sub-model development, thus 
improving the representation of agroecosystem dynamics and related 
research (e.g., Gilhespy et al., 2014; Holzworth et al., 2014). In most 
cases, the latest version of a model is directly applied in related research 

* Corresponding author: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F 
University, Yangling, Shaanxi 712100, China. 

E-mail addresses: zhangyajie1990@yeah.net (Y. Zhang), yuq@nwafu.edu.cn (Q. Yu).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2020.108281 
Received 20 June 2020; Received in revised form 2 December 2020; Accepted 6 December 2020   

mailto:zhangyajie1990@yeah.net
mailto:yuq@nwafu.edu.cn
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2020.108281
https://doi.org/10.1016/j.agrformet.2020.108281
https://doi.org/10.1016/j.agrformet.2020.108281
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2020.108281&domain=pdf


Agricultural and Forest Meteorology 297 (2021) 108281

2

without comparing its simulation results with those of previous versions 
of the model. The explanatory power of models simulating N2O emission 
variability is worthy of attention, and model version updates should be 
evaluated as to whether they improve simulation accuracy. 

There are a number of metrics that have been developed and are 
widely used to assess the explanatory power of models. Two commonly 
used measures are the coefficient of determination (R2) and the root 
mean square error (RMSE). The R2 measures the amount of variation 
accounted for by the fitted model, while the RMSE measures the error 
between the fitted values with the observed data (Pham, 2019). An R2 

equal to 1 and a RMSE equal to 0 indicate perfect model fit. Although 
important discussions continue regarding the best methods for 
measuring the amount of variance explained by a model, the values of 
the R2 and RMSE are often used to assess relative and absolute measures, 
respectively, of a model’s fit of simulated results with observed mea-
surements (Chai and Draxler, 2014; Low-Décarie et al., 2014). Low--
Décarie et al. (2014) analyzed data from more than 18,000 articles and 
found that steadily falling R2 values indicated a decrease in the 
explanatory power of ecology. According to reported R2 values, Weis-
burd and Piquero (2008) evaluated how much explanatory power there 
was in criminological research, and found only a low level of variance 
was explained by the research, with no improvement over time. Yelur-
ipati et al. (2015) evaluated the state of the DNDC (DeNi-
trification-DeComposition) crop model using a meta-analysis. They 
showed that the predictive power of accumulative annual N2O emission 
fluctuations changed as DNDC version changed from 1.0 to 9.1, and that 
daily N2O emissions were poorly modelled by DNDC. However, their 
study was limited by spatial and temporal scale heterogeneity, type of 
ecosystem modelled, and model complexity and development objectives 
in these modelling studies. We used R2 and RMSE as measures of 
explanatory power and simulation accuracy of models in a meta-analysis 
study to answer the following questions: (1) what is the trend of R2 and 
RMSE values for N2O emissions simulation in relation to version 
updating of major agroecosystem models? (2) Is there a significant 
improvement in model performance using a user-defined revised version 
compared with the original version? (3) Do model revisions improve 
N2O emission simulations across a range of crop types, geographical 
regions, and agricultural management practices? The results of this 
study may provide the impetus for continued work on revising and 
updating agroecosystem models. 

2. Data and Methods 

2.1. Data collection 

A dataset was compiled based on published R2 and RMSE values 
obtained from a literature survey of peer-reviewed publications in the 
Scopus abstract and citation database (https://www.scopus.com/home. 
uri) to identify English-language articles published before May 3, 2020. 
The search terms used were “agricultur*”, “model*”, and “N2O” or 
“nitrous oxide” in the subject areas of “environmental science”, “agri-
cultural and biological sciences”, and “earth and planetary sciences”. 
Based on the title, abstract, and keywords, studies were excluded that 
did not report agricultural N2O emissions in studies of agroecosystem 
modeling. Three models appeared most frequently in this dataset and 
were regarded as the research subjects: DNDC, DayCent, and APSIM 
(Agricultural Production Systems sIMulator), with 142, 50, and 33 
relevant papers, respectively, available for further processing (Giltrap 
et al., 2020). Different versions of DNDC were considered in this study, 
including models regionalized for different countries/regions (e.g., 
NZ-DNDC, UK-DNDC) and modified to suit specific crops or livestock 
farms (e.g., DNDC-Rice, DNDC-CSW, Manure-DNDC). A description of 
each model is provided in Table 1 and further details of the key differ-
ences and similarities with respect to the simulation of N2O emissions 
can be found in Giltrap et al. (2020). 

We followed the methods used in some previously published meta- 
analyses (e.g., Aliyu et al., 2018; Zhao et al., 2020), and we used the 
following criteria to select R2 and RMSE values for use in this study: (1) 
the study was performed for identifiable field crops or forage grasses 
using at least one of the targeted models [model version(s) must be re-
ported or could be inferred]; (2) N2O emission treatments were ran-
domized and replicated at least three times under field conditions and 
over at least two entire growing seasons for crops and two years for 
grasses; (3) N2O emissions were measured hourly to biweekly using the 
static chamber method combined with the gas chromatography tech-
nique (Charteris et al., 2020); (4) at least one comparison of observed 
and simulated daily N2O emissions (not cumulative or linearly inter-
polated emissions) was included; and (5) R2 (or correlation coefficient), 
RMSE [or normalized RMSE, equal to 100 × RMSE / mean(observed)], 
sample size (n), and p value were provided or could be calculated. 

2.2. Data pretreatment 

Some previously published articles simultaneously reported R2/ 
RMSE values in more than one step of model application (e.g., model 
calibration, model validation, and model simulation). In contrast, only 

Table 1 
Details of the agroecosystem models compared in this study [modified from Cannavo et al. (2008) and Brilli et al. (2017)].  

Model* Factors influencing nitrous oxide production Spatial scale Time step Website and software 
availability 

Main references 
Nitrification Denitrification 

DNDC Nitrifier biomass, soil 
ammonium content, 
dissolved organic carbon 
content, soil temperature, 
soil water-filled pore space, 
and soil pH 

Denitrifier biomass, total 
nitrogen as the sum of NO3

–, 
NO2

–, NO, and N2O, dissolved 
organic carbon content, soil 
temperature, and soil pH 

Field to 
regional 

Daily (denitrification is 
calculated hourly 
following rainfall or 
irrigation events) 

http://www.dndc.sr.unh.edu/; 
available online 

(Li et al., 1992,  
Li et al., 1994);  
Li, 2000; DNDC, 
2017 

DayCent Soil ammonium content, soil 
temperature, soil water- 
filled pore space, and soil pH 

Soil nitrate content, soil 
respiration rate, and soil 
water-filled pore space 

Field to global 
(ecosystems) 

Daily https://www2.nrel.colostate. 
edu/projects/daycent-home.ht 
ml; available on request from 
authors (century@colostate.edu) 

Del Grosso et al., 
2000; Parton 
et al., 2001;  
Zhang et al., 
2020 

APSIM Soil ammonium content, 
dissolved organic carbon 
content, soil temperature, 
soil water-filled pore space, 
and soil pH 

Soil nitrate content, soil 
respiration rate, and soil 
water-filled pore space 

Field to global Mostly daily https://www.apsim.info/; 
available online 

Keating et al., 
2003; Holzworth 
et al., 2014;  
APSIM, 2020a  

* All three models included the following nitrogen processes: mineralization, leaching, volatilization, nitrification, denitrification, nitrogen uptake, and N2 fixation. 
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one kind of R2/RMSE value was recorded in our study using the 
following prioritization: R2/RMSE from all data simulations > R2/RMSE 
from validation > R2/RMSE from calibration. If multiple publications 
contained data from the same study, only the R2/RMSE values in the first 
study were retained. Models were categorized as “revised model” for 
comparison with the original model if they had been revised or inte-
grated/coupled with other model(s) by model users (who were not the 
model developers) in some studies (R2/RMSE values from both the 
original and revised models were recorded if available). If a study re-
ported one value of R2/RMSE using data from multiple experimental 
sites, the same or similar data for climate, soil, crop type, and man-
agement from close-distance sites were recorded. By following these 
criteria, 94 observations of R2 from 25 publications and 97 observations 
of RMSE from 23 publications were extracted, covering 14 countries/ 
regions. There were 16 publications that reported both R2 and RMSE 
values. Because there was only one reported R2/RMSE value for 
DNDC8.3P and DNDC9.2, these two models were not included in the 
dataset. Also, DNDCv.CAN (the Canadian version of DNDC that focused 
on cool-weather agriculture) was treated as a revised version of 
DNDC9.3 in this study. LandscapeDNDC unified DNDC9.3 and Forest- 
DNDC into a general soil biogeochemistry module in 2013, and was 
considered a separate version of DNDC in this analysis. This version was 
designed to simulate multi-ecosystems (i.e., forest, cropland, and 
grassland) and allowed the dynamic simulation of land use changes 
(Haas et al., 2013). For the DayCent model, there were several different 
versions (e.g., DayCent v4.5 2006, DayCent v4.5 2010, DayCent v4.5 
2013, and DayCent v4.5 after 2013) resulted in different parameter 
settings and a few variations in the model structure (Sándor et al., 2018). 
All these different versions were treated as the “DayCent4.5” model in 
this study, because most of the related publications did not mentioned 
the specific versions used. Also, the development of the APSIM model 
went through different versions and generations. However, one-third of 
the related publications stated that APSIM7.5 was applied, but the 
others did not specify what model versions were used. Therefore, the 
designation of “APSIM7.x” was used in this study to represent the 
different versions of the APSIM model. The complete list of all changes 
and fixed defects to APSIM can be found in the release notes at 
https://www.apsim.info/download-apsim/downloads/. The details of 
these compiled peer-reviewed papers are listed in the Supplementary 
Information Table S1. 

All data obtained from these papers [e.g., country/region, site 
location, climate conditions (annual mean air temperature and total 
precipitation), topsoil properties (pH, bulk density, clay content, organic 
carbon content, and total nitrogen content), crop types, agricultural 
management (total nitrogen application rate, irrigation rate, and tillage 
method), etc.] are available from the corresponding author upon 
reasonable request. When soil organic matter was reported during the 
dataset compilation process, it was converted to organic carbon content 
by dividing the value by 1.724 (Oldfield et al., 2019). Different studies 
reported topsoil properties at different depths. When studies reported 
topsoil properties at multiple depths, we averaged values of topsoil 
properties across depths to 20 cm (Oldfield et al., 2019). When studies 
reported topsoil properties to depths varying from 0 to 20 cm, we 
recorded values of topsoil properties directly without any conversion as 
suggested by Dr. Nils Borchard, Natural Resources Institute Finland 
(Luke) (https://www.researchgate.net/post/Is_there_an_acceptable_wa 
y_to_convert_soil_carbon_concentration_values_for_a_certain_depth_ 
to_another_for_0-20cm_to_0-10cm). 

2.3. Data analysis 

The R2 and RMSE values were assessed for data heterogeneity using 
the Levene’s test, and for normality using the Shapiro-Wilk test. All data 
were log-transformed (if necessary) prior to analysis. Significant dif-
ferences among the simulated R2 and RMSE values of different model 
versions were tested by one-way ANOVA followed by the Tukey HSD 

mean separation test at p < 0.05. Simple linear and quadratic regression 
analyses were conducted to investigate the relationship of the R2 and 
RMSE values to climate, topsoil, and agricultural management condi-
tions. Data processes and statistical analyses were performed using R 
(version 3.3.1; Statistics Department of the University of Auckland; 
https://www.r-project.org/) and OriginPro8.5 (OriginLab Corporation; 
https://www.originlab.com/). The main R packages used were 
“stringr”, “plyr”, and “reshape2”. Figures were created and regression 
analyses were conducted using OriginPro8.5. 

3. Results 

3.1. Comparisons between different agroecosystem models and model 
versions 

Fig. 1 shows the R2 and RMSE values between measured and simu-
lated agricultural N2O emissions for the six models/model versions. 
DNDC9.5 and DNDC9.3 had the largest mean R2 values (0.422 and 
0.414, respectively). LandscapeDNDC and DNDC9.3 had the smallest 
mean RMSE values (9.31 and 23.47 g N ha–1 d–1, respectively). DNDC9.4 
had significantly lower R2 than DNDC9.5 and DNDC9.3 and larger RMSE 
than LandscapeDNDC and DNDC9.3 (p < 0.05). APSIM7.x and Day-
Cent4.5 were created for different purposes than the DNDC model ver-
sions, and had lower mean R2 values but smaller RMSE values for the 
simulation of N2O emissions than some of the four DNDC versions. The 
R2 and RMSE values for APSIM7.x and DayCent4.5 were not compared 
with each other, and will be discussed in the 4.4 Section. 

Fig. 2 shows comparisons of the mean R2 and RMSE values for the 
original and revised versions of DayCent4.5, LandscapeDNDC, and 
DNDC9.5. According to the R2 values, for all three models, the simula-
tions of N2O emissions from the revised model did not significantly 
better fit the measured N2O emissions than the original model did. 
Additionally, only the DayCent4.5 model had a numerically higher 
mean R2 value for the revised model than for the original version (0.216 
vs 0.150). Numerically lower mean RMSE values were observed for the 
revised DayCent4.5 and DNDC9.5 models than for the original versions, 
but none of the differences between versions of the same model were 
significant. Only LandscapeDNDC had a significantly higher mean RMSE 
value for the revised model than for the original version (33.33 vs 4.16 g 
N ha–1 d–1). 

3.2. Comparisons of the effect of different environmental and 
management factors on simulation accuracy of agroecosystem models 

Figs. 3 and 4 show comparisons of R2 and RMSE values for the four 
versions of DNDC for different environmental and management factors 
divided into two groups for each factor according to related threshold 
values. These thresholds were selected based on the representativeness 
of related environmental and management factor classifications (e.g., 
pH = 7 can classify soil into acid or alkaline soils). Only the differences 
of between-group (for the same model version) and intergroup (for 
different model versions) were compared. The results for the climate 
conditions (Figs. 3a and 4a, temperature, and 3b and 4b, precipitation) 
show that (1) most of the models simulated N2O emissions better 
numerically under higher annual mean air temperature and under lower 
annual precipitation; (2) on the whole, DNDC9.3 performed better than 
the other versions of the model under the different climatic conditions; 
and (3) there were no significant differences for the between-group and 
intergroup comparisons of the R2 values. For geographical conditions 
(Figs. 3c and 4c, latitude, and 3d and 4d, elevation), (1) most of the 
models simulated N2O emissions with higher explanatory power but 
lower accuracy in mid-low latitudes; (2) DNDC9.3 showed relatively 
more stable performance than other versions of the model in the mid- 
low latitudes; but DNDC9.5 simulated N2O emissions significantly bet-
ter with higher R2 and lower RMSE at mid-low latitudes than at mid-high 
latitudes; (3) DNDC9.3 had significantly higher mean R2 and lower 
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mean RMSE than DNDC9.4 and DNDC9.5 at mid-high latitudes; and (4) 
DNDC9.5 simulated measured values better (higher R2 and lower RMSE) 
at higher elevations than lower elevations, but the differences in mean 
R2 and RMSE values were not significant. For agricultural management 
practices (Figs. 3e and 4e, nitrogen application rate, and 3f and 4f, 
irrigation amount), (1) DNDC9.3 showed numerically higher R2 under 
higher nitrogen application rates than under lower rates, but the reverse 
was seen for DNDC9.5; (2) overall, DNDC9.5 had the numerically 
highest R2 and the highest RMSE values under both nitrogen application 
conditions; and (3) explanatory power with DNDC9.5 was slightly, but 
non-significantly, greater with lower irrigation amounts. But simulation 
accuracy with DNDC9.5 showed opposite performance. For soil prop-
erties (Figs. 3g–k and 4g–k), (1) simulations with DNDC9.5 performed 
better (higher explanatory power and closer to measured values) when 
soil bulk density was greater than 1.2 g cm–3, but the large differences in 
mean R2 and RMSE values between the two bulk density categories were 
not statistically significant for this model version. In contrast, obvious 
(and significant in some cases) decreases in mean R2 and increases in 
mean RMSE were observed for DNDC9.3 and DNDC9.5 when soil 
organic carbon was greater than 20 g kg–1 and total nitrogen content was 
greater than 2 g kg–1; (2) DNDC9.3 and LandscapeDNDC performed 
significantly better when soil organic carbon and total nitrogen contents 
were at higher levels; and (3) both DNDC9.3 and DNDC9.5 performed 
better under higher soil pH conditions and higher clay content, but the 
increased performance in terms of R2 was not statistically significant. 

The effect of vegetative cover on explanatory power and simulation 
accuracy of N2O emission varied from model to model (Figs. 5a and 5c). 

There were no significant differences between the R2 and RMSE values 
in cropland and grassland from different model simulations. APSIM7.x 
performed better (but non-significantly) when used to simulate N2O 
emissions over grassland than over cropland. Most of the DNDC versions 
showed numerically higher R2 but higher RMSE when simulating N2O 
emissions from cropland than from grassland. There was no significant 
difference between the mean R2 and RMSE values obtained with either 
DayCent4.5 or DNDC9.5 due to tillage system (Figs. 5b and 5d). These 
two models explained N2O emissions from no-till systems better than 
from conventional tillage, but had decreased simulation accuracy, as 
noted by the numerically greater R2 but greater RMSE under no-till. 

3.3. Relationships between R2 (or RMSE) for measured and simulated 
N2O emissions of widely-used agroecosystem models and different 
environmental and management factors 

Obvious linear or polynomial relationships (defined as adjusted R2 ≥

0.2, p < 0.05) were observed between the values of R2 derived from 
studies using DNDC9.5 and annual mean air temperature, soil bulk 
density, soil organic carbon content, and soil total nitrogen content 
(Fig. 6). The fitted relationships for DNDC9.5 showed linear increasing 
trends with annual mean air temperature and soil bulk density in the 
range of 7 to 17◦C and 0.8 to 1.6 g cm–3, respectively (Figs. 6a and 6g). 
For soil organic carbon content, R2 values from DNDC9.5 showed a 
falling-rising quadratic relationship with the minimum occurring at a 
soil organic carbon content of 40 g kg–1 (Fig. 6j). R2 values from 
DNDC9.5 simulations of N2O emissions decreased linearly with 

Fig. 1. Box plots of (a) coefficients of deter-
mination (R2) and (b) root mean square error 
(RMSE; unit: g N ha–1 d–1) between measured 
and simulated agricultural nitrous oxide emis-
sions from publications reporting research 
using different agroecosystem models [DNDC 
(DeNitrification-DeComposition), DayCent, and 
APSIM (Agricultural Production Systems sIMu-
lator)]. The lower and upper box boundaries 
indicate the 25th and 75th percentiles; the line 
inside the box indicates the median; the square 
inside the box indicates the mean; the lower 
and upper whiskers indicate the minimum and 
maximum values; the upper and lower X sym-
bols beyond the ends of the whiskers indicate 
the outliers. Significant differences in R2 and 
RMSE between model versions are indicated as 
*: p < 0.05 and **: p < 0.01. Values under the 
box plots are the mean ± standard error of the 
mean and the number of R2 and RMSE values 
extracted from the publications.   
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increasing soil total nitrogen content (Fig. 6k). There were, however, no 
clear trends in the relationships between the values of R2 and any of the 
environmental and management factors for either the APSIM7.x or 
DayCent4.5 models. 

Fig. 7 (RMSE) is presented similarly to Fig. 6 (R2), and some main 
points should be noted: (1) APSIM7.x and DNDC9.5 showed higher 
simulation accuracy under higher annual mean air temperature 
(Fig. 7a). The DNDC9.5 results provided consistent information with 
Fig. 6a; (2) application of DayCent4.5 and DNDC9.5 in mid-low latitude 
areas may achieve better simulation results (Fig. 7c); (3) similar to the 
results presented in Fig. 6g, the higher the soil bulk density, the better 
the DNDC9.5 simulation (Fig. 7g); and (4) both DayCent4.5 and 
DNDC9.5 performed better at higher clay contents (Fig. 7i) or lower 
total nitrogen (Fig. 7k; consistent with the result shown in Fig. 6k for 
DNDC9.5) in agricultural soil. 

4. Discussion 

4.1. Simulation accuracy of N2O emissions by agroecosystem models 

Differences in physical and biogeochemical processes and input pa-
rameters used by these agroecosystem models likely contributed to the 
different results in different studies (Brilli et al., 2017). In DNDC, a 
dynamic “anaerobic balloon” function related to oxygen partial pressure 
was developed to allow nitrification and denitrification to occur 

simultaneously in aerobic or anaerobic microsites (Li et al., 2000). The 
simulation of free ammonium dynamics, nitrification, and nitrate 
leaching was subsequently further improved (Gilhespy et al., 2014). This 
increased the capacity to simulate urea hydrolysis for DNDC relative to 
the other models (Zimmermann et al., 2018). These functions improved 
the simulation of N2O emission dynamics by DNDC. In APSIM, N2O 
emission during nitrification was calculated following processes similar 
to those used by DNDC with a slightly different proportion of nitrified 
nitrogen (0.002 in APSIM vs 0.0024 in DNDC) and without consider-
ation of a changing microbial population (Li, 2000; Vogeler et al., 2013; 
Holzworth et al., 2014; APSIM, 2020a). N2O emission during denitrifi-
cation was simulated by the model of Del Grosso et al. (2000), and was 
the same as the CENTURY biogeochemical model (DayCent was the 
daily time-step version of the CENTURY model) (Vogeler et al., 2013; 
Holzworth et al., 2014; APSIM, 2020a). The combination of these 
different formulas in APSIM resulted in a comparatively ideal simulation 
accuracy (mean RMSE was 40.96 g N ha–1 d–1) but weak explanatory 
power of N2O emissions (mean R2 was 0.142). The same or opposite 
conclusions were drawn by some recent model comparison studies. For 
example, Gaillard et al. (2018) found DayCent simulations of N2O 
emissions in agricultural fields of the USA were more significantly and 
strongly correlated with observed emissions than simulations produced 
with DNDC. Even though some versions of DNDC produced the best 
representation of measured N2O emissions, research objectives and 
experimental conditions must still be considered when selecting a 

Fig. 2. Box plots of (a) coefficients of deter-
mination (R2) and (b) root mean square error 
(RMSE; unit: g N ha–1 d–1) between measured 
and simulated agricultural nitrous oxide emis-
sions from publications reporting research 
using the original and revised versions of the 
DNDC (DeNitrification-DeComposition) and 
DayCent agroecosystem models. The lower and 
upper box boundaries indicate the 25th and 75th 

percentiles; the line inside the box indicates the 
median; the square inside the box indicates the 
mean; the lower and upper whiskers indicate 
the minimum and maximum values; the upper 
and lower X symbols beyond the ends of the 
whiskers indicate the outliers. n.s. denotes no 
significant difference at p = 0.05. Values under 
the box plots are the mean ± standard error of 
the mean and the number of R2 and RMSE 
values extracted from the publications.   
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model. 
Improved representation of soil water evaporation was incorporated 

into DNDC during its development (DNDC9.3) in 2010. The soil 
ammonia volatilization calculation process developed in Manure-DNDC 
was also used in DNDC9.4 in 2012 (Gilhespy et al., 2014). Simulating 
procedures of crop growth, hydrological cycle, and greenhouse gas 
production were further optimized for DNDC9.5 in 2014 (Gilhespy et al., 
2014; Zhang and Niu, 2016). In contrast to the results seen for DNDC9.3 
and DNDC9.5, DNDC9.4 failed to adequately simulate agricultural N2O 
emissions. Most of the R2 and RMSE observations for DNDC9.4 were 
derived from Zimmermann et al. (2018), who simulated N2O fluxes from 
different grass and arable sites by DayCent, DNDC9.4, and DNDC9.5 in 
the Northern Ireland and Republic of Ireland. The models used in Zim-
mermann et al. (2018) showed overall worse performance than previous 
similar studies carried out in the UK and Ireland. However, because of 
the limited availability of related research, it is difficult to thoroughly 
explain why these differences in simulation results between related 

models occurred. Some potential explanations for why there has been no 
significant improvement in R2 and RMSE values as new versions of the 
model have been created are: (1) agroecosystem models may have 
started to be used to answer more difficult questions regarding agri-
cultural biogeochemical cycles and sustainable development that are 
less amenable to explanation; (2) an increasing number of model users 
who are not well-trained in agroecosystem modelling may result in poor 
application of the model because of not adequately understanding the 
model’s theories, structures, data requirements, implementation, and 
limitations (Weisburd and Piquero, 2008); (3) the improvements made 
in new versions of a model also increased model complexity and possibly 
output sensitivity to inputs and model parameters; and (4) there may 
have been a shift in publication bias that acted directly on R2 and RMSE 
values. For example, more studies that report low R2 and high RMSE 
values may have been published due to the growing recognition of the 
importance of publishing “negative results” (Low-Décarie et al., 2014). 
Moreover, more researchers may report real research results under the 

Fig. 3. Box plots of coefficients of determination (R2) between measured and simulated agricultural nitrous oxide emissions from publications reporting research 
using the DNDC (DeNitrification-DeComposition) model for different (a–d) climate and geographical conditions, (e–f) agricultural management practices, and (g–k) 
soil properties. All of these environmental factors were divided into two groups according to related threshold values. The lower and upper box boundaries indicate 
the 25th and 75th percentiles; the line inside the box indicates the median; the square inside the box indicates the mean; the lower and upper whiskers indicate the 
minimum and maximum values; the upper and lower X symbols beyond the ends of the whiskers indicate the outliers. Only the differences of between-group (for the 
same model version) and intergroup are compared. Significant differences in R2 between model versions are indicated as *: p < 0.05, **: p < 0.01, and ***: p < 0.001; 
values under the box plots are the mean ± standard error of the mean and the number of R2 values extracted from the publications. 
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constraints of highlighted academic ethics and integrity in recent years. 
Some researchers have tried to apply user-defined revised models 

that changed some internal formulas/parameters or were integrated/ 
coupled with other model(s) to improve model performance under their 
specific conditions. For example, Yu et al. (2017) applied a revised 
DNDC9.5 model that improved simulations of N2O emissions and crop 
growth when using plastic mulching in cotton fields in an arid region of 
China. The results shown in Fig. 2 indicated that for one of the three 
models, the revised model performed better than the original model, 
showing higher R2 and lower RMSE. However, the differences were not 
significant (p > 0.05). Please note that the data used in this analysis were 
not the pairwise data because some publications did not report the 
fitting effect of model(s) before being revised to a new version, thereby 
causing selective reporting bias. A reason for why we did not observe 
consistent significant improvement in simulation accuracy with revised 
versions of the models compared with original versions may be partly 
due to the offsetting consequences of attempting to solve complex 

agricultural questions with models (leading to decreasing R2 and 
increasing RMSE for revised models) and publication bias resulting from 
authors not publishing their results if a revised version of the model did 
not achieve a larger R2 or lower RMSE value than the original model 
(leading to increasing R2 and decreasing RMSE for revised models) 
(Thornton and Lee, 2000; Low-Décarie et al., 2014). However, studies 
using revised models have encouraged the development and evolution 
of models. A great deal of additional work will be needed to carefully 
consider the methods of model modification needed to achieve satis-
factory results. 

4.2. Relationships between environmental and management factors and 
values of R2 and RMSE simulated by agroecosystem models 

Although the formulas used in these agroecosystem models have 
been presented in some publications (e.g., DNDC, 2017; APSIM, 2020a; 
Zhang et al., 2020), it was still difficult to explain the relationships 

Fig. 4. Box plots of root mean square error (RMSE; unit: g N ha–1 d–1) between measured and simulated agricultural nitrous oxide emissions from publications 
reporting research using the DNDC (DeNitrification-DeComposition) model for different (a–d) climate and geographical conditions, (e–f) agricultural management 
practices, and (g–k) soil properties. All of these environmental factors were divided into two groups according to related threshold values. The lower and upper box 
boundaries indicate the 25th and 75th percentiles; the line inside the box indicates the median; the square inside the box indicates the mean; the lower and upper 
whiskers indicate the minimum and maximum values; the upper and lower X symbols beyond the ends of the whiskers indicate the outliers. Only the differences of 
between-group (for the same model version) and intergroup are compared. Significant differences in RMSE between model versions are indicated as *: p < 0.05, **: p 
< 0.01, and ***: p < 0.001; values under the box plots are the mean ± standard error of the mean and the number of RMSE values extracted from the publications. 
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between the environmental and management factors and simulated N2O 
emissions, and consequently the simulation accuracy of models. This 
was because (1) environmental and management factors affect N2O 
emissions in nitrification and denitrification processes in diverse ways, 
(2) observational data on soil N2O emissions contain significant tem-
poral and spatial uncertainty, and (3) the processes of data collection 
and model operation may have uncertainties caused by the researchers 
(Myrgiotis et al., 2018). Some evidence regarding the relationship be-
tween environmental and management factors and simulated N2O 
emissions have been provided by some studies using sensitivity analysis 
methods (Giltrap et al., 2010). Myrgiotis et al. (2018) examined the 
parameter sensitivity of N2O simulated by LandscapeDNDC and identi-
fied the soil microbial dynamics, pH, soil porosity, and dissolved organic 
carbon content as the key sources of output sensitivity. Necpálová et al. 
(2015) examined the sensitivity of N2O simulated by DayCent through 
inverse modeling using the PEST parameter estimation software and 
found that soil temperature, carbon/nitrogen ratio, nitrogen availabil-
ity, and potential evapotranspiration noticeably affected model outputs. 
A comparison study showed that temperature and water content had 
larger nitrification effects in APSIM than in DNDC, while temperature 
and organic carbon content produced larger denitrication responses in 
DNDC than in APSIM (Vogeler et al., 2013). Vogeler et al. (2013) also 
indicated that DNDC simulated linearly increasing N2O emission rates 
with increasing nitrogen load, while lower emission rates were simu-
lated by APSIM. Also, increasing rainfall intensity increased N2O emis-
sions simulated by DNDC, but decreased emissions simulated by APSIM. 
These parameters made up the majority of the model’s parameters, 
thereby affecting the size and state of the nitrogen-based soil substrate 
(Myrgiotis et al., 2018). There were some obvious signs that changes in 
the main parameters mentioned above may influence the R2 and RMSE 
values simulated by these models (see Figs. 3, 4, 6, and 7). 

Moreover, the relationships between the environmental and man-
agement factors and the simulation accuracy of the models may be 
considerably influenced by model structure, calibration, and validation. 
The data used in this study came from a limited range of soil/climate 
conditions and production systems. For example, Del Grosso et al. 
(2000) provided a general model that was used for simulating denitri-
fication in APSIM and DayCent. This general model was developed 
based on collected soil core samples and repacked soil data from Weier 
et al. (1993) from northern Colorado. Thus APSIM and DayCent can 
effectively simulate the denitrification process and corresponding N2O 
emissions from agroecosystems of the semi-arid Great Plains of the USA 
and other locations having similar environmental and agricultural 
conditions. The DNDC model was originally developed to simulate N2O 
emissions from cropped soils in the USA. The calculation formulas for 
N2O emissions coming from nitrification and denitrification were 
mainly sourced from many publications conducted in the USA, China, 
and some European countries (Li et al., 1992; Li, 2000). Therefore, most 
of the DNDC versions can generally produce good simulations at sites 
having climate (including irrigation events that are always treated as 
precipitation) and soil characteristics falling within the ranges of the 
original data used to develop DNDC. 

In this study, we found that most of the DNDC versions were good at 
simulating N2O emissions in croplands, while APSIM7.x and DayCent4.5 
performed better for grasslands. Fuchs et al. (2020) conducted a 
multi-model evaluation in an intensively managed grassland in 
Switzerland, and indicated that DayCent and APSIM performed well for 
simulating annual and daily N2O fluxes, respectively. Abdalla et al. 
(2010) indicated that DayCent simulated daily N2O fluxes more 
consistently than DNDC did for pasture in Ireland. This was because the 
plant growth sub-model used in DayCent simulates the growth of various 
grasses and trees (Del Grosso et al., 2001). A pasture growth model 

Fig. 5. Box plots of (a and b) coefficients of determination (R2) and (c and d) root mean square error (RMSE; unit: g N ha–1 d–1) between measured and simulated 
agricultural nitrous oxide emissions from publications reporting research using different agroecosystem models [DNDC (DeNitrification-DeComposition), DayCent, 
and APSIM (Agricultural Production Systems sIMulator)] for (a and c) cropland and grassland sites and for (b and d) conventional tillage and no-till. The lower and 
upper box boundaries indicate the 25th and 75th percentiles; the line inside the box indicates the median; the square inside the box indicates the mean; the lower and 
upper whiskers indicate the minimum and maximum values; the upper and lower X symbols beyond the ends of the whiskers indicate the outliers. n.s. denotes no 
significant difference (p = 0.05) in R2 and RMSE values due to vegetative cover category or due to tillage category; Values under the box plots are the mean ±
standard error of the mean and the number of R2 and RMSE values extracted from the publications. 
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(AgPasture) was developed and integrated into APSIM with a set of 
management tools for modelling pasture management such as grazing, 
cutting, and renewal (Holzworth et al., 2014; APSIM, 2020b). Some 
specific DNDC model versions (e.g., NZ-DNDC and Manure-DNDC) may 
be better choices for simulation of N2O emissions from grasslands or 
pasture systems (Gilhespy et al., 2014). DNDC has been applied in many 
land use types, but the majority of the applications have been in crop-
lands (Yeluripati et al., 2015). 

4.3. What needs to be done in agroecosystem model development? 

Climate change is causing increases in temperature, changes in 
precipitation, imbalances in hydrology and water resources, and 
increased frequency of extreme weather events (Trenberth, 2011; Cook 

et al., 2018). Increasing global agricultural intensification has increased 
the attention given to developing methods to conserve water resources 
and control nitrogen applications in order to ensure future food security. 
For now, the agroecosystem models discussed in this paper can achieve 
good simulations of N2O emissions for conditions of higher temperature 
and lower nitrogen fertilizer application rates. However, only 15% of 
studies dealing with DNDC have focused on quantification of the impact 
of temperature (and precipitation) changes on model results (Yeluripati 
et al., 2015). Additionally, the influence of extreme weather events (e.g., 
drought, heatwave) on simulated N2O emissions remains unclear. Under 
the influence of climate change, the usability or applicability of the 
formulas and parameters used in these models becomes more uncertain. 
For example, the effects of soil pH and temperature on denitrification are 
modeled in DNDC based on observations that were reported in a number 

Fig. 6. Relationships between coefficients of determination (R2) from publications reporting measured and simulated agricultural nitrous oxide emissions for (a–d) 
climate and geographical conditions, (e–f) agricultural management practices, or (g–k) soil properties using widely-used agroecosystem models [DNDC (DeNitri-
fication-DeComposition), DayCent, and APSIM (Agricultural Production Systems sIMulator)]. The best fitting linear or quadratic regressions are presented when 
significant (adjusted R2 ≥ 0.2, p < 0.05), that only occurred for DNDC9.5. 
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of studies published from 1954 to 1988 (DNDC, 2017). Furthermore, 
more studies should be conducted at low-latitude agricultural sites to fill 
the research gap indicated in Fig. 6c (Zhang and Yu, 2020a). Overall, 
mean R2 values were low (< 0.5) for all of the agroecosystem models 
investigated in this study (Fig. 1a). Coupling agroecosystem models and 
machine learning algorithms can help improve prediction and accelerate 
progress toward developing dynamic decision support tools for agri-
cultural management (e.g., Shahhosseini et al., 2019). Great opportu-
nities remain for future model development to further improve 
understanding of agricultural nitrogen cycle responses to changing 
climate and socioecological influences caused by nitrogen pollution in 
order to achieve realistic solutions to the problems faced by agricultural 
production systems in connection with climate change (Robertson et al., 
2013). 

4.4. Limitations of this study 

This study had several potential limitations: (1) the dataset from 
Scopus did not include all journals available worldwide. Additionally, 
only journal articles were included in this study, without consideration 
of reviews, books, dissertations, and conference proceedings, etc., that 
also may have reported on model use and could have provided addi-
tional values of R2 and RMSE (Zhang and Yu, 2020b). This may have 
limited the sample size of this study. (2) The ANOVA will technically 
work when having one value more than the number of groups for the 
total sample size. However, depending on the variability of the data, 
there still were concerns about the statistical power in ANOVA in many 
cases with very small sample sizes. (3) According to the publication 
year, mentioned model functions, and publishing records by the same 

Fig. 7. Relationships between root mean square error (RMSE; unit: g N ha–1 d–1) from publications reporting measured and simulated agricultural nitrous oxide 
emissions for (a–d) climate and geographical conditions, (e–f) agricultural management practices, or (g–k) soil properties using widely-used agroecosystem models 
[DNDC (DeNitrification-DeComposition), DayCent, and APSIM (Agricultural Production Systems sIMulator)]. The best fitting linear or quadratic regressions are 
presented when significant (adjusted R2 ≥ 0.2, p < 0.05). 
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authors, model versions were inferred when there were no related 
detailed descriptions in some publications. This may have caused some 
mis-estimating in this study. (4) Some included studies did not report 
site elevation and soil properties in detail. Using the study’s coordinates, 
these data were extracted from some datasets (e.g., ISRIC SoilGrids) or 
from other papers that were conducted at the same trial site in close 
years to fill in the missing values of elevation and soil properties, but 
doing so may have affected the results presented in Figs. 3, 4, 6, and 7 
(Oldfield et al., 2019). Moreover, some high-efficiency agricultural 
management technologies and methods (e.g., biochar, plastic film 
mulching) have been widely applied in actual agricultural production 
systems, but have not been included in some of the models’ structure 
and calculations. Some related studies were retained in this analysis but 
may have further affected the results of this study. (5) R2 and RMSE were 
used in this study to compare different models by assessing the ‘‘good-
ness of fit’’ of simulated N2O emissions to measured values. However, 
these metrics only assessed how well a model predicted the emissions on 
a given day (Giltrap et al., 2010). Model predictions sometimes either 
led or lagged behind the observations by a few days, and sometimes 
made the model appear to perform poorly in terms of R2 or RMSE. 
However, the model would still be reliable and useful for simulating 
accumulative long-term emissions, conducting scenario analysis to 
identify the main model drivers and optimal management measures, and 
estimating the future emissions under climate change scenarios (Giltrap 
et al., 2010). The R2 and RMSE between measured and simulated values 
are not the sole criteria of success in model development and application 
(Low-Décarie et al., 2014). R2 can be replaced by the adjusted R2 to take 
into account the number of explanatory variables in a model relative to 
the number of data points (Pham, 2019). In addition, R2 and RMSE are 
not irrelevant as R2 = 1 – RMSE2 / Variance, and it can be expected that 
R2 will decrease as RMSE increases. Moreover, please note that the R2 

and RMSE values for different versions of DNDC can be compared due to 
their close release dates and numbers of predictor variables. But the R2 

of different agroecosystem models cannot be compared because 
different numbers of predictor variables may affect the values of R2 for 
these different models. Though the RMSE of different agroecosystem 
models can be compared because their errors are measured in the same 
units, this study does not provide these RMSE comparisons because 
comprehensive conclusions can only be reached based on the compari-
sons of both R2 and RMSE for these different models. (6) Because of the 
difficulty in accessing information on the numbers of parameters and 
formulas used in specific models (especially for the nonlinear equa-
tions), and information relative to conceptual process differences in 
models, it is difficult to thoroughly understand and illustrate why the 
performance of different models or model versions is improved or 
reduced. Investigating how the changing complexity of agroecosystem 
models affects their explanatory power and simulation accuracy over 
time is worthy of further investigation and study (Giltrap et al., 2020). 

5. Conclusions 

This analysis of published research provided useful insights into the 
current state and progress of simulations of N2O emissions by agro-
ecosystem models, but more work is warranted: (1) for APSIM and 
DayCent, there is still a great deal of room for improving simulation 
ability of N2O emission dynamics from croplands; (2) for new versions of 
DNDC, the simulation accuracy of N2O emission should be further 
improved; (3) the formulas and parameters used in these model devel-
opment are somewhat out-of-date and need to be continuously evalu-
ated under future climate change conditions; and (4) a combination of 
metrics, including but not limited to R2 and RMSE, are encouraged to 
report for assessing model performance (Chai and Draxler, 2014). Model 
developers and researchers need to give much more attention to what 
the models can or cannot predict, what is not explained, and what im-
plications result from these unexplained variations in modeling of 
agricultural N2O emissions. Future research should expand beyond the 

scope of this work to provide scientific values for the development of 
agroecosystem models. 
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