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A B S T R A C T   

Cropping system models are widely used to assess the impacts of and adaptation practices to climate change on 
agricultural production. However, crop growth simulations at large scales have often lacked consideration of 
variation in crop cultivars, which were represented by different sets of genetic coefficients in crops models. In 
this study, taking the phenology of spring wheat (Triticum aestivum L.) as an example, we compared four different 
strategies for upscaling genetic parameters in phenology simulations at large scales with two experimental 
datasets. The first dataset was from field experiments comprising 40 different spring wheat cultivars at Altay 
(2014) and Yangling (2015–2017) station; the second dataset was historical (2010–2014) observed phenology 
records from 57 national agro-meteorological observation stations in China. The four strategies were the 
representative cultivar estimated at a single site (SSPs), the representative cultivar estimated at the 57 sites 
(NRPs), the various representative cultivars estimated at different agro-ecological zones (RRPs), and the virtual 
cultivars generated from the posterior distributions (VCPs). The posterior distributions aforesaid were estab-
lished based on the calibrated parameter values of the 40 different spring wheat cultivars planted in Yangling. 
Then, 1000 sets of VCPs were randomly sampled from the posterior distributions. The results indicated that both 
the SSPs and NRPs strategy obtained large errors and uncertainties in spring wheat phenology simulations in 
China since only one representative cultivar was used. The RRPs strategy achieved the second high and the 
highest accuracy in anthesis and maturity data simulations. The VCPs strategy obtained the highest accuracy in 
anthesis simulation but relative larger errors in maturity simulation. The VCPs strategy can be directly used in 
large-scale crop growth simulations without tedious process of calibration. Hence, this strategy is recommended 
in areas where observations are scarce and for model users who not good at model parameter estimation.   

* Corresponding author. 
** Corresponding author at: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 

712100, China. 
E-mail addresses: wangxm@nwsuaf.edu.cn (X. Wang), jianqiang_he@nwsuaf.edu.cn (J. He).  

Contents lists available at ScienceDirect 

Agricultural Water Management 

journal homepage: www.elsevier.com/locate/agwat 

https://doi.org/10.1016/j.agwat.2021.107181 
Received 19 June 2021; Received in revised form 9 September 2021; Accepted 11 September 2021   

mailto:wangxm@nwsuaf.edu.cn
mailto:jianqiang_he@nwsuaf.edu.cn
www.sciencedirect.com/science/journal/03783774
https://www.elsevier.com/locate/agwat
https://doi.org/10.1016/j.agwat.2021.107181
https://doi.org/10.1016/j.agwat.2021.107181
https://doi.org/10.1016/j.agwat.2021.107181
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agwat.2021.107181&domain=pdf


Agricultural Water Management 258 (2021) 107181

2

1. Introduction 

Phenology, or the timing and duration of organ formation drives 
plant resource acquisition (Lieth, 1974), and is a key indicator for field 
management practices, including fertilization (Sakamoto et al., 2010), 
transplantation (Brar et al., 2015), irrigation (Kar and Verma, 2005; 
Zhang et al., 2021). Accurate prediction of phenology is also essential for 
assessing the impacts of and adaptation to global climatic changes on 
agricultural production in large region (Angulo et al., 2013; Chen et al., 
2020b; Wang et al., 2017). In recent years, cropping system models (or 
crop model) have been widely used to schedule field management 
practices or simulate crop responses to climate change (Chen et al., 
2020a; He et al., 2019; Liu et al., 2020b). However, crop models were 
usually developed on plot or field scale and their applications were 
usually limited to single homogenous site (Guo et al., 2010). The 
concomitant heterogeneities in field environment conditions need to be 
considered in crop growth simulations at large scales, which was 
referred to “spatializing” the crop models (Faivre et al., 2004). However, 
field management information is always short, especially for the crop 
cultivars planted in different fields, which are described through a set of 
model parameters. 

Key genetic parameters related to phenological variations among 
crop cultivars cannot be directly measured in current crop models, they 
were generally estimated with limited observation data using the trial- 
and-error method or different optimization algorithms (Wallach et al., 
2019). The process parameters estimation through fitting overall field 
measurements is normally defined as ‘model calibration’. In several 
recent modeling studies in large regions, crop cultivars were assumed to 
be uniform or directly obtained from literatures to simplify model 
calibration process and to save simulation time (Cammarano and Tian, 
2018; Feng et al., 2019). Due to the equifinality of multiple parameter 
combinations, cultivar parameters estimated at single site with 
limited-year observations could lead to huge simulation uncertainties 
(He et al., 2009, 2017). At the same time, re-estimation of cultivar pa-
rameters was heavily recommended to capture spatial variations in crop 
growth among sub-regions (Jiang and Jin, 2009; Therond et al., 2011). 
Generally, cultivar parameters estimated in areas with similar condi-
tions were effective in dealing with the scale-change errors in regional 
crop model simulations. However, the smaller the simulated cells were 
divided, the greater the data and processing time required. Thus, the 
question arises whether it is possible to strike a balance between easy of 
parameter estimation and accuracy in regional crop growth simulations? 

In recent years, the Bayesian methods have seen increasing use in 
genetic parameter estimation in crop growth simulation models (Ceglar 
et al., 2011; Iizumi et al., 2009; Wallach et al., 2012). For example, He 
et al., (2009, 2010) compared different likelihood functions in genetic 
parameter estimations with the CERES-Maize model. Gao et al. (2020) 
compared a frequentist approach (Ordinary Least Squares, OLS) and two 
Bayesian approaches for the CERES-Rice model calibration and found 
that the Bayesian methods were promising for quantifying prediction 
uncertainty. In the Bayesian methods, posterior distributions of genetic 
parameters were generated through comparisons between model simu-
lated and field observed variables and based on posterior distributions of 
genetic parameters and the Bayesian theorem. This kind of posterior 
distributions could be used again as posterior distributions for the 
re-estimation of genetic parameters of given crops when regional model 
simulations were conducted and the genetic characteristics of the cul-
tivars planted were unknown (Iizumi et al., 2009). If no information was 
available about the crop cultivars planted in some locations, the poste-
rior distributions derived based on experimental data from other regions 
might be used for parameter estimation for similar cultivars. In general, 
the Bayesian methods of crop parameter estimation provides an alter-
native method for upscaling crop cultivars in regional simulations. 
However, how do the cultivar parameters generated from the posterior 
distributions performed in phenology simulation in comparing with the 
simulations with different representative cultivar parameters estimated 

in various spatial scales. 
Spring wheat is an important staple crop in China. The sown area and 

yield of spring wheat were about 16.1 million hectares and 6.4 million 
tons in 2017 (China Ministry of Agricultural, 2018). In this study, we 
taken spring wheat sown in China as an example and hypothesized that 
the simulation of spring wheat phenology with the DSSAT-CERES-Wheat 
model in regional scale could be improved by using virtual cultivars 
generated from posterior distributions of genetic parameters. The main 
objectives were: (1) to develop a new spatial upscaling strategy for ge-
netic parameters related to spring wheat phenology based on Bayesian 
method, and (2) to compare four different spatial upscaling strategies 
and choose the optimal one for the simulation of spring wheat 
phenology in China. This work is expected to provide an alternative tool 
to simplify crop growth simulations at large scale with the DSSAT (De-
cision Support System for Agrotechnology Transfer) model by ac-
counting for regional variation in crop cultivars. 

2. Materials and methods 

2.1. Model description 

The DSSAT-CERES-Wheat model is a process-based model originally 
developed by the USDA-ARS Wheat Yield Project and the U.S. govern-
ment under the AGRISTARS program (Hoogenboom et al., 2012; Jones 
et al., 2003; Ritchie and Otter, 1985). The DSSAT-CERES-Wheat model 
simulates daily wheat growth and development under varying climate, 
soil, and management practices. Photosynthetically active radiation and 
its interception by crop canopy are used to calculate potential growth, 
whereas actual growth on any day is limited by soil water deficits, ni-
trogen deficiencies, and suboptimal temperature (Ritchie, 1998). A 
minimum set of input data are required to run the model, including 
weather, crop, soil, and management practices. Soil inputs include 
physical, chemical, and morphological properties of each soil layer. 
Crop management information includes crop cultivar, planting date, 
depth and density, row spacing, irrigation, fertilizer, application of 
organic amendments, etc. 

Ottman et al. (2013) reported that there were 17 related parameters 
affecting the phenology process in DSSAT-CERES-Wheat model, 
including the cultivar-type, ecotype, and species-type parameters. Ac-
cording to the general requirements of DSSAT model usage, the 
cultivar-type genetic parameters are calibrated based on observation 
data. The ecotype parameters could be adjusted by the experienced 
model users, and the species-type parameters should not be adjusted for 
ordinary model users. Hence, there were five parameters (Table S1) 
were taken into consideration in phenology simulation in this study 
since temperature and photoperiod are the only environmental factors 
affecting wheat development in the CERES-Wheat model. The ecotype 
parameter VEFF is the maximum allowed reduction in development rate 
when unvernalized. This parameter was estimated first since it affects a 
series of development processes and was finally set to 0.3 for this study. 
The cultivar parameter PHINT is the thermal time required from the end 
of juvenile to the end of ear growing, that was not calibrated due to the 
lack of required observations of leaf emergence dates. A constant value 
(or 95) was set for all of the related simulations in this study. Therefore, 
there are only three cultivar parameters (P1V, P1D, and P5) were esti-
mated for each specific cultivar in this study. The genetic parameters 
were estimated with the DSSAT-GLUE package, which is based on the 
generalized likelihood uncertainty estimation (GLUE) method (Mertens 
et al., 2004; He et al., 2009 and 2010). 

2.2. Study areas and datasets 

Spring wheat was grown from northeast to southwest China (green 
shaded areas in Fig. 1) with obvious different climate conditions. Most 
spring wheat was sown in areas with cold and dry climate in northern 
China. In these areas, mean annual cumulative thermal time (≥10 ◦C) 
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was about 2750 ◦C⋅d with variations from 1650◦ to 3620◦C⋅d. The mean 
temperatures of the coldest month (January) and day were − 10 ◦C and 
− 30 ◦C, respectively. The extreme low temperatures prevent wheat from 
overwintering, thus only spring wheat could be sown. Expect for the 
spring wheat regions, there were also some areas where both spring and 
winter wheat were sown. These regions were mainly located in the 
plateau areas in western China, including the Qinghai-Tibetan Plateau, 
the Yunnan-Guizhou Plateau. In these areas, the mean annual cumula-
tive thermal time (≥10 ◦C) was about 2050 ◦C⋅d with variations from 
84◦ to 4610 ◦C⋅d. The mean temperatures of the coldest month (January) 
were close to − 10 ◦C. It was noteworthy that winter temperature was 
mild enough in the Yunnan-Guizhou Plateau in southwest China. In 
these areas, spring wheat is sown in the fall (Oct-Dec), which was also 
named ‘fall-sown spring wheat’ and is grown mainly in rotation with 
rice. Both spring-sown and fall-sown spring wheat were taken into 
consideration since the observations under these two grown schedules 
were both collected and used in this study. 

Two datasets of spring wheat phenology were used for different 
purposes in this study. The first dataset was from field experiments of 
multiple spring wheat cultivars conducted at Altay (47◦43′N, 88◦05′E, 
735 m) in Xinjiang Province in 2014, and at Yangling (34◦17′N, 

108◦04′E, 506 m) in Shaanxi Province in 2015–2017 (Table 1). For the 
experiment conducted at Altay, the 40-cultivar experiment was sown on 
April 16th in 2014. For the experiment conducted at Yangling, spring 
wheat was sown at four different sowing dates in both 2015–2016 and 
2016–2017 growing seasons (Table S2), which resulted in a range of 
different photoperiods and accumulative temperatures. Sufficient irri-
gation water and fertilizer were applied at the two sites to avoid water 
and nutrient stresses during the growing seasons. All treatments were 
managed to avoid water or nutrient stress and effects of weeds and pests. 
There were three replicates for each treatment. This dataset was mainly 
used to establish the posterior distributions of genetic parameters 
related to spring wheat phenology in the DSSAT-CERES-Wheat model. 

The second dataset comprised phenology observations of rainfed 
spring wheat at 57 agro-meteorological experimental stations, which 
belonged to the Chinese Meteorology Administration (CMA), in China 
from 2010 to 2014 (Table S3; Fig. 1). We divided these 57 sites into six 
agro-ecological zones (AEZs): northeast China (Zone I), north China 
(Zone II), northwest China (Zone III), the Qinghai-Tibetan Plateau (Zone 
Ⅳ), Xinjiang (Zone Ⅴ), and southwest China (Zone Ⅵ) (Zhao, 2010; Liu 
et al., 2020a). It is noteworthy that in the vast subtropical and tropical 
climate areas (Zone Ⅵ), including the Sichuan Basin and the 

Fig. 1. Distribution of the agro-ecological zones of spring wheat (green shaded areas), the experiment sites sown with the 40 spring wheat cultivars (Yangling in 
Shaanxi Province, black square; Altay in Xinjiang Province, red triangle), and the 57 agro-meteorological observation sites (blue dots) of the Chinese Meteorology 
Administration (CMA). The 57 stations represented six different agro-ecological zones (AEZ) in China, namely the northeast China (Zone I), north China (Zone II), 
northwest China (Zone III), Xinjiang (Zone Ⅳ), the Qinghai-Tibetan Plateau (Zone Ⅴ), and southwest China (Zone Ⅵ) (Zhao, 2010). And the same below. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Yunnan-Guizhou Plateau, spring wheat was usually sown in fall 
(October or November) (Yu et al., 1995). Information about crop man-
agement was obtained from on-farm observations. Management prac-
tices at each site, including fertilizer application and weed control, were 
generally the same as or better than the conventional practices by local 
farmers. Plant protection management was undertaken to guarantee 
optimum growth and avoid weeds and pests. Observations included days 
from sowing to anthesis and maturity, which were conducted by trained 
agricultural technicians according to standardized observation methods 
(CMA, 1993). All phenology data were obtained from the National 
Meteorological Information Center (NMIC) of the Chinese Meteorology 
Administration. This dataset comprehensively represents the production 
status of spring wheat in China since geographic locations of these sites 
roughly covered all of the spring wheat regions in China. This dataset 
was mainly used for evaluating the four different upscaling strategies of 
cultivar parameters for phenology simulated with DSSAT-CERES-Wheat. 

Soil water parameters, including saturated soil moisture, residual 
soil moisture and soil hydraulic conductivity, were obtained from the 
China Soil Hydraulic Parameters Dataset (Dai et al., 2013). Daily 
weather data included daily maximum and minimum air temperature, 
daily rainfall, and daily global solar radiation. For all sites, weather data 
were obtained from the China Meteorological Data Sharing Service 
System (http://cdc.cma.gov.cn/). Solar radiation data were not avail-
able, so daily cumulative solar radiation was estimated based on day-
length and sunshine hours with the Angstrom-Prescott formula 
(Angstrom, 1924; Prescott et al., 1940). 

2.3. Upscaling strategies for cultivar parameters in regional simulation of 
spring wheat growth 

Four upscaling strategies for cultivar genetic parameter estimations 
of spring wheat were established and evaluated in this study based on 
the two experimental datasets (Fig. 2). These four strategies could be 
divided into two kinds of solutions. The first kind directly estimated the 
genetic parameters of representative cultivar at different geographic 
scales, which was established based on the 5-year field records of 
anthesis and maturity dates at the 57 agro-meteorological obsevation 
stations in China. The second sloution tried to summarize the distribu-
tions of genetic parameters for the spring wheat cultivars sown in China. 
This solution was established based on the field observations of the 
experiments conducted at Altay in 2014 and Yangling in 2015–2017 
with 40 widely-sown spring wheat cultivars. The four upscaling strate-
gies were compared in simulations of anthesis date, maturity date, and 
grain-filling duration at all of the 57 gero-meteorological stations. 

2.3.1. Strategy 1: Single site parameters (SSPs) 
In many studies, cultivars planted in a given region were assumed to 

be the same to simplify modeling and reduce simulation time. Cultivar 
genetic parameters, which were estimated only based on the 

observations of a single site, were then used in crop growth simulations 
in large regions. Following this strategy, we assumed that the different 
spring wheat cultivars were sown at the 57 agro-meteorological obser-
vation station. To explore the simulation uncertainties caused by various 
cultivars at large scale, each of the 57 different cultivars was parame-
terized at its individual station and then validated at the other 56 sta-
tions. All the 5-year observed anthesis and maturity dates were used to 
estimate the cultivar genetic parameters for each site with the DSSAT- 
GLUE package. In this study, we mainly focused on the variability of 
the SSPs in phenology simulations. Since 57 different SSPs were 
generated, we did not compare this strategy with the rest upscaling 
strategies at site scale. 

2.3.2. Strategy 2: National representative parameters (NRPs) 
Due to the equifinality of multiple parameter combinations, cultivar 

parameters estimated at a single site under limited years could lead to 
large uncertainties (He et al., 2009, 2017). In this strategy, the observed 
anthesis and maturity dates from all of the 57 sites in 2010 were used for 
the estimation of genetic parameters of a national representative 
cultivar, or NRPs. Then, this set of national representative parameters or 
NRPs were validated based on the data of 2011–2014 for all of the 57 
sites. 

2.3.3. Strategy 3: Regional representative parameters (RRPs) 
In this strategy, we assumed that an individual representative 

cultivar was sown in each agro-ecological zone (AEZ) of spring wheat 
production in China. In each AEZ, the observed anthesis and maturity 
dates from all local sites in 2010 were used to estimate the genetic pa-
rameters of the regional representative cultivar, or RRPs. Then, the RRPs 
were validated with the rest observations in 2011–2014 in each AEZ. 

2.3.4. Strategy 4: Virtual cultivar parameters (VCPs) generated from the 
posterior parameter distributions 

For the 40 cultivars sown at Altay and Yangling, the genetic pa-
rameters of each cultivar were estimated based on the observations of 
four sowing-date treatments in the experiment conducted at Yangling in 
the 2015–2016 growing season. Next, the estimated genetic parameters 
were further validated at Altay in 2014 and Yangling in 2016–2017 
growing seasons. Third, the distributions of the estimated values of the 
three genetic parameters (P1V, P1D, and P5) were tested using the ‘fit-
distrplus’ package of R (Delignette-Muller and Dutang, 2015); R Core 
Team, 2020). The judgement of potential distribution of the target 
dataset by the ‘fitdistrplus’ package relies on the specific relationship 
between skewness and kurtosis. Then, 1000 sets of genetic parameters 
were randomly sampled following the established posterior distribu-
tions with R. All these 1000 virtual spring wheat cultivars were then 
used to simulate the spring wheat experiment conducted in Altay (red 
triangle in Fig. 1) to validate the posterior distributions and the sampling 
method. Finally, the 1000 virtual cultivars were used to simulate the 

Table 1 
Summary of the field experiment of 40 spring wheat cultivars and four different sowing dates at Yangling in northwest China.  

Site Growing season Sowing date Mean anthesis (DAS)a Mean maturity (DAS) RGP length (d)b Average temperature (◦C)c Accumulated rainfall (mm) 

Yangling 2015–2016 2015/10/08 198 (1.6d) 239 (0.7)  41  9.1  204 
2015/11/20 162 (1.1) 203 (4.0)  41  9.0  123 
2015/12/30 127 (1.6) 170 (1.2)  43  11.0  117 
2016/ 02/18 79 (1.1) 115 (3.8)  36  14.9  110 

2016–2017 2016/10/18 186 (1.2) 225 (0.7)  39  9.2  246 
2016/11/18 170 (1.3) 200 (3.3)  30  9.3  289 
2016/12/28 138 (2.1) 166 (0.9)  28  11.1  311 
2017/02/19 98 (1.0) 125 (1.1)  27  15.8  301 

Altay 2014 2014/4/16 63 (2.9) 108 (3.2)  45  17.7  37  

a DAS = days after sowing; 
b RGP = reproductive growing period; 
c Average temperature of the growing season; 
d Standard deviations of phenology date observations of the 40 different cultivars. 
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anthesis and maturity dates of spring wheat at all the 57 
agro-meteorological observation stations in 2010–2014. To compare 
with the other three upscaling strategies, the average value of the 1000 
model runs with the 1000 virtual cultivars were treated as the final 
simulation result for each site. 

2.4. Statistics for model performance evaluation 

Since a total of 40 different spring wheat cultivars were grown at 
Yangling at each sowing date were repeated three times, the standard 
deviation (SD, Eq. 1) were used to evaluate the variations in anthesis and 
maturity dates of these cultivar. 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Oi − O

)2
√

(1)  

where Oi and O were the observed and their mean value of given vari-
ables, n was the repeated times. 

Many different indices have been proposed to evaluate the discrep-
ancies between simulations and measurements (Wallach et al., 2019). In 
this study, we concentrated on three measures to show the different 
aspects of regional simulation accuracy with the four upscaling strate-
gies for cultivar genetic parameters of spring wheat. The root mean 
square error (RMSE, Eq. 2) has the advantage to express errors in the 

Fig. 2. Flowchart of the four upscaling strategies of cultivar genetic parameter of spring wheat in phenology simulation with the DSSAT-CERES-Wheat model 
in China. 
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same unit as the variable. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Si − Oi)

2

√

(2)  

where Si and Oi were simulated and observed values of given variables, 
respectively; and n was the number of simulation times. 

To compare the variables likely to give a broad range of crop 
response, the relative error could provide another sight from the abso-
lute error. For example, anthesis dates of spring wheat mainly ranged 
from 50 to 100 days after sowing (das), while maturity dates were nearly 
1.5 times of it. Thus, we also calculated the relative root mean square 
error (RRMSE, Eq. 3) and coefficient of determination (R2, Eq. 4) to 
evaluate the simulation accuracy of anthesis and maturity with different 
upscaling strategies. 

RRMSE =
RMSE

O
× 100% (3)  

R2 =

[∑n
i=1

(
Oi − O

)(
Si − S

)]2

∑n
i=1

(
Oi − O

)2∑n
i=1

(
Si − S

)2 (4)  

3. Results 

3.1. Uncertainties in phenology simulation using the SSPs 

Small RMSEs were achieved for the both phenology stages during 
calibration, with an average value of 3.7 d and 3.9 d (from 0.9 to 8.5) for 
anthesis and maturity dates (Fig. 3), respectively. As expected, RMSE 
values increased during validation, with an average value of 6.4 
(5.4–10.7) d and 10.8 (8.5–18.4) d for anthesis and maturity, respec-
tively. The results indicated that large errors and uncertainties were 
caused when using the site-specific cultivar simulate in phenology 
simulations in large area, especially in maturity date (Fig. 3b). The 
lowest errors were obtained with the parameters calibrated in Zone 1 
(northeast China) for anthesis and maturity in both calibration and 
validation processes. In addition, there were no obvious differences in 
the simulation accuracies with the genetic parameters calibrated in 
different AEZs. 

3.2. Calibration and validation of the NRPs and RRPs 

The NRPs (National representative parameters) and RRPs (Regional 
representative parameters) were calibrated and validated based on the 
observations from the 57 stations in 2010 and 2011–2014 (Fig. 4), 
respectively. There were six sets of RRPs since this up-scaling strategy 
were conducted in each of the six different AEZ. Generally, the simu-
lation errors of anthesis were smaller than maturity during both cali-
bration and validation processes. The RMSE values were ranged from 
5.7 to 6.9 d and from 8.3 to 10.3 d for the two phenology stages, 
respectively. Additionally, the estimation errors of the NRPs were 
greater than the RRPs for both anthesis and maturity date simulations 
both in calibration and calibration. Compared with the NRPs, the RMSE 
values of the RRPs reduced by 0.8 d and 0.4 d for calibrations and val-
idations of anthesis, but 2.0 d and 0.7 d for calibrations and validations 
of maturity. The results indicated that the RRPs improved regional 
maturity simulations. In addition, it was noteworthy that the CERES- 
Wheat model was able to simulate phenology of the autumn-sown 
spring wheat (the five points in the top-right corner of each sub- 
figure, Fig. 4). Small simulation errors were obtained in most years of 
this experiment even with the NRPs (Fig. 4a), which employed only one 
cultivar to represent spring wheat in the whole China. 

3.3. Generation and evaluation of the VCPs 

3.3.1. Calibration and validation of the genetic parameters of the 40 
cultivars 

The genetic parameters of the 40 spring wheat cultivars were cali-
brated based on the field observation in 2015–2016 growing season at 
Yangling, and validated at Altay in 2014 and Yangling in the 2016–2017 
growing seasons (Fig. 5). Great variations were obtained for the dura-
tions from sowing to anthesis and to maturity, which were resulted from 
the four sowing dates. The anthesis dates were 76–201 DAS and 97–189 
DAS in the 2015–2016 and 2016–2017 growing season, and the matu-
rity dates were 111–241 DAS and 124–228 DAS, respectively. Overall, 
the 40 sets of estimated cultivar genetic parameters simulated anthesis 
and maturity well for all of the four sowing-date treatments since all 
data points were close to the 1:1 line. The results showed that the 40 sets 
calibrated cultivar genetic parameters could reproduce the annual dif-
ference among different sowing dates. The RMSE values were 6.5 d and 
5.2 d for anthesis and maturity simulations in the calibration process, 
respectively. Then, the 40 calibrated cultivar genetic parameters were 
validated at both Yangling and Altay, where the climate conditions and 

Fig. 3. Calibration and validation of the 57 site-specific 
genetic parameters (or SSPs) estimated for each of the 57 
stations (a) and the general uncertainty (b). The red filled, 
red empty, blue filled, and blue empty symbols represent 
the RMSE values of anthesis date in calibration, anthesis 
date in validation, maturity date in calibration, and 
maturity date in validation, respectively. (For interpreta-
tion of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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farming schedules were greatly different from Yangling. However, 
greater simulation errors were generated during calibrations. Compared 
with the results of validation at Yangling, the RMSE values were 
increased by 3.6 d and 1.3 d for the two phenology stages in calibrations 
using observations from 2015 to 2016. Smaller simulations were ob-
tained for both the two sites during validation. The RMSE values were 
2.9 d and 3.2 d for anthesis at Yangling and Altay, and were 3.9 d and 4.2 
d for maturity, respectively. 

3.3.2. Generation of the posterior parameter distributions and VCPs 
The statistical distributions of P1V, P1D, and P5 of the 40 spring 

wheat cultivars were explored based on the ‘fitdistrplus’ package of R 
(Figs. S1 and S2). The results indicated that P1V and P5 approximately 
followed the uniform and logistical distributions, respectively. However, 
no common distribution was found for P1D. Overall, it was difficult to 
determine the real distributions of these parameters based on the limited 
number of estimated parameter values. We then tried another three 
possible distributions for the parameter P1D, including normal, 
lognormal, and logistical distribution, and also applied the logistic dis-
tribution for the parameter P5 (Table S4). Apart from the original uni-
form distributions for the three cultivar parameters, three kinds of 
distributions of P1D were combined with the uniform distribution of 
P1V (Fig S1b) and logistic distribution of P5 (Fig S1c), respectively. In 
each combination, 1000 sets of virtual cultivar parameters (VCPs) were 

generated. The 1000 sets of VCPs separately generated from each kind of 
P1D distribution were used to simulate spring wheat phenology at Altay 
in 2014 (Fig. S3). Compared to the original uniform-distribution 
assumption, same median values of anthesis and maturity dates were 
provided by the logistic, normal, and lognormal distributions of P1D. 
Additionally, the mean values of the two phenology stages were also 
similar to each other. Hence, the assumption of uniform distributions for 
the three cultivar parameters were acceptable since the mean prediction 
values of multiple VCPs were used to represent the daily phenology 
prediction within growing seasons. Considering the difficulty in 
parameter sampling, the uniform distribution assumption was accepted 
in this study. Finally, for simplicity we assumed that all these three 
parameters followed uniform distributions (represented by maximum 
and minimum values). Finally, the new posterior distributions of 
phenology related genetic parameters were established for further 
regional simulations (Eq. 5). 

Parameter distributions =

⎧
⎨

⎩

P1V ∼ U (8.7, 16.0)
P1D ∼ U (50.2, 65.7)
P5 ∼ U (559.7, 657.1)

(5) 

Following the above posterior parameter distributions of genetic 
parameters, 1000 sets of VCPs were sampled and used to simulate the 
anthesis and maturity dates of the 40 spring wheat cultivars sown at 
Altay in 2014 (Fig. 6). Compared with the observations, simulations 

Fig. 4. Model calibration and validation based on the upscaling strategies of the national representative parameters (NRPs; a, b) and the regional representative 
parameters (RRPs; c, d) in China. In each upscaling strategy, the observed anthesis and maturity dates in 2010 (filled symbols) were used for model calibration, and 
the observations in 2011–2014 (empty symbols) were used for model validation. The grey dashed line is the 1:1 line. RMSEc and RMSEv indicate root mean square 
error (RMSE) between simulations and observations in model calibration and validation, respectively. 
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with the 40 calibrated cultivar parameters and with 1000 VCPs had less 
variations for both anthesis and maturity dates. The VCPs almost ob-
tained same anthesis and maturity simulations as the 40 calibrated 
cultivars since same ranges (anthesis: 66–68 d; maturity: 98–104 d) and 
median values (anthesis: 67 d; maturity: 101 d) were obtained for both 
the two phenology stages. The results showed that the VCPs, which were 
sampled assuming a uniform distribution, could well represent the 
parameter distributions for phenology of spring wheat. Besides, ranges 
of the simulated anthesis and maturity dates were covered by the cor-
responding field observations, which showed less variation of the VCPs 

in phenology simulation. However, the median values of the simulations 
were close to the observations since the difference between the median 
values of simulations and observations were 2 d for anthesis and 0 d for 
maturity. 

3.4. Comparisons among phenology simulations using NRPs, RRPs, and 
VCPs 

The annual and five-year RMSE and RRMSE values were calculated 
for the estimations of anthesis and maturity dates of the 57 stations using 

Fig. 5. Calibration and validation of anthesis (a) and maturity (b) dates of the 40 spring wheat cultivars sown in the field experiments conducted at Altay in 2014 and 
Yangling in 2015–2017 growing seasons. The observations from Yangling in the 2015–2016 growing season (red filled symbols) were used for the calibration of 
genetic parameters of the 40 cultivars, while validations were conducted at both Yangling (blue empty symbols with the same shapes) and Altay (blue empty di-
amonds). Circles, squares, upper triangles, and lower triangles indicate the first, second, third, and fourth sowing date in the two growing seasons at Yangling, 
respectively. The grey dashed line is the 1:1 line. The symbol C, V and YL represents calibration, validation and Yangling, respectively. RMSEc and RMSEv indicate the 
root mean square error (RMSE) in model calibration and validation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 6. Comparisons between the observed and simulated anthesis (a) and maturity (b) dates for the 40 spring wheat cultivars sown at Altay in 2014. The blue and 
red boxes represent the simulations with the 40 sets of estimated genetic parameters and 1000 VCPs, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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the NRPs, RRPs, and VCPs (Fig. 7). The simulated anthesis dates were 
better than the simulated maturity dates since values ranged 4.7–7.0 
d and 8.3–11.4 d for anthesis and maturity simulations, respectively. 
However, the difference between the simulation accuracies of the two 
phenology stages were smaller in the term of RRMSE ranged 5.9–9.4% 
and 6.5–9.6% for anthesis and maturity dates, respectively. Besides, 
there were obvious differences among phenology stage simulations with 
different up-scaling strategies. Simulations with NRPs had the lowest 
accuracy for anthesis and maturity since this strategy only used one set 
of genetic parameters to represent the spring wheat sown in China. The 
five-year average RMSE values were 6.3 d and 9.6 d, and RRMSE values 
were 8.0% and 7.9% for anthesis and maturity. The RRPs achieved the 
second highest and the highest accuracy for anthesis and maturity 
simulations, respectively. Compared with the NRPs, the average simu-
lation RMSE errors were reduced by 0.5 d for anthesis and 1.0 d for 
maturity; and RRMSE values were reduced by 0.7% for anthesis and 
0.8% for maturity, respectively. However, the VCPs achieved the 
smallest simulation errors in anthesis date simulations but the largest 
errors in maturity date simulations. The average RMSE values were 5.2 
d and 9.6 d and RRMSE values were 6.6% and 7.9% for anthesis and 
maturity, respectively. 

The average RMSE values of the 57 sites were 5.0 d, 4.7d and 4.4 
d for the NRPs, RRPs and VCPs, respectively. The three upscaling stra-
tegies had similar performance in reducing the simulation errors 
(Fig. 8). The number of stations with RMSE value less than 3 d were 17, 
18, and 18 for the NRPs, RRPs and VCPs. However, the VCPs performed 
better in the upper limit of simulation errors since no site had RMSE 
value greater than 12 d, while there were three stations for both the 
NRPs and RRPs. The maximum values of RMSE were 19.4, 18.0 and 10.6 
d for the NRPs, RRPs and VCPs, respectively. The results also indicated 
that the largest variation occurred in regional anthesis date simulations 
with only one national representative cultivar. Generally, the RMSE 
values were less than 6 d for the most stations, and the numbers of such 
stations were 44, 47 and 47 for the NRPs, RRPs and VCPs. The worst 

regional simulation accuracies were obtained in Zone Ⅵ for both the 
NRPs (RMSE = 7.1 d) and VCPs (RMSE = 9.6 d), where spring wheat was 
sown in autumn due to the high temperature. However, these two 
upscaling strategies both used the same cultivar sets (one set in the NRPs 
and 1000 sets in the VCPs) in spring wheat anthesis simulation in large 
area without local calibration, which might explain the poor perfor-
mance in this region. Compared with the NRPs and VCPs, the RRPs 
obtained smaller RMSE value (4.9 d) in Zone Ⅵ. The lowest regional 
simulation accuracy of the RRPs was obtained in Zone II with RMSE 
value = 5.8 d, which was much smaller than the NRPs and VCPs. The 
best performance in phenology simulations in AEZ level with the RRPs 
were caused by the same scale of parameter calibration for this upscaling 
strategy. 

Compared with anthesis, the simulations of maturity had larger 
RMSE values for all 57 stations (Fig. 8b, d and f). Only seven (or 12% of 
total) sites investigated had a RMSE value less than 3 d with the NRPs, 
while the numbers were both eight with the RRPs and VCPs. On the 
contrary, the number of sites with RMSE values greater than 12 d were 
eight with the NRPs, seven with the RRPs and 12 with the VCPs. The 
average RMSE values of the 57 sites were 8.1 d, 7.3 d and 8.0 d for the 
NRPs, RRPs and VCPs, respectively. The VCPs generated the largest 
maturity estimation errors since the RMSE values ranged from 1.2 to 
27.2 d. The RMSE values ranged 1.6–26.4 d and 0.8–21.2 d for the NRPs 
and RRPs (Fig. S4), respectively. However, the 95th-percentilies value of 
RMSE of VCPs was smaller than those provided by the NRPs. Finally, the 
smallest simulation errors were all obtained in Zone Ⅵ, with the RMSE 
values were 6.4, 5.4 and 3.8 d for the NRPs, RRPs and VCPs. The lowest 
accuracies were in Zone Ⅴ for both the NRPs (RMSE = 13.8 d) and VCPs 
(RMSE = 15.7 d), and in Zone I for the RRPs (RMSE = 7.9 d). 

For the VCPs strategy, the 12 stations with RMSE value greater than 
12 d were mainly located at the high-altitude places, where the average 
elevation was 2080 m and the average annual air temperature was 
6.6 ℃ (Table 3). The large errors in maturity simulations with the VCPs 
(RMSE = 7.5 d) were probably caused by the poor performance in grain- 

Fig. 7. Annual variations of the root mean 
square error (RMSE) and the relative root mean 
square error (RRMSE) for the anthesis (a, c) and 
maturity (b, d) date simulations with three 
upscaling strategies of genetic parameters at the 
57 agro-meteorological observation sites in 
China in 2010–2014. The symbols NRPs, RRPs 
and VCPs represent the upscaling strategy of 
national representative parameters, regional 
representative parameters, and virtual cultivar 
parameters, respectively. The five-year average 
values (red) of each statistic were provided 
above the corresponding bars. (For interpreta-
tion of the references to colour in this figure 
legend, the reader is referred to the web version 
of this article.)   
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filling duration simulations (Fig. 9, S5). Compared with the VCPs, the 
data points provided by the NRPs and RRPs were closer to the 1:1 line. 
The RMSE values of the NRPs, RRPs, and VCPs were 7.1, 6.9, and 8.7 d, 
respectively. There were obvious underestimations of the grain-filling 
duration with the VCPs, especially in areas with longer grain-filling 
requirement (observed grain-filling duration > 55 d). Besides, the R2 

values of the VCPs was the highest among the three upscaling strategies. 

4. Discussion 

4.1. Phenology simulations with single representative cultivar (SSPs and 
NRPs) 

The single representative cultivar assumption has been widely used 
in crop growth simulations at large scales (Chen et al., 2018; Sun et al., 
2018; Xiao and Tao, 2014). In this study, all of the 57 SSPs provided low 
simulation errors for both anthesis and maturity dates at their relevant 
sites. Liu et al. (2020a) also reported that high accuracy was obtained at 
site scale with detailed inputs related to crop growth. However, large 
errors were generated by most individual SSPs when using them in 

simulations at other stations. This is mainly because parameters are 
often highly related to their testing conditions and are less universal (He 
et al., 2009). Additionally, He et al. (2017) reported the equifinality of 
different combinations of cultivar parameters calibrated at a single site 
(He et al., 2017). Hence, large uncertainty would be generated in 
regional crop growth simulations with single-site calibrated cultivar 
parameters. 

The results of the SSPs indicated the importance of using observa-
tions from different climate conditions in parameter calibration and 
model validation. Therefore, we developed the NRPs strategy by using 
all of the 57-station observations in 2010 to parameterize the cultivar. 
Compared with the SSPs, the simulation errors were reduced. Besides, 
good simulation accuracy was also achieved at the Nanchuan station 
(the five points in the top-right corners of Fig. 4a and b), where spring 
wheat was sown in autumn. However, the one representative cultivar 
assumption was contradicted the actual production situation, especially 
in a country with a wide range of climates such as China. In addition, 
massive data of different climatic zones were required in the estimation 
of cultivar genetic parameters in this strategy. However, field observa-
tions were usually scarce in many countries, which would result in 

Fig. 8. Spatial distributions of the root mean square errors (RMSEs) between the observed and estimated anthesis (a, c, e) and maturity (b, d, f) dates with three 
upscaling strategies of cultivar genetic parameters at the 57 agro-meteorological observation sites of China in 2010–2014. The three strategies were the national 
representative parameters (or NRPs, a and b), regional representative parameters (or RRPs, c and d), and virtual cultivar parameters (or VCPs, e and f), respectively. 
The blue, cyan, green, orange and red circles indicate the sites with values of RMSE < 3 d, 3–6 d, 6–9 d, 9–12 d, and > 12 d, respectively. The numbers of cultivars 
used in phenology simulation were one for NRPs, six for RRPs, and 1000 for VCPs. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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invalid simulations in the large scales (Xiong et al., 2014). 

4.2. Phenology simulations with multiple representative cultivars (RRPs 
and VCPs) 

Compared with the SSPs and NRPs, the highest and second highest 
simulation accuracies were provided by this strategy for maturity and 
anthesis, respectively. The representative cultivar parameters estimated 
in large scales showed great potential in regional crop growth simula-
tions. Jiang and Jin (2009) also reported that the genetic parameters 
estimated in the AEZ level provided the highest simulations accuracy for 
rice in Jiangsu Province in China. Therond et al. (2011) estimated the 
genetic parameters of maize and wheat in regional scale and applied 
these parameters in the simulations across 12 European countries. 
Compared with the simulations with only one representative cultivar, 
the accuracies were substantially improved with the regional represen-
tative cultivar. However, the RRPs strategy increased the difficulty and 
time consumption in the estimations of cultivar genetic parameter. Be-
sides, this strategy was also invalid when observation data were scarce. 

In this study, several possible distributions (uniform, normal, 
lognormal, and logistic) were assumed for the three cultivars parame-
ters. Then, different VCPs were sampled from different combinations of 
these distributions and validated at Altay. The results indicated that 
similar anthesis and maturity dates were simulated with different 
parameter distributions. Hence, we defined P1V, P1D and P5 followed 
the uniform distributions. Gao et al. (2020) and Ma et al. (2020) also 
accepted the uniform-distribution assumption for the three parameters. 
The results demonstrated the uniform distribution was reasonable since 
the similar ranges and median values of anthesis and maturity date 
simulations were obtained by the randomly sampled VCPs and the 40 
sets of calibrated parameters. However, variations of anthesis and 
maturity date simulations with the VCPs and the calibrated parameters 
were both smaller than the observations at Altay. It was mainly because 
the parameterization of the 40 cultivars were conducted based on the 
experiments at Yangling, where phenology observations taken small 
variations. The VCPs obtained the smallest simulation errors for anthesis 
date, which indicated good estimations for the parameter P1V and P1D. 
Hunt et al. (1993) pointed that the parameter P5 was the most sensitive 
parameter affecting grain-filling duration. Hence, the VCPs obtained 
second highest simulation errors in maturity date due to underestima-
tion of the grain-filling duration, which indicated the parameterization 
deviation of the parameter P5. For the 12 stations with RMSE > 12 
d with the VCPs strategy (Table 2), the frigid climate conditions might 
let local farmers sow spring wheat cultivars different from the 40 cul-
tivars involved in our study. Xiong (2009) evaluate the CERES-Wheat 
model in wheat growth simulations in China. They pointed that the 
largest simulation errors were obtained in the 8th and 9th AZE with high 
altitudes, which was similar as the region III and Ⅴ in this study, with 
RMSE values greater than 35%. In general, more experimental obser-
vations of more spring wheat cultivars sown in various areas were 
needed to modify the posterior distribution for parameter P5. 

4.3. Comparisons among the four upscaling strategies 

In this study, four upscaling strategies for cultivar genetic parameters 
of spring wheat were established and evaluated. In general, the simu-
lation errors of maturity date were greater that anthesis date for all of 

(caption on next column) 

Fig. 9. Observed and estimated grain-filling durations of spring wheat simu-
lated with the genetic parameters generated with three upscaling strategies at 
the 57 agro-meteorological observation stations of China in 2010–2014. The 
three strategies were the national representative parameters (NRPs; green tri-
angle), regional representative parameters (RRPs; blue square), and virtual 
cultivar parameters (VCPs; red circle), respectively. The grey dashed line is the 
1:1 line. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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the four strategies. Three sources of uncertainties were involved in the 
agricultural and environmental modeling, namely equations, input 
variables, and parameter values (Wallach et al., 2019). Models are 
simplifications of the real world to some extent by using huge amount of 
equations. However, errors were introduced when using these equations 
to reproduce crop growth processes. For example, the simulation of 
maturity date was based on the simulation of anthesis and grain-filling 
duration. More processes with corresponding errors were involved in 
the simulation of maturity date than in the simulation of anthesis date. 
Wallach et al. (2017) reported that the model structure generated larger 
uncertainty than model parameters. The poor performance of the 
CERES-Wheat model in maturity date simulations might be caused by 
the unclear mechanism. Nouna et al. (2003) and Yao et al. (2020) re-
ported that the CERES series models provided large simulation errors 
under serious water stress. The spring wheat was all rainfed at the 57 
stations, which might suffer from water stress since rainfall were mainly 
occurred in summer in our study area. The second possible reason for the 
greater errors in maturity data simulation might be the erroneous 
maturity observation. Seidel et al. (2019) reported that the availability 
of spatial and temporal data has become the main limitation for crop 
modeling (Seidel et al., 2019). The input data that well represent the 
production situation of the target area were essential for reliable simu-
lations (Xiong et al., 2019). The third possible reason was the insuffi-
cient parameterization of the parameters that affect the phenology 
processes. As reported by Ottman et al. (2013), 17 parameters affect 
wheat phenology processes in the DSSAT-CERES-Wheat model. How-
ever, we only estimated four of them and mainly focused on the three 
cultivar genetic parameters (P1V, P1D, and P5). Higher prediction ac-
curacy might be achieved by taking into consideration of more param-
eters. In addition, Messina et al. (2006) suggested that the estimations of 
cultivar genetic parameters should take into account the genetic infor-
mation. A gene-based system for estimating genetic specific parameters 
might offer better long-term prospects for reducing simulation error, 
making it easier to apply models at regional to global scales (White et al., 
2008). 

Generally, there were several advantages for the VCPs strategy in 
crop growth simulations at regional scales. First, variations in spring 
wheat cultivars were involved in regional simulations, which was 
impossible by the SSPs and NRPs strategy. Next, the uncertainties 
generated by crop cultivars were taken into account in regional simu-
lations, which were usually ignored in many previous studies of crop 
growth response to climate changes in large area. Third, this strategy 
accounted for the variations of crop cultivars since 1000 sets of virtual 
cultivars were used in simulations, which might contain the cultivar that 
was exactly sown in the study area. Fourth, this strategy was possible to 
help explain the interactions of genotype (G) × environment (E) 
× management (M). Finally, this strategy was ideal for places where 
basic experimental observations were extremely scarce. The virtual 
cultivars generated with the posterior parameter distributions could be 
used directly in areas lacking of field measurements. 

However, the disadvantages of the VCPs strategy were also apparent. 
First, crop growth simulations and analysis became further complicated 
by considering the crop cultivar uncertainties. Next, model runs and 
time consumption are dramatically increased. If the 1000 virtual culti-
vars generated from the posterior parameter distributions were all 
applied in growth simulations, the number of model runs would be 1000 
times of that using only one representative cultivar. With the increases 
available of high-performance computing platforms, the time- 
consuming problem of large number of model runs could be expected 
to be solved. Finally, different sampling sizes will be tried to evaluate the 
performance of the VCPs in regional simulations, through which the 
minimum optimal number of virtual cultivar parameters might be 
found. 

5. Conclusions 

Few simulation studies have examined the uncertainties caused by 
cultivar differences in large-scale simulations despite the wide use of 
crop models. Among the four upscaling strategies, the SSPs and NRPs 
strategies generated considerable errors in anthesis and maturity dates 
throughout China. Therefore, we do not recommend these strategies in 
regions with obviously different field management practices. The RRPs 
strategy provided more reliable simulation accuracy comparing with the 
SSPs and NRPs, but the data requirement was massive and the parameter 
calibration processes were complex and time consuming. Therefore, this 
strategy is not recommended where observation data are scarce. Ac-
cording to the VCPs strategy, using an ensemble of different spring 
wheat cultivars (summarized as genetic parameter distributions) could 
account for the unknown sown cultivars in large-scale crop growth 
simulations. Besides, the virtual spring wheat cultivars could be directly 
sampled from the simple uniform distributions without local calibration. 
It was reasonable to expect that the consideration of uncertainty in crop 
cultivars will contribute to more reliable simulations of crop growth at 
large scales. Generally, we recommended both RRPs and VCPs strategies 
in regional spring wheat phenology simulations and the RRPs strategy 
was more suitable for maturity date estimations in large regions con-
taining a wide range of climates. 
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