
 

 

 

 

 

 

Reconstruction of multiple climate variables at high 

spatiotemporal resolution based on Big Earth data platform 

 

Mingxi Zhang 

 

Thesis submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy 

 

 

 

School of Life Sciences, Faculty of Science 

University of Technology Sydney 

Australia 

 

November 2021



 

II 

 

Certificate of Original Authorship 

I, Mingxi Zhang declare that this thesis, is submitted in fulfilment of the requirements for 

the award of Doctor of Philosophy, in the School of Life Sciences/Faculty of Sciences at the 

University of Technology Sydney. 

This thesis is wholly my own work unless otherwise reference or acknowledged. In 

addition, I certify that all information sources and literature used are indicated in the thesis. 

This document has not been submitted for qualifications at any other academic institution.  

 

Signature of student:  

Date: November 2021 

 

 

 

 

 

 

 

 



 

III 

 

Acknowledgements 

This four-year Ph.D. journey has been an amazing experience for me that has changed my 

destiny. I would like to thank many people and institutions involved in the completion of this 

PhD study. 

First and foremost, I would like to express my deepest gratitude to my research supervisors 

at UTS, Professor Qiang Yu, Dr. Xihua Yang and Professor Alfredo Huete, who have provided 

me generous guidance and support to accomplish this challenging project. Professor Qiang Yu, 

my principal supervisor, who is an inspiration in my life. He not only gave me an intellectually 

rich environment, but also gave me insightfulness guidance when having philosophical 

conversations with him. Without the help and support of Prof Qiang Yu, it would not be possible 

to get started my PhD study and bring this thesis to its completion. I am deeply grateful for the 

professional guidance of the principal research scientist Dr. Xihua Yang, who provided me 

immeasurable support and scientific motivation for my industry internship in NSW DPIE. Dr. 

Xihua Yang helped me with careful read and provided wealthy inputs to improve the theoretical 

contents of this thesis. I also greatly appreciate the help of Professor Alfredo Huete, who 

welcomed me to the group and expand my horizons on the state-of-the-art of technologies.  

My special thanks go to the principal research scientist at NSW DPI, Dr. De Li Liu, who 

instilled in me the passion for scientific research and provided me with a great learning 

environment and invaluable support. I also owe my great gratitude to Dr. James Cleverly at 

UTS. I am so much in debt to his unconditional help. He helped me conceptualize the paper, 

instructed me on how to conduct scientific research and enrich it. Without his responsible step-

by-step guidance, it would have been very difficult for me to make quick progress in my thesis. 

I thank my colleagues from UTS, Dr. Bin Wang, Dr. Jie He, Dr. Puyu Feng, Dr. Qiaoyun 

Xie, Dr. Wenjie Zhang, and Dr. Cicong Gao, Dr. Song Leng, Dr. Lijie Shi, Dr. Rong Gan, Dr. 

Qinggaozi Zhu, Dr. Jianxiu Shen, Dr. Yuxia Liu, for your generosity and support, and for all 

the wonderful memories we shared. I would like to thank Professor Jiandong Liu, Dr. Jonathan 



 

IV 

 

Grey, Dr. John Leys, Dr. Hongtao Xing, and Dr. Dongdong Kong for their insightful comments 

and support on my PhD study. I am also grateful to staff at UTS and NSW DPIE for their 

ongoing assistance in ensuring an enjoyable study environment and easy workflow during this 

wonderful PhD journey. 

I would like to express my deepest gratitude to my beloved wife Dr. Hong Zhang and my 

parents in China. I thank for their perennial supported during my academic journey, and their 

encouragement has been a source of motivation for me to keep studying. 

Finally, I would like to thank the China Scholarship Council and UTS for providing 

scholarships, and UTS and NSW DPIE for providing nice office environment to conduct this 

project. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 

 

Publications arising from this thesis 

Journal papers directly related in this thesis: 

Zhang, M., Wang, B., Liu, D. L., Liu, J., Zhang, H., Feng, P., ... & Yu, Q. (2020). 

Incorporating dynamic factors for improving a GIS‐based solar radiation model. Transactions 

in GIS, 24(2), 423-441. (Chapter 2) 

Zhang, M., Wang, B., Cleverly, J., Liu, D. L., Feng, P., Zhang, H., ... & Yu, Q. (2020). 

Creating new near-surface air temperature datasets to understand elevation-dependent warming 

in the Tibetan Plateau. Remote Sensing, 12(11), 1722. (Chapter 3) 

Zhang, M., Yang, X., Cleverly, J., Huete, A., Zhang, H., & Yu, Q. (2021). Heat wave 

tracker: A multi-method, multi-source heat wave measurement toolkit based on Google Earth 

Engine. Environmental Modelling & Software, 105255. (Chapter 4) 

Zhang, M., Yang, X., Leys, J., Gray, J., Zhu, G., & Yu, Q. (2020). The first combined water 

and wind erosion assessment for Australia 2000-2020. (Ready for submission) (Chapter 5) 

Yang, X., Zhang, M., Oliveira, L., Ollivier, Q. R., Faulkner, S., & Roff, A. (2020). Rapid 

Assessment of Hillslope Erosion Risk after the 2019–2020 Wildfires and Storm Events in 

Sydney Drinking Water Catchment. Remote Sensing, 12(22), 3805. (Chapter 5) 

Yang, X., Zhang, X., Lv, D., Yin, S., Zhang, M., Zhu, Q., ... & Liu, B. (2020). Remote 

sensing estimation of the soil erosion cover‐management factor for China's Loess Plateau. Land 

Degradation & Development, 31(15), 1942-1955. (Chapter 5) 

Research Grant directly related in this thesis: 

Community vulnerability to extreme heat wave in Lake Macquarie area, Lake Macquarie 

Environmental Research Grants, 2019 

 



 

VI 

 

Contents 

Certificate of Original Authorship ................................................................................. II 

Acknowledgements ....................................................................................................... III 

Publications arising from this thesis ............................................................................... V 

Contents .........................................................................................................................VI 

List of Figures ................................................................................................................IX 

List of Tables ................................................................................................................ XII 

Glossary.......................................................................................................................XIII 

Abstract ....................................................................................................................... XIV 

Chapter 1. Introduction ................................................................................................... 1 

1.1 Background to the question .......................................................................................... 1 

1.1.1 Big EO data .............................................................................................................. 1 

1.1.2 Big EO data meets Climate Change ........................................................................... 3 

1.1.3 Big EO data and Cloud Computing............................................................................ 4 

1.1.4 Big EO data with Machine Learning .......................................................................... 5 

1.2 Statement of significance and knowledge gaps ............................................................. 7 

1.3 Research issues and objectives ..................................................................................... 9 

1.4 Thesis outline ............................................................................................................. 11 

Chapter 2. Incorporating dynamic factors for improving a GIS-based solar radiation 

model 12 

Abstract ........................................................................................................................... 12 

2.1 Introduction ............................................................................................................... 13 

2.2 Materials and methods ............................................................................................... 16 

2.2.1 Study area and observed solar radiation data ............................................................ 16 

2.2.2 Schematic of the modelling ..................................................................................... 18 

2.2.3 Distributed Global Solar Radiation (GSR) model for rugged terrain ......................... 19 

2.2.3.1 Radiation on the horizontal surface ....................................................................... 19 

2.2.3.2 Radiation on the inclined surface .......................................................................... 21 

2.2.4 Spatial and temporal MODIS albedo gap-filling ...................................................... 22 

2.2.5 Model evaluation..................................................................................................... 25 

2.3 Results ....................................................................................................................... 27 

2.3.1 Model validation in the Loess Plateau...................................................................... 27 

2.3.2 Comparison with other SSR and GSR products ....................................................... 29 

2.4 Discussion ................................................................................................................. 33 

2.5 Conclusion ................................................................................................................. 38 

Chapter 3. Creating new near-surface air temperature datasets to understand 

elevation-dependent warming in the Tibetan Plateau .................................................. 39 

Abstract ........................................................................................................................... 39 

3.1 Introduction ............................................................................................................... 40 

3.2 Materials and Methods ............................................................................................... 42 

3.2.1 Study area and all climate data ................................................................................ 42 



 

VII 

 

3.2.2 Methodology ........................................................................................................... 44 

3.2.2.1 Step 1: Hybrid model to estimate daily seamless MODIS LST and validation ....... 45 

3.2.2.2 Step 2: Remotely sensed indices, DEM derivatives and mountainous solar radiation

 ........................................................................................................................................ 46 

3.2.2.3 Step 3: Regression models and target-oriented validation ...................................... 47 

3.2.2.4 Step 4: Creating near-surface air temperature products and elevation-dependent 

warming analysis ............................................................................................................. 49 

3.3 Results ....................................................................................................................... 50 

3.3.1 Evaluation of spatio-temporal composite LST ......................................................... 50 

3.3.2 Model performance and variable importance ........................................................... 52 

3.3.3 Spatial distribution of surface air temperature .......................................................... 55 

3.3.4 Comparison with other Tibetan Plateau temperature products .................................. 59 

3.3.5 Elevation-dependent warming ................................................................................. 61 

3.4 Discussion ................................................................................................................. 62 

3.5 Conclusions ............................................................................................................... 67 

Chapter 4. Heat wave tracker: a multi-method, multi-source heat wave measurement 

toolkit based on Google Earth Engine ........................................................................... 68 

Abstract ........................................................................................................................... 68 

4.1 Introduction ............................................................................................................... 69 

4.2 Data and methods ....................................................................................................... 72 

4.2.1 Earth observation datasets ....................................................................................... 72 

4.2.2 Heat wave indices ................................................................................................... 74 

4.2.3 Non-stationary generalized extreme value analysis .................................................. 77 

4.2.4 Online heat wave measurement under a framework ................................................. 78 

4.3 Results ....................................................................................................................... 79 

4.3.1 Heat Wave Tracker .................................................................................................. 79 

4.3.2 How do the datasets differ in representing heat waves? ............................................ 80 

4.3.3 How do the methods differ in identifying and characterising heat waves? ................ 83 

4.3.4 How does the heat wave risk change in recent climates? .......................................... 85 

4.3.5 How does the heat wave risk change under future climate conditions? ..................... 87 

4.4 Discussion ................................................................................................................. 90 

4.4.1 Model Comparison .................................................................................................. 90 

4.4.2 Heat wave threshold ................................................................................................ 91 

4.4.3 Future needs ............................................................................................................ 92 

4.5 Conclusion ................................................................................................................. 94 

Chapter 5. New assessment of water and wind erosion for Australia 2000-2020 ......... 96 

Abstract ........................................................................................................................... 96 

5.1 Introduction ............................................................................................................... 97 

5.2 Data and methods ....................................................................................................... 99 

5.2.1 Earth Observation and Soil Datasets ........................................................................ 99 

5.2.2 Estimates of Water Erosion by RUSLE .................................................................. 103 



 

VIII 

 

5.2.2.1 Rainfall erosivity (R) factor ................................................................................ 103 

5.2.2.2 Cover-management (C) factor............................................................................. 104 

5.2.2.3 Slope-steepness (LS) factor ................................................................................ 105 

5.2.2.4 Soil erodibility (K) factor ................................................................................... 105 

5.2.3 Albedo-based wind erosion model ......................................................................... 108 

5.2.4 DustWatch PM10 measurements ........................................................................... 110 

5.3 Results ..................................................................................................................... 110 

5.3.1 Estimation of sub-factors in RUSLE ...................................................................... 110 

5.3.2 Assessment and comparison of two wind erosion model outputs with DustWatch .. 114 

5.3.3 Monthly and annually wind-water erosion maps .................................................... 117 

5.4 Discussion ............................................................................................................... 124 

5.4.1 Water and wind erosion explorer ........................................................................... 124 

5.4.2 Underlying drivers for water and wind erosion changes ......................................... 125 

5.4.3 Limitations and Model Uncertainties ..................................................................... 127 

5.5 Conclusion ............................................................................................................... 128 

Chapter 6. Final conclusions and future research ...................................................... 129 

6.1 Final conclusions ..................................................................................................... 129 

6.2 Future research......................................................................................................... 131 

Reference ...................................................................................................................... 132 

 

 

 

 

 

 

 

 

 

 

 

 



 

IX 

 

List of Figures 

Figure 1-1 The framework of the thesis............................................................................... 11 

Figure 2-1 The study area showing the Loess Plateau located in north-central China including 

10 radiation stations and 301 weather stations...................................................................... 17 

Figure 2-2 Flowchart of steps for calculation of solar radiation in mountainous terrain. ....... 19 

Figure 2-3 Albedo map of Loess Plateau at 1 January 2011 shown as an example of gap filling. 

Left panel shows missing values (white) in the northern and western regions of the plateau. 

Right panel shows Whittaker smoother gap-filled albedo map. ............................................ 24 

Figure 2-4 Variation of daily albedo for different land types. Missing values in raw albedo 

images were filled by spatio-temporal gap-filling method. Those gap values in the curves were 

fitted by the Whittaker smoother method, with λ = 20, iterative=3. ...................................... 24 

Figure 2-5 The percentage of albedo data during 2011 for the whole Loess Plateau (a), a 

representative validation area with 10 points (b), the temporal variation of daily albedo at point 

7 with 10 randomly observed albedo (c) and cross validation for 100 samples during 2011 (d).

 ........................................................................................................................................... 27 

Figure 2-6 Comparison of annual observed and estimated (by mountain solar radiation model) 

monthly Global Solar Radiation (GSR) for 10 radiation sites on the Loess Plateau, China, 

during 2005 to 2009. Comparisons for direct radiation (DIR) and diffuse radiation (DFR) are 

shown only for YuZhong. .................................................................................................... 29 

Figure 2-7 Spatial distributions of yearly solar radiation on the Loess Plateau in 2011 by 

mountain solar radiation produced by STMSR model, Surface Solar Radiation, and GLDAS.

 ........................................................................................................................................... 31 

Figure 2-8 Summary statistics for estimated daily solar radiation produced by the Spatio-

temporal Mountain Solar Radiation (STMSR) model (a), the Surface Solar Radiation (SSR) 

model (b), and the Global Land Data Assimilation System (GLDAS) model (c) compared with 

observed data across 10 solar radiation stations in 2007-2013. ............................................. 31 

Figure 2-9 Spatial distributions of RMSE calculated between the daily solar radiation of the 

Spatio-temporal Mountain Solar Radiation (STMSR) model and Surface Solar Radiation (SSR) 

product at 1000 randomly selected points in 2011 over the Losses Plateau. Circle diameters 

correspond to the size of RMSE. RMSE units in the legend are MJ·m-2. .............................. 32 

Figure 2-10 The comparison of different Global Solar Radiation (GSR) products with in situ 

observations at YuZhong in 2009. STMSR: Spatio-temporal Mountain Solar Radiation, SA: 

Solar Analyst and r.sun: radiation integrated in GRASS. ...................................................... 33 

Figure 2-11 The application interface for the mountain solar radiation model on the Google 

Earth Engine APP Platform. ................................................................................................ 34 

Figure 2-12 Spatial distribution of annual astronomical solar radiation, direct solar radiation, 

diffuse solar radiation, and reflected solar radiation in 2011 over the Loess Plateau. ............ 35 

Figure 3-1 Location of Tibetan Plateau, distribution of 130 weather stations and A’rou station

 ........................................................................................................................................... 43 

Figure 3-2 Flowchart of steps for calculation of near-surface temperature over TP .............. 45 

Figure 3-3 shows the prevalence of available data in the two pairs of maps. Figure 3-3(a) shows 



 

X 

 

the percentage of days for the given year for which LST day (i.e. 1:30 pm on Aqua (T2)) values 

are available at each pixel of the TP domain. Figure 3-3(b) shows the percentage of daily 

merged T2 for the given year for which daily merged T2 values are available. Figure 3-3(c) 

shows the percentage of days for the given year for which LST night (i.e. 1:30 am on Aqua 

(T4)) values are available at each pixel of the TP domain. Figure 3-3(d) shows the percentage 

of daily merged T4 for the given year for which daily merged T4 values are available. ........ 51 

Figure 3-4 LST maximum and minimum temperature validation with in-situ LST 

measurements in A’rou station ............................................................................................. 52 

Figure 3-5 (a) and (b) show the R2 and RMSE for maximum (Tmax), minimum (Tmin) and 

mean (Tmean) air temperatures using rf, cubist and xgbDART methods based on LLTO-CV, 

LTO-CV, LLO-CV. The boundaries of box mark the 25th and 75th percentiles; the horizontal 

black lines within the box indicate the median; the upper and lower whiskers mark the 90th and 

10th percentiles. .................................................................................................................. 54 

Figure 3-6 Tmean, Tmin, and Tmax temperature residuals showed varying temporal sensitivity 

to physiographic drivers. Each variable was scaled to a total of 100%. ................................. 55 

Figure 3-7 Monthly Tmean based on RF model in 2003-2013 ............................................. 56 

Figure 3-8 Spatial distribution of the seasonally averaged daily mean air temperatures for 2003-

2013 in spring (a), summer (b), autumn (c), winter (d) and the full year (e) .......................... 57 

Figure 3-9 Monthly Maximum temperature derived from RF between 2003 and 2013......... 58 

Figure 3-10 Monthly Minimum temperature derived from RF between 2003 and 2013 ....... 58 

Figure 3-11 The comparison of monthly Tmean in May (a) and December (b) derived from 

Random Forest, TerraClimate and CMFD with the observed mean temperature of 1980-2010 

from in-situ measurements. ................................................................................................. 60 

Figure 3-12 (a) Spatial average maps and (b) histograms of Tmean in 2003-2013 at Central TP 

for May and December ........................................................................................................ 61 

Figure 3-13 Tmean variation at 3 elevation zones from 01/2003 to 12/2013. The number of 

pixels within 1000 m elevation interval were extracted and each temperature change was 

computed from the mean of the pixels. ................................................................................ 62 

Figure 4-1 An example schematic of indices used to define heat wave-EHF. Short duration heat 

spikes less than three days in a row are not heat waves. In this figure the green line is the 

threshold and black line is the EHF. There are four discrete events including red and pink heat 

spikes (HWN); the highest red heat spikes is the heat wave amplitude (HWA); the length of the 

longest event is also the red heat spikes (HWD); the average heat wave magnitude is the average 

magnitude across four events (HWM); and the sum of four heat wave events that above the 

threshold is HWF. The five indices in the figure are calculated for each season and annually.

 ........................................................................................................................................... 76 

Figure 4-2 The online implementation of heat wave tracker toolkit based on Google Earth 

Engine, using a framework enables climate data integration for heat wave measurement at a 

continental scale. ................................................................................................................. 79 

Figure 4-3 Examples of heat wave aspects derived from three different climate datasets in 2018

 ........................................................................................................................................... 82 



 

XI 

 

Figure 4-4 Examples of heat wave aspects of ERA5 from three different methods in 2018 .. 84 

Figure 4-5 Distinct heat wave events derived from time series with EHF, TN90 and TX90 at 

the same point of southeastern Australia. ............................................................................. 85 

Figure 4-6 (a) Effective return level under the non-stationary assumption with mean HWA 

value from the continental Australia. (b) The probability density functions (PDF) of HWA under 

1920-2019 and 1980-2019. (c) Return period of HWA over Australia. The distributions are fit 

with non-stationary GEV for the climates of 1920-2019 (red), 1980-2019 (blue).................. 87 

Figure 4-7 Near-future (2020–2039) and Far-future (2069-2099) projected climatology for heat 

wave amplitude obtained from the CMIP5 multi-GCM ensemble ........................................ 89 

Figure 4-8 Near-future (2020–2039) and Far-future (2069-2099) projected climatology for heat 

wave duration obtained from the CMIP5 multi-GCM ensemble ........................................... 89 

Figure 4-9 Heat wave metrics comparison between HWT and GHWR software tools.......... 91 

Figure 5-1 Maps of the RUSLE factors: Rainfall erosivity factor, Soil erodibility factor, Cover 

management factor, Slope length and steepness factor ....................................................... 112 

Figure 5-2 Monthly C-factor based on MODIS fractional vegetation cover in 2001-2020. . 113 

Figure 5-3 Comparison between the R factor values derived from SILO and GPM and TRMM 

for 12 months along the Great Dividing Range in south-eastern Australia .......................... 114 

Figure 5-4 Monthly wind erosion values from the albedo-based model, the RWEQ model, and 

the observations at Tibooburra site are compared for the period 2009 to 2019 using the GLDAS 

dataset as model input ....................................................................................................... 116 

Figure 5-5 Monthly wind erosion values from the albedo-based model, the RWEQ model, and 

the observations at Tibooburra site are compared for the period 2009 to 2019 using the ERA5 

dataset as model input ....................................................................................................... 117 

Figure 5-6 Monthly water erosion based on SILO in 2001-2020 ....................................... 118 

Figure 5-7 Monthly water erosion by State in 2001-2020 .................................................. 119 

Figure 5-8 Monthly wind erosion based on Albedo-based model in 2001-2020 ................. 120 

Figure 5-9 Monthly wind erosion by State based on Albedo-based model in 2001-2020 .... 121 

Figure 5-10 Monthly wind erosion based on RWEQ model in 2001-2020 ......................... 122 

Figure 5-11 Monthly wind erosion by State based on RWEQ in 2001-2020 ....................... 123 

Figure 5-12 Annual water and wind erosion and uncertainty based on RUSLE and RWEQ in 

2001-2020. ........................................................................................................................ 124 

 

 

 

 

 

 

 



 

XII 

 

List of Tables 

Table 2-1 A comparison between the proposed tool and related tools ................................... 15 

Table 2-2 Data sources for calculating and comparing solar radiation .................................. 18 

Table 3-1 Overview of datasets across the TP ...................................................................... 44 

Table 4-1 Datasets used in this study ................................................................................... 74 

Table 4-2 Structural similarity index between different heat wave characteristics from three 

climate datasets. .......................................................................................................... 82 

Table 5-1 Datasets used in this study ................................................................................. 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XIII 

 

Glossary 

EO Earth Observation 

PB Petabytes 

GEE Google Earth Engine 

ODC Open Data Cube 

SH Sentinel Hub 

API application programming interface 

DEM  Digital Elevation Model 

HPC High-Performance Computing 

CNN convolutional neural network 

DL Deep Learning 

STMSR Spatial and Temporal Mountain Solar Radiation Modelling 

SSR Surface Solar Radiation 

GSR Global Solar Radiation 

TP Tibetan Plateau 

LST Land Surface Temperature 

GWTR geographically and temporally weighted regression 

RF Random Forest 

XGBoost eXtreme Gradient Boosting 

LLTO Leave-Location-Time-Out 

LLO Leave-Location-Out 

LTO Leave-Time-Out 

FFS Forward Feature Selection 

EHF Excess heat factor 

HWN Heat Wave Number 

HWD Heat Wave Duration 

HWF Heat Wave Amplitude 

HWM Heat Wave Magnitude 

HWT Heat Wave Tracker 

GEV Generalized Extreme Value 

NEVA Non-stationary Extreme Value Analysis 

CMIP5 Coupled Model Intercomparison Project 5 

WEPP Water Erosion Prediction Project 

SWEEP Single-Event Wind Erosion Evaluation Program 

RUSLE Revised Universal Soil Loss Equation 

RWEQ Revised Wind Erosion Equation 

GPM Global Precipitation Measurement 

GLDAS Global Land Data Assimilation System 

ERA5 European Centre for Medium-Range Weather Forecasts Reanalysis 5 

SLGA Soil and Landscape Grid of Australia 

FVC Fractional Vegetation Cover 



 

XIV 

 

 

Abstract 

Reconstruction of climate variables with high spatio-temporal resolution is important 

when the meteorological observations required for environmental monitoring and modelling do 

not cover the study area. In addition, climate model reanalysis datasets suffer from coarse 

spatio-temporal resolutions, which fails to capture the complex variability of climate at fine 

scales. This thesis mainly reconstructed four climate datasets including: mountainous solar 

radiation, near-surface air temperature datasets over rugged terrain, five distinct metrics of 

long-term heat wave datasets, an updated database of water and wind erosion. For further use 

in practice, these datasets are freely accessible and online web application has been developed 

for academic research on climate change under accelerated global warming. The main findings 

of this thesis are: 

(1) Incorporating dynamic factors for improving a GIS‐based solar radiation model. 

Solar radiation has been a major input to agricultural, hydrological, and ecological modeling. 

However, solar radiation is usually influenced by three groups of dynamic factors: sun–earth 

position, terrain, and atmospheric effects. Therefore, an integrated approach to accurately 

consider the impacts of those dynamic factors on solar radiation is essential to estimate solar 

radiation over rugged terrain. In this study, a spatio-temporal gap‐filling algorithm was 

proposed to obtain a seamless daily MODIS albedo dataset. A 1 km‐resolution digital elevation 

model was used to model the impact of local topography and shading by surrounding terrain on 

solar radiation. A sunshine‐based model was adopted to simulate radiation under the influence 

of clouds. A GIS‐based solar radiation model that incorporates albedo, shading by surrounding 

terrain, and variations in cloudiness was used to address the spatial variability of these factors 

in mountainous terrain. Compared with other independent solar radiation products, our model 

generated a more reliable solar radiation product over rugged terrain, with an R2 of 0.88 and an 

RMSE of 2.55 MJ m−2 day−1. The improved solar radiation products and open-source app can 

be used further in practice or scientific research. 

(2) Creating New Near-Surface Air Temperature Datasets to Understand Elevation-

Dependent Warming in the Tibetan Plateau. The Tibetan Plateau has been undergoing 

accelerated warming over recent decades, and is considered an indicator for broader global 

warming phenomena. However, our understanding of warming rates with elevation in complex 

mountain regions is incomplete. The most serious concern is the lack of high‐quality near‐



 

XV 

 

surface air temperature (Tair) datasets in these areas. To address this knowledge gap, we 

developed an automated mapping framework for the estimation of seamless daily minimum 

and maximum Land Surface Temperatures (LSTs) for the Tibetan Plateau from the existing 

MODIS LST products for a long period of time (i.e., 2002–present). Specific machine learning 

methods were developed and linked with target‐oriented validation and then applied to convert 

LST to Tair. Spatial variables in retrieving Tair, such as solar radiation and vegetation indices, 

were used in estimation of Tair, whereas MODIS LST products were mainly focused on 

temporal variation in surface air temperature. We validated our process using independent Tair 

products, revealing more reliable estimates on Tair; the R2 and RMSE at monthly scales 

generally fell in the range of 0.9–0.95 and 1–2 °C. Using these continuous and consistent Tair 

datasets, we found temperature increases in the elevation range between 2000–3000 m and 

4000–5000 m, whereas the elevation interval at 6000–7000 m exhibits a cooling trend. The 

developed datasets, findings and methodology contribute to global studies on accelerated 

warming. 

(3) Heat wave tracker: a multi-method, multi-source heat wave measurement toolkit 

based on Google Earth Engine. Under ongoing global warming due to climate change, heat 

waves in Australia are expected to become more frequent and severe. Extreme heat waves have 

devastating impacts on both terrestrial and marine ecosystems. A multi-characteristic heat wave 

framework is used to estimate historical and future projected heat waves across Australia. A 

Google Earth Engine-based toolkit named heat wave tracker (HWT) is developed, which can 

be used for dynamic visualization, extraction, and processing of complex heat wave events. The 

toolkit exploits the public long-term high-resolution climate datasets to developed nine heat 

wave datasets across Australia for extreme heat wave value analysis. To examine climate 

change on heat waves and how they vary in time and space, we also explore the probability and 

return periods of extreme heat waves over a period of 100 years. The datasets, toolkit and 

findings we developed contribute to global studies on heat waves under accelerated global 

warming. 

(4) The first combined water and wind erosion assessment for Australia 2000-2020 

Soil erosion caused by water and wind is a complicated natural process that has been accelerated 

by human activity. This erosion has resulted in increasing areas of land degradation which 

threaten the productive potential of landscapes. Consistent and continuous erosion monitoring 

will help identify the trends, magnitude, and location of soil erosion. This information can then 

be used to evaluate the impact of land management practices and inform programs that aim to 

improve soil condition. We apply the Revised Universal Soil Loss Equation (RUSLE), Revised 
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Wind Erosion Equation (RWEQ), and an albedo-based wind erosion model to simulate water 

and wind erosion dynamics. With the advent of new or improved Earth observation big data, 

monthly and annual water, and wind erosion estimation at high spatial resolution (up to 90 m, 

500 m) are produced for Australia from 2000 to 2020. We also evaluate the performance of 

three gridded precipitation products for rainfall erosivity estimation using ground-based rainfall. 

For model validation, water erosion products are compared with existing products and wind 

erosion results are verified with other models. We developed a water and wind erosion 

monitoring web application using Google Earth Engine. This web-based tool is particularly 

useful for identifying regions and specific locations where more sustainable land management 

practices should be encouraged. 

Keywords: Big data; solar radiation; near-surface air temperature; heat wave; water and 

wind erosion; climate change; Cloud computing; China, Australia 
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Chapter 1. Introduction 

1.1 Background to the question 

Reconstruction of climate variables with high spatial and temporal resolution is important 

when the meteorological observations required for environmental monitoring and modelling do 

not cover the study area. In addition, climate model reanalysis datasets suffer from coarse 

spatial and temporal resolutions, which fails to capture the complex variability of climate at 

fine scales. Note that reconstruction of high spatio-temporal resolution climate data belongs to 

the domain of big data with large volumes of climate data producing from Earth observations 

and climate simulations. To address big climate data challenge, cloud computing and machine 

learning have been used for the building of climate data analysis tool and reconstruction of 

climate data, data modelling and prediction. As a background to support the research topic, this 

section will introduce big Earth Observation (EO) data, big EO meets climate change, big EO 

and Cloud Computing, big EO data with Machine Learning. 

1.1.1 Big EO data 

To understand big data, we must figure out what small data is. The term small data 

contrasts with big data, can be defined as small sets of data that are small enough to be 

conveniently stored, easily accessed and entirely processed on local servers or a laptop. On the 

other hand, big data refers to data too large and complex to be analysed and processed by 

traditional data-processing techniques in terms of volume, velocity, variety. In summary, big 

data also refers to extremely large chunks of structured, semi-structured and unstructured 

information, including: i) Structured data –transaction data, databases, and other structured data 

formats; ii) Semi-structured –system log files, text files etc.; and iii) Unstructured data – online 

data sources, digital images/audio/video feeds, sensor data, web pages, and so on (Pedamkar, 

2020). If big data can be combined with small data approaches, the amount of information 

contained will be the greatest and the value embodied will be the highest.  
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Big EO data, as a subset of big data, is a hot topic and new engine for the climate system 

study. Big EO data involves extensive, accurate, continuous, and global data over the long-term 

period from the complex Earth system – atmosphere, biosphere, hydrosphere, lithosphere, and 

cryosphere. Such observation data can help reveal the explicit and implicit spatio-temporal 

processes occurring at the Earth’s surface (Guo, 2017).  

Big EO data in climate research differs from other types of big data in terms of 

characteristics and attributes (Guo, 2017). In general, big EO data in climate research has all 

the feature of big data but has at least the following four distinct features: (1) With respect to 

the data volume or data update rate, e.g., Petabytes (PB) of EO data have been acquired and 

stored globally at an accelerated rate. (2) As to data variety or data acquisition approaches, big 

EO data is multi-sourced, generally from in situ observations, satellite observations, and Earth 

system model simulations. (3) In respect to spatio-temporal characteristics, the explosively 

growing big EO data is multi-dimensional, differs in a variety of spectral, spatial, and temporal 

resolutions. (4) Regarding data-driven analysis methods, big EO data tends to use statistical 

methods and high spatio-temporal resolution Earth system models for scientific discovery 

(Zhang and Li, 2020). 

Due to the four features of big EO data, climate system research is also facing the 

challenges, which are briefly reviewed as follows: (1) When it comes to data storage, it fails to 

storage big EO data on traditional hard disk drives and is problematic with planetary-scale 

storage. For example, DigitalGlobe currently archives 70 PB of satellite imagery. (2) When 

transferring big EO data from scientific data centres to local host is also challenging, e.g., there 

are 40+ years of remotely sensed data available from a wide range of satellites and sensors. (3) 

Managing big EO data (describing, cleaning, storing, and organizing) efficiently is even more 

challenging due to the data’s spatio-temporal characteristics. (4) Analysing big EO data 

challenges the complexity and scalability of analysis/mining algorithms. (5) It is difficult to 

provide real-time and human-interactive visualization to analyse and explore big EO data.  

Thus, there is a need for huge technological progress in big EO data, even disruptive 
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changes to address these challenges. For big EO data storage, hosting big EO data on cloud 

storage services (e.g., Google Cloud Storage, Amazon Elastic S3, Microsoft Azure), which can 

scale up quickly, provides solutions to address big EO data storage challenges. For data 

transmission and processing, the solution is to allow software to process big EO data online 

without downloading data or move computation to data. In addition, smart data compression 

algorithms and pre-processing techniques are recommended. For big EO data analysing, the 

gap can be filled by welding analysis programs to cloud computing platform and developing 

new tools to harness the distributed processing power. For real-time and human-interactive 

visualization, an envisioned workflow is to produce analysis-ready data in cloud-based 

platforms where EO analysts can easily access and explore them with their own or already 

existing tools. The end tools and data product will also reside within the cloud-based platforms, 

which can be shared and accessed by the other end users. The interactive components of the 

tools might be the combination with geographical or temporal filters, colour and data source 

selection (Sudmanns et al., 2019). 

1.1.2 Big EO data meets Climate Change 

Climate change as a data-intensive subject has been the research focus of big data scholars 

over the past several decades. With the help of big EO data, it is feasible to know what is 

causing the climate and environmental changes in our planet. We can even utilize large-scale 

and long-term time series EO data to better predict the future and provide more viable measures 

for dealing with potential climate hazards. Big data in climate change has two fundamental 

elements: the big EO data resources and the big EO analytics techniques. It is well-known that 

climate system models provide a new and dynamic way to assess past, present, and future 

climate and environmental change. However, the grid size of cells in current climate 

simulations is at various coarse levels ranging from 25 km to 2 degree. By contrast, high-

resolution climate simulations (less than 5 km) will help regional climate adaptation, improve 

forecasts of extreme weather, and even assess climate warming in mountainous regions like 

Tibetan Plateau. By downscaling the size of grid cells of climate system models to 1 km or less, 
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critical and accurate components of the atmospheric and oceanic could be precisely modelled. 

However, the increased realism of high-resolution climate simulations comes at a cost. When 

the resolution increases, the simulation of climate models faces the challenge of having to 

collect, characterize, and analyse large amount of data, also needs to consider the multi-source, 

multi-variable, and multi-scale data with the different spatial and temporal attributes. For 

example, data outputs from climate forecasting models are updated hourly and the amounts 

have reached more than 300 TB per day. Therefore, it is necessary to bring computing and data 

together by no longer moving data to computing but computing to data. Therefore, it is foreseen 

that the data processing and analytical capabilities associated with the cloud and distributed 

computing paradigms are a crucial part of future climate modelling. However, processing and 

analysing these big EO data also face many difficulties. Improved Machine Learning 

algorithms based on big EO data provide another new way to help scientists find patterns and 

make predictions. This is especially true for big EO with a very large number of variables 

(Zhang and Li, 2020). 

1.1.3 Big EO data and Cloud Computing 

The tremendous increase in Big EO data has posed grand challenges for the data 

management such as data storage, post-processing, analytics, online visualization, sharing, and 

applications. However, the emergence of cloud computing provides critical computing support 

to meet these challenges (Li et al., 2020b). Cloud computing platforms are efficient ways to 

access, analyse and store big EO datasets on supercomputers, providing the users with 

infrastructure, platform, storage services, and software packages (Amani et al., 2020).  

This study will give an overview of three widely used cloud computing platforms for big 

EO data in terms of data, features and available capabilities: Google Earth Engine (GEE), Open 

Data Cube (ODC), and Sentinel Hub (Gomes et al., 2020). The free-to-use GEE platform 

provides access to i) petabytes of publicly available EO datasets and other ready-to-use 

scientific products; ii) high-speed parallel computing capabilities, the state-of-the-art machine 

learning algorithms; and iii) a geoprocessing Application Programming Interfaces (APIs) 

library with a development environments that supports popular coding languages such as 

JavaScript and Python and extensive education tutorials (Tamiminia et al., 2020).  
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Sentinel Hub (SH) is also a big EO data management and analysis platform that provides 

cloud-based application programming interface (API) for global archive of EO data processing. 

However, SH is a private, fee-based cloud computing platform, but is available for limited 

public access (https://www.sentinel-hub.com). The SH platform contains: i) Archives of more 

than 5 PB of EO data including Landsat, MOIDS, ENVISAT, and Sentinels are accessed over 

the web application; ii) Powerful multi-temporal remote sensing change detection and land 

cover classification data analysis; iii) Evalscripts, representational state transfer (REST) 

interfaces and open-source libraries are provided for developers to build new application. By 

contrast, ODC is an open-source framework consisting of a set of spatio-temporal data 

structures and geographic analysis tools, which aims to index, manage, and analyse big EO data. 

ODC accesses and manipulates big EO datasets through a set of command line tools and Python 

API. 

Overall, GEE is the platform that delivers the best solution for users in terms of ease of 

use and development maturity. However, it has limitations because it is a closed business 

platform, especially as to ensure the sustainability, scalability, and reproducibility of the usage. 

For more complex scientific analyses, platforms like ODC could be allowed to scale through 

open-source framework so that scientists has direct access to powerful processing capabilities 

of cloud computing infrastructure (Gomes et al., 2020). 

1.1.4 Big EO data with Machine Learning 

With the advent of the big data era, the multi-source, multi-dimensional and multi-scale 

meteorological data has become typical big EO data collection with spatio-temporal structure. 

Traditional approaches may not be optimal in multi-dimensional time series weather forecast, 

whereas Machine Learning (ML)/Deep Learning (DL) approaches are able to extract spatio-

temporal context and gain better understanding of weather system behaviour. Applications of 

ML/DL to the climate, such as for weather forecast and climate change, has led to important 

developments. A lot of ML algorithms and their variants have been now extensively used in 

the climate change literature. Currently, RF is the most popular one for classification and 

regression purposes. Alternative ML algorithms such as artificial neural network, support 

vector machines, partial least squares regression are also widely used. The literature shows that 

ensemble modelling can get better performance and the higher estimated performance of ML 

algorithms is not only affected by the optimization of hyperparameters, but also partly depends 

on the validation strategy (Bonavita et al., 2021; Meyer et al., 2018).  



 

6 

 

In recent years, DL has produced outstanding results in forecasting many Earth system 

components including climate predictions. DL is appropriate to mine complex spatial and 

temporal relationships between meteorological data elements, and DL has been envisioned as 

a promising research topic to cope with the big EO data challenges faced by traditional theory-

driven approach (Ren et al., 2021).  

This study will survey the state-of-the-art DL methods for climate forecast. We summarize 

the basic DL models, Hybrid DL models and Coupling DL and physical models. The selection 

of basic DL models is based on big EO data characteristics. The typical Autoencoder-based DL 

models are suitable for noisy reduction of climate data with high-dimensional (Hossain et al., 

2015). The convolutional neural network (CNN) models are extensively applied for image 

processing that extreme weather phenomena (e.g., typhoon, rainstorm, atmospheric rivers) can 

be detected (Ham et al., 2019). The long short-term memory (LSTM) models are used for 

climate prediction that contains long time sequence (Shi et al., 2015). The hybrid DL models 

compose of the basic deep neural network (DNN) models to capture spatial and temporal 

structures of meteorological datasets (Chen et al., 2019). Hybrid DL models can be grouped 

into two categories: one belongs to the spatio-temporal sequence weather prediction, the other 

is for classification and pattern recognition with extreme weather detection. A typical hybrid 

DL architecture contains three parts: the input, hidden and output layers. The input layers 

contain meteorological attributes as the input for DL models. The hidden layers consist of two 

components: the CNN part with convolution, pooling, flatten and fully connected layers is used 

for capturing spatial features and correlation, while LSTM part is used for capturing temporal 

features and correlations. The output layers are referred to desired climate forecast. Considering 

the respective merits of physical approaches and DL models, bridging two paradigms has 

recently been envisioned as an attractive research topic (Jiang et al., 2020). The existing 

approaches to coupling models can be summarized into four groups: 1) To train DL models 

with prior knowledge from physical models; 2) To constrain predictors of DL models with 

physical laws; 3) To replace the empirical subprocess parameterizations using DL models; 4) 

To incorporate ordinary and partial differential equations into DL models.  

After the summarization of ML/DL methods, we will present the drawback of ML/DL in 

three aspects: computability, generalization, and interpretability. In terms of computability, 

most ML/DL models are typically trained with GPUs and TPUs, which heavily depends on 

high-performance computers even supercomputers. Second, the generalization of ML/DL 
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models is limited, i.e., it is difficult to apply the trained ML/DL models for large-scale and 

long-range climate forecast because many hyperparameters need to be tuned and optimised. 

Finally, interpretability has been identified as a generic drawback of complex ML/DL models. 

By contrast, a simple model enables interpretation and visualization of the model simulation 

and prediction explanations. Meanwhile, the higher accuracy of complex ML/DL models 

comes at the cost of providing meaningful explanations and causal links between covariates 

and predicted values. 

1.2 Statement of significance and knowledge gaps 

Solar radiation is the primary driving force for earth system processes, and its supply is a 

major input to agricultural, hydrological, and ecological models (Aguilar et al., 2010; Brock, 

1981; Fu and Rich, 2002). Additionally, existing solar radiation products are mostly at coarse 

resolution (greater than 10 km grid spacing). Therefore, fine spatial and temporal mapping and 

monitoring of solar radiation components are essential for the design in solar energy systems. 

However, a GIS-based solar radiation model that allows for the treatment of high spatial and 

temporal variability in sun-earth position, terrain and atmospheric effects has not yet been 

developed for monitoring daily solar radiation. Much effort therefore needed to build a 

computationally economical, next generation GIS-based solar radiation model, which could 

explain influential impacts from albedo, surrounding terrain and cloud.  

The Tibetan Plateau (TP) is named the "the third pole of the Earth", the highest and largest 

plateau globally (Qiu, 2008). The TP exerts profound dynamical and thermal influences on the 

regional and global climate (Duan et al., 2012; Manabe and Terpstra, 1974). For global 

warming, TP is considered as an early warning sign. Over the period of 1984-2009, TP has 

undergone serious warming, with a warming rate of 0.46C decade-1, which is almost 1.5 times 

the rate of global warming (Kang et al., 2010; Kuang and Jiao, 2016). Accelerated warming on 

the TP has intensified permafrost degradation, snow melt and glacier retreat (Yang et al., 2014). 

Presently, the status of TP warming is evaluated through the analysis of Tair at meteorological 

stations. However, most meteorological stations are located in the eastern TP below 3800m. 

Because of sparse high-elevation meteorological observations in central and northwest of TP, 

there is a possibility that our understanding of warming rates with elevation in complex 

mountain regions is incomplete. In addition to limited coverage by in-situ measurements, Tair 

at TP suffers from extreme local variability due to factors such as topography and exposure 
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(Pepin et al., 2015). Moreover, the Himalaya mountains only reach heights of about 6,000 m in 

latest simulated 9 km grid climate products. Therefore, improved Tair estimations by 

developing high-resolution near-surface air temperature datasets considering rugged terrain 

over the TP is a crucial step for understanding the accelerated warming in the TP.  

Under ongoing global warming due to climate change, heat waves are expected to become 

more frequent and severe in the future. Extreme heat waves during the last two decades have 

been recorded across many regions in the world such as those in Europe in 2003 (Schär et al., 

2004), Moscow region in Russia in 2010 (Rahmstorf and Coumou, 2011), and Australia in 2013 

(Lewis and Karoly, 2013). Although a heat wave is commonly known as a period of exceptional 

hot weather event, there is currently no universal informative measurement in climate science 

community (Alexander and Perkins, 2013). To overcome these issues, a set of climate indices 

developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) have been 

widely applied to observational and modelled climate data to understand previous and future 

changes in extreme heat wave events (Alexander et al., 2006; Zhang and Yang, 2004). The 

work by ETCCDI is  extensively recognized as pioneering, however, the indices only measure 

one feature of extreme events such as frequency, intensity or duration (Perkins, 2015). A 

comprehensive and consistent analysis of heat waves is required, which should consider multi-

characteristics of heat wave events, namely: i) frequency, ii) intensity, iii) duration, and iv) 

spatial extent (Raei et al., 2018).There is no general heatwave measurement package which has 

an imperative advantage of applying big climate data at fine spatiotemporal scale. Desktop 

MATLAB toolbox like Global Heatwave and Warm-spell Data Record and Analysis Toolbox 

(GHWR) still has a bottleneck when encountering the challenges related to accessibility of 

long-term gridded climate data, data storage and computational requirements. In the current era 

of big spatial and Earth Observation (EO) data, users need to deal with a vast amount of 

different spectral, temporal and spatial resolutions data (Gomes et al., 2020). To meet these 

demands, there is need for novel technologies based on cloud computing to properly extract 

heat wave information at the server side without having to download vast amounts of climate 

data and provide dynamic visualization, extraction, and processing of complex heat wave 

events. 

Soil erosion is a major threat to sustainability of agriculture (Borrelli et al., 2017; FAO, 

2015). Under changing land use and climate, soil erosion from water and wind has accelerated 

with resulting economic, social, and environmental implications, both on-site and off-site 

(Telles et al., 2013). On-site, water and wind erosion causes the loss of soil, nutrients and 
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organic matter that results in decreased soil fertility and land productivity (Zhang et al., 2019). 

The reduced productivity of farmland means that about 10 million ha of cropland worldwide is 

abandoned yearly due to soil erosion(Chappell et al., 2019; Faeth, 1994). This further leads to 

reduce the social viability and population levels in rural communities, influencing long-term 

sustainable regional development. The subsequent sedimentation and nutrient loss may also 

cause off-site environmental, air (Middleton, 2019) and water quality degradations. In Australia, 

for example, the assessment Bui et al. (2010) concluded that soil erosion in Australian cropping 

regions was occurring at unsustainable rates and has a critical impact on agricultural 

productivity. Environmental impacts of excessive sedimentation and nutrient delivery on inland 

waters, estuaries and coasts are already occurring. The net median erosion rate in cultivated 

regions is estimated 1.26 Mg ha-1 yr-1 (Chappell et al., 2011), and 7% of Australia had soil 

losses of more than 1 Mg ha-1 yr-1. It also should be noted that Australia is the most fire-prone 

regions of the world. Wildfire related water erosion in Australia is responsible for reef 

deterioration, roads damage, river pollutants (Yang et al., 2020). In addition, wind erosion from 

arid and semi-arid areas of Australia severely affects the air quality in the coastal zone where 

most Australians live (Leys et al., 2011). Since 2000, the millennium drought and mega-fires 

in Australia also prompt the urgent need to revisit soil erosion dynamics to provide a more 

contemporary view of water and wind erosion trends. 

1.3 Research issues and objectives 

Scientific data is one of the prerequisites for conducting climate research. The key to the 

scientific questions in climate research is to utilize various sensors to obtain accurate and 

critical climate variables. As the demand of high-quality climate and environmental datasets to 

support agricultural climate services, weather hazard risk reduction, and climate change 

adaptation and mitigation continues to grow, it becomes particularly important to combine 

observed climate information with climate simulation outputs that can produce more accurate 

weather datasets at a given time. Observational climate information includes both ground 

stations and big EO data. For the ground station data, various geostatistical interpolation 

approaches, such as kriging interpolation and spline function methods, are commonly applied 

to obtain spatially continuous climate data. In contrast, the processing of big EO data is an 
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upward spiral process. Only by continuously reprocessing big EO data with the latest 

technology can the quality of satellite climate data sets be continuously improved until they 

fully meet the needs of climate change research. 

Big data and climate research are closely related, many climate research studies cannot be 

done without big data. Climate change models require computational resources with large 

amounts of storage and fast access to ever-increasing amounts of data. With the massive amount 

of climate data being generated, user-friendly cloud-based software and platforms are needed 

to visually manage and display the data. Furthermore, this study will use mechanistic models 

and statistic methods to provide high-quality long-term climate datasets for China and Australia. 

This project will try to provide answers to the following questions: 

(1) What is the spatio-temporal solar radiation variation over the Loess Plateau from 2003 

to 2014? 

(2) What is the rate of warming above 5000 m elevation at Tibetan Plateau? 

(3) How does the extreme heat wave risk change in Australia recent climates and future 

climate conditions? 

(4) What are the trends in soil erosion by water and wind across Australia since 2000? 

The specific aims of this study are to： 

(1) To develop an improved GIS-based solar radiation model that allows treatment of high 

spatial and temporal variation of albedo, surrounding terrain shading and cloud to monitor daily 

solar radiation at fine resolution.  

(2) To develop an automated mapping framework for the estimation of combined and 

seamless Terra and Aqua MODIS Land Surface Temperatures (LST) for the global. The 

machine learning models combined with MODIS LST and meteorological station data to 

provide reliable temperature products at high-resolution over the rugged mountainous area.  

(3) To develop a multi-method global heat wave data record and analysis toolbox (namely 

Heat Wave Tracker) to process and extract heat wave records from multi-source climate 

datasets.  

(4) To develop a water and wind erosion monitoring web application toolbox to estimate 

monthly and annual soil loss by water and wind across Australia from 2000 to 2020. 
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1.4 Thesis outline 

The proposed outline for this thesis is as follows: 

(1) Introduction 

(2) Incorporating dynamic factors for improving a GIS-based solar radiation model 

(3) Creating new near-surface air temperature datasets to understand elevation-dependent 

warming in the Tibetan Plateau 

(4) Heat wave tracker: a multi-method, multi-source heat wave measurement toolkit based 

on Google Earth Engine 

(5) Assessment of soil erosion by water and wind for Australia 2000-2020 

(6) Final conclusions and future research 

 

Figure 1-1 The framework of the thesis. 
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Chapter 2. Incorporating dynamic factors for improving a GIS-based solar 

radiation model 

 

This chapter is based on the following manuscript: 

Zhang, M., Wang, B., Liu, D. L., Liu, J., Zhang, H., Feng, P., ... & Yu, Q. (2020). Incorporating 

dynamic factors for improving a GIS‐based solar radiation model. Transactions in GIS, 24(2), 

423-441. 

 

Abstract 

Solar radiation has been a major input to agricultural, hydrological and ecological 

modeling. However, solar radiation is usually influenced by three groups of dynamic factors: 

sun-earth position, terrain, and atmospheric effects. Therefore, an integrated approach to 

accurately consider the impacts of those dynamic factors on solar radiation is essential to 

estimate solar radiation over rugged terrains. In this study, a spatial and temporal gap-filling 

algorithm was proposed to obtain seamless daily MODIS albedo dataset. A 1km-resolution 

DEM was used to model the impact of local topography and of shading by surrounding terrain 

on solar radiation. A sunshine-based model was adopted to simulate radiation under the 

influence of clouds. A GIS-based solar radiation model that incorporates albedo, shading by 

surrounding terrain and variations in cloudiness was used to address the spatial variability of 

these factors in mountainous terrain. Compared with other independent solar radiation products, 

our model generated a more reliable solar radiation product over rugged terrain, with an R2 of 

0.88 and an RMSE of 2.55 MJ m-2 d-1. The improved solar radiation products and open-source 

app can further be used in practice or scientific research. 

Key words: Solar radiation modeling, DEM, MODIS albedo, gap-filling algorithm, rugged terrains, 

Opensource, GIS-based solar radiation model 
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2.1 Introduction 

Solar radiation is the primary driving force for earth system processes, and its supply is a 

major input to agricultural, hydrological, and ecological models (Aguilar et al., 2010; Brock, 

1981; Fu and Rich, 2002). Therefore, knowledge of the spatial and temporal variability of 

incoming solar radiation is critical for understanding these processes. Additionally, fine spatial 

and temporal mapping and monitoring of solar radiation components are essential for the design 

in solar energy systems. 

The spatial and temporal heterogeneity of solar radiation over rugged terrain is determined 

by three groups of dynamic factors: sun-earth position, terrain, atmospheric effects (Pintor et 

al., 2015). Based on the sun-earth geometry formulation, the first group can be precisely 

calculated. For the other two groups, the effects of terrain (shadowing, absorption, and 

reflection) and atmosphere are difficult to model due to their dynamic nature. Particularly, 

albedo of the underlying surface modulates the amount of solar radiation absorbed and reflected 

by that surface and directly controls the distribution of solar radiation between the surface and 

the atmosphere. Additionally, shadows cast by complex topography due to different incident 

angles of the rays determine the fraction of direct and diffuse radiation in global solar radiation. 

Furthermore, clouds play a major role in the atmospheric attenuation of incoming solar 

radiation, but modeling of the radiative effects of clouds is challenging due to their variability 

in time, location and condition. Hence, quantitative modeling of the impacts of those dynamic 

factors on solar radiation is essential to accurately estimate solar radiation over rugged terrain. 

Three major methods have been used for solar radiation modeling over the past few 

decades, namely traditional interpolation methods, GIS-based solar radiation models and 

satellite-derived solar radiation estimates (Hofierka, 2002; Qin et al., 2015; Ruiz‐Arias et al., 

2009; Zhang et al., 2015). In spatial interpolation methods, unknown values are reliably 

predicted from ground-based measurements and external complementary information. 

However, the reliability of such methods strongly depends on sample size and the complexity 

of the topography (Alsamamra et al., 2009). By contrast, GIS-based solar radiation models 
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(Table 2-1) such as Solar Analyst (Fu and Rich, 2002), SRAD (Wilson, 2000), Solei-32 

(Mészároš and Miklánek, 2006) and r.sun (Hofierka, 2002) have been developed to calculate 

the incoming solar radiation for each cell of a DEM (Digital Elevation Model) during recent 

decades. These GIS-based models are technologically interoperable and scientifically rigorous, 

but they use different algorithms (either physically-based or empirically-based), thus their 

results show large differences in estimating solar radiation (Ruiz‐Arias et al., 2009). Two 

limitations of these GIS-based solar radiation models are that they are computationally 

demanding and that they have difficulty incorporating dynamic factors that contribute to solar 

radiation estimates (Freitas et al., 2015). In particular, Solar Analyst is a GIS-based sun-earth 

geometric model, but it ignores reflected radiation from nearby surfaces. However, accounting 

for reflected radiation is vital at locations with high albedo due to snow-cover because any 

variation in snow-cover albedo can have a great impact on solar radiation (He et al., 2014). 

Unlike Solar Analyst, SRAD estimates reflected radiation, but its reliability declines when 

monthly average cloudiness and sunshine hours are used to adjust daily shortwave radiation. 

Furthermore, processing of large-scale DEMs is not appropriate using Solei-32, Solar Analyst 

or SRAD, all of which suffer from heavy computation demand with very large datasets (Tabik 

et al., 2012). Additionally, both Solei-32 and r.sun require appropriate parameters for estimating 

the atmospheric attenuation of incoming solar radiation, such as atmospheric transmissivity, the 

circumsolar coefficient, and atmospheric turbidity. However, vertical profiles of many 

atmospheric parameters are rarely available, especially in mountainous areas. Even when 

atmospheric parameters are available for these GIS-based tools, they consider only shelter 

effects due to the slope, whereas effects of the surrounding topography should be taken into 

account (Wang et al., 2014a). Recent studies have found that satellite-based solar radiation 

estimates provide reasonable values and large spatial coverage. One weakness of satellite-based 

estimates resides in cloud detection, where even a small cloud can make solar radiation 

estimates less accurate. In addition, the accuracy of satellite-based solar radiation estimates for 

complex topography is still limited (Romano et al., 2018; Roupioz et al., 2016; Tang et al., 2016; 

Yeom et al., 2016). 
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Much effort therefore needed to build a computationally economical, next generation GIS-

based solar radiation model, which could explain influential impacts from albedo, surrounding 

terrain and cloud. However, a GIS-based solar radiation model that allows for the treatment of 

high spatial and temporal variability in sun-earth position, terrain and atmospheric effects has 

not yet been developed for monitoring daily solar radiation. In recent years, the advanced cloud-

based geospatial computing platform, Google Earth Engine (Gorelick et al., 2017b), has given 

researchers the opportunity to use big data for planetary-scale environmental data analysis. The 

present study covers this gap by complementing existing solar radiation studies with a dynamic 

spatial perspective, by incorporating the spatial heterogeneity of factors into a model and by 

applying cloud-based geospatial computing techniques to the problem. 

In this study, DEM and land surface albedo data were used to determine whether each point 

in the landscape was shaded by surrounding terrain. A generic spatial and temporal gap-filling 

algorithm was then developed to retrieve seamless albedo datasets from the raw MODIS 

product (see Methods). It is worth noting that other remote sensing indices with missing values 

can also be gap-filled using this algorithm. A sunshine-based submodel was used in this study 

as a module to address actual radiation under the influence of clouds. An assessment of overall 

model accuracy was made by comparing our modeling results with ground observed data and 

existing solar radiation products. The GIS-based model developed in this study has been 

released to the research community in a publicly available online platform, the spatial and 

temporal mountainous solar radiation model (STMSR), after comparison with current GIS-

based solar radiation modeling software. This online mountainous solar radiation model can be 

extended to other locations with around the world complex terrain. 

Table 2-1 A comparison between the proposed tool and related tools 

DEM-based 

Model 
Environment 

Computing 

capacity 

Ground 

parameter 

Atmospheric 

parameter 

Sky view 

factor 

STMSR GEE 

Cloud-

based 

unlimited 

Dynamic 

albedo 

Dynamic 

cloud  
Surrounding 

terrain 

r.SUN GRASS Multi- Dynamic Static Slope itself 
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processor 

limited 

albedo coefficients 

SRAD ArcGIS 

Multi-

processor 

limited 

Static 

albedo 

Static 

coefficients Slope itself 

Solar 

analyst 
ArcGIS 

Single-

processor 

limited 

Not 

included 

Static 

coefficients Slope itself 

Solei-32 DOS 

Single-

processor 

limited 

Static 

albedo 

Static 

coefficients Slope itself 

 

2.2 Materials and methods 

2.2.1 Study area and observed solar radiation data 

The Loess Plateau is a 64 million hectare, semi-arid region located in north-central China 

(33° 43' to 41° 16' N and 100° 54' to 114° 33' E) (Lü et al., 2012). The Loess Plateau has 

irregular topography with varying elevation between 422 m and 3390 m above mean sea level 

(Figure 2-1). Studying the topography impact on solar radiation is of major importance on the 

Loess Plateau because of its distinct variation in topography. The Loess Plateau’s extensive 

landscape is diverse. At the local scale, the terrain in the Loess Plateau includes eroded gully, 

near-vertical slopes, varying terraces, shoulders, and summits. For macro landforms, the diverse 

topography contains high mountains, rough hills, broken tablelands, and low plains. This region 

has played an increasingly important role in China’s ecological security and natural resources 

supply (Zhao et al., 2013). Since the ecological restoration projects such as “Natural Forest 

Protection” were implemented in this area, sloping cropland was converted to orchard land, and 

forest land has increased significantly. Simultaneously, there has been accelerated warming in 

the southwest region of the Loess Plateau (Sun et al., 2015). 
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Figure 2-1 The study area showing the Loess Plateau located in north-central China including 

10 radiation stations and 301 weather stations. 

We acquired data from 301 Loess Plateau weather stations, carefully examined the data 

for quality and removed null values, and ingested the data into cloud storage. Other relevant 

data sources were DEM data and MODIS surface albedo from the cloud data catalog, i.e., 

SRTM Digital Elevation Data 90m (Farr et al., 2007). During ingestion, DEM data were stored 

at various levels of resolution, from native resolution (90 m) to increasingly coarse levels. This 

was done by aggregating data in a pyramid structure such that pixel values of an upper level 

are the mean of pixels at the next lower level. The resolution of the DEM used for calculation 

was the closest scale equal to or less than the scale of the data source with the coarsest native 

resolution in our analysis. The coarsest resolution in our study was obtained from the daily 

MCD43A3.006 product, which provides 1 km resolution for black-sky and white-sky albedo 

across each of the MODIS surface reflectance bands (from band 1 to band 7) as well as three 

broad-spectrum bands (Schaaf, 2015).  
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GLDAS assimilates satellite and ground-based observational data products (Rodell et al., 

2004a) to generate land surface parameters. This dataset supports agricultural and 

meteorological modeling. The GLDAS dataset started on January 1, 1948 and continues to the 

present time. The temporal and spatial resolution is 3 hours and 0.25 degrees, respectively. 

Land process research requires high spatial and temporal forcing data of Surface Solar 

Radiation (SSR), which was derived by the fusion method of MODIS and MTSAT (Tang et al., 

2016). MTSAT data includes MTSAT-1R and MTSAT-2, obtained from the Japanese 

Meteorological Agency. The temporal resolution of a MTSAT image is 30 min. A MTSAT 

image has five channels, and the spatial resolution for the visible sensor at nadir is 1 km, and 

for the other infrared sensors is 4 km. SSR was estimated by combining signals of polar-orbit 

(MODIS) and geostationary satellites (MTSAT). 

Table 2-2 Data sources for calculating and comparing solar radiation 

Sequence number Data name Data time span Data source 

1 Sunshine data 2005-2014 China Meteorological 

Administration 

2 DEM 2010 USGS/SRTMGL1_003 

3 MODIS Albedo 2000-2017 NASA LP DAAC at the 

USGS EROS Center 

4               Surface Solar Radiation 2007-2014 Third Pole Environment  

Database 

5                   GLDAS2.1 1979-2018 NASA 

 

2.2.2 Schematic of the modelling 

The GIS-based solar radiation model developed in this study (STMSR, the spatial and 

temporal mountainous solar radiation model) can also be seen as a DEM-based model that 

integrates with a geospatial cloud-based computation platform to simulate the dynamics of solar 

radiation. The required inputs for the model include a DEM, MODIS albedo, in situ 

observational data and empirical coefficients. The entire process of modeling solar radiation in 

a mountainous terrain includes the three steps shown in Figure 2-2. The first step was to 
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estimate extraterrestrial solar radiation and sky view factor on slopes in a High-Performance 

Computing (HPC) environment by using parallel raster image processing before uploading 

those image datasets into the cloud data catalog. The second step was to retrieve horizontal 

solar radiation data, including global solar radiation, direct solar radiation and diffuse solar 

radiation and gap-filled MODIS albedo. The third step was to build a spatial and temporal 

mountain solar radiation model with those input parameters and create an online spatial and 

temporal mountain solar radiation modeling app. 
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Figure 2-2 Flowchart of steps for calculation of solar radiation in mountainous terrain. 

2.2.3 Distributed Global Solar Radiation (GSR) model for rugged terrain 

2.2.3.1 Radiation on the horizontal surface 

As reflected radiation on a horizontal surface is negligible, the radiation on a horizontal 

surface is partitioned into two parts, the beam and diffuse radiation, which are usually estimated 

by statistical regression of observed data(Liu et al., 2009). 

𝐾𝑏 = 𝐵ℎ/𝑄ℎ ,                (1) 
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𝐾𝑑 = 𝐷ℎ/𝑄ℎ ,                (2) 

𝐾𝑏 + 𝐾𝑑 = 1,                    (3) 

where the direct radiation fraction 𝐾𝑏 is called the direct radiation transmittance, and 𝐾𝑑 is 

named the diffuse radiation fraction.  

Since clouds are dynamic and site-specific, much observational data is required to 

parameterize cloud effects. Observations of routine meteorological variables such as sunshine 

and temperature do not require complicated instruments. A sunshine-based submodel is used in 

this study, because it produces better solar radiation estimates than cloud-based or temperature-

based models (Iziomon, 2001; Podestá et al., 2004; Trnka et al., 2005). For example, the major 

limitation of cloud-based models is that they show systematically larger differences between 

measured and modeled values as cloud cover increases (Trnka et al., 2005). 𝐾𝑑 is derived as a 

polynomial function of sunshine duration (Iqbal, 1983), 𝑄ℎ is often derived from sunshine 

duration percentage using the Ångström formula (Angstrom, 1927). 𝐵ℎ  is a polynomial 

function of relative sunshine duration (Louche, 1991). A further step is that Zeng et al. (2005) 

established an exponential function of direct radiation and global horizontal radiation. 

𝑄ℎ = (𝑎ℎ + 𝑏ℎ × 𝑠) × 𝑄𝑠ℎ,                       (4) 

𝐵ℎ = (1 − 𝑎) × (1 − 𝑒
−𝑏𝑠𝑐

(1−𝑠)) × 𝑄ℎ,               (5) 

where 𝑄ℎ  is the horizontal solar radiation (MJ·m-2·d-1), 𝑄𝑠ℎ  is the horizontal extraterrestrial 

radiation (MJ·m-2·d-1), s is the relative sunshine duration (i.e., the ratio of daily bright sunshine 

duration to the maximum possible duration of sunshine in daylight hours), 𝑎ℎ, 𝑏ℎ, a, b, and c 

are regression coefficients. The coefficients ah  and  bh  in the Ångström equation were 

calibrated individually for each station in China using monthly observations. The calibration of 

direct radiation coefficients was achieved using least square linear regression of 𝑄𝑠ℎ  𝑄ℎ 

against s, where 𝑄𝑠ℎ, 𝑄ℎ and s are monthly mean global solar radiation (MJ·m-2·d-1), monthly 

mean extraterrestrial solar radiation (MJ·m-2·d-1) and monthly mean relative sunshine duration, 

respectively. Similarly, the coefficients of a, b and c in the horizontal diffuse solar radiation 
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model were determined from each month's observation (i.e. January, February, etc.), generating 

a set of coefficients for each month. The IDW interpolation method was then used to derive the 

spatial distribution of calibrated coefficients. 

2.2.3.2 Radiation on the inclined surface 

Global solar radiation on an inclined surface was calculated as the sum of direct, diffuse 

and reflected radiation from all sectors. This process was repeated for each grid cell in the DEM, 

thus producing an insolation map. Global solar radiation based on a DEM can be expressed as: 

𝑄𝛽𝑤 = 𝐵𝛽𝑤 + 𝐷𝛽𝑤 + 𝑅𝛽𝑤 ,                 (6) 

where 𝑄𝛽𝑤 is total solar radiation for rugged terrain. The direct, diffuse, and reflected solar 

radiation components within rugged terrain are 𝐵𝛽𝑤, 𝐷𝛽𝑤 , and 𝑅𝛽𝑤 , respectively. 

Similar to the clear-sky conditions on a horizontal surface, direct transmittance Kb was 

used to solve the atmospheric attenuation of direct radiation on a rough surface (Liu et al., 2012). 

Direct irradiance on the inclined surface can be expressed as: 

𝐵𝛽𝑤 =
𝑄𝑠𝑤

𝑄𝑠ℎ
× 𝐵ℎ,                 (7) 

where 𝑄𝑠𝑤 is slope extraterrestrial solar radiation. 

In general, diffuse radiation coming from the sky is anisotropic. However, the calculation 

of anisotropy on a slope is complex and challenging (Dubayah and Rich, 1995). To simplify the 

calculation, diffuse radiation is divided into two parts: (1) one is from solar illumination 

direction; and (2) another is from isotropic modeling. The diffuse radiation is given by Zeng et 

al. (2008) as: 

𝐷𝛽𝑤 = 𝐷ℎ × [𝐾𝑏 × 𝑄𝑠𝑤 𝑄𝑠ℎ⁄ + 𝑉 × (1 − 𝐾𝑏)]                (8) 

When 𝑘𝑏 → 0, the sky is overcast and radiation is calculated from the isotropic model; 

when 𝑘𝑏 → 1, radiation is primarily from direct beam radiation. V is the sky view factor, which 

is associated with each grid cell. The detailed calculation process of 𝑉 is illustrated in the 

supplementary information. 
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Radiation that is reflected from nearby surfaces (e.g., mountains) is a function of albedo, 

the sky view factor and horizontal solar radiation. The sky view factor is defined by the 

proportion of unobstructed sky over a horizontal surface such that V = 0 if the view of the sky 

is completely obstructed at a given location (Fu and Rich, 2002). Reflected radiation from 

nearby surfaces is calculated as: 

𝑅𝛽𝑤 = 𝑄ℎ × 𝜌 × (1 − 𝑉),                (9) 

where 𝑅𝛽𝑤  is radiation reflected by surrounding cells, 𝜌 is surface albedo, in which 𝜌 was 

determined as the ratio of reflected to incident solar radiation at the surface. 

The algorithm for solar radiation over rugged terrain is calculated per pixel using iterative 

calculations for sunshine duration and sky view factor. Currently, the front-end JavaScript 

programming and backend GIS functions are not powerful enough in cloud-computing 

platforms to implement intensive and iterative algorithms (Gorelick et al., 2017b). To quickly 

obtain daily extraterrestrial solar radiation data over the vast area of the Loess Plateau (ca. 1 × 

106 km2), a parallel extraterrestrial solar radiation algorithm on a local HPC environment was 

developed using Python Multiprocessing and GDAL package for parallel processing. First, the 

multi-band image was split into tiles equaling 90% of the HPC cores. After running the 

algorithm, the Mosaic tool was used to combine the resulting tiles into complete and seamless 

time series of extraterrestrial solar radiation images of the Loess Plateau and sky view factor 

images. 

2.2.4 Spatial and temporal MODIS albedo gap-filling 

Albedo is composed of direct and scattered radiation components. Therefore, actual clear-

sky albedo can be calculated by a linear combination of direct and scattered albedo: 

∂ = (1 − S) × 𝜕ℎ + 𝑆 × 𝜕𝑏 ,                                                 (10) 

where ∂ is land surface broadband albedo, 𝜕ℎ is broadband black-sky albedo, 𝜕𝑏 is broad 

white-sky albedo and S is a conversion coefficient. 

The spatial resolution of MODIS albedo is 1000 m, which is much finer than the surface 
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albedo data resolution of 8 km obtained by NOAA/AVHRR data. As seen in Figure 2-3, the 

gap-filled product showed a similar spatial distribution for high and low extremes of surface 

albedo. Albedo of various land types exhibited differences (Figure 2-4). For example, very high 

albedo was observed in desert lands (up to 0.7; Figure 2-4) during periods with snow cover. 

Outside of snow-covered periods, cropland, desert, and grassland land types showed a relatively 

stable albedo, with the highest albedo for desert landscapes (0.41 ± 0.23), intermediate albedo 

for crops (0.14 ± 0.03) and grasslands (0.13 ± 0.03), and lowest for forests (0.10 ± 0.04). 

The main problem encountered in applying GIS-based methods is missing values of 

MODIS albedo. We overcame this problem using spatio-temporal correlation of un-gapped 

MODIS albedo data, interpolating across gaps using the surrounding data and producing a 

seamless dataset. This gap-filling method was comprised of five steps: (1) retrieve albedo data 

from the original MODIS albedo product; (2) create a mask of missing albedo data; (3) use a 

spatial neighborhood interpolation method to fill the missing data; (4) stack the yearly albedo 

image collection into the time series; (5) apply the Whittaker algorithm to smooth the time-

series. This method was used to fill missing values without modifying existing values. 

   The Whittaker algorithm is based on penalized least squares, proposed by Whittaker 100 

years ago (cited from Eilers, 2003). The Whittaker smoother has many advantages: it is 

extremely fast, much faster than the Savitzky–Golay filter in preliminary tests; it handles 

missing values efficiently; and it allows for full control over smoothness parameters (Eilers, 

2003): 

(𝑊 +  𝜆 𝐷𝑑
′ 𝐷𝑑) 𝑧 = 𝑊 𝑦                                                    (11) 

The missing elements of y are set to zero, and the diagonal elements of weight matrix W are set 

as zero for missing data and 1 for other values. At each missing point where y is zero, z was 

smoothed using Equation (11). D is a matrix such that Dz = Δz , and the subscript d represents 

the order of differences. 
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Figure 2-3 Albedo map of Loess Plateau at 1 January 2011 shown as an example of gap filling. 

Left panel shows missing values (white) in the northern and western regions of the plateau. 

Right panel shows Whittaker smoother gap-filled albedo map. 

 

Figure 2-4 Variation of daily albedo for different land types. Missing values in raw albedo 
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images were filled by spatio-temporal gap-filling method. Those gap values in the curves were 

fitted by the Whittaker smoother method, with λ = 20, iterative=3. 

2.2.5 Model evaluation 

To evaluate the accuracy of the gap-fill predictions, Random Knockout Validation method 

(Gerber et al., 2018) was applied during one year (2011) to a rectangle areas that had fewer than 

50% missing observations in the original data. 10 points were selected, representing 50%, 60%, 

70%, 80% and 90% of the available original observations. 10 locations were randomly chosen 

from a validation area (Figure 2-5), and 10 temporal observations were randomly removed from 

each of these 10 time series (one time series per location). These missing values that were 

removed from the data were then filled using the spatial and temporal gap-filling algorithm 

described above, and then gap-filled values were compared to the originally removed 

observations. Figure 2-5 shows that gap-filled values at the 10 randomly chosen observation 

sites were significantly correlated with observed data resulting in an R2 = 0.962 and an RMSE 

= 0.005 at daily timescales. 

Validating and assessing the overall accuracy of STMSR based on only a few stations is 

inadequate for such a large region as the Loess Plateau. A comparison of STMSR estimates 

against those of other independent solar radiation products over China can provide an 

alternative approach for a regional evaluation of model performance. The comparisons include 

three key steps. First, daily SSR values were integrated from hourly values. Second, one 

thousand locations were randomly created across the extent of the Loess Plateau for comparison. 

Third, daily SSR values of the points in different datasets were retrieved from those 1000 

locations using the point sampling method. This procedure was performed at the same 1000 

locations for STMSR and SSR, where the RMSE between the two models was evaluated across 

the entire Loess Plateau. 

The performance of STMSR was also compared with two other GIS tools, Solar Analyst 

(SA) in ArcGIS and r.sun in GRASS. In SA, the Points Solar Radiation tool was used to 

calculate time series of global solar radiation simulations at Yuzhong site because it contained 
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continuous global direct and diffuse solar radiation datasets. The diffuse proportion of the 

radiation parameter was set to 0.4 under clear-sky conditions, and the transmittivity parameter 

was set to a default value of 0.5. The r.sun program in GRASS cannot be used to simulate point 

radiation, but it is able to input parameters in raster format. Thus, a small patch of DEM around 

Yuzhong site (400 km2) was clipped to simulate daily global solar radiation. Albedo was set to 

the default value of 0.2, and the linke turbidity coefficient was set as an annual average value 

of 1.9.  

R2 is a statistic that describes the goodness-of-fit for a model, while RMSE is used to 

measure the difference between values predicted by a model and those which were actually 

observed. We used these two statistical criteria to validate our model. Those two validation 

measurements were calculated as follows:                                                                                                                  
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where iP  and iO  are the predicted and observed daily surface solar radiation respectively, 

O  and P are the mean daily surface solar radiation, i is the ith sample, and n is the number 

of samples. 
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Figure 2-5 The percentage of albedo data during 2011 for the whole Loess Plateau (a), a 

representative validation area with 10 points (b), the temporal variation of daily albedo at point 

7 with 10 randomly observed albedo (c) and cross validation for 100 samples during 2011 (d). 

2.3 Results 

2.3.1 Model validation in the Loess Plateau 

Different timescales have Ångström coefficients (ah and bh) of varying magnitude. 

Previous studies have shown that a better fit between n/N and Rs/Ra can be obtained using 

monthly data than from yearly data. In this study, coefficients used for horizontal global and 

direct-beam radiation models were obtained from monthly in-situ radiation data, which were 

obtained from a previous study (Zeng et al., 2005). 

To validate the performance of our model, observed data from ten solar radiation stations 

were used (Figure 2-1), of which one station (the Yuzhong station) included measurements of 
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both direct and diffuse solar radiation. Model performance for simulation of monthly solar 

radiation was evaluated for the period 2005–2009. In terms of global solar radiation, simulated 

monthly global solar radiation matched well with observations (Figure 2-6). Figure 2-6 shows 

that: (1) our model simulations at the 10 observation sites were significantly correlated with 

observed global radiation, resulting in high R2 (R2 ≥ 0.9) and low RMSE (RMSE ≤ 45 MJ m-2 

month-1); and (2) the slopes were within ±10% of the 1:1 line across all study locations. At these 

10 observations sites, our model performed very well in the Loess Plateau and can be further 

used to generate highly accurate solar radiation estimates for mountainous locations with local 

calibration/validation data. 
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Figure 2-6 Comparison of annual observed and estimated (by mountain solar radiation model) 

monthly Global Solar Radiation (GSR) for 10 radiation sites on the Loess Plateau, China, 

during 2005 to 2009. Comparisons for direct radiation (DIR) and diffuse radiation (DFR) are 

shown only for YuZhong. 

2.3.2 Comparison with other SSR and GSR products 

Figure 2-7 illustrates the annual mountain solar radiation spatial map from STMSR, the 

SSR product, and the GLDAS net shortwave radiation product. In comparison to SSR, STMSR 

produced higher estimates of solar radiation in the drylands of the northwest Loess Plateau and 
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lower estimates in the mountains to the South (cf. Figure 2-7a, b). GLDAS net shortwave 

radiation values (lower left panel) showed little consistency with spatial patterns in STMSR or 

SSR and little association with topography (Figure 2-7). Maximum radiation was highest in 

STMSR (ca. 7000 MJ·m-2·d-1), intermediate in SSR (ca. 6500 MJ·m-2·d-1), and lowest for 

GLDAS (ca. 5500 MJ·m-2·d-1, Figure 2-7). STMSR similarly produced the lowest minimum 

radiation values (ca. 3500 MJ·m-2·d-1). Figure 2-8 shows performance comparisons between 

STMSR, SSR and GLDAS on a daily timescale, illustrating that solar radiation estimates from 

the current study were better than those from the other products. R2 for STMSR (0.88) was 

better than that of the other two products (0.76–0.84), although R2 for all was quite good (Figure 

2-8). However, only two of the products (STMSR and SSR) showed a 1:1 response against 

observations (Figure 2-8). Overall, radiation estimates simulated by STMSR were slightly 

improved relative to SSR and greatly improved relative to GLDAS. We observed that STMSR–

SSR RMSE (i.e., RMSE between two derived products, not observations) increased from north 

to south, indicating an increasing discrepancy between radiation products towards the South 

(Figure 2-9). Following this trend, RMSE was slightly higher in the Guanzhong Plain (in the 

southeastern Loess Plateau) than that in the mountains extending to the North along the eastern 

boundary of the Loess Plateau (cf. Figure 2-1 and Figure 2-9). RMSE was also large in the 

western-most region of the Loess Plateau, which has the highest elevations and steepest slopes 

of the Loess Plateau. Small discrepancies between STMSR and SSR in the central Loess 

Plateau suggest that both products produce reasonable radiation estimates. By contrast, larger 

discrepancies in the Guanzhong Plain and the western mountains suggest an improvement to 

radiation estimates by STMSR in these areas, thus STMSR can be further used to generate 

realistic solar radiation maps for mountain and valley regions. 

Figure 2-10 shows a comparison of three algorithms against observed values at Yuzhong 

in 2009. The SA and r.sun algorithms clearly overestimated radiation in the middle of the year 

(March-October), and that SA underestimated radiation in winter months (November through 

the following February). In contrast, our STMSR model slightly overestimated observed 
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radiation March-October, but it closely predicted monthly global solar radiation across the 

remaining months. It should be noted that finer tuning of input parameters, such as direct 

transmittance and diffuse proportion in Solar Analyst or default atmospheric parameters in r.sun, 

might result in improved estimates from those products. 

 

Figure 2-7 Spatial distributions of yearly solar radiation on the Loess Plateau in 2011 by 

mountain solar radiation produced by STMSR model, Surface Solar Radiation, and GLDAS. 

 

Figure 2-8 Summary statistics for estimated daily solar radiation produced by the Spatio-
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temporal Mountain Solar Radiation (STMSR) model (a), the Surface Solar Radiation (SSR) 

model (b), and the Global Land Data Assimilation System (GLDAS) model (c) compared with 

observed data across 10 solar radiation stations in 2007-2013. 

 

Figure 2-9 Spatial distributions of RMSE calculated between the daily solar radiation of the 

Spatio-temporal Mountain Solar Radiation (STMSR) model and Surface Solar Radiation (SSR) 

product at 1000 randomly selected points in 2011 over the Losses Plateau. Circle diameters 

correspond to the size of RMSE. RMSE units in the legend are MJ·m-2. 
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Figure 2-10 The comparison of different Global Solar Radiation (GSR) products with in situ 

observations at YuZhong in 2009. STMSR: Spatio-temporal Mountain Solar Radiation, SA: 

Solar Analyst and r.sun: radiation integrated in GRASS. 

2.4 Discussion 

We provide an online tool called “Spatial and Temporal Mountain Solar Radiation 

Modelling” (STMSR) as part of this study, available for use in complex terrain globally 

(https://geogismx.users.earthengine.app/view/stmsr) (Figure 2-11). In the left panel, users can 

define a time period along with a location by designating latitude and longitude, or by clicking 

on the map, and then the right panel will show a time series of point solar radiation, along with 

the three components of global solar radiation (direct, diffuse, reflected). STMSR can also 

export composited images of astronomical solar radiation (i.e., the radiation which would be 

incident at the planet's surface in the absence of an atmosphere) and global solar radiation 

components, as shown in Figure 2-12. 
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Figure 2-11 The application interface for the mountain solar radiation model on the Google 

Earth Engine APP Platform. 
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Figure 2-12 Spatial distribution of annual astronomical solar radiation, direct solar radiation, 

diffuse solar radiation, and reflected solar radiation in 2011 over the Loess Plateau. 

The solar radiation estimated by our model performed better in the Loess Plateau than 

other SSR products and GLDAS, as quantified by R2 and RMSE. This may be attributed to 

differences in satellite data sources, methods, and the scales of prediction. Bias in satellite-

based models depends on clear sky index and solar zenith angle, together with atmospheric 

parameters, such as aerosol, ozone, precipitable water. Polar-orbiting satellites such as MODIS 

only measure instantaneous values, which are then extrapolated to daily solar radiation values 

using a sinusoidal function. This approximation is likely to incur a larger error than that 

provided by geostationary satellites like MTSAT (Qin et al., 2015; Roupioz et al., 2016). Even 

if MODIS and MTSAT measurements were integrated together to improve satellite-based solar 

radiation estimates, parameterization of the topographic correction remains overly simple. 

However, the time delay between atmospheric parameters derived from MODIS and actual 
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cloud variation can lead to significant errors. The spatial resolution of our mountain solar 

radiation estimates (about 1 km) is much finer than that of GLDAS net shortwave radiation data 

(0.25o) and SSR (5 km). The coarse spatial resolution of these two radiation products resulted 

in larger mean error relative to in-situ measurements than for STMSR. 

Our open-source GIS-based model STMSR has both advantages and disadvantages. As 

described in the methods, one bottleneck was that GIS functions on the backend of cloud-

computing are not powerful enough to implement iterative algorithms. In this study, some of 

those calculations were performed beforehand (e.g., duration of possible sunshine on slopes, 

the sky view factor). Then, they were uploaded to cloud storage for users to access widely and 

for incorporation in a cloud-based library of solar radiation models to decrease processing times 

dramatically. Another potential difficulty was that our model could be set up only when the 

coefficients of the sunshine-based model were available. However, this is not a problem 

because many solar radiation sites worldwide make available calibrated and accurate local 

direct and diffuse coefficients for sunshine-based models (Liu et al., 2009; Trnka et al., 2005). 

In such a case, the empirical parameterization scheme used in our model proved to be an 

economical and practical method for estimating actual solar radiation from sunshine hours 

under the influence of cloud cover. By contrast, satellite-based methods provide an advantage 

for retrieving atmospheric parameters from ungauged areas. Zhang et al. (2015) used two 

atmosphere products from MODIS, aerosol optical depth (AOD) and precipitable water (PW), 

as input parameters for solar radiation modeling to decrease atmospheric estimation errors. 

Concerning the rapidly rising array of satellite products becoming available, integration with 

more atmospheric products would be an important asset for future research. 

As shown on Figure 2-3, the available daily MODIS albedo can be an issue in some regions 

for GIS-based solar radiation models due to data scarcity. Roupioz et al. (2016) chose to use 

the 8-day composite MODIS albedo product for the daily solar radiation modelling. However, 

this 8-day resolution is too coarse for investigating rapid changes in albedo over the Loess 

Plateau. We overcame this problem by developing a spatial and temporal gap-filling algorithm 
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to provide a seamless daily albedo dataset for estimating variations in solar radiation. This 

seamless dataset made possible the quick estimation of albedo over snowy landscapes, also 

providing further capabilities such as smoothing of other ecological indices and extracting 

phenological characteristics from data types such as NDVI, EVI or LAI (Pan et al., 2017). 

However, care must be taken when selecting the smoothing parameter (lambda) in the 

Whittaker algorithm, which is very sensitive to this parameter. In this study, lambda was 

determined by trial and error to be equal to 20, but further research is needed to evaluate the 

relationship between lambda versus kurtosis, mean and variance. 

We found divergence between STMSR and SSR in the southern and western Loess Plateau 

(Figure 2-9). Large uncertainty in the southern portion of the Loess Plateau could be due 

complicated cloud distribution that reduces the accuracy of cloud parameter estimates, 

potentially leading to substantial errors in SSR estimation (Tang et al., 2016). By contrast, 

uncertainty in the western Loess Plateau was likely related to shading and surface inclination 

effects, both of the surface itself or in the adjacent terrain (Liu et al., 2012). Furthermore, spatial 

interpolation of regression coefficients across cloudy or mountainous regions can still be 

problematic (Liu, 2017) even though interpolation can be valid across some regions where the 

atmospheric turbidity is similar (e.g., across the central Loess Plateau, Figure 2-9). To overcome 

uncertainty due to interpolation errors, improved spatial and temporal interpolation of complex 

calibrated coefficients and sunshine hours in future studies could be achieved through 

integration of a Geographical and Temporal Weighted Regression (GTWR) (Fotheringham et 

al., 2015). Many factors can affect RMSE between radiation products, including interpolation 

of Ångström model coefficients, spatial variability in elevation, water vapor content, and other 

climate characteristics (Liu, 2017), reflective features of the surface, cloud contamination, 

aerosols, and atmospheric water vapor (Stocker, 2014). 

Since the “Grain-for-Green” program has been implemented, large areas of re-vegetated 

land are now present in southern and eastern parts of the Loess Plateau (Zhang et al., 2018). 

Based on surface solar radiation theory, land use/land cover (LULC) can change 
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outgoing/reflected shortwave radiation and absorbed shortwave radiation by changing land 

surface albedo. However, it remains unclear whether LULC can change the incoming shortwave 

radiation reaching the land surface. LULC changes can be estimated by mean vegetation cover 

during the growing season, where vegetation cover is estimated by normalized difference 

vegetation index (NDVI). Future research could focus on changes in vegetation cover during 

the growing season for exploring the impacts of LULC changes on solar radiation. 

2.5 Conclusion 

We developed an improved GIS-based solar radiation model (STMSR, the spatial and 

temporal mountainous solar radiation model) that allows for treatment of high spatial and 

temporal variations in albedo, surrouding terrain shading and cloud cover for monitoring daily 

solar radiation at large scale. By comparison with other well-known GIS-based solar radiation 

models such as Solar Analyst in ArcGIS and r.sun in GRASS, our STMSR model showed better 

performance. The resulting estimates of global, direct, and diffuse solar radiation were validated 

with high estimation accuracy against the measured solar radiation data from 10 observation 

stations across Loess Plateau. Compared with other high-resolution solar radiation datasets, the 

global solar radiation presented in this paper has higher accuracy of daily solar radiation 

estimates over the Loess Plateau than other methods, generating higher R2 and RMSE. Our 

STMSR model also has the potential to be applied globally for distributed modelling 

applications across a variety of landscapes. 
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Chapter 3. Creating new near-surface air temperature datasets to 

understand elevation-dependent warming in the Tibetan Plateau 

This chapter is based on the following manuscript: 

Zhang, M., Wang, B., Cleverly, J., Liu, D. L., Feng, P., Zhang, H., ... & Yu, Q. (2020). Creating 

new near-surface air temperature datasets to understand elevation-dependent warming in the 

Tibetan Plateau. Remote Sensing, 12(11), 1722. 

Abstract 

The Tibetan Plateau has been undergoing accelerated warming over recent decades and is 

considered as an early warning sign for broader global warming. However, our understanding 

of warming rates with elevation in complex mountain regions is incomplete. The most serious 

concern is the lack of high-quality near-surface air temperature (Tair) datasets in these areas. 

To address this knowledge gap, we developed an automated mapping framework for the 

estimation of seamless daily minimum and maximum Land Surface Temperature (LST) for the 

Tibetan Plateau from the existing MODIS LST products for a long period of time (2002-

present). Specific machine learning methods were developed and linked with target-oriented 

validation and then applied to convert LST to Tair. Spatial variables in retrieving Tair, such as 

solar radiation and vegetation indices, were used in estimation of Tair, whereas MODIS LST 

products were mainly focused on temporal variation in surface air temperature. We validated 

our products using independent Tair products, revealing more reliable estimates on Tair, and 

the R2 and RMSE at monthly scales generally fall in the range of 0.9-0.95 and 1-2°C. Using 

these continuous and consistent Tair datasets, we found a warming trend in the elevation range 

between 2000 m and 3000 m, whereas the summit above 6000 m exhibited a cooling trend. 

These datasets, findings, and methodology we developed contribute to global studies on 

accelerated warming. 

Key words: Near-surface air temperature; MODIS LST; machine learning; Tibetan 

Plateau 
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3.1 Introduction 

The Tibetan Plateau (TP) is named the "the third pole of the Earth", the highest and largest 

plateau globally (Qiu, 2008). The TP exerts profound dynamical and thermal influences on the 

regional and global climate (Duan et al., 2012; Manabe and Terpstra, 1974). For global 

warming, TP is considered as an early warning sign. Over the period of 1984-2009, TP has 

undergone serious warming, with a warming rate of 0.46C decade-1, which is almost 1.5 times 

the rate of global warming (Kang et al., 2010; Kuang and Jiao, 2016). Accelerated warming on 

the TP has intensified permafrost degradation, snow melt and glacier retreat (Yang et al., 2014). 

Presently, the status of TP warming is evaluated through the analysis of Tair at meteorological 

stations. However, most meteorological stations are located in the eastern TP below 3800m. 

Because of sparse high-elevation meteorological observations in central and northwest of TP, 

there is a possibility that we may not capture the greatest warming rate over some regions of 

the TP (Dimri et al., 2019). In addition to limited coverage by in-situ measurements, Tair at TP 

suffers from extreme local variability due to factors such as topography and exposure (Pepin et 

al., 2015). Therefore, improved Tair estimations by developing high-resolution products 

considering rugged terrain over the TP is a crucial step for understanding the accelerated 

warming in the TP. 

Remotely sensed Land Surface Temperature (LST) is a crucial parameter in the modelling 

of surface energy balance at regional and global scales (Anderson et al., 2008; Fu et al., 2019; 

Mallick et al., 2014). LST also provides the possibility of getting high spatial-temporal daily 

Tair datasets (Tair). Since the late 1980s, a variety of long-time series LST products from 

Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track Scanning 

Radiometer (AATSR), Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), Multi-Functional Transport Satellite (MTSAT), and Geostationary Operational 

Environment Satellite have been published (Ouyang et al., 2017). MODIS Terra/Aqua sensors 

provide close temporal proximity of overpasses, with four LST datasets per day. Many studies 

have focused on using various combinations of the four MODIS LST datasets to estimate Tair 

(Noi et al., 2017; Yang et al., 2017; Zhang et al., 2016). Studies have also investigated how to 

combine the four LST datasets for creating composite daily minimum and maximum LST 

values that supplement the existing Terra/Aqua LST products and reduce areas of missing data. 

Crosson et al. (2012) increased data coverage of MODIS LST in the United States by 24% and 

30% for daily minimum and maximum LST, respectively. Li et al. (2018a) developed a hybrid 

gap-filling method that merged dataset from existing LST products to fill gaps while integrating 
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with a spatio-temporal gap-filling method to fill the rest of MODIS daily LST gaps, finally 

creating LSTs dataset over the urban and surrounding areas of United States. However, to the 

best of our knowledge, no attempt has been made to explore an automated mapping framework 

for the estimation of daily seamless minimum and maximum LST from the four MODIS LST 

products. 

LST is not equivalent to Tair and their relationship is complex from a theoretical and 

empirical perspective (Yang et al., 2017). Hence, it is difficult to estimate surface air 

temperature solely using LST, and additional auxiliary factors are used to estimate the Tair in 

mountainous regions using three representative methods. (1) A semi-empirical method which 

builds a linear relationship between MODIS LST and a vegetation index, such that Tair can be 

extrapolated by allowing the regression line to intersect with the vegetation index of full cover 

(Stisen et al., 2007; Zhu et al., 2013). (2) A spatio-temporal regression method has been used, 

such as a geographically and temporally weighted regression (GWTR) or a regression-kriging 

method, both of which consider the relationship between Tair and other variables such as 

MODIS LST and topographical layers (Kilibarda et al., 2014; Metz et al., 2017). (3) Machine 

learning models predict Tair from multiple data sources including LST, whilst considering 

spatio-temporal autocorrelation of Tair (Zhang et al., 2016; Zhu et al., 2019). In general, each 

method has been proven to be successful in estimating Tair, but they still have shortcomings in 

large-scale complex mountainous area with limited weather stations, especially in TP. For 

example, the Temperature-Vegetation Index (TVX) method is not appropriate for estimating 

Tair in regions with low vegetation cover (Yoo et al., 2018). Statistical models fail to capture 

the nonlinear behaviour of the climate system in mountainous area. Machine learning models 

such as Random Forest, Cubist and Support Vector Machine (SVM), have proven to be flexible 

in areas with complex terrain like TP for estimating Tair from LST and additional variables 

(Yoo et al., 2018). But they require more datasets for model training. The problem is that 

training datasets are usually insufficient in such complex mountainous areas. In addition, 

machine learning models often fail to capture the extreme low and high values of Tair (Kalra 

and Ahmad, 2009; Leihy et al., 2018). Furthermore, the estimated performance of machine 

learning models has a risk of spatio-temporal over-fitting, which partly depends on different 

validation strategies (Meyer et al., 2018). Thus, further investigation is required to identify the 

accuracy and performance of machine learning models when lacking enough field observations 

in complex mountainous areas of TP. 

Other environmental datasets, such as vegetation indices, snow cover, albedo, soil type 

and water bodies, are highly related to Tair. LST with those auxiliary information enables the 
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estimation of Tair within mountainous areas using machine learning models. It is well known 

that the variation of incoming solar radiation has a strong relationship with the spatial temporal 

dynamic of Tair (Bristow and Campbell, 1984). In previous studies, solar zenith and sunshine 

duration were used as substitutes of mountainous solar radiation for Tair estimation (Zhang et 

al., 2016). In this study, we will incorporate truly mountainous solar radiation datasets as one 

of the covariates for Tair estimation (Zhang et al., 2020). We assumed that solar radiation and 

biophysical factors would be related to spatial variability in Tair, whereas we predicted that 

MODIS LST would be more strongly related to temporal variation in Tair. 

The objectives of this study were to (1) create seamless 1000 m daily MODIS LST datasets 

using a hybrid method; (2) predict Tair using LST and remotely sensed indices with machine 

learning; (3) compare the performance of different machine learning methods for estimating 

maximum, minimum and mean air temperature; accordingly, and (4) explore elevation-

dependent warming over the TP using decadal temperature datasets. 

3.2 Materials and Methods 

3.2.1 Study area and all climate data 

The TP is located at 26-40 N and 73-105 E degree. It has irregular topography with 

elevation varying between approximately 498 and 7198 m a.s.l. (above sea level) and generally 

increasing from northwest to southeast (Figure 3-1). As elevation increases, the landscape 

transitions from forests to alpine grassland and then bare rock, and finally to snow and ice 

(Pepin et al., 2019). The highest Himalayan mountains are on the southern edge of TP, while 

the Kunlun Mountains are another high mountain chain on the northwest boundary. The 

headwater areas of major rivers in Asia lie in the south-eastern part of TP (Hengduan 

Mountains). Typical alpine permafrost lies in Bayan Har Mountains. Qaidam Basin is the 

largest terrestrial basin of the TP. 



 

43 

 

 

Figure 3-1 Location of Tibetan Plateau, distribution of 130 weather stations and A’rou station 

In this study, daily observations of Tmax, Tmin, Tmean, and sunshine duration (2000–

2016) from 130 available China Meteorological Administration (CMA) stations were used, the 

altitude of those stations ranges from 1600 to 4800 m a.s.l. To keep consistency between 

MODIS LST pixels and ground observations, a relatively homogeneous LST validation site 

named A’rou was chosen, which was located on the northeast edge of the TP with an elevation 

of 3032 m a.s.l. The in-situ LST was derived from the upwelling and downwelling longwave 

radiation fluxes from A’rou station using a radiation transfer equation. As different emissivity 

sources provide different accuracies in LST calculation, in this study we used ASTER-derived 

emissivity, derived from clear-sky pixels of ASTER images from 2000 to 2008 covering the 

study area. The monthly mean Tair observation data over the TP in 1981-2010 used in this study 

as reference data are from the China Meteorological Data Service Centre 

(http://data.cma.cn/site/index. html). Another dataset is from the China Meteorological Forcing 

Dataset (CMFD) for the period of 1979-2018, developed through fusion of remote sensing 

products, reanalysing datasets and in-situ station data with a spatial resolution of 0.1° and a 

temporal resolution of three hours. Due to its continuous temporal coverage and consistent 
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quality, the CMFD is one of the most widely-used climate datasets for China (He et al., 2020). 

In addition, TerraClimate is a global gridded dataset of meteorological and water balance 

variables at 2.5 arc-minute resolution (4000 m)  from 1958 to 2020 (Abatzoglou et al., 2018). 

TerraClimate updates on monthly time step, and available at 

https://climate.northwestknowledge.net/ TERRACLIMATE. 

Table 3-1 Overview of datasets across the TP 

Data Source Temporal Resolution Spatial Resolution 

DEM 2000 30 m 

Weather Sites 2003-2013, daily  

LST Site 2007-2011, 10-min  

MOD11A1/MYD11A1 2002-Current, daily 1000 m 

MOD09GA 2000-2020, daily 1000 m 

CMFD 1979-2018, 3-hour 0.1 degree 

TerraClimate 1958-2018, monthly 0.025 degree 

 

3.2.2 Methodology 

Spatio-temporal patterns of Tair in mountainous areas were quite complex due to the 

influence of landscape-scale physiographic factors. To address these problems, we developed a 

modelling framework for Tair (Figure 3-2). The first step was that we apply a hybrid method 

(combine serval method, i.e., daily merging and spatio-temporal gap-filling) to create seamless 

remotely sensed LST datasets. The second step was to calculate a set of predictors including 

LST datasets, mountainous solar radiation, biophysical factors and topography indices for 

surface air temperature modelling over the TP from 2003 to 2013. The calculation of the above 

two steps were all conducted in the Google Earth Engine (GEE) environment. Those predictors 

were then integrated as explanatory variables for machine learning models, while the in-situ 

measurements were used as the response variables. To avoid the spatial-overfitting of machine 

learning models, target-oriented validation strategies were used. In the third step, the cross 

validation (CV) data was split into 10 folds using spatial ID and Year ID as splitting criterion 

to predict on unknown points in time and unknown locations. Then, the best model for each 
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month was used for final tuning with 10-fold Leave Location and Time Out-Cross Validation 

(LLTO-CV) allowing us to provide accurate monthly spatial maps of Tair over the TP. The final 

step was to evaluate the climate change in TP with monthly Tair datasets by comparing with 

other temperature products. More details were presented in the following subsections. 

 

Figure 3-2 Flowchart of steps for calculation of near-surface temperature over TP 

3.2.2.1 Step 1: Hybrid model to estimate daily seamless MODIS LST and validation 

Development of globally complete spatial-temporal daily LST images still face many 

challenges. Considering the advantages of MODIS LST including 1000 m spatial resolution 

with high temporal resolution and the computing efficiency of different gap-filling methods, 

we used a three-step hybrid method to build daily LST. The first step was the daily merging 

method which involved using values from the other three times on the same day to fill the 

missing values for a given time. For example, we estimated T2 from T1, T3 and T4 and obtained 

four time series of T2 (LSTday) and then composited them to get the merged LST on daily 

basis. The details of this step were presented in Li et al. (2018a). The benefit of the daily 

merging method of four observations is that it increases the spatial and temporal extent of the 
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daily LST coverage. The second step was to use a spatio-temporal gap-filling method by 

estimating missing values with values of their neighbouring cells and days. Existing spatio-

temporal gap-filling methods are all sensitive to parameter configurations. However, when 

applied at a global scale, a set of universal key parameters are difficult to select. In this study, 

we used a new spatio-temporal gap-filling algorithm instead of using traditional gap-filling 

packages or software as this method is computationally efficient and is promising for large 

scale applications. Especially, we chose 10000 m as the searching radius of bicubic 

interpolation and 30 days as the given window for moving average temporal interpolation. The 

third step was to use Whittaker smoother to remove the outliers introduced by spatio-temporal 

filled LSTs. We noted that the hybrid method depends heavily on daily merging LSTs. 

Therefore, the daily merging LSTs are treated as good LSTs and the remaining gaps left after 

the daily merging are filled by Whittaker smoother values.  

Validation of land surface temperature used the radiation transfer equation below: 

Rn = Rsi - Rso + Rli - Rlo                                                                     (1) 

where Rsi, Rso, Rli, Rlo are incoming shortwave radiation (w·m-2), outgoing shortwave 

radiation (w.m-2), incoming longwave radiation (w.m-2), outgoing longwave radiation (w·m-2) 

respectively, Rn with the net radiation. In Equation (1), Rlo is a direct function of land surface 

temperature. For a surface with emissivity ε (unitless), the outgoing long-wave flux is 

composed of both reflected and emitted parts. 

Rlo = (1 - ε) ×Rli + ε×σ×Ts
4                                                                 (2) 

where σ is Stefan-Boltzmann constant (5.67×10-8·W·m-2·K-4), Ts is land surface 

temperature. If Rli, Rlo were obtained from radiometric network, the accuracy of the land surface 

temperature is dependent on the emissivity ε. 

3.2.2.2 Step 2: Remotely sensed indices, DEM derivatives and mountainous solar 

radiation 

Due to the limited data availability over TP, the model accuracy largely relies on the input 

datasets. If it is insufficiently trained, a robust correlation cannot be expected, that is, the more 

sufficient the samples, the better the spatial prediction accuracy (Li et al., 2018a). MODIS 

Terra/Aqua LST products (MOD11A1 and MYD11A1) were obtained from NASA 

(https://lpdaac.usgs.gov/products/myd11a1v006/,https://lpdaac.usgs.gov/products/mod11a1v0
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06/). The MODIS Terra overpass time is around local time 10:30 AM (T1) in its descending 

mode and 10:30 PM (T2) in its ascending mode. The MODIS Aqua overpass time is around 

1:30 PM (T3) in its ascending mode and 1:30 AM (T4) in its descending mode. Those time-

variant biophysical factors such as Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Land Surface Water Index (LSWI), Normalized Difference Snow 

Index (NDSI), and Soil Adjusted Vegetation Index (SAVI) derived from MODIS surface 

reflectance bands, which has the same spatial and temporal resolution with LST, were 

incorporated as training inputs for machine learning models. This study also produced incoming 

mountainous solar radiation datasets as a predictor to estimate air temperature distribution in 

TP and provided a web app tool based on GEE for user access 

(https://geogismx.users.earthengine.app/view/tpmsr). In fact, incoming mountainous solar 

radiation in TP was the first time used in this study as previously such datasets were not existing 

and not used as a variable to estimate air temperature over TP. Therefore, with the availability 

of topographical variables and weather datasets and biophysical factors in TP, we had the 

potential to provide a more interoperable and rigorous way for estimating reliable Tair at high 

mountainous area. 

3.2.2.3 Step 3: Regression models and target-oriented validation 

In this study, we adopted three commonly used regression techniques to reproduce Tair. 

From the literature review, it was suggested that the differences in land surface properties, solar 

radiation, topography, and many other factors could influence the relationships between 

MODIS LST and Tair. Therefore, linear regression model is unlikely to be able to handle the 

complicated relationship between Tair and the abovementioned variables under different 

conditions. In contrast, advanced machine learning models, such as Random Forest, Cubist and 

XGBoost, can take account of the nonlinear and complicated relationship between the predictor 

and response variables in a mountainous study area like TP. 

Random Forest (RF), also known as random decision forest, is an advanced ensemble 

machine learning technique which can be used to develop predictive models for both regression 

and classification purposes (Breiman, 2001). The ensemble technique is an algorithm that 

integrates outputs from multiple learning models to generate a better prediction. In the case of 

https://geogismx.users.earthengine.app/view/tpmsr


 

48 

 

RF, it achieves this goal through obtaining outputs from a whole forest of random decision trees. 

Decision trees are also a popular regression method, but they tend to overfit on training data 

and usually have high variance even if utilizing different training and testing sets from a same 

dataset (Olaru et al., 2003). Nevertheless, decision trees can be used as an underlying 

foundation in ensemble methods for producing more accurate predictions. The RF first creates 

an ensemble of decision trees through a process of bagging (bootstrap aggregating). 

Randomized subsets of the predictors are assigned to each tree to generate predictions. The 

average of the predictions from the ensemble of the trees is treated as the final outcome (Cutler 

et al., 2007). Thus, the RF succeeds in reducing the variance by creating a majority-votes model. 

In recent years, RF has been frequently used in remote sensing related research (Hashimoto et 

al., 2019; Moreno-Martínez et al., 2018).  

eXtreme Gradient Boosting (XGBoost) is a scalable and efficient implementation of the 

gradient boosting framework (Friedman, 2001). It is also an ensemble technique that can build 

a final predictive model based on a larger number of underlying models. The most commonly 

used underlying model is a regression tree, different to RF. Another difference is that XGBoost 

repeatedly trains trees or the residuals of the previous predictors, while RF trains many 

independent trees and then average them. In the present study, we adopted DART (Dropouts 

meet multiple Additive Regression Trees), an ensemble model of boosted regression trees, 

which is capable of overcoming the issue of “over-specialization” (Rashmi and Gilad-Bachrach, 

2015).  

Cubist regression is a commercially rule-based regression method that was developed 

based on a combination of the ideas of Quinlan (1992). That is why it lacks algorithmic 

documentation. After Cubist regression was introduced into R by Kuhn, it has been widely used 

in remote sensing studies. Unlike CART-based regression trees (e.g., RF) that have a final 

model, Cubist produces rule-based multivariate regression models, which means that a set of 

rules is associated with sets of multivariate regression. Then, an actual prediction model will 

be chosen based on the rule that best fits the predictors. Since Cubist generates rule-based 

results, it is more straightforward and interpretable than RF. Cubist has much shorter run time 

than CART-based regression trees.  

K-fold Cross Validation is popular to estimate the performance of the model with a view 

towards data that has not been used for model training. The validation dataset is randomly split 

into k folds during standard random k-fold Cross Validation. However, the problem of 

dependencies caused by the nature of spatial-temporal data was ignored, producing an over-
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optimistic model performance because of spatial-temporal over-fitting (Gasch et al., 2015; 

Meyer et al., 2016; Meyer et al., 2018). To be more specific, many prediction models use 

auxiliary predictor variables which vary in space but not in time (e.g., elevation, location, and 

biophysical characters). However, those temporally static variables that focus on describing the 

spatial characteristics of the climate stations are prone to enable machine learning algorithms 

to disguise real relationships between predictors and responses and lead to spatial over-fitting. 

For example, the performance differences between K-fold random Cross Validation (lower 

RMSE) and Leave-Location-Out Cross Validation (higher RMSE) in the literature strongly 

suggest that spatio-temporal prediction models fail in the prediction beyond the location of 

training stations but can very well predict on the unknown time of the training stations. 

As we aim to predict air temperature in unknown locations, we perform a target-oriented 

validation which validates the model with a view towards spatial mapping. To find this out, we 

repeatedly leave the complete time series of one or more data loggers out and use them as test 

data during CV. This study will use the following two steps to identify and avoid over-fitting. 

1. To compare Machine Learning methods with different validation strategies using 10-

fold Leave-Location-Time-Out (LLTO), Leave-Location-Out (LLO) and Leave-Time-Out 

(LTO). 

2. Using the best fitting model with suitable validation strategies to estimate monthly 

Tair products based on 10-fold LLTO Cross-Validation. 

3.2.2.4 Step 4: Creating near-surface air temperature products and elevation-dependent 

warming analysis 

The controversy over the elevation dependent warming of TP mainly because we lack 

high-altitude meteorological data over TP (Li et al., 2020a). In this paper, to obtain more reliable 

Tair products for elevation dependent warming analysis, we produced 11 variables to build the 

actual non-linear relationship with response and tested three machine learning models with 

three different validation methods. According to the performance measurement of RMSE and 

R2, RF was finally selected as the best model for Tair products generation. By comparing the 

accuracy of the three Tair products, the most accurate monthly mean air temperature during 

2003 to 2013 was selected to analyse the temperature change over TP.  

Due to the wide spatial domain of TP, temperature variations are inconsistent in different 
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regions. Therefore, in this study all the pixels in the three 1000 m elevation interval over TP 

were extracted and the time series of temperature changes in each elevation range were 

computed from the mean of the pixels. Specifically, we explore the relationship between 

temperature trends and elevations in 2000-3000 m, and 4000-5000 m and 6000-7000 m a.s.l., 

respectively. Among the analysis of temperature trends, the Seasonal Mann–Kendall statistical 

test and Seasonal Sen’s slope test (Hirsch et al., 1982) were employed to test the significances 

of trend and the magnitude of trend in the seasonal mean temperatures. 

3.3 Results 

3.3.1 Evaluation of spatio-temporal composite LST 

Figure 3-3 shows the percentages of all available days per year for which maximum LST 

and minimum LST before and after using daily merging method. Overall, the percentage of 

MODIS LST data availability over TP is over 80%, while after daily merging it is over 99%. 

For example, daily merging of the four observations increases most of LST data coverage by 

about 30% and 20% for LST day and LST night, respectively. In addition, a comparison of 

Figure 3-3(a) and Figure 3-3(c) shows that LST day values availability is intrinsically lower 

than that in LST night. For the central part of TP, the data coverage of observed LST day is 

around 70%, while the data coverage LST night availability is about 80%. For the eastern part 

of TP, available percentages for observed LST day and night are about 45% and 60%, 

respectively. After merging daily LSTs from the four overpasses, LST coverage can increase to 

over 99% in central TP, and about 80% in eastern TP. However, it still fails in filling the gaps 

in the boundary of southern TP (see in Figure 3-3(b) and Figure 3-3(d)). Therefore, an additional 

step is to use spatio-temporal gapfilling to fill the remaining missing values for the whole 

regions. 
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Figure 3-3 shows the prevalence of available data in the two pairs of maps. Figure 3-3(a) shows 

the percentage of days for the given year for which LST day (i.e. 1:30 pm on Aqua (T2)) values 

are available at each pixel of the TP domain. Figure 3-3(b) shows the percentage of daily merged 

T2 for the given year for which daily merged T2 values are available. Figure 3-3(c) shows the 

percentage of days for the given year for which LST night (i.e. 1:30 am on Aqua (T4)) values 

are available at each pixel of the TP domain. Figure 3-3(d) shows the percentage of daily merged 

T4 for the given year for which daily merged T4 values are available. 

To evaluate the accuracy of MODIS spatio-temporal composite LST, the ground 

measurements comparison at A’rou station for 2008 was conducted for both maximum LST and 

minimum LST observations. The ground measurements at the nearest collection times matching 

with MODIS maximum and minimum LST were used. The annual comparisons are shown in 

the left panel of Figure 3-4. The scatterplots of the comparisons were given in the right panel 

of this figure. For the maximum LST comparison, the RMSE and R2 over A’rou station were 

5.44 °C and 0.76. For the minimum LST comparison, the RMSE and R2 were 5.14 °C and 0.77. 

It should be noted that the minimum LST results were slightly better than for the maximum 

LST due to the stable weather conditions at night. From the annual results comparison, we can 

see that during the winter/spring when the freeze/thaw transition happens frequently, the 

(a) (b) 

(c) (d) 
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differences of maximum LST or minimum LST with in-situ measurements were greater than 

that of other seasons. 

 

Figure 3-4 LST maximum and minimum temperature validation with in-situ LST 

measurements in A’rou station 

3.3.2 Model performance and variable importance 

Figure 3-5 shows that model performances differed from the different temperature 

products and the target-oriented validation methods. All the 27 models used in this study 

appeared to have strong relationship (R2 > 0.75 and RMSE < 2.6°C) at the monthly scale. For 

the three methods used, it can be clearly seen that Cubist regression always showed higher 

accuracy than XGBoost and RF, but RF was the most robust one with less outliers (not shown 

on Figure 3-5, R2 < 1th percentiles and R2 > 99th percentiles). In terms of the model 

performance for three temperature products, the Tmean had the highest accuracy and 

conversely, the Tmax had the lowest. From Tmax to Tmin to Tmean, the model performance 

(a) (b) 

(c) (d) 
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increased, and the differences between RF, Cubist, XGBoost were getting smaller. Additionally, 

the model performance of LTO-CV was much better than that of LLO-CV and LLTO-CV. The 

changes of R2 for different temperature products across 12 months was not obvious but the 

RMSE showed apparent seasonal variation, higher in winter and lower in summer. Particularly, 

the RMSE in August (the median RMSE is about 1.0°C) were much lower compared to other 

months. 

 
(a) 
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(b) 

Figure 3-5 (a) and (b) show the R2 and RMSE for maximum (Tmax), minimum (Tmin) and 

mean (Tmean) air temperatures using rf, cubist and xgbDART methods based on LLTO-CV, 

LTO-CV, LLO-CV. The boundaries of box mark the 25th and 75th percentiles; the horizontal 

black lines within the box indicate the median; the upper and lower whiskers mark the 90th and 

10th percentiles. 

Variable importance for each Tmax, Tmin, and Tmean was determined by different 

Machine Learning methods based on LLTO-CV (Figure 3-6). For all properties in all plots, 

LSTnight explained most of the variable importance. LSTday was identified as being of major 

importance to the RF and XGBoost, but LSTday within the Cubist variable importance plots 

had limited influence on Tmax and Tmean, and its importance even dropped to zero in relation 

to Tmin. Meanwhile, the importance of elevation demonstrated by Cubist become progressively 

weaker from Tmax to Tmean, and Tmin. By contrast, RF and XGBoost identified elevation as 

a decisive factor in for temperature estimates. More specifically, elevation occupied the third 

or the fourth importance in the plots of Random Forest and always ranked the top three within 

XGBoost plots. However, for the subplots using XGBoost, there was no clear influence for 

other variables except LSTday, LSTnight and elevation where their total importance was higher 

than 95%. Unlike the XGBoost, other indices in the variable ranking plots demonstrated by 

Random Forest were also good predictors, while both LSTday and LSTnight represents great 

ability to improve the air temperature estimates. Therefore, these results revealed that RF had 

greater explanatory capability for temperature estimates than the other two machine learning 

methods. Modelled solar radiation which was a predictor of Tair in complex terrain also had its 

explanatory power in the top five within RF. The ranking results of other remotely sensed 

indices such as EVI and NDSI were expected, because vegetation had a close relationship with 

temperature and snow cover change reflected by NDSI was an important factor indicative of 

warming/cooling climate. 
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Figure 3-6 Tmean, Tmin, and Tmax temperature residuals showed varying temporal sensitivity 

to physiographic drivers. Each variable was scaled to a total of 100%. 

3.3.3 Spatial distribution of surface air temperature 

As the monthly time step is more important for many long-term natural resource models, 

here we focused on the spatio-temporal characteristics of monthly Tmean in 2003-2013 over 

the TP using both station network and our modelling product. Spatially, the range of Tmean 

was from -15 °C to 20 °C across the TP (Figure 3-7). The warmest month was July and the 

coldest was January. Monthly Tmax and Tmin (Figure 3-9, Figure 3-10), generally followed 

the similar spatial patterns, the northwest TP was the coldest area, gradually increased toward 

the southeast, showing a stepped distribution. As areas in the south and east of the plateau are 

covered with lush vegetation and strongly influenced by the monsoon, they are amongst the 

hottest parts of the plateau. Meanwhile, the south eastern part of the plateau was the warmest 

area followed by the Qaidam Basin in the northeast because of its relatively low altitude. In 

addition, we derived the seasonal mean temperature and annual mean temperature based on 

monthly mean temperature over the TP (Figure 3-8), with results similar to that of Zhang et al. 

(2016). 
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Figure 3-7 Monthly Tmean based on RF model in 2003-2013 
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Figure 3-8 Spatial distribution of the seasonally averaged daily mean air temperatures for 2003-

2013 in spring (a), summer (b), autumn (c), winter (d) and the full year (e) 
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Figure 3-9 Monthly Maximum temperature derived from RF between 2003 and 2013 

 

Figure 3-10 Monthly Minimum temperature derived from RF between 2003 and 2013 
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3.3.4 Comparison with other Tibetan Plateau temperature products 

The solar elevation angle in May is relatively high, and daytime ventilation and 

atmospheric mixing are generally great. By contrast, the lower solar elevation angle, longer 

night-time and more frequent radiative cooling in December result in colder air drainage and 

temperature inversions (Daly et al., 2009). Thus, we used Tmean in May to compare the 

difference between our temperature product and others. Figure 3-11 shows the R2 using 

different monthly air temperature products for May and December over the eastern plateau with 

a dense concentration of climate stations. The Random Forest method resulted in R2 values of 

0.84 and 0.97 for May (Figure 3-11(a)) and December (Figure 3-11(b)) respectively. The 

monthly Tmean based on TerraClimate products had R2 values of 0.79 for May and 0.91 for 

December. In contrast, CMFD showed a lower performance with R2 of 0.55 for May and 0.78 

for December. Thus, the accuracy of our product was better than other temperature products 

over the eastern TP. 

The spatial maps of Tmean for May and December based on different products were 

shown in Figure 3-12(a). Meanwhile, the density plots from every pixel of those spatial maps 

were provided for comparison (Figure 3-12(b)). In May, a normal distribution of single peaks 

appeared; however, in December, a normal distribution of double peaks was observed. The 

mean values of the density curves in May were about the same, but the variance was different. 

In comparison, the difference was notable in the case of December, where mean temperatures 

from TerraClimate were much lower than that from our product. The density of mean 

temperature in December was in the range of -30 °C to -5 °C. However, according to Zhang et 

al. (2016), the mean temperature in winter for TP is mostly above -12°C. This difference is 

partially due to the different models applied. In terms of Tmean generated from Random Forest, 

it tended to be warmer than the others. For the method applied in TerraClimate, Tair in various 

regions of the world always has a positive relationship with elevation. According to the research 

of Cai et al. (2017), Tair at the spring of TP has a negative elevation dependency while summer 

has a positive elevation dependency. Based on the above conclusion, it is possible to understand 

the reason that Tair in May shows no obvious differences between the three products. 
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Figure 3-11 The comparison of monthly Tmean in May (a) and December (b) derived from 

Random Forest, TerraClimate and CMFD with the observed mean temperature of 1980-2010 

from in-situ measurements. 
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Figure 3-12 (a) Spatial average maps and (b) histograms of Tmean in 2003-2013 at Central TP 

for May and December 

3.3.5 Elevation-dependent warming 

Mean Tair products with the highest accuracy is used to explore the evidence of elevation-

dependent warming over TP based on three representative elevation zones: 6000-7000 m,4000-

5000 m, and 2000-3000 m. As shown on Figure 3-13, in the period of 2003 to 2007, temperature 

increases in the elevation zones of 2000-3000 m and 4000-5000 m, while temperature decreases 

at 6000-7000 m. According to the seasonal Mann-Kendall test, only the temperature data in 

6000-7000 m (p.value = 0.003) shows a significant cooling trends, while the 2000-3000 m (0.37) 

and 4000-5000 m (0.11) do not pass the test. In the long period of 2003 to 2013, we found that 

the cooling trend was observed over 6000 m but the trend at 2000-3000 m and 4000-5000 m 

are not significant. Furthermore, seasonal Sen’s slope test was used to detect the trend, we found 
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that the magnitude of trend of 6000-7000 m (slope = -0.09) shows negative trend, while both 

the 2000-3000 m (slope = 0.02) and 4000-5000 m (0.04) show positive trend. 

 

Figure 3-13 Tmean variation at 3 elevation zones from 01/2003 to 12/2013. The number of 

pixels within 1000 m elevation interval were extracted and each temperature change was 

computed from the mean of the pixels. 

3.4 Discussion 

In this study, we investigated the usefulness of a hybrid methodology to provide continuous 

remote sensed LST for modelling Tair. The application of this methodology over the TP 

provides thorough datasets in data sparse areas with high elevations by daily MODIS 

Terra/Aqua LST merging and spatio-temporal gap-filling. It is noteworthy that the missing 

pixels in the daily LST images after processing by the hybrid method still exist along the south-
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eastern boundary of the TP, where the cloud-days are much more frequent than clear-sky days. 

Key map and figure results were illustrated in a web application (Hybrid MODIS LST 

Composite Online Tool). This web tool gives us an instant access to global-scale LST data 

archive and cloud computation capability of GEE. Moreover, with this app link, the user can 

even acquire the results from mobile devices and does not need to install any software and third-

party packages, as opposed to desk applications. Other prospects for the application of this tool 

include obtaining high-resolution LSTs which would capture the urban heat island phenomenon 

at a fine scale dynamically. However, Leihy et al. (2018) found great uncertainty in gap-fill 

predictions for missing LSTs at high elevation sites. For spatially and temporally neighboring 

predictions, further research needs to consider advanced spatio-temporal gap filling methods 

that account for using the unique parameters of pixel-specific gap patterns to fill in the missing 

values (Kong et al., 2019), especially at mountainous area. 

The daytime and night-time LST validation results (with an R2 of 0.75) in this study had a 

comparable performance with Ouyang et al. (2017), although they used AATSR products at 

A’rou station for validation. However, due to the difficulty of obtaining representative LST data 

from ground LST measurements in TP, validation of LST at only one site (A’rou) cannot be 

deemed representative of the whole TP. Therefore, with the Hybrid MODIS LST online 

composite tools, more in-situ LST measurements if available can be used for validating in the 

future. Additionally, the spatio-temporal model validation strategies in this study do not rely on 

random k-fold cross validation. Instead, stricter validation strategies such as LTO, LLO, and 

LLTO are used for comparison. However, the aim of this study is to assess the error in both 

time and space, LLTO CV is finally used for the final target-oriented CV. According to Meyer 

et al. (2018), Forward Feature Selection (FFS) in conjunction with LLTO allowed removing 

variables that led to overfitting. For example, the terrain related variables may contribute to 

overfitting as these “static variables” are overrepresented in the predictor datasets. Concerning 

the FFS was time consuming for training a large number of datasets and did not show strong 

evidence to improve model performance and maybe deplete the potential variables to predict 

https://geogismx.users.earthengine.app/view/hybrid-modis-composite-lst
https://geogismx.users.earthengine.app/view/hybrid-modis-composite-lst
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in space and time, FFS was therefore not adopted in this study, but care must be taken when 

choosing the variables for training. We avoid the overoptimistic view on temperature prediction 

by using the target-oriented validation (in this case LLTO), the temperature products are still 

afflicted with errors coming from the characteristics of machine learning algorithms which are 

not able to predict extreme values (i.e., very low and very high temperatures). Further work is 

still needed to improve these spatio-temporal models to capture extreme or abnormal 

temperature in both spatial and temporal domains. 

Although in situ observation data below 4000 m clearly show a significant warming trend 

in the TP, the rate of warming at high-elevation mountains are still unknown. As far as we know, 

the gridded Tair products in the world are commonly interpolated by spatio-temporal 

interpolation based on meteorological stations, even in those areas like TP with sparse network 

of weather stations. In other words, unknown Tair at other locations (such as high mountainous 

areas and valley areas) is estimated by what we have already known at locations. The key to 

the success and applicability of common spatio-temporal interpolation are the underlying 

assumptions employed in describing the relationships and the way in which how these 

relationships are characterized (Li et al., 2018a). The underlying assumptions of common 

spatio-temporal interpolation to estimate unknown Tair is that the values of target Tair are 

spatially autocorrelated. Locations which are closer would have more similarity values of Tair 

than locations are further apart. Therefore, geographical variables such as elevation and 

distance are then used to capture and represent these spatio-temporal correlations through 

geostatistical methods (such as Kriging, IDW). However, geographical variables are 

consistently static and do not generally capture the temporal dynamics of the spatial pattern of 

the Tair and cannot represent the effects of biophysical characteristics (Li et al., 2018b). LST 

was used a proxy for Tair and had been successfully applied to estimate Tair for various regions 

of the world due to the ability to describe the surface-atmosphere energy exchange process. In 

this study, we used not just the widely used auxiliary datasets (i.e., LST, locations, elevation, 

solar radiation and remotely sensed indices) to explicitly represent topographical and 
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biophysical factors on Tair, but also adopted machine learning algorithms to handle the non-

linearity and highly correlated variables. Therefore, the proposed methods are technologically 

interoperable and scientifically rigor for estimating the Tair at mountainous areas with high 

elevations. Improved satellite-based temperature Tair products may provide an evidence of 

elevation-dependent warming. Validation results (Figure 3-11) indicate that the monthly 

gridded temperature maps show a potential to provide long-term Tair over TP compared to other 

independent coarse products. Such a product is of great necessity for data scarcity area, which 

is critical for climate change research. As shown on Figure 3-13, before the year of 2007, 

temperature increased in the elevation zones of 2000-3000 m and 4000-5000 m and decreased 

over 6000 m. This finding is consistent with findings in other research (Qin et al., 2009). 

However, this result is debatable because the period of analysis is extremely short. During the 

long period of 2003 to 2013, we find that the cooling trend over 6000m was detected by 

seasonal Mann-Kendall test, and the warming patterns between 2000-3000m and 4000-5000m 

are not obvious. This phenomenon was also observed from (Pepin et al., 2019). For instance, 

an increase in temperature was observed in parts of mountainous regions around 4500-5500 m, 

whereas other mountainous regions observed limited rise of temperature. However, according 

to previous landscape-scale research on Tair in mountain environments (Todd R and Dean L, 

2003), it suggests that significant variation in temperature is occurring at elevation intervals of 

less than 1000 m. Minimum air temperature, with its strong sensitivity to cold-air drainage, is 

likely to vary at scales less than 200 m. It is believed that future improvements need to combine 

the distinct microclimates in high-mountain regions with high-resolution satellite-based 

datasets.  

Unlike plain zones, which are relatively homogenous, mountain areas suffer from local 

variability, and thus making it extremely difficult to be sure the model simulation are perfect. 

Notwithstanding these limitations, the factors used for model simulation in this study have been 

shown to reflect temperature changes well. We find the predictor of NDSI has a higher 

importance ranking than some other indices. As TP is one of the most sensitive areas to snow 
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feedback on Earth, the shortened or prolonged snow cover duration in TP will influence the 

surface air temperature. You et al. (2016) gave a further explanation that the rapid warming in 

TP is in line with the decreasing snow cover, and hypothesized that change in snow/ice cover 

exposes the soil to wind or increase the snow line position and alter the absorption of solar 

radiation, thus leading to the change of surface temperature. Meanwhile, incoming solar 

radiation also plays a relatively important role at Tair estimation. Additionally, our results 

(Figure 3-5) show the performance of models estimating Tmin with night-time LST is better 

than that estimating Tmax using daytime LST. This difference can be partially explained by the 

fact that night-time LST is more stable than daytime LST. It is also of note that the model 

simulations are influenced by other climate factors and human activities, such as wind, relative 

humidity, cloud cover and land use change. However, those factors are not employed due to 

limited observations. Therefore, further studies by considering more informative indices are 

needed to improve the model simulation. For example, cloud cover over the TP shows a 

significant increasing trend; supporting evidence is that there is a significant amount of 

atmospheric brown cloud generated by fossil fuel consumption and biomass burning over the 

Indian subcontinent and Asia and be transported to the TP by atmospheric circulation 

(Ramanathan et al., 2007). As we know, the presence of clouds interferes with the estimation 

of Tair in mountainous areas. That is probably part of the reason why the accuracy of the 

estimated Tair from end of summer to end of spring of the following year is not good (Figure 

3-5). The most straightforward effect of cloud cover is that MODIS daily LST datasets suffer 

from a large amount of missing values because of clouds and other atmospheric conditions (see 

in Figure 3-3(a), Figure 3-3(c)). Therefore, we adopted the hybrid approach (combine several 

methods) to fill the gaps in high spatio-temporal LST datasets before using them for estimating 

Tair. However, due to the lack of the cloud cover information, there is still a deviation between 

the gap-filled LST and the real LST on cloudy days. Another indirect effect of cloud cover is 

the estimation of other predictors (i.e., incoming solar radiation in TP). Instead of using cloud-

based model, a sunshine-based model was adopted to simulate incoming solar radiation under 

the influence of clouds. Therefore, if appropriate atmospheric parameters for the study area, 



 

67 

 

such as cloud cover, atmospheric transmissivity and atmospheric turbidity can be obtained, the 

final modelling results would be better. In addition, factors like wind and relative humidity data 

also contribute to the estimation of Tair. For example, weakening of zonal wind speed also 

raises temperature in the Qaidam Basin significantly (Wang et al., 2014b). 

3.5 Conclusions 

In this study we build an online tool based on a MODIS LST “hybrid” methodology to 

generate continuous daily maximum and minimum land surface temperature datasets in 

locations without observations and to provide the required remotely sensed inputs to air 

temperature prediction models. Changes in received solar energy among mountains inevitably 

affect the earth’s energy budget. We integrate mountain solar radiation and diverse remotely 

sensed vegetation indices to provide reliable temperature products over the TP. By comparing 

the performance of different machine learning techniques, we found the RF model performed 

best in predicting Tmax, Tmin, and Tmean. We expect the methodology we have developed can 

be potentially useful for improving temperature datasets in mountainous regions around the 

globe, and thereby also improving climatic, environmental, hydrological and ecological models. 
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Chapter 4. Heat wave tracker: a multi-method, multi-source heat wave 

measurement toolkit based on Google Earth Engine 

 

This chapter is based on the following manuscript: 

Zhang, M., Yang, X., Cleverly, J., Huete, A., Zhang, H., & Yu, Q. (2021). Heat wave tracker: 

A multi-method, multi-source heat wave measurement toolkit based on Google Earth 

Engine. Environmental Modelling & Software, 105255. 

Abstract 

Under ongoing global warming due to climate change, heat waves in Australia are 

expected to become more frequent and severe. Extreme heat waves have devastating impacts 

on both terrestrial and marine ecosystems. A multi-characteristic heat wave framework is used 

to estimate historical and future projected heat waves across Australia. A Google Earth Engine-

based toolkit named heat wave tracker (HWT) is developed, which can be used for dynamic 

visualization, extraction, and processing of complex heat wave events. The toolkit exploits the 

public long-term high-resolution climate datasets to developed nine heat wave datasets across 

Australia for extreme heat wave value analysis. To examine climate change on heat waves and 

how they vary in time and space, we also explore the probability and return periods of extreme 

heat waves over a period of 100 years. The datasets, toolkit and findings we developed 

contribute to global studies on heat waves under accelerated global warming. 

Key words: Extreme heat wave; Google Earth Engine; climate datasets; risk analysis; 

GCM; Australia 
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4.1 Introduction 

Under ongoing global warming due to climate change, heat waves are expected to become 

more frequent and severe in the future (IPCC, 2019). Extreme heat waves during the last two 

decades have been recorded across many regions in the world such as those in Europe in 2003 

(Schär et al., 2004), Moscow region in Russia in 2010 (Rahmstorf and Coumou, 2011), and  

Australia in 2013 (Lewis and Karoly, 2013). Heat waves in Australia incur significant hazard 

for both humans and ecosystems and cause more deaths than other natural hazards including 

floods, storms and bushfires. In terms of heat wave impacts on ecosystems, extreme heat waves 

increase the probability of bushfire risk, affect crops and food security for terrestrial systems 

(Luo, 2011), and cause catastrophic damage to marine ecosystems (Hobday et al., 2016). 

Moreover, extreme temperatures contribute to widespread unfavorable health outcomes and 

even the death of vulnerable people. 

Although heat wave is commonly known as a period of exceptional hot weather event, 

there is currently no universal informative measurement in climate science community 

(Alexander and Perkins, 2013). To overcome these issues, a set of climate indices developed 

by the Expert Team on Climate Change Detection and Indices (ETCCDI) have been widely 

applied to observational and modelled climate data to understand previous and future changes 

in extreme heat wave events (Alexander et al., 2006; Zhang and Yang, 2004). The work by 

ETCCDI is  extensively recognized as pioneering, however, the indices only measure one 

feature of extreme events such as frequency, intensity or duration (Perkins, 2015). A 

comprehensive and consistent analysis of heat waves is required, which should consider multi-

characteristics of heat wave events, namely: i) frequency, ii) intensity, iii) duration, and iv) 

spatial extent (Raei et al., 2018). The multi-characteristic heat wave definition method used in 

this study is from a well-known heat wave framework constructed by Alexander and Perkins 

(2013) and includes: a minimum temperature approach, a maximum temperature approach, and 

an excess heat factor (EHF) approach. This framework has proven to be successful in measuring 

historical and future projected heat waves.  
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However, useful public software or tools that identify all the required characteristics of 

heat waves (frequency-intensity-duration-spatial extent) are still rare. Most studies with their 

own tools cannot fully reflect the four characteristics of complex heat wave events (Feron et al., 

2019; Li, 2020; Lyon et al., 2019). By summarizing the classical heat wave definition, an R 

package called heatwaveR was developed, which provides a comprehensive analysis to detect 

and visualize ocean heat waves (Schlegel and Smit, 2017). However, it is inefficient when 

applied to large gridded data products. Global Heatwave and Warm-spell Data Record and 

Analysis Toolbox (GHWR) which is a MATLAB Toolbox allows processing and extracting 

heat wave records for any location efficiently. It not only contains multiple definitions but also 

detects the required multi-characteristics (Raei et al., 2018). However, desktop applications like 

GHWR still have a bottleneck when encountering the challenges related to accessibility of long-

term gridded climate data, data storage and computational requirements. In the current era of 

big spatial and Earth Observation (EO) data, users need to deal with a vast amount of different 

spectral, temporal and spatial resolutions data (Gomes et al., 2020). To meet these demands, 

there is need for novel technologies based on cloud computing to properly extract heat wave 

information in the server side without having to download vast amounts of climate data and 

provide dynamic visualization, extraction and processing of complex heat wave events. Google 

Earth Engine (GEE), a powerful cloud computing geospatial analysis platform, has given 

researchers the opportunity to use big data for petabyte-scale environmental data analysis 

(Gorelick et al., 2017a). 

With the gridded global reanalysed datasets (e.g., Hadley Centre/Global Historical 

Climatology Network (HadGHCND), Climate Prediction Centre (CPC)) and regional 

reanalysis datasets (e.g., The COordinated Regional Downscaling EXperiment (CORDEX), 

Australian Water Availability Project (AWAP)) being freely available, many studies have 

investigated heat waves at various scales (Christidis et al., 2014; Ma et al., 2020; Perkins et al., 

2012). The atmospheric reanalysis datasets are quite useful for gaining understanding in how 

the heat wave will change. Reanalysis datasets are created by data assimilation and numeric 
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models to represent a synthesized estimate of the atmospheric state and provide global scale 

dataset over several decades or longer. One benefit of using reanalysis data is that it extends the 

study to locations without observation records. Another important advantage is that the spatially 

contiguous heat wave regions derived from the reanalysis data have crucial implications for 

heat-related impacts such as exposure of the community to extreme heat wave events and high 

energy demands (Li, 2020; Lyon et al., 2019). However, some heat wave assessments are mostly 

based on climate datasets with relatively coarse resolution which would affect the 

representation of heat waves, resulting in biased conclusions. Furthermore, key processes that 

occur on regional scales may not be adequately simulated. Benefiting from those newly 

reanalysed climate datasets and high spatio-temporal gridded regional climate datasets, our 

analysis will explore how these climate datasets differ in representing heat waves and how the 

methods differ in identifying and characterizing heat waves.  

Increasingly, researchers are becoming less interested in data in the “normal” range and 

more concerned with the ‘abnormal’ and extreme events that are recurrent and unpredictable. 

Extreme value theory (EVT) is the statistical framework that estimates the probability of an 

extreme event occurring in the future (Coles et al., 2001). Because of its importance, many 

public packages and toolboxes over the last decade have been developed to implement various 

methods from EVT (Cheng et al., 2014; Gilleland and Katz, 2016; Heffernan et al., 2016; 

Ribatet et al., 2011). It is clear from much of the literature using gridded observed data and 

projected climate model data at regional and global scales that the probability of extreme heat 

waves will change over time (Alexander and Perkins, 2013; Purich et al., 2014). Recently, 

several studies of the risks of heat wave by means of the EVT have been published (Ma et al., 

2020; Shen et al., 2016; Tanarhte et al., 2015). However, the precise probabilities of intensity, 

frequency and duration of extreme heat wave at a continent scale like Australia over the time 

are still unknown. Meanwhile, the potential impact of climate change on heat wave varies in 

space and time. In this context, we can explore the risk of heat waves in Australia by performing 

non-stationary analysis of extreme heat waves for the past 100 years. 
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In this study, we will develop a multi-method global heat wave data record and analysis 

toolbox (namely heat wave tracker) to process and extract heat wave records from multi-source 

climate datasets. The core algorithms behind the toolbox are based on a general heat wave 

framework which employs three separate heat wave identification methods (daily minimum 

and maximum temperature, and the excess heat factor) and use a fixed threshold as the baseline 

to determine a heat wave event which has at least three days in a row where the threshold is 

exceeded. With our toolbox's computational power in handling long-term high-resolution 

climate datasets, we developed nine extreme heat wave datasets in Australia for extreme heat 

wave value analysis. In addition, we first use non-stationary generalized extreme values method 

to analysis the characteristics of extreme heat wave events in Australia over the past 100 years 

to help adjust policies for climate change adaptation. Finally, we also explore how the 

characteristics of heat waves are projected to change across Australia under future climates.  

4.2 Data and methods 

4.2.1 Earth observation datasets 

SILO is a database of Australian climate data from 1889 to the present hosted by the 

Queensland Department of Environment and Science (DES) 

(https://www.longpaddock.qld.gov.au/silo/). It provides daily climate variables on a 0.05° grid 

across Australia for research, modelling and climate applications. The datasets 

are constructed from observational data obtained from the Australian Bureau of Meteorology 

(BoM). SILO uses a thin plate smoothing spline to interpolate daily climate variables. There is 

some evidence that the data quality of maximum and minimum temperatures corresponds 

strongly to station density, with the largest errors tending to occur where the network of 

observed stations is sparse (Jones et al., 2009).  Currently, SILO data are uploaded into the 

GEE data catalog and maintained by Earth Observation Data Science 

(https://www.eodatascience.com/). 

In addition to using high-resolution interpolated climate data, there have been many studies 

https://www.longpaddock.qld.gov.au/silo/
https://www.eodatascience.com/
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using reanalysed temperature data for heat wave studies, such as the latest fifth generation 

ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysed climate data 

(ERA5) and CPC Global Daily Temperature dataset dating back to 1979 

(https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). ERA5 combines physical 

modelling and data assimilation into a complete hourly-based and consistent dataset. For 

example, minimum and maximum daily air temperature at 2m from EAR5 Daily are calculated 

based on the hourly 2m air temperature data. The ERA5 Daily used in this study were obtained 

within the GEE Data Catalog (https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5_DAILY). CPC Global Daily Temperature dataset 

includes both daily Tmax and Tmin on a 0.5*0.5 grid from 1979 to the present. This product is 

constructed by a combination of two weather station datasets around the world, namely Climate 

Anomaly Monitoring System (CAMS) and Global Historical Climatology Network version 2 

(GCHN). These two datasets together have about 10978 stations around the global, the 

temperatures from which are gridded using Inverse Distance Weighting (IDW) interpolation 

algorithm. In addition, the temperature lapse rate estimated from observation-based global 

reanalysis temperatures are used to make topographical adjustments. Note that observations 

from CAMS and GCHN have less coverage over central Australia and good coverage over USA, 

Europe, and China. The lack of accuracy from the sparse density of observation stations would 

impact the identification of heat wave events. In this study, CPC dataset netCDF4 files have 

been transformed into GeoTIFFs format using R scripts and uploaded into the GEE Catalogue 

for further analysis.   

For projection periods (2006-2100), Coupled Model Intercomparison Project Phase 5 

(CMIP5) that have daily maximum and minimum temperature from the historical experiment 

and two representative concentration pathway (RCP) experiments (RCP4.5 and RCP8.5) are 

analysed in this study. Within the GEE data catalog, the NASA NEX dataset contains daily 

downscaled projections of 21 GCMs under the CMIP5 across two greenhouse gas emissions 

scenarios (https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-GDDP). 

https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
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CMIP5 reference periods (1975-2005) and projection periods (2006-2100) which contain daily 

maximum and minimum temperature are used to construct multi-model mean composites for 

summer heat wave under two RCP emission scenarios. 

Table 4-1 Datasets used in this study 

Dataset Name Spatial Resolution Time Period Data Source 

SILO 0.05*0.05 1920-2020, daily EO Data Science 

(GEE) 

ERA5 0.25*0.25 1979-2020, daily ECMWF 

reanalysis climate 

data (GEE) 

CPC 0.5*0.5 1979-2020, daily CPC global 

temperature 

(NOAA)  

CMIP5 0.25*0.25 1950-2099, daily NASA NEX-

GDDP (GEE) 

 

4.2.2 Heat wave indices 

The core algorithms behind the toolbox are based on a general heat wave framework which 

employs three separate heat wave identification methods (daily minimum and maximum 

temperature, and the excess heat factor) and use the fixed and dynamic thresholds as the 

baseline to determine a heat wave event which has at least three days in a row where the 

threshold is exceeded. From a climatological perspective, heat wave indices with absolute 

thresholds such as ETCCDI may only be suitable when studying heat waves in a small region 

where a single climate regime exists. However, for large regional or continental studies like 

Australia where a broad range of climates exist, three separate heat wave identification methods 

used in this study can be readily calculated from climatological data is more applicable for 

representing heat wave occurrence across multiple climates. Of which, EHF is not only more 

sensitive than other heat wave indices in measuring heat waves, but is also the official definition 

used Australia-wide (Alexander and Perkins, 2013; Nairn and Fawcett, 2015). For each grid 



 

75 

 

point, three heat wave indices were calculated for the Australian warm season from November 

2018 to March 2019. These indices include:  

1) TX90pct—The 90th percentile of Tmax in calendar day based on a centered 15-day window 

(i.e., 7 days after and before a calendar day). The thresholds are calculated for each time period 

and grid point separately. The unit of TX90pct is °C. 

2) TN90pct—The 90th percentile of Tmin in calendar day, same time period and unit as Tmax. 

3) Excess heat factor (EHF) – EHF is a product of two metrics based on Tmean: EHIsig and 

EHIaccl; The first index is denoted as ‘significance’ (EHIsig) and determines how extreme the 

temperature conditions are by comparing the previous 3-day mean with climatology (the 95th 

percentile of the daily mean temperature calculated over the period of reference) (Equation (1)); 

The second index is a measure of acclimatization (EHIaccl) and the difference of the 3-day mean 

to the previous 30-day mean (Equation (2)). With this second index, heat stress is only likely to 

occur in summer. From Fig. 1, the threshold 0 means the unusual 3-day mean temperature is 

above the 95th percentile of the average temperature over a fixed climatological period. EHF 

can also be defined as EHF = | EHIaccl | × EHIsig, which means EHIaccl acts as an 

amplification term on EHIsig, thus EHF can be negative. 

EHIsig= [(Τ𝑖 + Τ𝑖−1 + Τ𝑖−2)/3]-Τ95                                             (1)                                                                                                                     

EHIaccl = [(Τ𝑖 + Τ𝑖−1 + Τ𝑖−2)/3]- [(Τ𝑖−3 + ⋯ + Τ𝑖−32)/30]                          (2)                                                    

EHF = EHIsig * max [1, EHIaccl]                                                (3)                                                                                        

For heat wave identification method based on daily mean temperature, heat wave represented 

as excess heat factor (EHF) is a product of two metrics: EHIsig and EHIaccl. So, the unit of 

heat wave is given in °C2. However, for heat wave identification method based on daily 

minimum and maximum temperature, heat wave is defined as a spell of at least three 

consecutive days with daily minimum and maximum temperature exceeding the local 90th 

percentile of a centered 15-day of window. Therefore, the unit of heat wave is given in °C. 
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Further to these three indices, we used a multi-aspect framework to represent heat wave 

characteristics including:  

(1) Heat Wave Number (HWN) - the total number of discrete heat wave events; 

(2) Heat Wave Duration (HWD) - the length of the longest heat wave event; 

(3) Heat Wave Frequency (HWF) - the sum of days satisfying positive EHF; 

(4) Heat Wave Amplitude (HWA) – the peak magnitudes (the highest value of the heat wave in 

a season); 

(5) Heat Wave Magnitude (HWM) – the mean magnitudes (average magnitude across all heat 

waves);  

Among them, HWM and HWA are measures of heat wave intensity, while HWD, HWF and 

HWN are measures of heat wave longevity. 

 

Figure 4-1 An example schematic of indices used to define heat wave-EHF. Short duration heat 

spikes less than three days in a row are not heat waves. In this figure the green line is the 

threshold and black line is the EHF. There are four discrete events including red and pink heat 

spikes (HWN); the highest red heat spikes is the heat wave amplitude (HWA); the length of the 

longest event is also the red heat spikes (HWD); the average heat wave magnitude is the average 
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magnitude across four events (HWM); and the sum of four heat wave events that above the 

threshold is HWF. The five indices in the figure are calculated for each season and annually. 

4.2.3 Non-stationary generalized extreme value analysis 

Extreme value theory (EVT) has a rigorous framework for analysis of climate extremes and 

their return levels (Coles et al., 2001). Generalized extreme value (GEV) distribution is a 

combination of three limiting distributions: Gumbel, Fréchet, or Weibull comes from the limit 

theorems for block maxima/minima or annual maxima/minima (Katz, 2010). A variety of 

studies apply the GEV to analyze climatic extremes. This technique is often referred to as the 

block maxima approach. Another form of the EVT is known as the peak-over-threshold (POT) 

approach, in which extreme values above a high threshold are analyzed using a generalized 

Pareto distribution. Both block maxima approach and POT are widely applied in studying 

climatic extreme events. The cumulative distribution function of the GEV can be expressed as: 

𝜓(𝑥) = {− (1 + 𝜉 (
𝑥−𝜇

𝜎
))

−1

𝜉
} ,  (1 + 𝜉 (

𝑥−𝜇

𝜎
)) > 0                                (4) 

The GEV distribution has three distribution parameters 𝜃 = (𝜇, 𝜎, 𝜉) : (1) the location 

parameter (𝜇) determines the center of the distribution; (2) the scale parameter (𝜎) specifies 

deviations around 𝜇; and (3) the shape parameter (𝜉) governs the tail behavior of the GEV 

distribution. For 𝜉 > 0, 𝜉 → 0, and 𝜉 < 0 leads to Frechet distributions, Gumbel distribution 

and Weibull distribution, respectively. 

The extreme value theory for stationary random sequences has been extensively studied. In this 

study, a stationarity process assumes no change to extreme’s properties while a non-stationary 

process is time-dependent, and the properties of the distribution would change in the future. 

The location parameter is assumed to be a linear function of time to account for non-stationarity, 

while keeping the other two parameters constant: 

𝜇(𝑡)=𝜇1𝑡 + 𝜇0                                                             (5) 

where t is the time (in years), and 𝛽 = (𝜇1, 𝜇0, 𝜎, 𝜉)  are the parameters. In this study, a 
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practical package named Non-stationary Extreme Value Analysis (NEVA) Matlab package was 

introduced for assessing extremes in a changing climate. NEVA offers a framework for 

performing non-stationary analysis of extremes and provides non-stationary effective return 

levels with t-year return period, and risks of climatic extremes using Bayesian inference and 

also includes simulated ensembles with upper bound and lower bound (Cheng et al., 2014).  

This study estimated extremes heat wave metrics based on non-stationary Maximum 

Likelihood Estimators. Here, from the long term (1920-2019) time series of heat wave 

magnitudes, non-stationary GEV was fitted together with the standard error using R package 

Introduction to Statistical Modeling of Extreme Values (ismev). We kept the scale and shape 

parameters constant, while the location parameters were calculated from the regression 

parameters (𝜇1 , 𝜇0 ) of Equation (5) at the median of the corresponding time period. For 

example, the median of the corresponding time was 1970 over the period 1920-2019. For the 

sub-time periods (1980-2019), the estimation for the non-stationary GEV distribution is similar. 

4.2.4 Online heat wave measurement under a framework 

The heat wave tracker is to facilitate the exploitation of the up-to-date climate data described 

in Table 1 by providing users a multi-characteristic and multi-source heat wave measurement 

toolkit. The entire process of heat wave measurement at a continental scale is shown in Figure 

4-2. The required inputs for our online system include the historical climate data and their future 

projection. With long time series of climate data, two separate methods were used to calculate 

fixed and dynamic thresholds. The fixed thresholds are calculated by the 95th percentile of a 

fix reference period. The dynamic thresholds are based on the 90th percentile of a temporal 

moving window. Three separate heat wave indices were then used to determine the heat wave 

characteristics. The core algorithm contains five iterations, three band math operations and two 

spatial operations to retrieve five heat wave characteristics at each grid. The first iteration was 

to do an accumulation of the number of positive values of heat wave indices. The second and 

third iteration were combined to detect heat wave events, defined as a spell of at least three 

consecutive days with values of heat wave indices exceeding the threshold. The fourth iteration 
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was used to find the end point of each heat wave events. The fifth iteration was used to 

accumulate the positive values of heat wave indices. Based on those extreme value analyses 

and heat wave characteristics database, we created an online heat wave tracker app for public 

users. 

 

Figure 4-2 The online implementation of heat wave tracker toolkit based on Google Earth 

Engine, using a framework enables climate data integration for heat wave measurement at a 

continental scale. 

4.3 Results 

4.3.1 Heat Wave Tracker 

Heat wave tracker is a user-friendly web tool we developed in Google Earth Engine (GEE). 

The temperature datasets and heat wave definition outlined above are integrated into this online 

software tool to study heat waves in Australia. The first step is to pre-define the temperature 

above a certain threshold and pre-process the corresponding five-month long heat wave records. 
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More precisely, thresholds from the reference period of SILO data (1960-1990) and the 

reference of ERA5 data (1979-1999) were calculated beforehand. Then, the multi-source heat 

wave record datasets (e.g., heat wave records between 1990-2019 are from SILO, 2000-2019 

are from ERA5, 2000-2019 are from CPC, 2030-2099 are from CIMP5) using multi-method 

are generated and stored in GEE cloud data catalog for further visualization analysis to decrease 

processing times. Subsequent steps are performed in the graphical user interface (GUI), the 

users can define the point of interest and select the year, data type, heat wave identification 

method and run the program. Then the tool will plot several figures displaying the time-series 

of heat wave records and five heat wave metrics maps (HWN, HWD, HWF, HWM, HWA). The 

information can also be exported (e.g., CSV files) for further analysis. In such a case, analysis-

ready heat wave records prove to be a practical and economical way for real-time and human-

interactive visualization. Heat wave tracker is freely available from the authors for educational 

and academic purposes at https://github.com/geogismx/Heatwavetracker. The online tool is 

publicly available at https://tensorflow.users.earthengine.app/view/heat-wave-tracker. While 

we have focused on the heat waves of Australia, users can also define their own research area 

and produce their heat wave outcomes. For example, users can even use the tool to evaluate the 

global heat wave with ERA5 datasets. 

4.3.2 How do the datasets differ in representing heat waves? 

Despite the use of the same heat wave definition (EHF), different temperature datasets may 

provide different heat wave metric maps. It relates to the issues of spatial resolution, 

instrumentation and data quality. An example of the spatial variation from different climate 

datasets for heat wave metrics identification is given in Figure 4-2, which shows the heat waves 

across Australia in 2018-2019 (over the period of November-December-January-February-

March) from SILO gridded datasets, ERA5 reanalysis datasets and CPC Australia daily 

temperature datasets.  Generally, climate datasets with a high spatial resolution are much 

smoother than those with lower spatial resolution.  

Each heat wave metric between the three datasets shows similar data range on the color 

https://github.com/geogismx/Heatwavetracker
https://tensorflow.users.earthengine.app/view/heat-wave-tracker
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scale. However, the contiguous spatial distribution clearly differs between the three datasets.  

Specifically, the extreme HWA for each dataset all occur over southern Australia while northern 

Australia does not experience extreme heat waves. HWA can increase up to 80°C2 in the 

northwest of NSW. In ERA5, larger HWA values are more confined to lower elevations of 

southern Australia, whilst HWA in SILO and CPC also appear in the central areas. Similar to 

HWA, the spatial pattern of HWM is mainly centered around the south coast and northwest of 

NSW. However, the anomalous red spots of HWM in CPC may be caused by the coarse 

resolution. It is interesting to note that the HWF and the HWN are similar but do not always 

overlap. From these three datasets, we can see that the HWF and HWN are located in north 

western and southeast Australia. We also find that HWN from CPC can reach up to 12 times 

per year and is about two times larger than that from SILO and ERA5, implying that caution 

should exert when using CPC. The HWF has some influences on HWD, which means the extent 

of HWD almost falls in the regions of HWF. 

Since local scale differences cannot be detected by simple visualization or in cell by cell 

comparison, we used a map comparison method named the structural similarity index (SSI) to 

identify local differences in terms of mean, variance and covariance between two maps (Islam 

et al., 2020; Jones et al., 2016; Wiederholt et al., 2019). Based on the global average value of 

the SSI metric, we try to provide a quantitative analysis of which climate data set is more 

reliable with respect to five aspects—HWA, HWD, HWF, HWM, HWN. From Table 2, we can 

see that the similarities between three gridded datasets in terms of five aspects are quite different. 

There is strong similarity between ERA5 and SILO (0.78) in HWA. The SSI between CPC and 

ERA5 in HWA is similar (0.68) but weaker for SILO (0.67). The strong level of SSI between 

ERA5 and SILO  (0.77) is also found in HWD, while ERA5 and CPC has a similarity of 0.67, 

the weakest similarity of 0.66 is from SILO and CPC. The occurrence-based aspects like HWF 

and HWD lead to reduced similarity. The weaker similarity in HWN exists between three 

climate datasets, but the SSI between CPC and ERA5 is better (0.56) than CPC and SILO (0.55). 

Overall, it suggests that ERA5 is the most reliable climate dataset. 



 

82 

 

 

Figure 4-3 Examples of heat wave aspects derived from three different climate datasets in 2018 

Table 4-2 Structural similarity index between different heat wave characteristics from three 

climate datasets. 

Heat Wave 

Characteristics 
ERA5_SILO ERA5_CPC SILO_CPC 

Global SSIHWA 0.78 0.68 0.67 

Global SSIHWD 0.77 0.67 0.66 

Global SSIHWF 0.71 0.59 0.58 
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Global SSIHWM 0.76 0.74 0.69 

Global SSIHWN 0.59 0.56 0.55 

4.3.3 How do the methods differ in identifying and characterising heat waves? 

Five heat wave metrics for each method here are defined by ERA5 (seen in Figure 4-3). 

HWA measured by EHF (°C2) tend to be higher than HWA (Tmax, °C) and HWA (Tmin, °C) 

due to the different units. Regions that display the higher values in HWA (Tmax) and HWA 

(Tmin) are very similar, mostly located in the southeast and central Australia. While the EHF-

based HWA not only shows higher values in the southeast but also along the coastal regions of 

South Australia and Victoria. The extreme HWA by EHF all exists in the southward of 20°S. In 

contrast, HWA is not as large as expected in the northern tropical area. As HWM and HWA are 

related to heat wave intensity, their spatial patterns are largely similar. For those heat wave 

aspects (HWD, HWF) related to longevity in different ways, HWD and HWF defined by Tmax 

and Tmin are similar in spatial structure, which are centered in northwestern Australia and in 

eastern Australia. However, the lengths of HWD and HWF from Tmax and Tmin are about two 

times higher than HWD and HWF from EHF. Compared to northwestern Australia, HWF (EHF) 

is shorter at 60 days. Conversely to HWD and HWF, HWN produces different results in 

northwestern and eastern Australia where there are larger HWN variations from the EHF 

method. Figure 4-4 shows that the EHF based method identify four distinct heat wave events, 

while TX90 based method detects nine heat wave events and TN90 based method finds three 

heat wave events. The EHF method can combine the characteristics of both TX90 and TN90. 
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Figure 4-4 Examples of heat wave aspects of ERA5 from three different methods in 2018 
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Figure 4-5 Distinct heat wave events derived from time series with EHF, TN90 and TX90 at 

the same point of southeastern Australia. 

4.3.4 How does the heat wave risk change in recent climates? 

To explore the heat wave risk in recent climates, the average values of HWA (the highest 

value of the heat wave in a season) over Australia for the past 100 years were used. Non-

stationary return levels based on HWA versus the time covariate across the whole continent are 

generated by NEVA. As shown in Figure 4-5(a), the effective return levels vary over time 

indicating return level should be chosen for years to have the same probability of occurrence. 

For example, the effective return level (HWA) corresponding to a 25-year event during 1920-

1944 is 37°C2; the effective return level for a once-in-50-year event (1920-1969) should be 45°

C2 and the effective return level for a 100-year period (1920-2019) is 60°C2. In Figure 4-5(a), 

we also observe that there is a strong upward trend (p < 0.005) for HWA over Australia during 

the 1920-2019 period. This suggests that heat wave amplitude was increasing under climate 

change. Figure 4-5(b) compares the probability density functions (PDF) of the HWA under two 

different time intervals (1920-2020, 1980-2020). We find that there is an obvious warming shift 
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of PDFs of the HWA during 1920-2020 compared with that during 1980-2020. This is consistent 

with the observed increasing trend in 4-5(a). In addition, the warm tail of the PDFs for the 

period of 1980-2019 is greater than that of 1920-2019 implying that extreme heat events have 

much higher probability with effects of climate change. We also find that the 2019 heat wave 

event is not rare (> 10-year effective return levels, 4-5(a)), with the PDF observed in 2019 for 

the 1980-2020 higher than that for the 1920-2020 as shown in Figure 4-5(b). From the long-

term (1920-2019) and the short-term (1980-2019) time series of HWA, GEV fits are estimated 

together with the corresponding ±1.96 standard error for a 95% confidence interval in Figure 

4-5(c), it denotes that the 2019 heat wave (HWA is 45.6 °C2) has a lower probability of 

occurrence over 1920-2020 climate and a higher probability over 1980-2020 climate (> 10-year 

return periods for GEV fit 1980-2020, Figure 4-5(c)). 
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Figure 4-6 (a) Effective return level under the non-stationary assumption with mean HWA 

value from the continental Australia. (b) The probability density functions (PDF) of HWA under 

1920-2019 and 1980-2019. (c) Return period of HWA over Australia. The distributions are fit 

with non-stationary GEV for the climates of 1920-2019 (red), 1980-2019 (blue). 

4.3.5 How does the heat wave risk change under future climate conditions? 

Figure 4-6 shows the near-future (2030-2060) and far-future (2069-2099) projected HWA 

using CMIP5 GCM datasets under two emissions scenarios compared with the 1976-2006 

climate. Overall, HWA is projected to increase significantly during the two future periods and 

a larger fraction of southern Australia is projected to experience more extreme heat wave events. 

 

   

(a) 

(b) (c) 
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We also see that the average HWA derived from CMIP5 multi-GCM ensemble mean ranges 

from 0-10 °C2, and HWA decreases equatorward to ~3 °C2 in the northern Australia. Under the 

two future periods of RCP4.5, the spatial extent of HWA mainly aggregates in the southern 

Australia. Compared with HWA in the near-future, HWA in the far-future expands from 

southeast to western and central Australia. Under the two future periods of RCP8.5, HWA not 

only increases its intensity but also expands from south to north. As expected, the change in 

HWA from RCP8.5 is more extreme than that from RCP4.5, indicating that greenhouse 

warming strongly amplifies the amplitude of heat wave events. Figure 4-7 shows the 

characteristic of HWD changes in the two future periods with different emission scenarios. The 

patterns of change for HWD are opposite to the change for HWA; northern Australia shows 

significant increases and southern Australia experience a moderate increase. In the far-future 

period of RCP4.5, we also note that HWD shows a stronger increase in western coastal areas 

and in northern tropical Australia, with HWD across northern tropical area reaching ~120 days. 

Again, in the far-future period of RCP8.5, HWD represents an amplification of the RCP4.5 

pattern, that is, the duration of heat waves is much stronger than for RCP4.5. This indicates that 

the duration of southern Australia heat waves is not as sensitive to warming as those in northern 

Australia, largely due to the southern regions being associated with anticyclones and cold fronts. 
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Figure 4-7 Near-future (2020–2039) and Far-future (2069-2099) projected climatology for heat 

wave amplitude obtained from the CMIP5 multi-GCM ensemble 

 

Figure 4-8 Near-future (2020–2039) and Far-future (2069-2099) projected climatology for heat 

wave duration obtained from the CMIP5 multi-GCM ensemble 
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4.4 Discussion 

4.4.1 Model Comparison 

To evaluate the performance of our model, we made a comparison with GHWR toolbox 

(https://github.com/mojtabasadegh/Global_Heatwave_and_Warm_Spell_Toolbox). For the 

comparison, the CPC datasets during a period of 1979 to 2019 were used to model heat wave 

metrics. Both software toolboxes apply EHF-based method to measure the heat wave metrics. 

Note that the definition of EHF is composed of the previous three-day mean and the previous 

thirty-day mean. The threshold of the 95th percentile of Tmean was calculated based on the 20 

years period (1979 to 2009). Two 2018 heat wave indices are obtained from two different 

software packages (Figure 4-8). We can see that the spatial pattern of HWD from our model is 

consistent with that of GHWR. However, the comparison of HWM shows large difference in 

spatial patterns. Based on the HWM results of Alexander and Perkins (2013), the HWM of the 

northern Australia are no more than 12, as the tropical climate imposes less diurnal and seasonal 

variation in temperature than that in southern Australia. In contrast, the higher HWM values 

tends to occur in southern Australia and experience higher average peak values. Argüeso et al. 

(2015) reported higher HWM values towards the south-west of NSW and lower HWM values 

to the north coast of NSW, is consistent with the spatial pattern from our model. We also note 

that the HWM from GHWR (3-day average) has a similar spatial pattern similar to that of HWM 

from Argüeso et al. (2015), i.e., the highest values of HWM are found in the north-west corner 

and the lowest values in the mountains of the south. It means that the heat wave metrics from 

our model are consistent with the original definition of Alexander and Perkins (2013). 

https://github.com/mojtabasadegh/Global_Heatwave_and_Warm_Spell_Toolbox
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Figure 4-9 Heat wave metrics comparison between HWT and GHWR software tools 

4.4.2 Heat wave threshold 

The CMIP5 multi-GCM ensemble mean projects that longer summer heat waves will occur 

in northern Australia and hotter heat wave events will increase for southern Australia in the late 

twenty-first century, with more extreme change in the higher emission scenario RCP8.5 than 

for the lower emission scenario RCP4.5. The results reveal that the hottest heat waves will 

increase in southern Australia, which may account for the increasing trend of severe summer 

bushfires occurring in southeast Australia. Despite the different heat wave definitions and 25-

member ensemble mean, our model results are consistent with the results from Purich et al. 

(2014). However, possibly due to the coarse resolution of the HWD from Purich et al. (2014), 

trends over Tasmania (an island state) are opposite to the overall pattern of change. While the 

patterns of change in Tasmania are consistent with the changes in other continental states, it 

means that our HWD results show promise in simulating fine-scale projections without using 

downscaling techniques.  

Future extreme heat waves in our study are defined relative to a historical reference period, 
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we find a substantial increase in amplitude, duration and extent in both near-future and far-

future periods (seen in Fig.6, Fig.7). For example, the duration of heat waves can even last over 

the entire warm season in some areas, which amounts to 152 days. The amplitude of heat waves 

significantly increases over southern Australia. Such results are not surprising and are in line 

with other findings (Lyon et al., 2019; Perkins-Kirkpatrick and Gibson, 2017). However, the 

sensitivity of heat waves to different heat wave thresholds was not explored. Vogel et al. (2020) 

identified future heat waves with different heat wave thresholds: fixed, seasonally moving and 

fully moving, where fixed thresholds are based on hot days  relative to a historical baseline; 

seasonal and fully moving thresholds are defined by hot days relative to  future conditions. 

They find that using fixed thresholds might overestimate future heat waves, while using 

seasonal and fully moving threshold results in little or no changes in future heat wave metrics. 

To better estimate heat wave characteristics and risk in a warming world, it would be useful to 

adopt varying heat wave thresholds for future spatiotemporal heat wave studies. 

4.4.3 Future needs 

For this study, we use the 5-km SILO gridded climate data, reanalysed data (25 km, 50 km) 

to estimate the heat wave at a large scale. However, those climate datasets do not take into 

account the smaller scale temperature variations, that is, the weather stations used to produce 

the gridded climate data were too sparse to record fine scale variations in extreme temperatures. 

For example, we find that the gridded climate data have relatively coarse spatial resolutions and 

cannot meet the need of monitoring heat wave variances in complex settings, and the heat wave 

maps are generally distributed evenly over urban heat islands. Furthermore, the location of most 

weather stations is away from building areas and the associated heat islands where extreme heat 

waves pose the greatest risk to human health. This issue can be at least partially resolved by 

using satellite thermal infrared sensing method to monitor and analyse heat waves at a local 

scale.  

The proliferation of land surface temperature (LST) products offers an opportunity to study 

the characteristics of extreme heat waves at the community scale and give insight into urban 
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heat wave planning and the prevention of heat-related mortality. For example, MODIS LSTs 

have higher spatial resolution (1 km) and temporal resolution (four passes per day). MODIS 

LSTs provide the maximum and minimum products for the 20 years back to March 5th, 2000, 

which could be a valuable resource to capture extreme heat waves and for regional and local 

scale heat wave research. However, it is difficult to map LST accurately as the temperature are 

very variable and could be affected by climate factors like clouds and wind (Venter et al., 2020). 

Compared to daily satellite data from MODIS (four passes a day), Himwari-8 data provides 

real time data at 10-minute intervals, but the spatial resolution is 2 km which is also suitable to 

conduct regional studies. The high temporal resolution of Himawari-8 can show the diurnal 

characteristics of extreme heat waves on urban heat waves. Despite the limitations of the 

relatively short time period (from 2015 to present) of the historical data archive of Himawari-

8, a combination of MODIS LST and Himawari-8 LST offers a better solution for obtaining a 

higher spatial resolution while maintaining a higher temporal resolution, which is extremely 

useful for characterizing the heat wave characteristics and investigating the relationship 

between heat waves, land cover and population. 

The health or agriculture impacts of heat waves are not only related with temperature 

measurements, but  also affected by some additional factors. For example, health effects are 

associated with factors including perceived temperature, solar radiation, relative humidity, wind, 

while for agriculture, the parallel occurrence of droughts is highly relevant. Due to the problems 

of short time spans, inconsistency, and biases, these additional measurements have limitations 

on precisely capturing spatio-temporal pattern of heat wave impacts. The reason why we choose 

temperature-based heat wave definition is because it can be calculated from readily available 

climatological data and provides information on various aspects of heat waves. In other words, 

the choice of temperature rather than other measures is based on their feasibility across varying 

climates on long-term scales. Further, the availability of long-term temperature datasets at finer 

spatial scales can greatly improve our understanding of heat wave. We concur that the heat 

wave definitions directly rely on the critical temperature thresholds. However, there is no 
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universal temperature threshold for health impacts because of regional variability of health 

status, socio-economic factors, and demographic factors (Alexander and Perkins, 2013). This 

impact  also exists in agriculture due to varying regional patterns of plant species and 

physiology. Therefore, a given threshold suitable in a small region may not be applicable to a 

continental study like ours. Fischer and Schär (2010) explored health-related heat wave indices 

in three health factors: heat wave duration, minimum temperature, and relative humidity. Our 

study also quantified the heat wave duration, minimum temperature-based heat wave indices. 

A combined calculation of temperature and humidity will be considered in our future study. 

4.5 Conclusion 

We have developed a heat wave toolbox that has the ability to estimate past, current and 

future changes in heat waves at a continental scale. It uses a well-known heat wave framework 

constructed by Alexander and Perkins (2013) and considers intensity, frequency, magnitude,  

duration and areal extent to explore the spatio-temporal evolution of heat wave severity and 

coverage. This study is the first attempt to estimate heat wave events across Australia using 

high spatio-temporal climate datasets. With these heat wave aspects from multi-source data and 

different methods, we were able to investigate the effects of scales, data quality and definition. 

We find that ERA5 datasets are the best in characterizing the heat wave events.  In exploring 

the role of different methods on the identification of heat waves, we find that heatwave 

characteristics based on the Excess Heat Factor index provide more details on heatwave 

changes.  

With the past 100 years of heat wave datasets, the HWA average mean values were 

calculated and used to estimate non-stationary return levels and return periods. We find that 

extreme heat wave events have much higher probability due to the effects of climate change. 

The heat wave event in 2019 may be more frequent in the coming decades. For the climate by 

the end of century, using heat wave metrics derived from a multi-model ensemble mean,  we  

predict HWA to increase significantly during the two future periods and a larger fraction of 

southern Australia is projected to experience more extreme heat wave events. Furthermore, the 
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patterns of change for HWD are opposite to those for HWA; northern Australia shows 

significant increases and southern Australia experience a moderate increase. The methodology 

and the cloud computing-based toolbox (HWT) is useful for dynamic visualization, extraction, 

and processing of complex heat wave events, and applicable anywhere in the world. 
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Chapter 5. New assessment of water and wind erosion for Australia 2000-

2020 

 

This chapter is based on the following manuscript: 

Zhang, M., Yang, X., Leys, J., Gray J., Zhu, Q., Yu, Q. (2021). The first combined water and 

wind erosion assessment for Australia ¬2000-2020 (Ready submission for Catena). 

 

Abstract 

Soil erosion caused by water and wind is a complex natural process that has been 

accelerated by human activity. This erosion has resulted in increasing areas of land degradation 

which threaten the productive potential of landscapes. Consistent and continuous erosion 

monitoring will help identify the trends, magnitude, and location of soil erosion. This 

information can then be used to evaluate the impact of land management practices and inform 

programs that aim to improve soil condition. We apply the Revised Universal Soil Loss 

Equation (RUSLE), Revised Wind Erosion Equation (RWEQ), and an albedo-based wind 

erosion model to simulate water and wind erosion dynamics. With the advent of new or 

improved earth observation big data, monthly and annual water, and wind erosion estimates at 

high spatial resolution are produced for Australia from 2000 to 2020. We also evaluate the 

performance of three gridded precipitation products for rainfall erosivity estimates using 

ground-based rainfall. For model validation, water erosion products are compared with existing 

products and wind erosion results are also compared with other models. 

Key words: Soil erosion, water and wind erosion, Earth Observation, Google Earth Engine 
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5.1 Introduction 

Soil erosion is a major threat to sustainability of agriculture (Borrelli et al., 2017; FAO, 

2015). Under changing land use and climate, soil erosion from water and wind has accelerated 

with resulting economic, social, and environmental implications, both on-site and off-site 

(Telles et al., 2013). On-site, water and wind erosion causes the loss of soil, nutrients and 

organic matter that results in decreased soil fertility and land productivity (Zhang et al., 2019). 

The reduced productivity of farmland means that about 10 million ha of cropland worldwide is 

abandoned yearly due to soil erosion(Chappell et al., 2019; Faeth, 1994). This further leads to 

reduce the social viability and population levels in rural communities, influencing long-term 

sustainable regional development. The subsequent sedimentation and nutrient loss may also 

cause off-site environmental, air (Middleton, 2019) and water quality degradations.  

In Australia, for example, the assessment Bui et al. (2010) concluded that soil erosion in 

Australian cropping regions was occurring at unsustainable rates and has a critical impact on 

agricultural productivity. Environmental impacts of excessive sedimentation and nutrient 

delivery on inland waters, estuaries and coasts are already occurring. The net median erosion 

rate in cultivated regions is estimated 1.26 Mg ha-1 yr-1 (Chappell et al., 2011), and 7% of 

Australia had soil losses of more than 1 Mg ha-1 yr-1. It also should be noted that Australia is 

the most fire-prone regions of the world. Wildfire related water erosion in Australia is 

responsible for reef deterioration, roads damage, river pollutants (Yang et al., 2020). In addition, 

wind erosion from arid and semi-arid areas of Australia severely affects the air quality in the 

coastal zone where most Australians live (Leys et al., 2011). Since 2000, the millennium 

drought and mega-fires in Australia also prompt the urgent need to revisit soil erosion dynamics 

to provide a more contemporary view of water and wind erosion trends. 

Over the last century, extensive studies have been conducted to estimate soil erosion using 

various monitoring and modelling approaches. From the perspective of representation of soil 

erosion, water and wind erosion models are classified into three groups viz. Empirical, 

Processed-based, and machine learning models (Jarrah et al., 2020; Karydas et al., 2014). Each 
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of these models has found its niche for different reasons. Empirical water erosion model like 

RUSLE is relatively easy to parameterize. Its simplicity enables the handling of large datasets 

and computation, making its attractive for large-scale land degradation assessments. Process-

based water erosion models like Water Erosion Prediction Project (WEPP) and Griffith 

University Erosion System Template (GUEST) can gain insights to the space-time evolution of 

soil erosion process involved (Laflen et al., 1997; Yu and Rose, 1999). However, the non-linear 

and physical parameters of processed-based models need to be calibrated by many input 

observations, and it is hard to apply over large areas. In recent years, large and abundant Earth 

Observation (EO) datasets are becoming public available to scientists. Rather than using 

traditional models, big data-based machine-learning (ML) methods (like SVM, RF, ANN) have 

been successfully used for landslides, debris flows, and gully erosion (Rahmati et al., 2017). 

While water erosion models were initially developed in agricultural area, wind erosion models 

have mainly applied in drylands where dust originates. To monitor the wind erosion hazard at 

high spatio-temporal resolution, empirical models like RWEQ, and process-based models like 

Single-Event Wind Erosion Evaluation Program (SWEEP) and albedo-based model have been 

developed to assess the spatial and temporal patterns in erosion dynamics with numerous 

landscapes (Chappell and Webb, 2016; Fryrear et al., 2000; Tatarko et al., 2019). Commonly 

used RWEQ model has a capability to consider the impacts of weather, soil, vegetation, and 

roughness factors on the rate of soil loss (Zhang et al., 2019). Chappell et al. (2018) 

demonstrated that albedo-based approximation of aerodynamic sheltering could improve wind 

erosion estimation over large area.  

Due to its simple linear equation form, the RUSLE water erosion model has been applied 

to estimate the potential global soil erosion under the land use and climate change (Borrelli et 

al., 2020). Similar to RUSLE, the limited need for observation data as well as the acceptable 

prediction performances makes RWEQ model an ideal tool for large-scale wind erosion 

prediction (Borrelli et al., 2016; Pi et al., 2017; Youssef et al., 2012). Teng et al. (2016) was 

among the first who assimilated the latest big EO datasets to improve the soil loss estimation 
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over the continent of Australia. For example, Teng et al. (2016) simply allocated cover factor 

(C) of RUSLE to each land cover type using the Dynamic Land Cover Dataset (DLCD) (Yang, 

2020). McKenzie et al. (2017) recommend using fractional vegetation cover to replace the 

DLCD to estimate C factor across Australia. The big advantage of fractional cover is that is 

dynamic, changing monthly, and represents the outcome of land management practices. In 

addition, rainfall erosivity (R) in Teng’s method is estimated using the Tropical Rainfall 

Measuring Mission (TRMM), however, Atiqul Islam et al. (2020) showed that the Global 

Precipitation Measurement (GPM) performed the best for satellite precipitation estimation in 

terms of local mean, variance, and covariance for Australia. Therefore, the comparison of 

different precipitation products for soil erosion modelling across Australia is still essential. 

Jiang et al. (2019) applied RUSLE and RWEQ model to assess the soil erosion dynamics in 

China’s Loess Plateau. It is still a challenge to apply both water and wind erosion to large area 

and the applications of these commonly used models in predicting water and wind erosion 

across Australia has not been undertaken.  

In this study, we aimed to i) parameterise the RUSLE, RWEQ model using the latest earth 

observation datasets (GPM, SRTM, MODIS Fractional Cover and Albedo products) and digital 

soil mapping methods; ii) evaluate rainfall erosivity from three different satellite precipitation 

products and validate with ground-based rainfall erosivity; iii) estimate monthly and annual soil 

loss by water and wind across Australia from 2000 to 2020; iv) assess and compare RWEQ-

based wind erosion results with that from the albedo-based wind erosion model. 

5.2 Data and methods 

5.2.1 Earth Observation and Soil Datasets 

In this study, EO datasets from multiple sources were collected to model water and wind 

erosion, Table 5-1 provides information about these datasets. Both the ground-based and 

reanalysis climate datasets were used. SILO is a database of Australian climate data from 1889 

to the present hosted by the Queensland Department of Environment and Science (DES) 
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(https://www.longpaddock.qld.gov.au/silo/). It provides daily climate variables on a 0.05° grid 

across Australia for research, modelling and climate applications. Currently, SILO data are 

uploaded into GEE Data Catalogue and maintained by EO Data Science, available online 

(https://www.eodatascience.com/). In SILO, rainfall datasets have a spatial resolution of 5 km. 

Satellite-based rainfall datasets are also used for rainfall erosivity estimates. The TRMM 34B2 

product contains TRMM-adjusted precipitation (mm/hr) and are available at 0.25° spatial 

resolution and 3-hourly temporal resolution. Compared with TRMM precipitation, GPM has 

the same temporal resolution as TRMM, but a different spatial resolution of 0.1° and is more 

sensitive to light rainfall. For reanalysis climate data used in this study, Global Land Data 

Assimilation System (GLDAS) is an important global-scale data source for land surface states 

and flux (e.g., soil moisture and wind speed), with the spatial resolution of 0.25° and the 

temporal resolution of 3-hourly (Rodell et al. (2004b). In addition, we used the fifth generation 

of European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) 

atmospheric reanalysis of the Australian climate to retrieve variables for RWEQ model. For 

more information on ERA5, readers can refer to Hersbach et al. (2020). In GLDAS and ERA5, 

both the soil moisture and wind speed variables have a spatial resolution of 0.25° and 3-hourly 

temporal frequency. Note that the albedo-based model of horizontal and vertical sediment flux 

(𝐹𝑑) and RWEQ model (𝑆𝐿 ) were applied across Australia from 2000 to 2020. Based on 

GLDAS datasets, the three-hourly wind and soil moisture data aggregated to daily data using 

the maximum value. The daily estimates of 𝐹𝑑  and 𝑆𝐿  were then aggregated to produce 

monthly mean 𝐹𝑑 and 𝑆𝐿 for the period 2000-2019.  

To calculate the slope length and steepness and soil roughness factor of RUSLE and 

RWEQ model, hydrologically enforced Digital Elevation Model (DEM) are used at 

approximately 30 m horizontal resolution. The most recent fractional vegetation cover products 

are used to estimate the vegetation cover factor in RUSLE and RWEQ models (Guerschman 

and Hill, 2018). The lateral cover in the Albedo-based wind erosion model was estimated using 

the MCD43A1 V6 Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) 

https://www.longpaddock.qld.gov.au/silo/
https://www.eodatascience.com/
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model parameters dataset, which is a 500-m daily product 

(https://lpdaac.usgs.gov/products/mcd43a1v006/). The soil attributes were obtained from the 

Soil and Landscape Grid of Australia (SLGA), a three-dimensional Australia soil grid including 

11 soil attributes and confidence intervals at 3 arc second resolution (~90 m pixels). For further 

modelling details refer to Viscarra Rossel et al. (2015). 

Table 5-1 Datasets used in this study 

Dataset Description Spatial 

Resolution 

Time Period Data Source 

SILO Scientific 

Information for 

landowner’s 

climate 

database 

5000 m 1920-2020, daily GEE 

DEM Australian 

SRTM 

Hydrologically 

Enforced 

Digital 

Elevation 

Model 

90 m 2010 GEE 

FVC Fractional 

Vegetation 

Cover 

500 m 2000-2020, daily CSIRO (GEE) 

Albedo MODIS 

BRDF-Albedo 

Model 

Parameters  

500 m Daily GEE 

GPM Global 

Precipitation 

Measurement 

10000 m 3 hours GEE 

TRMM The Tropical 

Rainfall 

Measuring 

Mission 

25000 m 3 hours GEE 

SLGA Soil and 

Landscape 

Grid of 

Australia 

90 m - GEE 
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GLDAS Global Land 

Data 

Assimilation 

System 

25000 m 3 hours GEE 

ERA5  ECMWF 

Reanalysis 5 

(ERA5) 

atmospheric 

reanalysis 

25000 m 3 hours GEE 
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5.2.2 Estimates of Water Erosion by RUSLE 

The water erosion in Australia was estimated based on RUSLE model as the following 

equation: 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃                                                    (1) 

where A is the predicted soil loss (Mg·ha-1·yr-1); R is the rainfall erosivity factor (MJ·mm·ha-1·h-

1·yr-1); K is the soil erodibility factor (Mg·h·MJ-1·mm-1); LS is the slope length and steepness 

factor (dimensionless); C is the cover and management factor (0-1, dimensionless); and P is the 

conservation support-practices factor (0-1, dimensionless). P factor is set to be as a constant 

one in this study for reasons that water erosion control practices in Australia are extremely rare. 

5.2.2.1 Rainfall erosivity (R) factor 

Among these factors, rainfall erodibility is the most important input parameter in RUSLE 

model to describe water erosion dynamics. We used a regional daily rainfall erosivity model 

Yang and Yu (2015) and idealized intensity distributions (Brown and Foster, 1987) to estimate 

the R factor and compared three different rainfall data sources including Bureau of Meteorology 

(BoM) gridded daily rainfall, satellite precipitation (TRMM and GPM). The multiple data 

sources provide means of cross comparison and validation. 

𝐸𝐼𝑗 = 𝛼[1 + 𝜂 cos(2𝜋𝑓𝑗 − 𝜔)] ∑ 𝑅𝑑
𝛽𝑁

𝑑=1                                         (2) 

Ε = ∑ 𝑒𝑟
𝑁
𝑟=1 ∙ ∆𝑉 ∙ 𝐼                                                         (3) 

𝑒𝑟 =  0.29[1 − 0.72𝑒−0.05𝐼]                                                  (4) 

where EIj is the month j rainfall erosivity, Rd is the daily rainfall (mm), N is the rain days of the 

month j. The model parameters (α, β, η) are modelling coefficients. 𝑒𝑟  is the unit rainfall 

energy, I is the rainfall intensity, ∆𝑉 is the rainfall volume, E is event erosivity. 
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5.2.2.2 Cover-management (C) factor 

The cover and management (C) factor was derived from the most recent (Version 3.1.0) 

and validated fractional vegetation cover products including both photosynthetic (PV) and non-

photosynthetic (NPV) vegetation (Guerschman and Hill, 2018; Guerschman et al., 2015) with 

a spatial resolution of 500 m. The monthly C factor time series for all Australia continent were 

produced e following the method as described in Yang (2014). 

𝐶𝑗 = e
(−0.799−7.74×𝐺𝐶𝑗+0.0449×𝐺𝐶𝑗

2)
𝐸𝐼𝑗 𝐸𝐼𝑡⁄                                       (5)  

where 𝐶𝑗  = RUSLE cover and management factor in month j (1–12), 𝐺𝐶𝑗 = groundcover (0–

1) in month j (1–12), 𝐸𝐼𝑗  is the erosivity index (EI) or rainfall erosivity in month j, and 𝐸𝐼𝑡 is 

the total rainfall erosivity or the R factor in that year. Ancillary data (i.e., NDVI) and GIS mask 

layers for water bodies, snow cover, rocky surfaces, cropping, and urban areas were applied to 

readjust the C factor values and fill in the no-data gaps (Yang, 2014). The C factor was 

resampled to 90 m resolution so that to match with the resolutions of other RUSLE factors. 
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5.2.2.3 Slope-steepness (LS) factor 

The slope-length and steepness (LS) factor (unitless) was calculated from hydrologically 

corrected digital elevation model (DEM-H) based on comprehensive algorithms considering 

cumulative overland flow length (Yang, 2015). The 1-second DEM-H was resampled to ~90 m 

and used for the LS factor calculation based on Australia natural resource management (NRM) 

regions, then merged them to form a seamless LS-factor digital map at a spatial resolution ~90m 

for Australia continent. We chose the 1-second DEM-H because it was the best available DEM 

data across Australia with hydrological correction (Wilson et al. 2011). Automated scripts have 

been developed and implemented in a geographic information system (GIS) for the LS 

calculation. Compared with the LS values calculated using the 1-second DEM-H over NSW 

(Shan et al., 2019), there was an overestimate in the slope-length (L) sub-factor but an 

underestimate in the steepness (S) subfactor resulting an overall coefficient of efficiency about 

0.70. It is the LS factor map with the highest spatial resolution in Australia so far. 

5.2.2.4 Soil erodibility (K) factor 

The soil erodibility factor RUSLE-K was estimated based on the RUSLE: 

𝐾 = [2.1𝑀1.14(10−4)(12 − 𝑂𝑀) + 3.25(2 − SS) +  2.5(𝑃𝑃 − 3)]/100 × 0.1317      (6) 

where OM is percent soil organic matter (= soil organic carbon ×1.72); SS is the soil structure 

code; PP is the soil profile permeability class; M is the particle size parameter that defines the 

relationship between percentages of silt, very fine sand (VFS) and clay content: 

M = (Silt + VFS)×(100 - Clay)                                                (7)    
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where Silt is % silt content (0.002–0.05 mm); VFS is % very fine sand content (0.05–0.1 mm); 

and Clay is % clay content (< 0.002 mm) based on USDA classification. The soil texture and 

organic matter data were from the Soil and Landscape Grid of Australia (Viscarra Rossel et al., 

2015) with a spatial resolution of 90 m. Soil structure and permeability data were derived from 

the saturated hydraulic conductivity and grade of pedality attributes of the Australian Soil 

Resource Information System (McKenzie et al., 2000). The estimated K values range between 

0.01 to 0.11 Mg·ha·h·ha–1·MJ–1·mm–1 with more variation compared to the estimates (0.02 to 

0.04 Mg·ha·h·ha–1·MJ–1·mm–1) from a previous study in Australia (Teng et al., 2016). The 

estimated K factor values agree well with a recent study in NSW (Yang et al., 2018). The K 

factor map has a spatial resolution of 90 m which matches with the Slope-steepness (LS) factor. 

5.2.3 Estimates of Wind Erosion by Revised Wind Erosion Equation (RWEQ) 

RWEQ model includes weather factor (WF, kg·m-1), erodibility factor (EF, dimensionless), 

soil crust factor (SCF, dimensionless), roughness (K, dimensionless), vegetation factor (C, 

dimensionless). The horizontal sediment flux (Q in kg·m-1) and vertical sediment flux (𝑆𝐿) are 

estimated with the following the equations: 

𝑄 = 𝑄𝑚𝑎𝑥(1 − 𝑒(𝑍 𝑆⁄ )2
)                                                     (8)   

𝑆𝐿 =
2∙𝑍

𝑆2 𝑄𝑚𝑎𝑥 ∙ 𝑒−(𝑍 𝑆⁄ )2
                                                     (9) 

where 𝑄𝑚𝑎𝑥 is the maximum transport capacity (in kg·m-1), Z is the calculated distance of 

downwind wind (m), and S is the critical field length (m). 

𝑄𝑚𝑎𝑥 = 109.8 [𝑊𝐹 ∙ 𝐸𝐹 ∙ 𝑆𝐶𝐹 ∙ 𝐾 ∙ 𝐶]                                        (10) 

𝑆 = 150.71(𝑊𝐹 ∙ 𝐸𝐹 ∙ 𝑆𝐶𝐹 ∙ 𝐾 ∙ 𝐶)−0.3711                                     (11) 

The WF integrates the effects of various meteorological factors on wind erosion. It is 

calculated as: 

𝑊𝐹 = 𝑊𝑓 ∙
𝜌

𝑔
∙ 𝑆𝑊𝑓 ∙ 𝑆𝐷                                                    (12) 

𝑊𝑓 = ∑ 𝑈2
𝑖−𝑛
𝑖=1 (𝑈2 − 𝑈𝑡)2 𝑁𝑑

500
                                                (13) 
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S𝑊𝑓 = 1 − 𝑆𝑊                                                           (14) 

𝑆𝐷 = 1 − P                                                               (15) 

where 𝑊𝑓 is the wind factor (kg·m-1), 𝜌 is air density, g is gravity acceleration, 𝑆𝑊𝑓 is the 

soil moisture factor, SD is the snow cover factor and P is the probability that the snow cover 

depth is greater than 25.4 mm in the simulation period. 𝑈2 is the wind velocity at 2 m; 𝑈𝑡 is 

the wind velocity threshold, generally set as 5 m·s-1; 𝑁𝑑 the number of days in the simulation 

period (1 day in this study). 

The soil erodibility factor (EF) and soil crust factor (SCF) are expressed by the aggregation 

of soil particles (especially clay, silty, and soil organic carbon) as follows: 

𝐸𝐹 =
29.09+0.31𝑆𝑎+0.17𝑆𝑖+

0.33𝑆𝑎
𝐶𝑙

−2.59(𝑆𝑂𝐶∗1.72)−0.95𝐶𝑎𝐶𝑂3

100
                            (16) 

𝑆𝐶𝐹 =
1

1+0.0066(𝐶𝑙)2+0.021(𝑆𝑂𝐶∗1.72)2                                           (17) 

where, Sa is the sand grain proportion; Si is the soil silt proportion; Sa/𝐶𝑙 is the ratio of soil 

sand grain and clay; 𝐶𝑙 is clay proportion; SOC is soil organic carbon proportion; and CaCO3 

is calcium carbonate proportion. 

The calculation of surface roughness factor (K') is based on random roughness factor (𝐶𝑟𝑟) 

and soil roughness (𝐾𝑟 ). As soil roughness (𝑘𝑟 ) is difficult to estimate, the topographic 

roughness (𝐾𝑟) is used instead of soil roughness. It is calculated as follows:   

𝐾′ = 𝑒(1.86𝑘𝑟−2.41𝑘𝑟
−0.934−0.127𝐶𝑟𝑟)                                      (18)  

𝐾𝑟 = 0.2 ×
Δ𝐻2

𝐿
                                                     (19) 

where L is the topographic fluctuate parameters; and ΔH is the difference of elevation within 

distance L. 

The vegetation cover factor is shown as follows: 

𝐶 = 𝑒−0.0438𝐹𝑉𝐶                                                    (20) 

where, FVC is fractional vegetation cover (in %). 
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5.2.3 Albedo-based wind erosion model 

 Kok et al. (2014) describes a physically based wind erosion model. A critical 

approximation in wind erosion modelling is that momentum extracted by roughness elements 

which can be expressed by roughness density lateral cover. The lateral cover underpins current 

wind erosion models. However, the estimation of lateral cover over large areas is challenging 

and often approximated by remote sensing vegetation cover. By replacing the use of lateral 

cover which closely relates to sheltered area, Chappell and Webb (2016) provided an alternative 

parameterisation which equated sheltering to shadow and enabled the use of remote sensing 

albedo data. This albedo-based approach to horizontal and vertical flux modelling (Chappell et 

al., 2018), is considerably simplified without losing information content, thereby reducing 

uncertainty, and improving the wind erosion modelling used by Kok et al. (2014). Below is a 

summary of the horizontal sediment flux (𝑄ℎ , g·m-1·s-1) and vertical sediment flux (𝐹𝑑 , kg·m-2·s-

1) from the MODIS albedo-based wind erosion model.  

𝑄ℎ = 𝑐𝑠ℎ𝑎𝑜
𝜌𝛼𝑢𝑆∗

3

𝑔
(1 − (

𝑢∗𝑡𝑠(𝐷)Η(𝑤)

𝑢𝑆∗
)

2
)                                         (21)     

𝐹𝑑 = 𝐶𝑑 𝑓𝑏𝑎𝑟𝑒𝑓𝑐𝑙𝑎𝑦
𝜌𝑎(𝑢𝑆∗

2 −𝑢∗𝑡
2 )

𝑢∗𝑠𝑡
(

𝑢𝑆∗

𝑢∗𝑡
)

𝐶𝛼
𝑢∗𝑠𝑡−𝑢∗𝑠𝑡0

𝑢∗𝑠𝑡0 , (𝑢𝑆∗ > 𝑢∗𝑡)                        (22) 

where 𝐶𝑠ℎ𝑎𝑜 = 0.006 , 𝐶𝛼 = 2.7 , 𝐶𝑒 = 2.0 , 𝐶𝑑0 = 4.4 × 10−5 , 𝜌𝑎 = 1.23  kg ·m-3 and 

𝜌𝑎0 = 1.225 kg·m-3. The standardised threshold friction velocity of an optimally erodible soil 

𝑢∗𝑠𝑡0 = 0.16 m·s-1. 𝐶𝑑  is calculated in Equation. The fclay is the clay decimal fraction in the 

surface soil. The fbare can be estimated from the inverse of uS* with a maximum value of 0.6 

m·s-1 for Australia. 

𝐶𝑑 = 𝐶𝑑0𝑒
(−𝐶𝑒

𝑢∗𝑠𝑡−𝑢∗𝑠𝑡0
𝑢∗𝑠𝑡0

)
                                                    (23) 

𝑓𝑏𝑎𝑟𝑒 = max (𝑢𝑆∗)/𝑢𝑆∗                                                     (24) 

The soil threshold friction velocity standardised to an atmospheric density (m ·s-1) as 

follows: 

𝑢∗𝑠𝑡 = 𝑢∗𝑡√𝜌𝑎/𝜌𝑎0                                                     (25) 
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where 𝜌𝑎 = 1.23 kg·m-3 and 𝜌𝑎0 = 1.225 kg·m-3. 

The main variables include the albedo-based soil friction velocity 𝑢𝑆∗  (m · s-1), soil 

threshold friction velocity 𝑢∗𝑡 (m·s-1) and 𝐻(𝑤). To calculate the surface soil friction velocity 

(𝑢𝑆∗) for a given freestream velocity of a particular pixel using the rescaled and normalised 

shadow (ωns): 

𝑢𝑆∗

𝑈𝑓
= 0.0306 (

𝑒−𝜔𝑛𝑠
1.1202

0.0125
) + 0.0072                                          (26) 

where Uf is the freestream wind speed at a height of 10 m. We invert MODIS Black-Sky Albedo 

data ω to estimate shadow which is then normalised by dividing it by BRDF parameter ω0 

to remove the spectral influences and then rescaled (𝜔𝑛𝑠) for use with the calibration functions. 

When 𝜔𝑛𝑠  is calculated, it is inserted into Equation to calculate 𝑢𝑆∗. 

𝜔𝑛 =
1−ω

ω0
                                                               (27) 

𝜔𝑛𝑠 =
(𝑎−𝑏)(𝜔𝑛−35)

(0−35)
+ 𝑏                                                    (28) 

The 𝑢∗𝑡(𝐷) is calculated using the bare soil threshold friction velocity 𝑢∗𝑡𝑠(𝐷) for a 

given size fraction D and the function of surface soil moisture 𝐻(𝑤)  (dimensionless). 

Function 𝐻(𝑤)  accounts for the volumetric soil moisture content w (m3·m-3) based on the 

difference between the potential 𝑤′ based on clay content and near surface w: 

𝐻(𝑤) = √1 + (1.21(𝑤′ − 𝑤)0.68)                                           (29) 

𝑤′ = 0.0014𝑐𝑙𝑎𝑦2 + 0.17𝑐𝑙𝑎𝑦                                              (30) 

𝑢∗𝑡(𝐷) = 𝑢∗𝑡𝑠(𝐷)𝐻(𝑤)                                                    (31)     

𝑢∗𝑡𝑠(𝐷) = (𝐴𝑁 (
𝜌𝑝𝑔𝐷

𝜌𝑎
+

𝛤

𝜌𝑎𝐷
))

−0.5

                                           (32) 

where 𝐴𝑁  = 0.0123 is a scaling coefficient, 𝜌𝑝  = 2650 kg·m3 is the particle density, g = 9.81 

m·s-1 is the acceleration due to gravity, 𝛤 = 0.000165 kg·s-2 is a parameter accounting for 

cohesive force. 
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5.2.4 DustWatch PM10 measurements 

DustWatch has 39 measurement sites (denoted DWN) in south-east Australia. The 

Tibooburra DWN used in this study had an 8520 model DustTrak® from January 2009 to July 

2019 and DRX model DustTrak®, from August 2019 to December 2020. DustTraks measure 

atmospheric aerosol concentration of PM10 as described in (Leys et al., 2018). During our study 

period, Tibooburra is selected as the monitoring sites against with model estimates because it 

is the dustiest site in NSW. In summary, hourly minute PM 10 concentration data is averaged 

to give monthly concentration (𝑚𝑔 𝑚3⁄ ) and then converted to the vertical flux (𝐹ℎ , 𝑚𝑔 𝑚3⁄ ): 

𝐹ℎ = 𝑃𝑀10 ∗ 𝑈𝑓                                                          (33) 

5.3 Results 

5.3.1 Estimation of sub-factors in RUSLE 

Maps of the water erosion factors in Australia are shown in Figure 5-1. The multi-year 

mean rainfall erosivity for Australia from 2001 to 2020 is show in Figure 5-1(a), with high 

rainfall erosivity in the coastal areas and tropics. The multi-year average R factor calculated 

from SILO rainfall datasets and ranges from 188 MJ·mm·ha-1·h-1·y-1 to 19,708 MJ·mm·ha-1·h-

1·y-1. TRMM-based R factor have values between 52 MJ·mm·ha-1·h-1·y-1 and 3,594 MJ·mm·ha-

1·h-1·y-1 and GPM-based R factor between 187 MJ·mm·ha-1·h-1·y-1 to 25764 MJ·mm·ha-1·h-1·y-1. 

We find that TRMM tends to underestimate the rainfall erosivity, while GPM-based R 

overestimates rainfall erosivity but is much closer to SILO-based calculation but has a larger 

maximum value.  

In Figure 5-1(c), the mean C-factor map (2001-2020) derived from fractional vegetation 

cover products shows great spatial variation across Australia, reflecting the spatial distribution 

of vegetation and land cover types. Lower C factor values (dimensionless, less than 0.001) 

coincide spatially with high density vegetation cover along the Great Dividing Range. Higher 

C factor values (great than 0.04) are in the desert and arid areas where vegetation is very limited. 

C-factor values also show strong monthly temporal variations, more variation in the central 
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semi-arid and arid areas compared to coastal areas with high vegetation cover (Figure 5-2). 

Figure 5-1(d) shows the LS Factor layer with a cell size ~90m. LS factor in Australia continent 

has a great spatial variation within different landscapes. Higher values are in the south-eastern 

coastline and mountain regions, while smaller values are found mostly in the lowland of central 

Australia. The 90m LS factor in this study was compared with the reference LS factor values 

with 300 random points across NSW from the literature (Yang, 2015). In general, the quality 

of LS factor values would decrease as the DEM resolution become coarser. However, the 90m 

LS factor values in this study shows a good correlation (R2=0.91). That is because as DEM 

resolution become coarser, the length sub-factor (L) becomes larger whilst slope sub-factor (S) 

tends to be smoother (Shan et al., 2019). Therefore, the LS factor of 90m in this study matches 

well with the referenced LS of 30 m under the combined influence of both L and S sub-factors.  

Along the Great Dividing Range in south-eastern Australia, 60 sites were sampled to 

assess the rainfall erosivity derived from different data sources. Figure 5-3 shows the linear 

regression of rainfall erosivity from GPM and TRMM compared to SILO for each month. We 

find that GPM and TRMM have reasonably good fits in estimating the R factor over southeast 

Australia rainy seasons (spring and summer) but have poor performance in dry seasons. 

Comparing the monthly RMSE and R2, TRMM-based R factor values are generally better than 

GPM-based R factor values with a systematic underestimation. When the rainfall erosivity is 

less than 300 MJ mm ha-1 h-1 m-1, there is little correlation between satellite-based and SILO-

based rainfall erosivity. This indicates that improved performance should be made to detect 

light rainfall in dry seasons (autumn and winter). 
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Figure 5-1 Maps of the RUSLE factors: Rainfall erosivity factor, Soil erodibility factor, Cover 

management factor, Slope length and steepness factor 

(a) (b) 

(c) (d) 
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Figure 5-2 Monthly C-factor based on MODIS fractional vegetation cover in 2001-2020. 
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Figure 5-3 Comparison between the R factor values derived from SILO and GPM and TRMM 

for 12 months along the Great Dividing Range in south-eastern Australia 

5.3.2 Assessment and comparison of two wind erosion model outputs with DustWatch 

We compared the two models, RWEQ and Albedo, against each other and against the 

PM10 concentrations measured by DustWatch at Tibboburra from 2009 to 2020. Using the 

GLDAS dataset as model input, Figure 5-4 shows that the monthly wind erosion fluxes in 
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RWEQ model are in good agreement with that of Albedo-based model, while the monthly wind 

erosion estimates in albedo-based model are relatively lower than the model results of RWEQ. 

In one financial year (from July to next June) as an example, the wind erosion generally starts 

to rise in July, reaches to its highest value in January, and then declines until it reaches the 

lowest values in May.  

The Australian Bureau of Meteorology (BoM) climate summaries were used to identify 

wet and dry years. 2010 to 2012 where wet years while 2001-2009 and 2017-2019 had hot and 

dry conditions in south-eastern Australia, of which 2009 and 2019 were two particularly dry 

and dusty years. For the two dry years, the measured fluxes are less than or equal to the model 

results from RWEQ in 2009 and 2019, respectively. By contrast, the measured fluxes are higher 

than the albedo-based model results. In other words, the measured fluxes should not be greater 

than the model results. It should be noted that the DWN flux measurements do not adequately 

represent the areal wind erosion, for example, fine dust may travel thousands of kilometres or 

remain in air until it is washed out by rainfall, the dust storm in the atmosphere measured by 

DustWatch are mainly derived from near-surface wind erosion. We found that there was a peak 

value (~246 mg/m2/month) in September 2009. Based on our daily wind erosion results, the 

extreme value is mainly coming from the wind erosion on Sep 23, 2009 (a dust storm named 

Red Dawn), with a maximum wind speed of 12.5 m/s. However, this anomaly was not well 

represented in the Albedo-based model. In fact, the spike erosion fluxes of 2009 in albedo-

based model shows similar pattern of other dry years. While the RWEQ model can better 

capture the extreme dust storm in 2009. To further confirm this case, however, the RWEQ 

model results in 2019 does not show superior performance than the albedo-based model. This 

may be the reason that the observations at hot and dry year such as 2019 was affected by other 

factors like suspension from other places. In addition, from the beginning of 2010 to later 2011, 

the observed flux remained unchanged and always lower than the simulated results. As the La 

Nina in 2010 and 2011 breaks the drought, south-eastern Australia enters in wet year. The 

precipitation increased soil moisture and affects the threshold wind speed of model.  
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To evaluate the impacts of different data source on wind erosion results, we compared the 

model results derived from ERA5 datasets with measured wind erosion fluxes (Figure 5-5). We 

can see that the temporal variation pattern of two model results can match that of measured 

fluxes. Though the wind erosion fluxes of RWEQ model is equal to or smaller than that of the 

Albedo-based model, it clearly shows that RWEQ model can capture the extreme value in 2009. 

However, both the RWEQ and albedo-based model do not capture the measured fluxes in 2019, 

which may be influenced by the mega-fire of Australia followed by smoke and dust. Overall, 

using ERA5 datasets as model input, the simulated wind erosion fluxes are significantly less 

than that of GLDAS. 

 

Figure 5-4 Monthly wind erosion values from the albedo-based model, the RWEQ model, and 

the observations at Tibooburra site are compared for the period 2009 to 2019 using the GLDAS 

dataset as model input 
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Figure 5-5 Monthly wind erosion values from the albedo-based model, the RWEQ model, and 

the observations at Tibooburra site are compared for the period 2009 to 2019 using the ERA5 

dataset as model input 

5.3.3 Monthly and annually wind-water erosion maps 

We produced the water and wind erosion monthly time-series maps for the period 2001-

2020 across Australia. Spatially, the water erosion process across the continent is mainly 

concentrated in the Great Dividing Range along eastern coastal Australia, Flinders Range in 

south Australia (SA), Lake Eyre in central Australia, Hamersley Range in western Australia 

(WA), Barkly tableland and Arnhem Land in North Territory (NT) and western coastal of 

Tasmania (TAS) (Figure 5-6). Moreover, the range of monthly water erosion varies by seasons 

across Australia. Over summer, the water erosivity is apparent across the most of Australia. 

The summer water erosivity is more evident in northern and southeastern coastal regions. While 

water erosivity in winter was relatively smaller because of reduced rainfall. The most obvious 

winter water erosivity is observed in Alpine region in Victoria and western coastal of Tasmania. 

Figure 5-7 further demonstrates that WA is the top region by soil loss of water erosion in 

Australia. The top 3 regions also include Queensland (QLD) and NT. Through the year, the 

highest month of water erosion is Jan and the lowest is August. Taking WA as an example, 

water erosion in summer counts for 74% of total annual erosion, water erosion in spring and 
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winter counts for 7% and 3% for each and winter counts for 16%. Change on the intra-annual 

trend of water erosion in other states is almost the same as WA, except for Tasmania where is 

highest in winter and lowest in summer. 

 

Figure 5-6 Monthly water erosion based on SILO in 2001-2020 
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Figure 5-7 Monthly water erosion by State in 2001-2020 

The albedo model outputs are shown in Figure 5-8. The highest region with wind erosion 

is Nullarbor Plain, which straddles SA and WA and lies directly north of the Great Australia 

Bight, followed by the Great Sandy Desert in WA, and the Lake Eyre basin. Figure 10 also 

shows that the strong monthly variations, wind erosion is typically the greatest in Austral 

summer months (December, January, February) and least in Austral winter months (June, July, 

August). Comparing the wind erosion amount at the state scale, the arid and semi-arid parts of 

WA and SA experienced higher levels of wind erosion than eastern states (seen in Figure 5-9). 

It is also worth noted that Eyre Peninsula (SA) in Figure 5-8 shows strong wind erosion 

activities compared to that of Figure 5-10. 

The RWEQ outputs are shown in Figure 5-10 and shows the RWEQ model has over 10 

times monthly wind erosion outputs than that of the Albedo-based model. As Chappell et al. 

(2018) explains, fractional cover does not capture the effects of cover roughness and can lead 

to overestimates of wind erosion. This is because fractional ignores the sheltering effects 

roughness provides to bare ground downwind of the roughness element. Figure 5-11 shows that 

the monthly wind erosion outputs from RWEQ model are not only relatively higher but have 
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great seasonal differences than that of Albedo-based model (seen in Figure 5-9). That difference 

may be due to the relatively stable albedo across various land types. For example, the highest 

albedo for desert is about 0.4, and the intermediate albedo for crops and grasslands is around 

0.2, and the lowest for forests is about 0.1. While the fractional vegetation cover used in RWEQ 

model shows greater variation among different landscapes. Furthermore, we also find that wind 

erosion in SA is greater than WA from August to November (seen in Figure 5-11). 

 

Figure 5-8 Monthly wind erosion based on Albedo-based model in 2001-2020 
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Figure 5-9 Monthly wind erosion by State based on Albedo-based model in 2001-2020 
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Figure 5-10 Monthly wind erosion based on RWEQ model in 2001-2020 
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Figure 5-11 Monthly wind erosion by State based on RWEQ in 2001-2020 

Maps of the RUSLE and RWEQ erosion and uncertainty maps both at 500 m pixel are shown 

in Figure 5-12. The uncertainty calculation method refers to Teng et al. (2016). We note that 

the largest water erosion rates existed around the Kimberley plateau in northern Australia, 

Canning basin in western Australia, Simpson Desert in central Australia, coastal wet tropics in 

western Australia and southeast slopes in New South Wales and Victoria. We also found that 

the rangeland areas of inland Australia experienced relatively larger water erosion loss, while 

the corresponding uncertainty of inland Australia are about four time larger than other regions, 

and these larger uncertainties should be come from the Rainfall erosivity estimates for dryland 

areas. Also, wind erosion loss was relatively larger in the rangeland areas where the vegetation 

cover is sparse. One explanation is that the soils in the rangeland areas are much easier to be 
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detached and transported by water and wind. 

Figure 5-12 Annual water and wind erosion and uncertainty based on RUSLE and RWEQ in 

2001-2020. 

5.4 Discussion 

5.4.1 Water and wind erosion explorer 

In this study, we estimate the soil loss using the RUSLE and RWEQ model. RUSLE and 

RWEQ model are then translated into GEE environment to enable large-scale spatio-temporal 

soil loss simulations. Also, we build a web tool with user-friendly interface for public users. 



 

125 

 

This web tool provides an instant access to continental-scale remote sensing big data obtained 

for soil, vegetation, weather, topography, and other biophysical factors as input and strong 

computation capability of GEE. The application of water and wind models across Australia 

provides thorough datasets in states like WA and NT where very high soil loss rate cannot be 

neglected. Moreover, with this app link, the user can plot several figures displaying the time-

series of soil loss records and four sub-factor maps (R, K, LS, C Factor in RSULE; SW, WF, 

K, MF, CF factor in RWEQ). The information can be exported (e.g., CSV files) for further 

analysis. In such a case, analysis-ready water and wind erosion application proves to be a 

practical and economical way for real-time and human-interactive visualization. Water and 

wind erosion explorer is freely available from the authors for educational and academic 

purposes at https://github.com/geogismx/WaterWindErosion. The water and wind erosion 

explorer is publicly available. While we have focused on the soil loss of Australia, users can 

also define their own research area and produce their erosion outcomes. 

5.4.2 Underlying drivers for water and wind erosion changes 

The reasons for water-winter erosion changes are complex and a result of combination of 

several factors including weather factors (the key driving force), vegetation cover (the key 

resistance), soil physical properties (determining soil erodibility or resistance to erosion), land 

cover types (influencing soil surface roughness, soil particles) and the development of wind 

profiles. In RUSLE model, rainfall erosivity is the most dominant agent, changes in rainfall can 

largely impact changes in water erosion trends (Du et al., 2015; Sun et al., 2014). Generally, 

Australian rainfall in the past two decades experienced substantial inter-annual variability with 

short wet periods (2010–2011, 2020) and long-term dry periods (e.g., 2002–2009 and 2012–

2019). Liu et al. (2020) found that Australian rainfall changes had a trend of short and frequent 

rainfall events, which meant most rainfall tend to evaporation rather than increasing soil 

moisture. As shown in Figure 2, our water erosion study was largely relied on the prediction of 

rainfall erosivity which had limitations associated with the smaller and frequent rainfall events, 

characterized by decreased rainfall intensity and increased rainfall probability. The limitations 
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point to the importance of using advanced machine learning to present the rainfall erosivity 

under different rainfall events. Additionally, the dry conditions and decrease in soil moisture 

impact the wind erosion. However, the water erosion changes trend was not always in 

agreement with rainfall changes. The bushfire-related significant vegetation cover declines also 

contribute to water erosion increase. A very strong water erosion peak in 2020 in NSW Sydney 

Drinking Catchment shows that the increase in rainfall and decrease in vegetation cover were 

highly in line with the increase in water erosion (Yang et al., 2020). Unlike changes in rainfall, 

long-term variability and seasonal pattern in near-surface wind speed for the past two decades 

are still poor understood. 

Comparing to RUSLE subfactors in CSIRO data portal, we find that the C factor shows 

significant differences. The differences are from the different vegetation cover datasets. Our 

estimates used dynamic fractional vegetation cover to estimate C factor, whereas the C factor 

values from Teng et al. (2016) are just based on static land cover classification. The largest C 

factor values from Teng et al. (2016) cover all the arid and desert areas in central and western 

Australia. Our C factor estimates only have the largest values in the Lake Eyre basin of central 

Australia. In addition, despite the under-and overestimation of R factor values by GPM and 

TRMM, the multi-year average RMSE of R factor values (1527 MJ·mm·ha-1·h-1·y-1 in GPM, 

236 MJ·mm·ha-1·h-1·y-1 in TRMM) in our study is much better than the RMSE of TRMM-based 

R factor values (2726 MJ·mm·ha-1·h-1·y-1) from the literature (Teng et al., 2016). Lu et al. (2003) 

derived the water erosion in Australia during 1980-2000, and the mean water erosion in 

Australia is 11.77 t·ha-1·y-1, and the total erosion is 314.35 t·ha-1·y-1. Estimates of mean water 

erosion and total soil loss from 2002 and 2012 produced by Teng et al. (2016) are 7.2 t·ha-1·y-1 

and 100.22 t·ha-1·y-1. The uncertainty of mean water erosion range between 6.8 t·ha-1·y-1 and 

7.48 t·ha-1·y-1, the total soil loss is between 96.45 t·ha-1·y-1 and 104.28 t·ha-1·y-1. Our overall 

estimates of erosion and total soil loss in Australia during 2000 and 2020 is 0.19 t·ha-1·y-1 and 

6.4 t·ha-1·y-1, respectively. The corresponding uncertainty of mean water erosion range between 

0.09 t·ha-1·y-1 and 0.22 t·ha-1·y-1 the total soil loss is between 3.2 t·ha-1·y-1 and 7.5 t·ha-1·y-1. Our 
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estimates of erosion are smaller both in annual mean erosion and total soil loss. Chappell et al. 

(2011) provided the net erosion distribution of Australia of 1950-1990, and our map shows the 

similar erosion distribution in central Australia, while other estimates cannot capture the 

erosion in that area. 

5.4.3 Limitations and Model Uncertainties 

RUSLE model used in this study has been supported and calibrated by field monitoring 

and regional-scale models. Meanwhile, this study selected the RWEQ to predict the wind 

erosion of Australia as Albedo-based model tends to flatten out extremes. Note that most 

existing wind erosion models have not been calibrated and validated under wind tunnel 

measurements that can model the relationships between wind erosion and environmental 

conditions. This study is the first attempt to validate the empirical and process-based model 

RWEQ against real-time field observations and an albedo-based wind erosion model. However, 

RWEQ model with original parameters has not been calibrated against the local data of site 

observations collected at a regional scale. Therefore, uncertainties will be introduced when it is 

applied for monthly estimation at a regional scale because the parameters in the RWEQ vary in 

spatio-temporal scale. For example, two dynamic sub-factors that accounting vegetation cover 

and soil moisture effects in RWEQ need to be calibrated locally. The local coefficients in 

vegetation cover effects on wind erosion in AUSLEM was determined by wind tunnel 

experimentation at wind speed 18 m/s (Webb et al., 2009). RWEQ model also has limitation in 

estimating the rate of soil loss in suspension. The performance of RWEQ needs to improve 

after calibration for local condition, otherwise, the RWEQ model may underestimates erosion 

(Youssef et al., 2012). Therefore, the emphasis of future studies should be placed on improving 

the accuracy and developing new models. In addition, the future increase in the amount of high-

resolution remote sensing big data will lead to improved estimation for vegetation, soil, 

topography, and other biophysical factors which will in turn improve the estimation of soil 

erosion and assist in calibrating and validating water and wind erosion models. It is 

acknowledged that the climate and vegetation cover are two key factors contributing to soil 
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erosion changes. One improvement area is to use high-quality FVC, radar-based rainfall 

erosivity, soil moisture estimation. For example, we can derive the monthly C-factor at 20 m 

resolution from Sentinel 2 with gap filling using image blending techniques. As the weather 

radar data across Australia are available, we can explore the use of radar-derived rainfall 

erosivity with calibration to model water erosion. Soil moisture from Australian Water 

Availability Project (AWAP) can also be used to replace the soil moisture data from global-

scale GLDAS dataset. Furthermore, soil loss can be estimated using the strengths of process-

based RUSLE and RWEQ models, keeping insights of the physical mechanism of erosion 

formation while exploiting the predictive capacity of machine learning with remote sensing big 

EO data. 

5.5 Conclusion 

In this study, we used the best available big EO data across Australia during the past two 

decades to derive the water and wind erosion datasets and analysed the spatio-temporal 

variability of soil erosion. We estimated rainfall erosivity across the country using satellite-

based rainfall data and compared with the ground-based SILO data showing consistent spatial 

patterns. We also found a persistent high agreement among the two wind erosion models, but 

an apparent underestimation of the wind erosion by the albedo-based model. It is notable that 

RWEQ model is more sensitive to extreme climate. In practice, wind erosion model results 

demonstrate that two reanalysis data exhibit distinct erosion change. At the monthly scale, 

water and wind erosion has strong inter-annual seasonality. In the past two decades, the trends 

of annual water erosion vary among different states. While the annual wind erosion has 

increasing trend since 2010. Nevertheless, we first produce the water and wind erosion datasets 

across Australia which offer a perspective for understanding soil erosion and the changes in 

relation to climate, land, and soil conditions. 
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Chapter 6. Final conclusions and future research 

6.1 Final conclusions 

This study mainly focuses on the reconstruction of climate data at high spatiotemporal 

resolution based on big EO platform. The outcomes of this study provide crucial climate and 

environment information in China and Australia. The research methods and software presented 

in this study can be further applied to global. 

We developed an improved GIS-based solar radiation model (STMSR, the spatial and 

temporal mountainous solar radiation model) that allows for treatment of high spatial and 

temporal variations in albedo, surrounding terrain shading and cloud cover for monitoring daily 

solar radiation at large scale. By comparison with other well-known GIS-based solar radiation 

models such as Solar Analyst in ArcGIS and r.sun in GRASS, our STMSR model showed better 

performance. The resulting estimates of global, direct, and diffuse solar radiation were validated 

with high estimation accuracy against the measured solar radiation data from 10 observation 

stations across Loess Plateau. Compared with other high-resolution solar radiation datasets, the 

global solar radiation presented in this paper has higher accuracy of daily solar radiation 

estimates over the Loess Plateau than other methods, generating higher R2 and RMSE. Our 

STMSR model also has the potential to be applied globally for distributed modelling 

applications across a variety of landscapes. 

We built an online tool based on a MODIS LST “hybrid” methodology to generate 

continuous daily maximum and minimum land surface temperature datasets in locations 

without observations and to provide the required remotely sensed inputs to air temperature 

prediction models. Changes in received solar energy among mountains inevitably affect the 

earth’s energy budget. We integrate mountain solar radiation and diverse remotely sensed 

vegetation indices to provide reliable temperature products over the TP. By comparing the 

performance of different machine learning techniques, we found the RF model performed best 

in predicting Tmax, Tmin, and Tmean. We expect the methodology we have developed can be 
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potentially useful for improving temperature datasets in mountainous regions around the globe, 

and thereby also improving climatic, environmental, hydrological, and ecological models. 

We have developed a heat wave toolbox that has the ability to estimate past, current and 

future changes in heat waves at a continental scale. It uses a well-known heat wave framework 

considering intensity, frequency, magnitude, duration, and areal extent to explore the spatio-

temporal evolution of heat wave severity and coverage. This study is the first attempt to 

estimate heat wave events across Australia using high spatio-temporal climate datasets. With 

these heat wave aspects from multi-source data and different methods, we were able to 

investigate the effects of scales, data quality and definition. We find that ERA5 datasets are the 

best in characterizing the heat wave events.  In exploring the role of different methods on the 

identification of heat waves, we find that heatwave characteristics based on the Excess Heat 

Factor index provide more details on heatwave changes. 

With the past 100 years of heat wave datasets, the HWA average mean values were 

calculated and used to estimate non-stationary return levels and return periods. We find that 

extreme heat wave events have much higher probability due to the effects of climate change. 

The heat wave event in 2019 may be more frequent in the coming decades. For the climate by 

the end of century, using heat wave metrics derived from a multi-model ensemble mean, we 

predict HWA to increase significantly during the two future periods and a larger fraction of 

southern Australia is projected to experience more extreme heat wave events. Furthermore, the 

patterns of change for HWD are opposite to those for HWA; northern Australia shows 

significant increases and southern Australia experience a moderate increase. The methodology 

and the cloud computing-based toolbox (HWT) is useful for dynamic visualization, extraction, 

and processing of complex heat wave events, and applicable anywhere in the world. 

We used the best available big EO data across Australia during the past two decades to 

derive the water and wind erosion datasets and analysed the spatio-temporal variability of soil 

erosion. We estimated rainfall erosivity across the country using satellite-based rainfall data 

and compared with the ground-based SILO data showing consistent spatial patterns. We also 
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found a persistent high agreement among the two wind erosion models, but an apparent 

underestimation of the wind erosion by the albedo-based model. It is notable that RWEQ model 

is more sensitive to extreme climate. In practice, wind erosion model results demonstrate that 

two reanalysis data exhibit distinct erosion change. At the monthly scale, water and wind 

erosion has strong inter-annual seasonality. In the past two decades, the trends of annual water 

erosion vary among different states. While the annual wind erosion has increasing trend since 

2010. Nevertheless, we first produce the water and wind erosion datasets across Australia which 

offer a perspective for understanding soil erosion and the changes in relation to climate, land, 

and soil conditions. 

6.2 Future research 

The aims of future research are to: (1) Assessment and comparison of different cloud cover 

model for mountainous solar radiation forecast; (2) To integrate Deep Learning with physical 

approaches for soil-vegetation-climate modelling; (3) To back forecast and future forecast soil 

organic carbon in Australia with Big EO datasets; (4) To mine the global heat wave under 

CMIP6 and explore the relationship between heat wave and soil moisture and climate indices. 
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