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Abstract
Light use efficiency (LUE) defines the vegetation efficiency of converting radiative energy into
biochemical energy through photosynthesis. Estimating the maximum LUE (εmax) is critical yet
challenging for quantifying gross primary production (GPP) using LUE-based models. This study
describes an analytical method for estimating εmax based on water use efficiency (WUE) as
determined by plant water use and carbon gain. Unlike other complex parameterization schemes,
this WUE-based method is simple and requires four variables relatively easy to acquire. The
WUE-based εmax estimates compare favorably well with values based on traditional curve fitting
method and that reported in the literature, and clearly distinguished εmax between C3

(1.48± 0.33 g C MJ−1 PAR) and C4 (2.63± 0.21 g C MJ−1 PAR) dominated ecosystems. The range
in εmax estimates was narrow across different years and sites within a biome. The WUE-based εmax

estimate is theoretically constrained by vegetation water use and can be directly incorporated into
LUE models for GPP estimation across ecosystems.

1. Introduction

Vegetation converts solar energy into biochemical
energy stored in carbohydrates through photosyn-
thesis. At the ecosystem level, the efficiency of this
process can be quantified as the ratio of gross primary
production (GPP) to photosynthetically active radi-
ation (PAR), commonly known as light use effi-
ciency (LUE) (Monteith 1972, 1977). The theoret-
ical maximum value of LUE (εmax) under optimal
state (Bolton andHall 1991) is usually downregulated
due to biophysical and environmental constraints to
obtain the actual amount of carbon assimilation, i.e.

εmax = GPP/(PAR·f APAR·f s), where f APAR is the frac-
tion of absorbed PAR determined by light conditions
and canopy properties, and f s is the environmental
stress factor representing limits induced by temper-
ature, availability of resources, e.g. water and nutri-
ent (Monteith 1972). This is a practical and widely
adopted conceptual framework for GPP estimation
across spatiotemporal scales (Potter et al 1993, Lands-
berg and Waring 1997, Veroustraete et al 2002, Run-
ning et al 2004, Xiao et al 2004, Yuan et al 2007, Yang
et al 2013). The accuracy of such GPP models, how-
ever, relies heavily on the parameterization of εmax

(Cramer et al 1999, Ruimy et al 1999,Wei et al 2017a).
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Previously studies have shown that εmax val-
ues can vary by a factor of five based on exper-
imental evidence (Choudhury 2000, Gitelson and
Gamon 2015). Early studies conducted by Monteith
(1977, 1986) suggested an average εmax of about
1.5 g C MJ−1 for C3 plants and 2.4 g C MJ−1 for
C4 plants. However, others found εmax values vary
greatly from 0.24 to 4.82 g C MJ−1 for various plant
types (Prince 1991). Consequently, discussions have
centered on whether εmax is a consistent or vari-
able parameter across species and biomes with dif-
ferent physical environments (Field 1991, Prince
1991, Ruimy et al 1994, Medlyn 1998, Kergoat et al
2008, Gitelson et al 2018, Zhang et al 2018). While
consistent εmax is often interpreted as a result of
an evolutionary plant response to resource avail-
ability (Monteith 1977, Field 1991, Gitelson et al
2018), evidence on the contrary can be explained
by biotic and abiotic factors attributed to plant or
ecosystem types (Gallagher and Biscoe 1978, Prince
1991, Landsberg and Waring 1997, Sinclair and
Muchow 1999, Albrizio and Steduto 2005), light
quality (Choudhury 2000, Wang et al 2018), water
(Passioura 1982, Shi et al 2014), nitrogen (Sinclair
and Horie 1989, Kergoat et al 2008) and atmospheric
CO2 concentration (Dewar et al 1998, Norby et al
2003) conditions, from both experimental and theor-
etical perspectives (Ruimy et al 1994,Medlyn 1998). It
is important to understand how εmax varies across dif-
ferent species (i.e. C3 and C4) and biomes (e.g. forests
to grasslands (GRAs)) to allow more robust estima-
tion of GPP (Prince 1991, Gitelson and Gamon 2015,
Wohlfahrt and Gu 2015).

Various methods have been used to estimate εmax

and they fall into two broad categories: (a) fitting light
response curves (LRCs) and (b) inverting the LUE
model (i.e. εmax = GPP/(PAR·f APAR·f s)). In the first
category, εmax is a parameter based on the Michaelis–
Menten LRC fitted to observed GPP and PAR data
(Wang et al 2010, He et al 2014, Wei et al 2017a).
The estimation is largely determined by the choice of
either a linear or nonlinear model, with results vary-
ing by a factor of two (Ruimy et al 1995). The second is
the most commonly used approach (Chen et al 2011,
Sánchez et al 2015, Gitelson et al 2018), where εmax

estimation relies on the parameterization of f APAR and
f s for a givenGPP and PARusing the LUE framework.
Specifically, f APAR partitions available energy to veget-
ated and soil surfaces, and is usually derived from
vegetation index (VI) (Mu et al 2007) and/or Beer’s
law using VI and light extinction coefficient (kPAR)
(Yuan et al 2010). f s is a multiplicative limiting factor
varying from 0 to 1 to account for temperature, water
(soil and atmospheric), and nutrient conditions. On
an ecosystem scale, εmax can be calibrated against
GPP using various schemes of f APAR and f s, often
with (a) remotely sensed VI images (e.g. leaf area

index (LAI), normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI)) scaled
to match flux site footprint (Li et al 2012, Yuan et al
2014) independently or in combinationwith constant
kPAR (Zheng et al 2018), and with (b) f s as a mul-
tiplied limiting factor, based on water, temperature,
and other limiting variables obtained in-situ or from
remotely sensed data (Yuan et al 2007). Although this
approach of employing VI and f s to estimate εmax

is practical, main challenges remain to be overcome.
First, there is a spatiotemporal discrepancy between
the footprint of flux measurements (typically half-
hourly, less than 1–3 km2) (Chen et al 2012) and that
of remotely sensed VIs (typically eight+ days, 101–
102 km2) (Chen et al 2008, Fu et al 2014). Second,
kPAR is not invariant, as it varies with canopy proper-
ties, seasonality, and vegetation type (Woodgate et al
2015, Zheng et al 2018). Therefore, f PAR can be biased
when it is calculated from the remotely sensed VIs
and/or constant kPAR, and may not accurately rep-
resent local vegetation profile. Third, the use of the
multiplied limiting factor f s can be ambiguous. For
example, soil moisture, vapor pressure deficit, and
temperature are widely acknowledged as covariant
variables, yet they are oftenmultiplied as independent
factors to formulate f s (Yang et al 2013). Additionally,
the scale discrepancy similar to VIs also applies to f s
when the limiting factors are obtained from remote
sensing images. Thus, difficulties and uncertainties
still remain in quantifying f as a combination of VIs
(with/without kPAR) and f s. Not surprisingly, a wide
range of εmax values have been reported across species
(e.g. C3 to C4) and biomes (e.g. forests to GRAs). This
variability further introduces high uncertainties into
model-derived GPP estimates, leading to difficulties
for multi-model and multi-scale assessments (Ruimy
et al 1999, Chen et al 2011, Yuan et al 2014, Zheng
et al 2018). These challenges highlight the need for
a better understanding of this parameter and a more
robust method for εmax estimation.

The objectives of this study were to develop a new
method for estimating εmax that does not depend on
the stress factor f, and to characterize the variability
of εmax across different species and biomes. For the
first objective, we derived and tested a simple method
for estimating εmax from a coupled water and carbon
perspective based on the water use efficiency (WUE)
principle. For the second objective, we evaluated and
characterized the variation of εmax at globally distrib-
uted eddy covariance flux sites for typical C3 and C4

species as well as major biome types. We also com-
pared our WUE-based εmax estimates to that of tra-
ditional LRC fitting methods (supplementary, text
S1 (available online at stacks.iop.org/ERL/16/104032/
mmedia)). Our results can be implemented into GPP
models that are based on the LUE framework and will
be useful to inform uncertainties in GPP simulations.
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2. Materials andmethods

2.1. Derivation of LUE from theWUE principle
The intrinsic coupling of carbon uptake and water
loss through vegetation stomata is commonly quan-
tified by WUE, which is the ratio of actual CO2

assimilation (A) to transpiration (T). For modeling
purpose, A and T are usually assumed to reach their
theoretical maximum, as potential assimilation (PA)
and potential transpiration (PT), respectively when
they are not subject to resources constraints (i.e. soil
water availability) (Hanks 1974). The relationship
between actual and PA and PT has been extensively
used in biomass prediction (Ritchie 1983, Monteith
1986, Sinclair and Horie 1989), as often given in the
following form (deWit 1958,Hanks 1974, 1983, Stew-
art et al 1977, Monteith 1986)

A

PA
=

T

PT
(1)

where A and PA share the unit g C m−2 d−1, T and
PT share the unit mm d−1.

Above empirical relationship implies the assump-
tion that a fractional change in assimilation is associ-
ated with a corresponding fractional change in tran-
spiration, due to simultaneous stomatal control on
both carbon and water fluxes (Monteith 1988). By
rearranging equation (1), we can obtain an explicit
expression of WUE as follows

WUE=
A

T
=

PA

PT
. (2)

In order to derive εmax from this equation, a
straightforward method is to express PA by applying
the LUE framework using εmax. Specifically, the PA
rate under non-stressed condition for a certain can-
opy can be calculated as

PA= εmax PAR fAPAR (3)

where PAR is photosynthetic active radiation
(MJ m−2 d−1), εmax is maximum LUE (g C MJ−1

PAR), and f APAR is the fraction of PAR that is inter-
cepted by the canopy. For simplicity and consist-
ency, PAR here is defined as the proportion of
incident shortwave radiation (Rs) that falls into the
400–700 nm waveband, which is approximated as
0.45 × Rs throughout this study (Monteith 1972,
Britton and Dodd 1976).

Additionally, for the PA/PT term in equation (2),
we assumed that the denominator PT for a given
canopy could be approximated from potential evapo-
transpiration (PET) by attributing total PET to the
vegetated area (Impens and Lemeur 1969, Childs et al
1977, Brisson et al 1993, Guan and Wilson 2009).
Therefore, we have

PT= PET fRn (4)

where f Rn is the fraction of net radiation (Rn)
absorbed by the canopy (detailed elaboration of
equation (4) is referred to text S2, supplementary).
We further assumed that the fraction of intercepted
PAR approximates the fraction of intercepted Rn over
the same canopy, i.e. f APAR= f Rn (see text S3, supple-
mentary). Therefore, we have

PT= PET fAPAR. (4a)

By substituting equation (3) and equation (4a) to
equation (2), we have:

A

T
=

εmax PAR

PET
. (5)

To obtain εmax, we simply rearranged equation (5)
as

εmax =
A ·PET
T ·PAR

(6)

or εmax = WUE
PET

PAR
=

A

PAR
· 1

T/PET
. (6a)

Equation (6) shows that εmax is linearly related
to actual assimilation and transpiration (or WUE,
equation (6a)) and is dependent on radiation (PAR)
and atmospheric water demand (PET). This equation
does not require additional information such as can-
opy profile (VIs, kPAR), and environmental stress
factors (f s), or other variables needed by the LUE
framework to parameterize f at flux sites. Alternat-
ively, T/PET can be interpreted as f (equation (6a)),
which corresponds to the effective fraction of PAR
that is ultimately converted to biochemical energy
stored in A. At an ecosystem scale, the use of T/PET
is advantageous as it avoids the difficulty and uncer-
tainty of calculating f APAR based on kPAR (fitted para-
meter with ambiguous mechanism) and VIs (e.g.
NDVI, EVI, LAI) as well as f s (e.g. temperature, water,
nutrient) derived from observational and/or remote
sensing techniques as illustrated in section 1.

Among the four variables required in equation
(6), PET and PAR are relatively easy to obtain from
readily availablemeteorological measurements at flux
sites. PAR can be calculated from Rs observations. As
for PET, we adopted the radiation-based Priestley–
Taylor equation (Priestley and Taylor 1972), which is
one of the most widely used methods to account for
atmospheric water demand in hydrological and land
surface modeling (Berg et al 2016, Maes et al 2019,
Pagán et al 2019). Additionally, sinceA can be reason-
ably approximated by GPP at an ecosystem level, the
only variable required to apply equation (6) is tran-
spiration (T). It is widely acknowledged that T is dif-
ficult to measure directly and its simulation exhib-
its high uncertainties and large discrepancies based
on the choice of methods (Wang et al 2014, Medlyn
et al 2017, Wei et al 2017b, Zhou et al 2018). How-
ever, evapotranspiration (ET) can be easily derived
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from latent heat flux observations and can be used
as a reasonable approximation of T under certain
conditions (Knauer et al 2018, Zhou et al 2018). In
this study we adopted the common assumption that
ET is a reasonable approximation of T under condi-
tions of high vegetation coverage and negligible soil
evaporation during rain-free periods. Consequently,
equation (6) becomes

εmax =
GPP ·PET
ET ·PAR

. (7)

As a result, εmax can be estimated from GPP, ET,
PAR and PET. For practical purposes, εmax can be
estimated as the slope of the linear regression between
GPP·PET and ET·PAR. This method for εmax estima-
tion is herein referred to as the WUE-based method
in the following discussions.

2.2. FLUXNET data and VI
To test theWUE-basedmethod proposed for determ-
ining εmax, meteorological and eddy covariancemeas-
urements at 52 flux sites (318 site-years of obser-
vation) were obtained from the FLUXNET database
(http://fluxnet.fluxdata.org/). A brief description of
the selected sites is presented in table S1 and figure
S1. Half-hourly observations of latent heat flux (LE
Wm−2), Rn (W m−2), Rs (W m−2) and air temper-
ature (Ta

◦C) were used. Estimates of GPP derived
from night time partitioning algorithm provided by
FLUXNET were adopted as GPP observations in this
study. PET was calculated from the Priestley–Taylor
equationwith themultiplication factorαPT set to 1.26
(Priestley and Taylor 1972). As stated earlier, PARwas
taken as 45% of the total Rs. The flux sites used in this
study included seven plant functional types (PFTs)
where high vegetation coverage was observed dur-
ing the growing season, including evergreen broadleaf
forest (EBF), deciduous broadleaf forest (DBF), ever-
green needle leaf forest (ENF), GRA, woody savanna
(WSA), wetland (WET) and cropland (CRO). Three
crop sites with annual soybean (Glycine max L.) (C3)
andmaize (Zeamays L.) (C4) rotationwere selected to
represent C3 and C4 species in order to determine the
effect of different photosynthetic pathways on εmax.

Original half-hourly data were filtered to retrieve
reliable observations according to the standard qual-
ity control protocols (Reichstein et al 2005). Follow-
ing criteria were used to further screening available
data for εmax estimation: (a) only daytime observa-
tions with Rs greater than 20 Wm−2 were used; (b)
negative entries of LE and GPP were eliminated; (c)
data on rainy days (rainfall >0.5 mm) and the sub-
sequent two days were excluded to focus only on tran-
spiration (Beer et al 2009, Knauer et al 2018); (d)
only growing season dates with high vegetation cov-
erage present were used; (e) minimum of ten days
of valid observations during each growing season
were required for robust regression analysis. Grow-
ing season was defined according to Zhou et al (2014,

2016) as the dayswhendaytime averageGPP exceeded
10% of 95th percentile of daily GPP at a given site.
High vegetation coverage was further ensured by
high daily values of LAI in addition to GPP selec-
tion criterion. Observations during days when LAI
exceeded a threshold of 2.0 were used to assure con-
ditions where ET was a reasonable representation of
T (Ritchie 1983, Zhou et al 2018).

At each study site, LAI was determined using
remotely sensed LAI (eight-day, 500 m resolution)
from MODIS (MOD15A2 product) using observa-
tions within a 1 km × 1 km cell centered on the
site coordinates (Gan et al 2018). Original eight day
LAI time series were (a) filtered according to qual-
ity flags to select reliable entries, (b) smoothed using
Savitzky–Golay filter, and (c) linearly interpolated to
determine daily LAI (Zhang et al 2019). These daily
LAI time series were then used to assist data screen-
ing during the growing season at each site.

3. Results

3.1. Comparison of εmax estimates for C3 and C4
species
Long-term site-level estimate of εmax are illustrated
in figures 1(a) and (b) for typical C3 and C4 spe-
cies, respectively, at the site US-Ne2 (maize-soybean
rotation, irrigated). Taking figure 1(a) as example,
εmax of soybean was estimated using equation (7)
as the linear regression slope between GPP·PET and
ET·PAR (section 2.1), using data from the soybean-
grown seasons over multiple years (section 2.2). The
regression was forced to pass through the origin to
be consistent with the fact that both photosynthesis
and transpiration approach zero when stomata are
closed. A strong linear correlation was found between
GPP·PET and ET·PAR, with the coefficient of determ-
ination (R2) being 0.96 (p < 0.001). The long-term
εmax was then estimated as 1.47 g C MJ−1 PAR for
soybean (C3) at this site. To examine the applicab-
ility of the method for C4 species, the same regres-
sion was performed during the maize-grown years as
shown in figure 1(b). As expected, a clear difference
was detected for the regression slope between soybean
and maize. While exhibiting the same R2 as soybean
years, maize years presented amuch higher εmax value
of 2.53 g C MJ−1 PAR.

The WUE-based method also provided compar-
able estimates of εmax for C3 and C4 crops at two
adjacent sites, namely US-Ne1 (continuous maize,
irrigated) andUS-Ne3 (maize-soybean rotation, rain-
fed), with strong linear correlation (R2 ⩾ 0.95) and
εmax estimated at 2.62 g C MJ−1 PAR formaize at US-
Ne1 (irrigated), and 1.84 and 2.87 g C MJ−1 PAR for
soybean and maize at US-Ne3 (rain-fed), respectively
(table S1, supplementary). These estimates are reas-
onably close to that obtained at US-Ne2 shown in
figure 1.
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Figure 1. Comparison of εmax estimate for C3 and C4 species at US-Ne2 (soybean grown in Nebraska, USA in 2002, 2004, 2006,
and 2008 and maize grown in all other years) based on hourly observations during 2001–2012. The εmax was estimated to be
1.47 g C MJ−1 PAR for C3 (soybean) and 2.53 g C MJ−1 PAR for C4 (maize) based on linear regression forced through the origin.
‘n’ represents the number of available hourly observations at this site. The shade along each regression line represents the 95%
confidence interval on the fitted values.

In comparison with the long-term estimates, the
robustness of themethodwas further examined on an
annual scale, with εmax from each site-year calculated
and summarized in table S2 (supplementary). For
soybean, the annual average εmax across US-Ne1, US-
Ne2 and US-Ne3 was about 1.6 g C MJ−1 PAR, with a
standard deviation (SD) of 0.21 g C MJ−1 PAR and a
coefficient of variation (CV) of about 13% across six
site-years. Formaize, the annualmean εmax was about
2.63 g C MJ−1 PAR, with a SD of 0.21 g C MJ−1 PAR
and a CV of about 8% across 15 site-years. Annual
average εmax for maize was significantly higher than
that of soybean, which agrees well with the long-
term value estimated at US-Ne2. The greater εmax

estimates for C4 species obtained here corresponds
well with its genetically determined higher photo-
synthetic capacity compared with C3 species, which
demonstrates the applicability of the WUE-based
method for distinguishing C3 and C4 dominated
ecosystems.

3.2. Variation of εmax across different biomes
Site-specific εmax was also calculated using all avail-
able data during growing season at each of the
52 flux sites (table S1). Summary of cross-biome
εmax estimates are presented in figure 2. εmax exhib-
ited considerable variation within and across biome
types. Among all natural ecosystems, forests (DBF,
EBF, and ENF) presented a slightly higher photo-
synthetic capacity (greater εmax) compared to non-
forests (GRA, WET, and WSA). Broadleaf forests
(DBF and EBF, 11 sites) with high vegetation cov-
erage during the growing season had similar εmax

estimates that fell in a narrow range between 1.50

and 1.58 g C MJ−1 PAR. These values were in good
agreement with the C3 crop (1.66 g C MJ−1 PAR).
ENF presented the largest variation, with εmax ran-
ging from about 0.9 to 2.4 g C MJ−1 PAR, and the
average of 1.58 g C MJ−1 PAR was comparable to
that of the C3 crop. Non-forest GRA and WSA had
much lower εmax (less than 1.2 g C MJ−1 PAR on
average). In addition, WETs were the least efficient in
terms of light use for photosynthesis with the low-
est εmax of only about 0.83 g C MJ−1 PAR. For the
four CRO sites under agricultural management (C3

or C4 species unspecified), εmax varied from about
1.3 to 2.0 g C MJ−1 PAR, with an average of about
1.62 g C MJ−1 PAR. All natural ecosystems domin-
ated by C3 vegetation had much lower εmax values
than the C4 crop. Although ENF and CRO had a few
large values that exceeded 2.0 g C MJ−1 PAR, most
C3 dominant ecosystems showed εmax typically lower
than 2.0 g C MJ−1 PAR. On the contrary, εmax for the
C4 crop was obviously larger than 2.4 g C MJ−1 PAR.
These values were in good agreement with that sug-
gested by Monteith (1977, 1986).

Annual εmax was also calculated for each site-year
to examine the interannual consistency of the WUE-
based method and the results were summarized in
table S2. The interannual variation of εmax estimates
are small for most biome types, as indicated by low
SD and CV. The largest CV was found for ENF and
WET (about 29% and 35%, respectively), and the
minimum CV was found for CRO-C4 (about 8%).
Overall CV was about 20% across all C3 dominant
ecosystems. High R2 (0.91) also provided evidence of
the robustness of this method across the annual scale
for different biome groups.
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Figure 2. Biome-grouped εmax estimates based on the WUE method (blue boxes) at 52 eddy covariance flux sites. For each group,
the mean and median εmax is shown as the triangle and the horizontal line within each box, respectively. The 25th and 75th
quantiles are shown as the lower and the upper boundaries of each box, respectively. CRO-C3 εmax US-Ne1, US-Ne2, and US-Ne3
during soybean-grown years. CRO-C4 represents εmax estimates at the same sites during maize-grown years. ‘n’ represents the
number of flux sites within each biome group. Abbreviations for plant functional types is the same as table S1. Horizontal dash
line in blue and red represents the εmax value suggested by Monteith (1977, 1986) for C3 and C4 crops, respectively. εmax estimates
derived from low light regression (LowL, orange boxes) and rectangular hyperbola light response curve (LRC, green boxes) are
also presented for comparison.

3.3. Comparison of εmax from different methods
and previous studies
In addition to theWUE-basedmethod as proposed in
this study, we also calculated εmax estimates using the
same dataset by fitting two traditional LRCs (text S1),
as summarized in table 1 and figure 2 (details see table
S1). Result show that linear LowL-based εmax estim-
ates were similar to our estimates using the WUE-
based method (the differences are 0.2 g C MJ−1 PAR
for C3 and 0.18 g C MJ−1 PAR for C4). The mean
estimates are the closest for CRO whereas the largest
discrepancy is found for GRA, with the difference
being 0.1 and 0.47 g C MJ−1 PAR, respectively. Much
higher εmax estimates were obtained using the LRC
method, which is 1.73 and 1.51 times larger than that
of WUE and LowL on average. While the closest εmax

difference is 0.51 g C MJ−1 PAR for CRO, the largest
difference is over 1.4 g C MJ−1 PAR for EBF and GRA
based on LRC compared to the WUE method. It is
worth noting that LRC-based εmax estimates exhibit
significantly higher variations (CV>50%) across spe-
cies and biomes compared to WUE (8%) and LowL
(12%) method. The LRC-based εmax estimates also
diverse greatly from values suggested by Monteith
(1977, 1986) in general. It is also noted that the R2

values are comparable between LowL and LRC but
much lower than that of theWUEmethod, indicating
a stronger correlation between GPP·PET and ET·PAR
compared to GPP and PAR (regardless of linear or
non-linear regression).

Apart from LowL and LRC methods, we also
compared WUE-based εmax estimates to those repor-
ted in previous studies. Across species and bio-
mes, our εmax estimates agree well with the results
from experimental and modeling estimates repor-
ted in the literature. For C3 and C4 crops at the
same sites (i.e. US-Ne1, US-Ne2, and US-Ne3), Git-
elson et al (2018) reported similar but slightly lower
εmax values for soybean and maize, i.e. 1.45 and
2.23 g C MJ−1 PAR (using green LAI and intercep-
ted PARmeasurements) compared to our estimates of
1.66 and 2.67 g C MJ−1 PAR, respectively (figure S2).
Besides, our εmax estimates were almost identical to
those obtained by Nguy-Robertson et al (2015) at the
same sites for both soybean (1.72 g C MJ−1 PAR) and
maize (2.42 g C MJ−1 PAR), and comparable to that
of Chen et al (2011) for maize (1.95 g C MJ−1 PAR)
using optimized LUE models. Zhang et al (2016,
2017), suggested that εmax should be less than
2 g C MJ−1 PAR for C3 and close to 3 g C MJ−1 PAR
for C4 vegetation based on sun-induced chlorophyll
fluorescence, which is also consistent with our εmax

estimates. These comparisons showed that the WUE-
based method provides reasonable εmax estimates for
species with distinct photosynthetic capacity differ-
ences.

For the other biomes, the WUE-based method
also produced εmax estimates that were comparable
to those reported in the literature (figure S4). Our
WUE-based εmax estimates were close to those from
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Table 1. Emax estimates fromWUE, LowL, and LRC methods. εmax for each species and biome group was calculated as cross-site
averages. Coefficient of variation (CV) and coefficient of determination (R2) are also shown.

PFTa

εmax CV (%) R2

WUE LowL LRC WUE LowL LRC WUE LowL LRC

CRO-C4 2.67± 0.19 2.49± 0.11 3.35± 0.11 3.56 1.14 1.11 0.96 0.76 0.87
CRO-C3 1.66± 0.26 2.00± 0.29 2.39± 0.28 6.84 8.40 8.00 0.97 0.63 0.77
CRO 1.62± 0.29 1.72± 0.33 2.13± 0.58 8.35 10.64 33.37 0.95 0.70 0.76
DBF 1.58± 0.19 1.82± 0.22 2.98± 0.61 3.58 4.76 36.63 0.88 0.51 0.55
EBF 1.50± 0.27 1.70± 0.41 3.15± 0.90 7.33 17.16 80.20 0.83 0.35 0.46
ENF 1.58± 0.53 1.38± 0.35 2.42± 0.74 24.29 12.54 54.14 0.89 0.48 0.57
GRA 1.22± 0.28 1.70± 0.55 2.66± 1.15 8.06 29.80 132.21 0.91 0.53 0.63
WET 0.83± 0.26 1.14± 0.39 1.67± 0.75 9.08 15.14 56.19 0.89 0.35 0.67
WSA 1.19± 0.18 1.34± 0.08 1.91± 0.09 3.38 0.61 0.85 0.91 0.16 0.55
Average
(except C4)

1.40± 0.28 1.60± 0.33 2.41± 0.64 8.86 12.38 50.20 0.90 0.46 0.62

a PFT type is referred to table S1 for details.

the EC-LUE model across most biomes (DBF, EBF,
ENF, GRA, and WSA), and also similar to the res-
ults obtained with two other models, namely MODIS
and CFix reported by Yuan et al (2014). However,
small differenceswere found between theWUE-based
εmax estimates here and the result of Yuan et al (2014)
for broad leaf forests (DBF and EBF) when com-
pared with other biome types on average, except for
the model VPRM. Major differences for forest and
crops were found when compared with other biomes
fromWang et al (2010) and theMODIS look-up-table
(Running and Zhao 2015).

For further validation, we also compared WUE-
based εmax to those determined from experimental
studies. In the original LUE Monteith (1972, 1977)
suggested a relatively consistent εmax of about
1.4 g C MJ−1 PAR for C3 crops. However, lower εmax

values that varied between 0.2 and 1.5 g C MJ−1 PAR
were found for woody vegetation (Raymond 1994).
Other experimental results presented a wider range
of 0.2–4.8 g C MJ−1 PAR as summarized by Prince
(1991). Our εmax estimates fell in these broad ranges
yet showed a much narrower variation between 0.83a
and 1.66 g C MJ−1 PAR for C3 dominated ecosys-
tems. Interestingly, the biomass measurements con-
ducted by Cannell et al (1988) estimated εmax of 1.5–
1.6 g C MJ−1 PAR for the broad-leaf forests (DBF and
EBF), which is essentially the same as theWUE-based
εmax estimates in this study (1.5–1.58 g C MJ−1 PAR).

4. Discussion

4.1. Strength ofWUEmethod for estimating εmax
The WUE-based method proposed in this study
provides a new perspective and a coupled approach
for estimating ecosystem scale εmax. Compared to the
traditional LRC fitting method that is highly sensit-
ive to the choice of linear or non-linear model, i.e.
LRC estimated εmax was 1.5 times greater than LowL
accompanied by 4 times larger CV, the WUE-based

method was less variant and provides more conver-
gent εmax estimates (figure 2 and table 1). Although
curve fitting is straightforward and requires only GPP
and PAR, previous studies had a similar issue per-
forming parameterization especially LRC which can
lead to unrealistic and variant εmax estimates (Ruimy
et al 1995, Ye 2007, Ye and Yu 2008). Compared to
the LUE-reversing method, the WUE-based method
requires only four variables that are relatively easy
to acquire at site or on larger scales. A major lim-
itation of deriving εmax by reversing the LUE mod-
els is the consideration of water (e.g. soil moisture)
as an abiotic limit for carbon assimilation (He et al
2014, Yuan et al 2014, Wagle et al 2016, Hu et al
2018), implying that limited water availability con-
strains carbon assimilation. The intrinsic biophys-
ical coupling between water loss and carbon gain,
however, demonstrates that the two fluxes depend
on each other and constrain each other interact-
ively (Katul et al 2010, Medlyn et al 2011). Accord-
ingly, the energy-converting efficiency of the carbon
process should be related to WUE. The WUE-based
method presents this coupling relationship expli-
citly, where εmax is a function of WUE (biophysical
processes), environmental condition (atmospheric
water demand, and energy availability). Therefore,
the WUE-based method directly conceptualizes and
presents the joint regulation of vegetation on both
water and carbon processes.

Our result also demonstrates that theWUE-based
method is simple and robust for εmax estimation. The
much higher εmax for C4 crops which have a different
photosynthetic pathway than C3 vegetation is clearly
distinguishable. The method produced εmax estim-
ates for C3 and C4 species that were comparable with
estimates based on LowL and values reported in the
literature (section 3.3, figure S3). The method was
also capable of producing consistent εmax for differ-
ent ecosystems under a wide range of climate show-
ing good agreement with LowL and previous studies
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(figure S4). In principle, εmax should be achieved
at lower PAR, as calculated by LowL regression in
this study. Hence, the relatively close εmax estimates
obtained by WUE compared to LowL method may
be considered as a reasonable verification of the reli-
ability of our method, whereas the large uncertain-
ties in LRC estimates require further investigation.
The differences of εmax estimates based on reversing
LUE model compared to WUE method (figure S4)
can be partly attributed to the uncertainties when
parameterizing the f factor (i.e. VIs, kPAR, f s) using
different LUE models (as illustrated in section 2.1),
which contains scale discrepancy and covariant lim-
iting factor issues. Others also argued that the uncer-
tainty in parameterizing the f factor is a major limita-
tion of the LUE model, and can result in inconsistent
estimates of εmax (Yuan et al 2014, Zheng et al 2018).

The slightly wider variation of annual εmax estim-
ates for CROat an annual scale (table S2) (CV= 22%)
is likely due to possible changes in species grown
within and across crop sites and years (possible
C3 and C4 rotation), and this may require further
information and investigation. For other ecosystems,
the variation in the annual εmax estimates were also
relatively small across different sites within a PFT
(SD generally <25% of the mean εmax). Previous
studies have demonstrated that canopy characterist-
ics (Sánchez et al 2015), water availability and nutri-
ents (Christina et al 2015), as well as radiation con-
ditions (Gitelson et al 2015, Wang et al 2018), could
contribute to variations in εmax. The possible inter-
annual variation of εmax induced by such biophys-
ical and environmental factors was explicitly presen-
ted in our method, shown by equation (6). A further
analysis between the biophysical underlying WUE
(uWUEa = GPP·VPD0.5/ET, Zhou et al 2014) and
annual εmax (figure S5) showed that photosynthetic
capacity co-varied with the vegetation water use and
the atmospheric water demand.

Since it is difficult to obtain ground-truth meas-
urements for such a wide range of biome types glob-
ally distributed, we can infer from the above compar-
isons and discussions that the WUE-based method is
reliable for εmax estimation in accordance with cur-
rent knowledge.

4.2. Possible implication and limitation
TheWUE-based εmax estimates can be directly incor-
porated with LUE models at local to regional scales
according to species and biome types for GPP
estimation. With a narrow range of εmax (0.83–
1.62 g C MJ−1 PAR for C3 dominated ecosystems,
figure 2), uncertainty in GPP estimates is likely to
be reduced using our εmax values across different
ecosystems (compared with other parameterization
schemes, figures 2, S3–S4). Moreover, this WUE-
based method uses T/PET as a top-down limit-
ing factor instead of the ambiguous f factor in the
LUE model. This treatment not only simplifies the

parameterization of εmax, but also avoids the pos-
sible uncertainties brought about bymultiplying vari-
ous limiting factors (e.g. LAI, VPD, soil water, etc) to
quantify f. Additionally, because all variables required
by this WUE-based method are readily available at
flux sites (where the GPP models are calibrated to),
local εmax estimates can be easily obtained with high
credibility. Measurements from these flux sites are
considered highly reliable and accurate as eddy cov-
ariance represents the state-of-the-art technique. As
such, εmax estimates using the WUE-based method
are likely to be more robust than estimates from tra-
ditional methods, and the use of this method can help
to assess model uncertainty in GPP estimation. This
is especially true when LUEmodel structure and data
reliability require further evaluation, while the εmax

value is theoretically and biophysically consistent.
A limitation of theWUE-basedmethod for estim-

ating εmax is the assumption that transpiration (T)
can be approximated by total ET under high veget-
ation coverage. While this assumption is valid under
complete or high vegetation coverage across the land-
scape, T could be less than ET in non-forest ecosys-
tems (WET, GRA, and WSA). More accurate εmax

estimateswould be possible using transpirationmeas-
urements (rather than using ET as an approxima-
tion) based on sap flow and/or isotopic techniques
(Roupsard et al 2006, Wang et al 2014, Wei et al
2017b). Future studies could try to employ the latest
SAPFLUXNET data (Poyatos et al 2016) to derive
in-situ T to be implemented in our WUE-based
method. Current site-based εmax could be extrapol-
ated to regional scale via PFT look-up-table method
as adopted in theMODIS GPP algorithm. For regions
where reliable ET estimates are available, our method
can also be used under high LAI to derive εmax. For
simplicity, this study also assumed that the fraction
of absorbed PAR is the same as that of absorbed Rn.
Ross (1981) showed that both shortwave and long-
wave radiation can be approximated by Beer’s law
with the same bulk extinction coefficient k. We con-
sider such assumption is valid for big-leaf canopy as
conceptualized in this study (text S3). Variations in
k can be further explored considering different can-
opy characteristics (e.g. leaf inclination angle, nutri-
ent status, phenology) and climate and radiation con-
ditions (e.g. direct and diffuse radiation, atmospheric
CO2 concentration) (Turner et al 2003, Dai et al 2004,
Wang et al 2018). Yet such variation should not viol-
ate the fundamentals and conclusions of this study.

5. Conclusions

This study proposed a new method to estimate εmax

based on the water and carbon coupling principle.
The method was examined at 52 flux sites across dif-
ferent vegetation species and biome types. Results
showed that the method was capable of distinguish-
ing vegetation types with different photosynthetic
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pathways. The estimated εmax for seven main bio-
mes distributed global-wide agreed well with exper-
imental and modeling methods. The WUE-based
method is simple and the εmax estimates could be
incorporated into LUEmodels for better GPP simula-
tion. The method could also be used to better under-
stand the behavior and variation of εmax across species
and biomes considering interrelated water and car-
bon processes.
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