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A B S T R A C T   

Maize, rice, and wheat are the major staple food crops in China and are crucial components of national food 
security and economic development. The cultivation and production of these crops are expected to be affected by 
climate change and elevated atmospheric carbon dioxide (CO2) concentration, and have drawn considerable 
public attention. The objective of this experiment was to understand the impact of future climate change 
(including increased temperature and changed precipitation patterns) and elevated CO2 concentration on vari
ations of crop yields in their suitable planting areas. We conducted a spatial grid-based analysis of maize, rice, 
and wheat yields using projections of future climate generated by a multi-model ensemble of global climate 
models for three representative concentration pathway scenarios (RCP2.6, RCP4.5, and RCP8.5) in suitable 
planting areas in China for the 2030s (2021–2040) and the 2050s (2041–2060). Suitable areas for the planting of 
maize, rice, and wheat under the high-emission scenarios migrated slightly northward over time. Yield of all 
three crops would be expected to remain stable or to slightly increase across China in the future. A possible 
reason for this result may be because the positive effects of increased precipitation and CO2 offset the negative 
effect of increased temperature on crop yields, resulting in a much more appropriate growth environment and 
increased biomass accumulation and crop yield. In addition, this study also indicated that changes in crop yields 
were mainly driven by temperature and CO2 factors. The potential effects of climate change and elevated CO2 
concentration on migration of planting areas and yield fluctuations for crops should be given greater attention in 
the future.   

1. Introduction 

Agriculture is the foundation of economic development and social 
stability in China, providing staple food supplies and representing a 
major contributor to the global production of cereal crops (FAO, 2012). 
Maize (Zea mays L.), rice (Oryza sativa L.), and wheat (Triticum aestivum 
L.) are cultivated and produced in most of the croplands in China (http: 
//data.stats.gov.cn). Historically, the cultivation of maize, rice, and 
wheat has been identified as migrating northward in China mainly due 
to climate change factors (including changing temperatures and pre
cipitation and attendant extreme weather events) and elevated atmo
spheric carbon dioxide (CO2) concentration (e.g., Ning et al., 2019; Sloat 
et al., 2020). For all three cereal crops mentioned above, reductions in 

yield due to higher temperatures and lower precipitation have occurred 
mainly in northern China (e.g., Zhang and Huang, 2012; Ray et al., 
2015). Future projections of climate variations have also been widely 
reported using general circulation model (GCM) outputs. According to 
these model outputs, some studies have suggested that the planting 
areas of crops may extend northward and eastward to varying degrees in 
China under future climate scenarios, as a result of greater warming in 
northern China (Hu and Liu, 2013; Zhang et al., 2017; Wang and Hij
mans, 2019; Zhang and Niu, 2020). The suitable planting areas of major 
cereal crops are correlated with their yield changes in China (Ning et al., 
2019). The influence of future climate anomalies on crop yield vari
ability is worthy of considerable attention, especially as it affects 
changes to planting areas (Schauberger et al., 2017). 
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Two approaches are usually taken to estimate the impacts of climate 
change and elevated CO2 concentration on crop yields: (i) process-based 
crop models, which mechanistically or functionally represent the effect 
of weather, soil conditions, management practices, and abiotic stresses 
on crop growth and yields; or (ii) statistical techniques, usually in the 
form of regression analysis, that empirically estimate the effect of 
weather conditions on crop yields while controlling for other factors by 
applying historical observations (Blanc and Sultan, 2015). Statistical 
models are more easily applicable and may include indirect effects of 
climatic variability, such as those related to frost, weeds, pests, and 
diseases, or extreme temperature and rainfall events, all of which are not 
well captured by process-based crop models (Kristensen et al., 2011). 
Statistical models may also inherently include the effects of gradual 
increase in atmospheric CO2 concentration within the yield effects. 
Thus, statistical models have been widely applied to predict crop yield 
responses to climate change and elevated CO2 concentration on global 
and regional scales, particularly in China (Lobell and Field, 2007; Shi 
et al., 2013). 

Recently, some studies have adopted statistical regression models 
from meta-analysis to determine the central trends of crop yields in 
response to changes in climatic variables from studies differing in crops, 
regions, scenarios, time periods, and analytical approaches. Based on 
global meta-analysis, Challinor et al. (2014) analyzed the different 
response patterns of crop yields to climate change in tropical and 
temperate regions. In China, Xie et al. (2019) established 288 samples 
according to the results of relevant papers and applied a meta-analysis 
method to assess the projected impact of climate change and elevated 
CO2 concentration on the future yields of major crops under a unified 
scenario. Liu et al. (2020) followed Xie et al. (2019) and assessed the 
impacts of climate change and elevated CO2 concentration on the future 
yield of major crops using meta-analysis at national and subregional 
levels based on a dataset of 667 published simulations. These studies 
reported negative effects of increased temperature and positive effects of 
increased precipitation and atmospheric CO2 concentration on yields of 
major crops (i.e., maize, rice, and wheat) in China in the future (Xie 
et al., 2019; Liu et al., 2020). However, most of the present studies using 
meta-analysis, or empirical or mechanistic models have appeared to 
exclude the consideration of crop yield changes caused by the large 
uncertainty in crop planting area. It is therefore important to combine 
the ongoing migration of agricultural lands with statistical models 
derived from meta-analysis to estimate crop yield changes in China 

under future climate. 
Therefore, we assessed the changes in areas suitable for the planting 

of maize, rice, and wheat based on grid data from 2006 to 2060 simu
lated by six bias-correction and spatial disaggregation (BCSD) climate 
projections in the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5) archive under three representative concentration 
pathway scenarios (RCP2.6, RCP4.5, and RCP8.5) in combination with 
the agricultural climatic resources in China. Based on the distribution of 
crops, crop yield changes under the future climate scenarios were 
simulated by statistical models proposed by Xie et al. (2019), which 
were driven solely by weather data for each grid cell based on its crop 
type. The objective of this analysis was to understand the impact of 
future climate change (including increased temperature and changed 
precipitation patterns) and elevated CO2 concentration on variations of 
crop yields in their suitable planting areas. The results may further help 
policymakers to develop adaptation strategies and will provide refer
ence values for the sustainable development of agriculture. 

2. Data and methods 

Brief details of all datasets used for our calculations are presented in 
Table 1. These datasets have previously been used to validate the 
applicability of models to simulate crop irrigation water requirements in 
China under future climate conditions (Zhang et al., 2019). In this sec
tion we describe how these datasets were used to evaluate the suitable 
planting areas for crops and to simulate the crop yield changes under 
climate change and elevated CO2 concentration at grid cell level. We 
also describe how we conducted a comparison of this method with other 
datasets and articles. Only the simulation using projected global climate 
forcing consistent with the given RCPs (2006.1–2060.12) was used. The 
future years were divided into three periods: the 2010s (January 2006 to 
December 2016; as a historical scenario in this study), the 2030s 
(January 2021 to December 2040), and the 2050s (January 2041 to 
December 2060). The RCP2.6, RCP4.5, and RCP8.5 emission scenarios 
reflected the range of year 2100 radiative forcing values from 2.6 to 8.5 
W m− 2 and were used for impacts and adaptation assessment for future 
crop production in this study (Moss et al., 2010; Van Vuuren et al., 
2011). Of these RCPs, RCP2.6 is a peak-and-decline scenario with a 
turning point in mid-century; RCP4.5 is a scenario that starts to stabilize 
radiative forcing from 2070; and RCP8.5 is characterized by a contin
uously increasing radiative forcing pathway over time, and corresponds 

Table 1 
Details of the datasets used in this study.  

Variable Download link and access date Format and 
resolution (lon 
by lat) 

Description Reference 

Elevation http://research.jisao.washington.edu/d 
ata_sets/elevation/; 2014.12 

NetCDF; 0.5 ×
0.5 

This dataset was compiled from the National Center for 
Atmospheric Research TerrainBase global digital elevation 
model 

– 

Monthly mean air 
temperature 

https://gdo-dcp.ucllnl.org/do 
wnscaled_cmip_projections/dcpInterface.ht 
ml#Projections:%20Complete%20Archives; 
2012.8 

These data were derived from multi-model ensemble mean 
of six general circulation models (i.e., CanESM2, CCSM4, 
CSIRO-Mk3-6–0, GISS-E2-R, IPSL-CM5A-LR, and MPI- 
ESM-LR) with equal weight under the future climate 
scenarios of RCP2.6, RCP4.5, and RCP8.5 obtained from 
the Downscaled CMIP3 and CMIP5 Climate and Hydrology 
Projections (DCHP). Data from the DCHP were 
downscaled to a finer resolution using the bias-correction 
and spatial disaggregation statistical technique. 

Maurer et al. (2007) 
Reclamation (2013) 

Monthly maximum air 
temperature 

Monthly minimum air 
temperature 

Monthly mean 
precipitation 

Crop calendar http://nelson.wisc.edu/sage/data-and-mod 
els/crop-calendar-dataset/index.php; 
2010.12 

This dataset was the result of digitizing and georeferencing 
existing observations of planting and harvesting dates, 
mainly compiled from the U.S. Department of Agriculture 
and Food and Agriculture Organization. The calendars of 
maize, rice (main season), rice 2 (second season), wheat, 
and winter wheat were all considered in this study and 
assumed to be stable to the middle of the 21st century. 

Sacks et al. (2010) 

Annual mean 
atmospheric carbon 
dioxide concentration 

http://www.pik-potsdam.de/‘mmalte/rcps/; 
2010.5 

Text These data were globally homogeneous fixed annual mean 
atmospheric carbon dioxide mixing ratios under RCPs that 
forced the CMIP5 models 

Meinshausen et al. 
(2011)  
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to the pathway with the highest greenhouse gas emissions among the 
total set of RCPs (Moss et al., 2010; Van Vuuren et al., 2011). 

2.1. Calculation of indicators for estimating the distribution of the suitable 
planting areas and yield changes for crops 

The pretreatment of the data obtained from the datasets mentioned 
above included the following (Zhang et al., 2017; Zhang and Niu, 2020): 
(1) Because there were no available daily data published by the 
Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections, the 
monthly mean air temperatures were used to calculate the daily mean 
air temperatures using linear interpolation. This method was applied to 
obtain the days consistently above 10 ◦C and 18 ◦C and the ≥ 0 ◦C and ≥
10 ◦C active accumulated temperature using the five-day running-mean 
method and the accumulation method over the year, respectively; (2) 
The monthly mean air temperatures were also used to calculate the 
annual mean air temperatures; (3) On the basis of the specified annual 
mean atmospheric CO2 concentrations, altitude above sea level, and 
latitude, the monthly mean maximum and minimum air temperatures 
were also used to empirically estimate reference evapotranspiration by 
the Penman–Monteith method, mainly using temperature data [see 
Allen et al. (1998) and Zhang et al. (2018)]; and (4) Reference evapo
transpiration was considered to be an estimate of potential evapo
transpiration, and was used with monthly mean precipitation to 
calculate the 6-month and 12-month standardized precipitation evapo
transpiration index (SPEI) for different crops (Vicente-Serrano et al., 
2010a, 2010b). The 6-month and 12-month SPEI are relevant to agri
culture and can be used to evaluate the link between climate and crop 
yields by evaluating how crop yields are affected when threshold SPEI 
values are exceeded (Prabnakorn et al., 2018). Based on the crop cal
endar data, 6-month SPEI values ending at the harvest month were used 
for maize (almost always planted in single-cropping systems). The 12- 
month SPEI values ending in December were used for rice (contains 
single-cropping rice, double-cropping rice, and triple-cropping rice) and 
wheat (contains spring wheat and winter wheat) to capture soil moisture 
condition trends during the growing season. 

2.2. Distribution of suitable planting areas for crops 

All of the data were used to obtain the appropriate temperature, 
precipitation, and elevation ranges (as the main agricultural resource 
factors). These data classified the climatic zones in terms of their suit
ability for crop planting distribution in China. This approach was 
referred to as the maximum entropy model and the multi-criteria eval
uation method (Duan and Zhou, 2011; He and Zhou, 2012). These fac
tors were derived not only from their importance on crop growth, but 
also from their contributions to the geographic distribution of crop 
planting (see Table 2). An SPEI threshold of − 1.29 was used to 

distinguish the economic viability on a yield basis for agricultural pro
duction (Hao et al., 2014). A grid cell with parameter values falling 
within all of the ranges for a crop listed in Table 2 was regarded as a 
suitable planting area for that crop. During every period (i.e., 2010s, 
2030s, and 2050s), areas that met the requirements of climate indicators 
for crop growth in more than 80% of years, calculated by the empirical 
frequency method, were regarded as suitable planting areas with an 80% 
assurance rate (Zhang et al., 2017). 

2.3. Yield changes for crops 

Xie et al. (2019) referenced Challinor et al. (2014) and proposed 
statistical regression models derived from a meta-analysis of maize, rice, 
and wheat in China. The meta-analysis was based on 34 articles, and 
resulted in a database of 287 samples. These articles were collected and 
filtered from five databases (Web of Science, ScienceDirect, Google 
Scholar, China National Knowledge Infrastructure, and Wanfang Data) 
using specific inclusion criteria. Only articles using crop models to 
quantitatively evaluate variations in crop yields caused by projected 
climate changes under the Special Report on Emissions Scenarios and 
RCP scenarios to 2100 in the whole of or parts of China were included in 
this study. Then a general linear model was fit to the extracted annual 
data for different crop types to assess the central trend in crop yield 
change (ΔY/Y) for two continuous climatic variables [temperature in
crease (ΔT) and precipitation change (ΔP/P)] and a categorical climatic 
variable (whether or not CO2 effects were considered) using 49% of the 
samples at the national level: 

(ΔY/Y)i = − 2.568 × ΔTi + 0.371 × (ΔP/P)i + 16.48

× CO2,i +α − 0.589+ ε  

where (ΔY/Y)i is the crop yield change (%) under climate change and 
elevated CO2 concentration for the ith sample (i.e., the projected yield in 
the given future scenario as a percentage change from the current yield). 
ΔTi and (ΔP/P)i are the temperature increase (◦C) and precipitation 
change (%) of the ith sample, respectively. CO2,i is a binary variable (=1 
or 0) that denotes whether the ith sample considered CO2 effects. α is a 
constant term: –10.160 for maize, –4.375 for rice, and 0 for wheat. ε 
denotes the regression error term. This linear model was estimated by 
weighted least squares regression to deal with the samples with heter
oscedasticity in different articles, and had a coefficient of determination 
(R2) of 0.573. The ranges of climate variables (temperature increase and 
precipitation change) in this study were within those found by Xie et al. 
(2019) to ensure the applicability of the regression model. According to 
this statistical climate-driven yield change model, crop yield changes in 
suitable planting areas during the 2030s and 2050s compared with the 
2010s could be estimated based on climate variables (i.e., temperature, 
precipitation, and CO2 effects) under future conditions in China. 

Table 2 
Main agricultural resource factors determining suitable planting areas for rice, maize, and wheat in China at national and annual scales.  

Crop ≥0◦C active 
accumulated 
temperature (◦C 
days) 

≥10 ◦C active 
accumulated 
temperature (◦C 
days) 

Time 
consistently 
above 10 ◦C 
(days) 

Time 
consistently 
above 18 ◦C 
(days) 

Annual mean 
air 
temperature 
(◦C) 

Annual 
precipitation 
(mm) 

Standardized 
precipitation 
evapotranspiration 
index (SPEI) threshold 

Elevation 
(m) 

References 

Maize 2047.0–7179.9 1320.3–7164.3 125–309 – 2.9–22.1 125.3–1708.3 6-month SPEI > −

1.29 
≤1500 Jia (2011); 

He and Zhou 
(2012); Hao 
et al. (2014) 

Rice – 2548.0–9224.0 – 59–335 – 542.0–1890.0 12-month SPEI > −

1.29 
≤2710 Chen (2010); 

Duan and 
Zhou (2011); 
Hao et al. 
(2014) 

Wheat 2300.0–4500.0 – – – – 200.0–750.0 12-month SPEI > −

1.29 
100–2400 Zhou (2010); 

Hao et al. 
(2014)  
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2.4. Scenario simulations and migration analysis of the center of gravity 

To analyze the climatic factors that drive the migration of crop yield 
changes in suitable planting areas, multiple model runs were conducted 
to obtain the distributions of suitable crop planting areas and yield 
changes from 2021 to 2060 based on: (1) only changing temperature 
(considering only the temperature factors and leaving the precipitation 
factors unchanged since the 2010s and without considering CO2 effects); 
(2) only precipitation (considering only the precipitation factors and 
leaving the temperature the 2010s and without considering CO2 effects); 
and (3) only CO2 (considering only the CO2 effects and leaving the 
factors of temperature and precipitation unchanged since the 2010s). 
The SPEI was also recalculated considering temperature, precipitation, 
and CO2 effects. By comparing the differences in the changes between 
the temperature-only, precipitation-only, and CO2-only scenarios, 
model sensitivity to climatic factors could be investigated to assess the 
effects of climate change and elevated CO2 concentration on crop yield 
changes in suitable planting areas. 

The spatial migration (both distance and direction) of the centers of 
gravity for suitable planting areas was assessed in this study based on 
coordinate changes in order to describe the overall changes in patterns 
of crop yield under different RCP scenarios and time periods. The related 
calculation formula was as given in Zhang et al. (2017): 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(yi+1 − yi)
2
+ (xi+1 − xi)

2
√

where D represents the movement distance of the center of gravity from 
year i to i + 1, x and y were the longitude (◦) and latitude (◦) of the center 
of gravity. The shifts of the yield changes from crop suitable cultivation 
areas between the 2010s and 2030s are not shown in this study. 

2.5. Comparison with other studies 

A spatially explicit global dataset of historical yields for maize, rice, 
and wheat for the period 1981–2016 was developed and published by 
Iizumi et al. (2014) and Iizumi and Sakai (2020). The dataset was 
selected to verify if potential planting areas simulated by models in this 
study were positioned within or close to the actual production areas. 
This Global Dataset of Historical Yield (GDHYv1.2 + v1.3; https://doi. 
pangaea.de/10.1594/PANGAEA.909132) offers historical and spatial 
patterns of annual yield estimations at a spatial resolution of 0.5◦ for 
major crops, including, maize, rice, and wheat. The grid-cell yield data 
were estimated using global agricultural datasets related to the crop 
calendar around 2000 from Sacks et al. (2010). The harvested area 
around 2000 was obtained from the M3-Crops data, satellite-derived 
crop-specific vegetation index, FAO-reported country yield statistics, 
and production share by cropping season in the 1990s from the USDA 
(Iizumi and Sakai, 2020). For China, GDHY used the historical data from 
several census-based inventories such as the FAO and USDA reports. 
Therefore, the CMIP5 multi-model data for the period of the 2010s 
(2006–2016) under the RCP2.6 scenario were regarded as historical 
data in this study. These data were used to calculate the areas suitable 
for the planting (with an 80% assurance rate) of maize, rice, and wheat, 
to be compared with the suitable planting areas (again, with an 80% 
assurance rate of reported crop distributions during 2006–2016) derived 
from GDHY data to test the efficacy of the method used in this study. 
Crop yield changes derived from this study were compared with previ
ous estimates of future crop yield changes in China that were global or 
regional estimates covering China, and were excluded in the meta- 
analysis of Xie et al. (2019) (see Deryng et al., 2011). 

R (version 3.3.1; Statistics Department of the University of Auckland, 
https://www.r-project.org/) was used to pre-treat data (described in 
Section 2.1, above), and to calculate the suitable planting areas and 
yield changes of maize, rice, and wheat separately under future climate 
in China. All calculation and analysis were conducted at 0.5◦ × 0.5◦ grid 
cell level without marginal cropland share. The main R packages used in 

these calculation procedures were “raster”, “ncdf4”, “TTR”, “SPEI”, 
“geosphere”, “rgeos”, and “SDMTools”. To explicitly interpret results, 
China was divided into the following six regions based on geographic 
distribution (following the recommendation made in the China Rural 
Statistical Yearbook): North China (NC), Northeast China (NEC), East 
China (EC), Central-South China (CSC), Southwest China (SWC), and 
Northwest China (NWC). 

3. Results 

3.1. Comparison of this study with GDHY and other studies 

This study overestimated the historical areas for maize planting in 
northwestern NWC, northern NC, and parts of central and eastern China; 
and for wheat planting in northwestern NWC and northern NC. The 
study underestimated the historical areas for maize planting in southern 
SWC and CSC, and northern NEC; for rice in parts of NEC and NC, 
northwestern NWC, and southern CSC; and for wheat in northern CSC 
and EC (Fig. 1). In general, this study achieved relatively good consis
tency between estimated planted areas of crops and GDHY. Some mis
estimations of the planted area (compared with GDHY) might be caused 
by the soil and topography in the Junggar Basin and Meadow Steppe of 
Inner Mongolia. Agricultural management measures and economic and 
policy factors can also affect the planting distribution of crops (e.g., 
irrigation in the North China Plain and the policy of “one billion and 
eight hundred million acres of arable land red line”), resulting in some 
discrepancies between our results and the historical distribution data of 
crops planted in China (Zhang et al., 2017). There were also some lim
itations of the GDHY dataset resulting in it not producing a true cropland 
mask, such as the use of crop-specific harvested area around 2000 from 
the M3-Crops data [see Monfreda et al. (2008)], the limited spatial 
coverage sourced from the crop calendar data used [see Sacks et al. 
(2010)] that covered only 76–92% of the global harvested area, and the 
use of time-constant production shares on harvested area by season in 
the 1990s (Iizumi and Sakai, 2020). 

The results of this study were close to previous estimates of crop yield 
changes in China in the future (Table 3). Increased yields of rice and 
wheat were indicated in both previous studies and in this study. Only the 
results of yield changes for maize were not consistent with previously 
published studies. Some studies indicated that maize yield stagnation 
and reduction were seen in most of China, especially under the high 
emission scenarios (e.g., Rosenzweig et al., 2014; Müller et al., 2015; Yin 
et al., 2015). However, increased maize yields were simulated across 
China in this study. This discrepancy was mainly caused by the different 
methods used to simulate crop yield changes, the different climatic data 
from different GCMs used to force crop models, and the different 
consideration of crop cultivation distributions. For example, Yin et al. 
(2015) used the model outputs of potential yield from four global 
gridded crop models (GGCMs) based on the fixed crop distributions 
derived from a global irrigated and rain-fed crop area data, and indi
cated that adaptation measures such as changing planting area could 
partially or even completely offset the negative effects of climate change 
on crop yields. Moreover, the uncertainty in yields resulting from crop 
models was always larger than the uncertainty derived from GCMs in the 
greater part of China (Müller et al., 2015; Yin et al., 2015). In general, 
the results shown in Table 3 demonstrated the effectiveness of the 
methods used in this study to simulate the yield changes of crops under 
future climate scenarios in China. 

3.2. Spatio-temporal distribution of yield changes in suitable planting 
areas for maize 

In the 2030s, under the RCP2.6, RCP4.5, and RCP8.5 scenarios, the 
suitable maize planting areas (the spatial extent of maize yield changes) 
were widely distributed in southern NEC and NC, northern CSC and EC, 
eastern SWC, and northwestern NWC and mainly concentrated in 
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China’s northeast–southwest corn belt, covering 32.52%, 28.45%, and 
34.24%, respectively, of the total area of China. The areas with the 
largest percentage yield increase were mainly concentrated in north
western NWC under the RCP2.6 scenario and in northern NC and NEC 
under the RCP8.5 scenario (Fig. 2). There was little difference in suitable 
planting areas under these three scenarios except in NEC under the 
RCP4.5 scenario. 

In the 2050s, under the RCP2.6 scenario, there was no clear change 
in the suitable planting areas compared with the 2030s; the areas with 
substantial yield increase were located in southern CSC and eastern 
SWC. Under the RCP4.5 scenario, the suitable planting areas expanded 
northward to cover NEC. And under the RCP8.5 scenario, the suitable 
maize planting areas mostly disappeared from CSC. Compared with the 
2030s, the areas with substantial yield increase in the 2050s under RCP 
8.5 were not obvious in northern NC and NEC. The suitable planting 
areas occupied 34.26%, 33.69%, and 33.30% of the total area of China 

under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively in the 
2050s. Moreover, only the proportion of suitable planting areas under 
the RCP4.5 scenario considerably increased with a slight northward 
spatial migration in the 2050s relative to the 2030s. 

3.3. Spatio-temporal distribution of yield changes in suitable planting 
areas for rice 

In the 2030s, under the RCP2.6, RCP4.5, and RCP8.5 scenarios, the 
suitable rice planting areas were widely distributed throughout China 
except for some regions in NC, northern NEC and NWC, and the Qing
hai–Tibet Plateau, reaching 27.85%, 26.81%, and 23.65%, respectively, 
of the total area of China. The areas with the largest percentage yield 
increase were mainly concentrated in NEC under the RCP8.5 scenario 
(Fig. 3). There was little difference in suitable planting areas under these 
three scenarios. 

In the 2050s, under the RCP2.6 scenario, there was no clear change 
in the suitable planting areas; the areas with the largest percentage yield 
increase were found in southern SWC and CSC. Under the RCP4.5 sce
nario, the suitable planting areas clearly increased with a northward 
spatial expansion in the NEC. And under the RCP8.5 scenario, the areas 
of suitable planting substantially increased in NEC and southern SWC. 
The suitable planting areas occupied 30.25%, 31.11%, and 30.66% of 
the total area of China under the RCP2.6, RCP4.5, and RCP8.5 scenarios, 
respectively. The proportion of suitable rice planting areas under these 
three scenarios clearly increased over time, with northward spatial 
expansion occurring at different levels in the 2050s than in the 2030s. 

3.4. Spatio-temporal distribution of yield changes in suitable planting 
areas for wheat 

In the 2030s, under the RCP2.6, RCP4.5, and RCP8.5 scenarios, the 
suitable wheat planting areas were mainly located in NEC, NC, and 
eastern and northwestern NWC, representing 19.61%, 12.99%, and 
16.14%, respectively, of the total area of China. The areas with largest 
percentage yield increase were found in northern NC and NEC (Fig. 4). 
There was little difference in suitable wheat planting areas under these 
three scenarios except in NEC under the RCP4.5 scenario. 

Compared with the 2030s, the areas with the largest percentage yield 
increase were not so obvious in the 2050s under these future scenarios. 
Under the RCP2.6 scenario, the suitable planting areas in the 2050s were 
similar to those in the 2030s. In contrast, under the RCP4.5 scenario, the 
suitable wheat planting areas expanded to cover northern NEC and NC. 
And under the RCP8.5 scenario, the suitable planting areas moved 
slightly northward to northern NEC and NC, and also remained in parts 
of northwestern and eastern NWC. The suitable planting areas occupied 
20.42%, 20.52%, and 19.66% of the total area of China under RCP2.6, 
RCP4.5, and RCP8.5, respectively. The proportion of suitable wheat 
planting areas under the RCP4.5 and RCP8.5 scenarios showed clear 
increases with time, with northeastward spatial expansion in the 2050s 
compared with the 2030s. 

3.5. Migration of the center of gravity for crop yield changes 

Under the RCP2.6 scenario, the centers of gravity for yield changes of 
the three crops migrated slightly from the 2030s to the 2050s (Fig. 5). 
For maize, the center of gravity shifted northeastward about 27 km from 
(37.70◦N, 113.73◦E) in the 2030s to (37.86◦N, 113.96◦E) in the 2050s. 
For rice, the center of gravity migrated eastward about 38 km from 
(31.30◦N, 113.00◦E) in the 2030s to (31.37◦N, 113.39◦E) in the 2050s. 
And for wheat, the center of gravity moved northeastward about 62 km 
from (43.43◦N, 116.45◦E) in the 2030s to (43.84◦N, 116.78◦E) in the 
2050s. 

Under the RCP4.5 scenario, the centers of gravity for the yield 
change of the three crops showed a much longer migration distance from 
the 2030s to 2050s (Fig. 5). For maize, the center of gravity shifted 

Fig. 1. Production areas for maize, rice, and wheat in China simulated by this 
study under a representative concentration pathway scenario (RCP2.6) 
compared with production areas derived from the Global Dataset of Historical 
Yield [GDHY; a global gridded dataset of historical yields for maize, rice, and 
wheat for the period 1981–2016 published by Iizumi and Sakai (2020)] from 
2006 to 2016. These production areas were calculated at an 80% assurance 
rate. NC, NEC, EC, CSC, SWC, and NWC represent the regions of North China, 
Northeast China, East China, Central-South China, Southwest China, and 
Northwest China, respectively. The South China Sea is not shown in this figure. 
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northeastward about 271 km from (36.98◦N, 112.09◦E) in the 2030s to 
(38.54◦N, 114.45◦E) in the 2050s. For rice, the center of gravity 
migrated northeastward about 283 km from (30.15◦N, 112.15◦E) in the 
2030s to (32.11◦N, 114.04◦E) in the 2050s. The migration distance was 

greatest for wheat, with the center of gravity clearly moving north
eastward about 404 km from (42.49◦N, 112.40◦E) in the 2030s to 
(43.97◦N, 116.95◦E) in the 2050s. 

Under the RCP8.5 scenario, all of the centers of gravity for the yield 

Table 3 
Estimated spatial variation trends of yield for three crops in six regions of China.  

Source Method Climate 
scenario 

Carbon 
dioxide 
effects 

Baseline 
period 

Future 
period 

Crop 
type 

Spatial variation trend of yield in regions of China 
(“↑” is increase; “↓” is decrease; “→” is steady; and “×” is no data) 

Northeast 
China 
(NEC) 

North 
China 
(NC) 

East 
China 
(EC) 

Central- 
South 
China 
(CSC) 

Northwest 
China 
(NWC) 

Southwest 
China 
(SWC) 

Balkovič 
et al. 
(2014) 

EPIC model × 1 
GCM 

Four 
RCPs 

✓ 1990–2000 2041–2060 
2080–2099 

Wheat 
Wheat 

→ 
→ 

↑ 
↑ 

↓ 
→ 

↓ 
↓ 

↑ 
↑ 

↑ 
↑ 

Rosenzweig 
et al. 
(2014) 

7 GGCMs 
(EPIC, GEPIC, 
GAEZ-IMAGE, 
LPJmL, LPJ- 
GUESS, 
pDSSAT, and 
PEGASUS) × 5 
GCMs 

RCP8.5 ✓ 1980–2010 2070–2099 Maize 
Rice 
Wheat 

→ 
↑ 
↑ 

→ 
↑ 
↑ 

→ 
→ 
→ 

→ 
→ 
→ 

↑ 
↑ 
↑ 

↑ 
↑ 
↑ 

Deryng et al. 
(2014) 

PEGASUS 
model × 18 
GCMs 

RCP8.5 ✓ 1971–2000 2071–2100 Maize 
Spring 
wheat 

↑ 
↑ 

↑ 
↑ 

↓ 
×

↓ 
×

↑ 
↑ 

↓ 
×

Yin et al. 
(2015) 

4 GGCMs 
(EPIC, GEPIC, 
pDSSAT, and 
PEGASUS) × 5 
GCMs 

RCP8.5 ✓ 1981–2010 2070–2099 Maize 
Rice 
Wheat 

↓ 
↑ 
→ 

↓ 
↑ 
↓ 

↓ 
→ 
↓ 

↓ 
→ 
↓ 

↓ 
↑ 
↑ 

↑ 
↑ 
↓ 

Müller et al. 
(2015) 

6 GGCMs 
(EPIC, GEPIC, 
LPJmL, LPJ- 
GUESS, 
pDSSAT, and 
PEGASUS) × 5 
GCMs 

RCP2.6 
RCP8.5 

✓ 
✓ 

1980–2009 
1980–2009 

2070–2099 
2070–2099 

Maize 
Rice 
Wheat 
Maize 
Rice 
Wheat 

↑ 
↑ 
↑ 
↓ 
↑ 
↑ 

↑ 
↑ 
↑ 
↓ 
↑ 
↑ 

↑ 
↑ 
↑ 
↓ 
↑ 
↑ 

↑ 
↑ 
↑ 
↓ 
↑ 
↑ 

↓ 
↑ 
×

↓ 
↑ 
↓ 

↑ 
↑ 
×

↓ 
↑ 
×

This study Statistical 
regression 
models × 6 
GCMs 

RCP2.6 
RCP8.5 

✓ 
✓ 

2006–2016 
2006–2016 

2041–2060 
2041–2060 

Maize 
Rice 
Wheat 
Maize 
Rice 
Wheat 

↑ 
↑ 
↑ 
↑ 
↑ 
↑ 

↑ 
↑ 
↑ 
↑ 
↑ 
↑ 

↑ 
↑ 
×

↑ 
↑ 
×

↑ 
↑ 
×

↑ 
↑ 
×

↑ 
↑ 
↑ 
↑ 
↑ 
↑ 

↑ 
↑ 
×

↑ 
↑ 
×

Note: GCM, general circulation model; GGCM, global gridded crop model; RCP, representative concentration pathway scenarios; EPIC, Environmental Policy Inte
grated Climate model; GEPIC, GIS-based EPIC model; GAEZ-IMAGE, Global Agro-Ecological Zones - Integrated Model to Assess the Global Environment; LPJmL, Lund- 
Potsdam-Jena managed Land model; LPJ-GUESS, Lund-Potsdam-Jena General Ecosystem Simulator model; pDSSAT, parallel Decision Support System for Agro
technology Transfer models; and PEGASUS, Predicting Ecosystem Goods And Services Using Scenarios model. 

Fig. 2. Maize yield changes in the 2030s (2021–2040) and 2050s (2041–2060) compared with the 2010s (2006–2016) in suitable planting areas in China under three 
representative concentration pathway scenarios (RCP2.6, RCP4.5, and RCP8.5). NC, NEC, EC, CSC, SWC, and NWC represent the regions of North China, Northeast 
China, East China, Central-South China, Southwest China, and Northwest China, respectively. The South China Sea is not shown in this figure. 

Y. Zhang et al.                                                                                                                                                                                                                                   



Ecological Indicators 125 (2021) 107588

7

changes of the three crops were observed to clearly migrate from the 
2030s to 2050s (Fig. 5). For maize, the center of gravity shifted north
eastward about 115 km from (38.52◦N, 114.23◦E) in the 2030s to 
(39.49◦N, 114.73◦E) in the 2050s. The centers of gravity for the yield 
changes of rice and wheat migrated northwestward about 87 km from 
(31.65◦N, 114.75◦E) in the 2030s to (32.29◦N, 114.22◦E) in the 2050s 
for rice, and about 46 km from (43.98◦N, 117.04◦E) in the 2030s to 
(44.39◦N, 116.93◦E) in the 2050s for wheat. Of the three crops, the 
migration distance under RCP8.5 was greatest for maize. 

The overall migration direction from the 2030s to the 2050s for these 
three crops (red arrows in Fig. 5) was generally similar to the migration 
direction under the temperature-only scenario (orange arrows). The 
migration distances for the three crops were longer under the 
temperature-only and CO2-only scenarios, indicating the greater im
pacts of these two parameters on the overall migration distance 
compared with the impact of precipitation. Under the precipitation-only 
scenario (green symbols and arrows), most of the centers of gravity for 
the yield change of the three crops varied only slightly over time. 
Additionally, under the RCP4.5 scenario, the overall migration direction 
and distance for all three crops were similar to the migration under the 
CO2-only scenario. 

4. Discussion 

4.1. Relationship between climatic variables and variations in the 
distribution of crops 

Previous research has shown that temperature and precipitation 
have major and consistent influences on the distribution of crops in 
China. Zhang et al. (2019) applied an ensemble of six GCMs (also, 
CanESM2, CCSM4, CSIRO-Mk3-6–0, GISS-E2-R, IPSL-CM5A-LR, and 
MPI-ESM-LR) from the CMIP5 archive driven by multiple RCP scenarios 
which were obtained from the DCHP to investigate the effects of climate 
change and elevated CO2 concentration on crop irrigation water re
quirements in China. The results of that study indicated that: (1) slight 
cooling was predicted in NC and NEC and in northern NWC under the 
RCP2.6 scenario. NEC had the least warming under the RCP scenarios; 
(2) more precipitation was predicted in NEC, southern SWC and CSC, 
and northwestern NWC, especially under the high-emission RCP sce
narios. These patterns of climate variability can explain the locations of 
areas with substantial crop yield increases. Li et al. (2015) showed that 
the rice production zone in China move northeastward over 370 km 
from 1949 to 2010, in part in response to temperature increases. 
Increasing precipitation observed in most of the southern regions and 
parts of the northern regions of China may have caused the 

Fig. 3. Rice yield changes in the 2030s (2021–2040) and 2050s (2041–2060) compared with the 2010s (2006–2016) in suitable planting areas in China under three 
representative concentration pathway scenarios (RCP2.6, RCP4.5, and RCP8.5). NC, NEC, EC, CSC, SWC, and NWC represent the regions of North China, Northeast 
China, East China, Central-South China, Southwest China, and Northwest China, respectively. The South China Sea is not shown in this figure. 

Fig. 4. Wheat yield changes in the 2030s (2021–2040) and 2050s (2041–2060) compared with the 2010s (2006–2016) in suitable planting areas in China under 
three representative concentration pathway scenarios (RCP2.6, RCP4.5, and RCP8.5). NC, NEC, EC, CSC, SWC, and NWC represent the regions of North China, 
Northeast China, East China, Central-South China, Southwest China, and Northwest China, respectively. The South China Sea is not shown in this figure. 
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concentration of suitable planting areas in these regions (Xu and Xu, 
2012; Zhao et al., 2014). The migration distance was greater under the 
high-emission RCPs as a result of the faster warming trend and 
increasing precipitation (Xu and Xu, 2012; Zhao et al., 2014). Further
more, more severe and more frequent droughts will likely happen in 
some parts of northern China, causing a remarkable reduction in suit
able planting areas (especially in the NEC region) and long-distance 
migration for cultivation of maize and wheat under the medium- 
emission scenario in the early part of the 21st century (Liu et al., 
2012; Wang and Chen, 2014). In addition to the likely changes in tem
perature and precipitation, increasing atmospheric CO2 concentration 
also has important effects on crop plants, including reductions in sto
matal conductance and transpiration that may contribute to increased 
crop water use efficiency and decreased water requirements (Deryng 
et al., 2016). The CO2 concentration will not level off under the RCP 
scenarios to the mid-2100s. Greater increases in CO2 concentration over 
time were estimated under the high-emission RCPs (Zhang et al., 2019). 
When CO2 effects are included, the suitable planting area for crops is 

expected to enlarge in water-limited areas (Ficklin et al., 2010; Deryng 
et al., 2016). 

4.2. Relationship between climatic variables and yield changes of crops 

Temperature and precipitation also affect the yields of crops in 
China. The simultaneous occurrence of high temperatures and low 
precipitation is always unfavorable for crop productivity, causing yield 
losses due to heat and water stress for crops in large portions of China 
(Tao et al., 2016). In addition, increasing atmospheric CO2 levels may 
lead to a short growing season and an increase in photosynthetic rate, 
leaf area, biomass, and crop yield (Deryng et al., 2016). The regression 
models for yield used in this study always showed negative correlations 
between crop yield and temperature increases, and positive correlations 
between crop yield and increases in precipitation and CO2 in China. 
Overall, higher temperatures may not generally decrease crop yields, 
largely because the negative effect of higher temperature on crop yields 
is offset by higher precipitation while the benefits of CO2 fertilization are 

Fig. 5. Migration of the centers of gravity of yield changes from suitable planting areas of maize, rice, and wheat that are driven by either temperature, precipitation, 
or carbon dioxide effects alone in China in the 2030s (2021–2040) and 2050s (2041–2060) under three representative concentration pathway scenarios (RCP2.6, 
RCP4.5, and RCP8.5). The unit of migration distance is km. NC, NEC, EC, CSC, SWC, and NWC represent the regions of North China, Northeast China, East China, 
Central-South China, Southwest China, and Northwest China, respectively. The South China Sea is not shown in this figure. 

Y. Zhang et al.                                                                                                                                                                                                                                   



Ecological Indicators 125 (2021) 107588

9

retained (Pongratz et al., 2012; Zhang and Huang, 2012; Chen et al., 
2018). Knox et al. (2016) applied a meta-analysis of climate change ef
fects on seven crops in Europe and also found that projected average 
crop yield increased by 8% by the 2050s. Thus, the increased temper
ature, precipitation, and CO2 level under the RCP8.5 scenario, especially 
in northern China, caused the areas suitable for crop planting to migrate 
slightly northward, and the centers of gravity for crop yield change may 
also shift northward (Wang and Hijmans, 2019). Readers should be 
aware that the optimum water and heat requirements for crop planting 
and yield enhancement are region and crop specific, and may cause 
different migration distances for different crops (Tao et al., 2016; 
Lombardozzi et al., 2018). 

4.3. Limitations of this study 

We note the following potential limitations of our study: 

(1) Climate variability is an important driving force of the distribu
tion and yield variability of crops in most regions of China (Ray 
et al., 2015). However, the lack of consideration of other envi
ronmental factors and socio-economic factors affecting crop dis
tribution and production (mainly including land cover and land 
use, edaphic conditions, extreme weather events, pests, diseases, 
and crop varieties) may result in some discrepancies between our 
results and the actual conditions of crops in China (Pongratz 
et al., 2012; Tigchelaar et al., 2018). For example, land cover and 
soil physiochemical properties (texture, pH, organic matter, 
drainage, etc.) are always considered as evaluation criteria to 
generate land suitability for crop cultivation using geostatistical 
methods (e.g., multi-criteria evaluation) (Elsheikh et al., 2013). 
However, in China, these are not primary factors for crop 
planting distribution at grid cell level. Substantial farmland 
cultivation is conducted on unsuitable soils because of pressures 
resulting from shortages of soil and water resources (e.g., 
terraced fields in the Loess Plateau and salt-alkali tolerant rice 
planted at the edge of the Taklimakan Desert) (Zhang et al., 
2014). Schauberger et al. (2017) also indicated that these envi
ronmental and socio-economic data are difficult to obtain, or do 
not increase model performance in some cases. Furthermore, 
high-efficiency agricultural management technologies may 
further affect the results by increasing crop yield and expanding 
planting area to include some low soil fertility or water-deficient 
areas. Heterogeneity in cropping intensity is also a likely source 
of scale dependency for crop yields (Challinor et al., 2015).  

(2) Some temperature indicators were calculated from daily mean 
temperatures that were derived from monthly mean air temper
ature using linear interpolation (and even combined with a 
running mean method). These methods can lead to some flat
tening of the daily temperature variations and to some over
estimation of cropland suitability. Additionally, SPEI was 
normally distributed around a grid-specific mean precipitation – 
potential evapotranspiration that used positive values to indicate 
moisture conditions wetter than average (Vicente-Serrano et al., 
2010a, 2010b). In this analysis, SPEI was used to indicate a 
suitable economic condition for agricultural production (Hao 
et al., 2014). SPEI should probably be combined with some other 
drought indices such as aridity index to further reflect climate 
conditions for the whole of China.  

(3) Yield variation was due to the multiple averaging methods 
applied in this study (across a multi-model ensemble of six GCMs, 
regression model alone, etc.). There is still significant opportunity 
to improve our method in order to reduce estimation variability 
and uncertainty. The statistical regression method used in this 
study may integrate heterogeneity from different studies that 
were included in the meta-analysis (Liu et al., 2020). CO2 effects 
were considered as a simple binary variable (rather than a 

continuous variable) in our method of simulating yield, and 
therefore the method could not fully reflect the effect of CO2 on 
crop yield changes. Moreover, there was no differentiation in CO2 
sensitivity for individual crops in this method, and that may 
contribute large uncertainty to estimating crop yield changes. 
CO2 fertilization may improve crop water use efficiency, thereby 
affecting both C3 and C4 plants and increasing the photosynthesis 
rate of C3 plants (e.g., wheat, rice) (Degener, 2015). However, C4 
plants such as maize are comparatively independent of the effects 
associated with changes in CO2 concentration (Degener, 2015). 

(4) The Sacks et al. (2010) dataset was used to specify the crop cal
endars used in this study of future crop planting. However, future 
crop production will be influenced by climate change and 
elevated CO2 concentration. Plant developmental rates will in
crease due to the predicted higher temperatures, permitting the 
use of cultivars adapted to a shorter growing season (Foyer et al., 
2016). 

5. Conclusions 

In China, crop production is the foundation of economic develop
ment and social stability, providing a large amount of the staple food 
supplies. Crop cultivation and production in China face enormous 
challenges and opportunities under predicted climate changes scenarios. 
The results of this study indicated that the suitable areas for the planting 
of maize, rice, and wheat may migrate northward over time. Therefore, 
future research will be required to develop crop production systems that 
will improve grain production under different climatic conditions in 
different areas. The results of this study also indicated that yields for 
maize, rice, and wheat under the predicted future climate conditions 
would be expected to remain stable or to slightly increase, thereby 
helping to ensure food security. Moreover, areas of China with sub
stantial yield increases in the future should be given special attention to 
determine crop production methods that will mitigate adverse effects of 
climate variability. Further studies should be carried out to develop and 
improve statistical regression models used to estimate the spatio- 
temporal variations of distribution and yield change for crops in order 
to promote the sustainability of agricultural development. Migration of 
crop cultivation areas should be sufficiently considered in future related 
research regarding crop yield estimations. Accurately estimating suit
able crop production areas and yields could become an important tool 
for policy makers to use to plan for crop production methods and stra
tegies to deal with climate change. 
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