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A B S T R A C T   

Climate change poses a great challenge to global food security. Recently the combination of crop models (CMs), 
global climate models (GCMs), and species distribution models (SDMs) has been applied to assess the impacts of 
climate change on crop production with consideration of changes of crop climate-suitable regions. However, 
little is known about the uncertainty sources in the wheat production projections with consideration of crop 
climatic suitability under future climate. In this study, an integration method based on multiple CMs, SDMs, and 
GCMs was adopted to assess the impacts of climate change on winter wheat production in the Loess Plateau of 
China. A comprehensive analysis of different uncertainty sources (i.e. CM, GCM, SDM, Emission Scenario or Scen, 
and their interactions) was conducted through the ANOVA (Analysis of variance) method. Based on the pro-
jections of CM ensemble and ensemble-SDMs driven by 27 GCMs, multi-model mean winter wheat production 
would increase by 14.6% and 19.7% in 2041–2060 and 4.9% and 3.5% in 2081–2100 under SSP245 and SSP585, 
respectively. We found that the changes in climate-suitable areas of winter wheat caused larger changes in winter 
wheat production than the changes of per unit yield. SDM was the largest uncertainty contributor among the four 
main factors of CM, GCM, SDM, and Scen in the projections of winter wheat production under future climate in 
the Loess Plateau, accounting for about 20.3% of total uncertainty. At the same time, CM was the lowest un-
certainty contributor and accounted for only about 3.0% of total uncertainty. Thus, CM was proved more certain 
in future projections of winter wheat production when considering the changes of crop climate-suitable areas. 
The efforts in this study could help to rationally integrate the crop modeling, species distribution modeling, and 
climate models on the projections of global wheat production under future global climate change.   

1. Introduction 

Global population is expected to reach approximately 9.7 billion by 
2050 (White and Gardea-Torresdey, 2018) and this steady growth is 
driving up food demand dramatically (van Dijk et al., 2021). Climate 
change has put great pressure on global food security since climate 
warming (Asseng et al., 2015; Zhao et al., 2017), seasonal uneven 

changed precipitation (Lesk and Coffel 2020), and climate extremes 
have significantly affected crop production (Chavez et al., 2015; Li et al., 
2019). At the same time, land use attributes another part of accessibility 
and availability of this vital food source. Over the past ten years, rapid 
urbanization and widespread degradation of agricultural land have 
placed additional pressure on global food suply as the area of arable 
agricultural land declines (IPCC, 2019). In Australia, for example, any 
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positive effects of climate change will be insufficient to prevent a likely 
decline in production under a high CO2 emission scenario by 2081–2100 
due to the increasing loss of suitable wheat growing areas (Wang et al., 
2018). Nonetheless, in the northern hemisphere, cropping area 
expanded northward due to the rising temperatures (King et al., 2018; 
Ramirez-Cabral and Kumar, 2016). Thus, more research began to focus 
on agronomic strategies that could simultaneously maintain or even 
increase crop per unit yield in climate-suitable regions under climate 
change so as to ensure future food security (Senapati et al., 2019; 
Tanaka et al., 2015; Wang et al., 2018). 

Winter wheat, one of the world’s staple food crops, is experiencing a 
production decline of about 5.5% due to climate change in the past a few 
decades (Lesk et al., 2016; Lobell et al., 2011), in spite of the improve-
ments in genetic technology and agronomic management (Ortiz-Bobea 
et al., 2021). Moreover, climate change could both shift the character-
istics of wheat growth and development (Asseng et al., 2015; Corbeels 
et al., 2018; He et al., 2015) and alter their spatial distributions (Man-
ners and Varela-Ortega, 2020; Wang et al., 2018; Wheeler, 2013). In 
China, for instance, the expanding of northern borders of cropping 
systems contributed about 2.2% increase to national production of 
major crops (Yang et al., 2015). On the contrary, a decline in the areas 
suitable for growing wheat have been projected in the Australian under 
future climate change (Wang et al., 2018). 

Usually, statistical-based models (Lobell et al., 2011; Zhao et al., 
2016), process-based biological crop models (CMs) (Asseng et al., 2015; 
Wang et al., 2017), and their combinations (Feng et al., 2020, 2019) 
were used as robust tools to investigate the impacts of climate change on 
main crop yields worldwide with projected climatic data from multiple 
global climate models (GCMs). Especially, the process-based biological 
crop models have been a common tool for getting insights into the im-
pacts of climate change on agricultural production system (Basso et al., 
2021; Liu et al., 2021). However, inconsistencies among crop models in 
the interactions of temperature, atmospheric CO2 emissions, and sea-
sonal rainfall might lead to opposite trend of in predicted crop yields 
under future climate change (Wang et al., 2020), which could cause 
larger uncertainty in the projections. Asseng et al. (2013) reveled that 
the larger proportion of uncertainty was contributed by crop models 
than by downscaled GCMs in their projections of climate change impacts 
on crop yield. In addition, the identification of uncertainty sources had 
extended to crop model parameters and managements (Tao et al., 2018; 
Xiong et al., 2019). Furthermore, Xiong et al. (2019) explored the global 
geographic pattern of total uncertainty in climate change impact pro-
jections and found that low latitudes had lower uncertainty than middle 
and high latitudes. Nonetheless, site-specific sources of uncertainty in 
the projections of climate change impacts were also highlighted by 
Wang et al. (2020). Thus, there are still some knowledge gaps in iden-
tifying the dominating sources of uncertainty in crop yield projections 
under future climate change. 

The spatial distributions of species under the suitable environmental 
conditions (e.g. temperature and rainfall) can be modeled by the species 
distribution models (SDMs) (Araújo et al., 2019; Elith and John, 2009). 
Recently, possible distributions of field crops (maize, wheat, bean) have 
been projected by SDMs with historical or future climate data at global 
and country scales (He, 2016; He et al., 2019; Ramirez-Cabral and 
Kumar, 2016; Sun and Zhou, 2012). It was noteworthy that the combi-
nation of CMs, GCMs, and SDMs had already been used to assess the 
impacts of climate change on crop production at country scale. For 
instance, Wang et al. (2018) applied multiple SDMs to investigate the 
changes of climate-suitable areas for wheat production under future 
climate change. They then used the Apsim model to assess the change of 
per unit yield in these areas and projected whole wheat production in 
Australia. Sources of uncertainties in the projections of crop grain yield 
and spatial distributions under climate change were also discussed by 
several other research (Asseng et al., 2013; Stoklosa et al., 2015; Tao 
et al., 2018; Thuiller et al., 2019). However, little is known about the 
contributions of various sources (i.e. GCM, CM, SDM, Emission Scenario 

or Scen, and their interactions) to the total uncertainty in the projections 
of winter wheat production with consideration of the changes in 
climate-suitable areas under future climate. 

In this study, we selected the Loess Plateau as a representative region 
in China, where wheat production is vulnerable to climate change, to 
simulate its winter wheat production with six different CMs, nine SDMs, 
and 27 GCMs under four future climate change scenarios (i.e. 
2041–2060_SSP245, 2041–2060_SSP585, 2081–2100_SSP245, and 
2081–2100_SSP585) based on the Coupled Model Intercomparison 
Project phase 6 (CMIP6). The objectives were (1) to investigate the 
changes of per unit yield and climate-suitable areas of winter wheat in 
the Loess Plateau under future climate, (2) to assess the changes of 
regional production of winter wheat under future climate, and (3) to 
identify the sources of uncertainties in the projections of winter wheat 
production influenced both by the changes of per unit yield and climate- 
suitable areas under future climate change. 

2. Materials and methods 

2.1. Study area 

The Loess Plateau is of one the most ecologically vulnerable areas 
and typical dryland farming areas in China (Jin et al., 2018). Winter 
wheat is mainly cultivated in northern Henan province, Shanxi prov-
ince, Shaanxi province, southeastern Gansu province, and southern 
Ningxia province in China. Winter wheat cultivation mainly depends on 
rainfall and is very vulnerable to the climate change in this region. In the 
Loess Plateau, wheat accounts for about 21.2% of national wheat 
planting area (3.47±0.96 million hectares) and 9.3% of national wheat 
production (11.81±1.85 million tons) (Fig. S1). Mean daily temperature 
in winter wheat growing season (September of sowing year to June of 
harvest year) rose from north to south, with a mean value of − 4~12 ℃ 
(Fig. 1b) in 1971–2010. Averaged cumulative rainfall in winter wheat 
growing season (160~500 mm) shared the similar spatial pattern with 
mean temperature (Fig. 1c). Nonetheless, mean cumulative radiation in 
winter wheat growing season (2500~4500 MJ m− 2) declined from north 
to south (Fig. 1d). Based on the remotely sensing survey data from Jin 
et al. (2018), winter wheat cultivation areas were mainly distributed in 
southern Shanxi province, central Shaanxi province, and southeast of 
Gansu province (green pixels in Fig. 1a). These three provinces differed 
in winter wheat management options, such as wheat cultivar, plant date, 
plant density, and fertilization rates (He et al., 2014). Moreover, in 
winter wheat cultivation regions in the Loess Plateau, averaged daily 
temperature and cumulative rainfall decreased from east to west. Thus, 
we divided the whole planting areas of winter wheat into three sub-
regions (i.e., Subregion I, II, and III) from east to west in the Loess 
Plateau (Fig. 1a), which was more convenient for crop model simulation. 

2.2. Climate, soil, and experimental data 

Daily weather data (maximum and minimum temperatures, rainfall, 
and solar radiation) were obtained from the National Meteorological 
Information Center (http://data.cma.cn/) for the 297 national weather 
stations located in the Loess Plateau in 1971–2010 (baseline). Future 
climate in periods of 2041–2061 and 2081–2100 of each weather station 
were obtained from 27 different GCMs (Table S1). Additionally, to 
investigate the relative change in future projections, climatic data in 
1971–2010 were also attained from the GCMs. The weather data from 
the 27 GCMs were spatiotemporally downscaled to daily scale for the 
297 national weather stations located in the Loess Plateau (Fig. 1a). 
Details about the description of the downscaling method can be found in 
Liu and Zuo (2012). This method has been widely applied in recent 
climate change impact studies in Australia (Wang et al., 2020, 2017) and 
China (Ruan et al., 2018; Xiao et al., 2020). 

The soil data used in the simulations with six different CMs 
(Table S2) in this study included soil physical parameters (i.e. saturated 
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moisture content, field capacity, and wilting point), bulk density, 
organic carbon, and pH at soil depths (Table S3). The SDMs variables 
related to soil physical and chemical properties were obtained from the 
Chinese soil hydrographic dataset (http://westdc.westgis.ac.cn) (Dai 
et al., 2013) and the HWSD (Harmonized World Soil Database version 
1.1 HWSD) dataset (Wieder et al., 2014). 

With consideration of the temperature differences in the three sub-
regions (Fig. 1a), three mainly cultivated winter wheat cultivars with 
different life cycles were selected as representative cultivars in the three 
subregions. The field experiments with the longest growing season of 
winter wheat were conducted at the Changwu Agro-ecological Experi-
ment Station in Shaanxi Province (35◦14′ N, 107◦41′E, 1220 m), where 
the sowing dates were Sept.− 25 in 2004, Sept.− 26 in 2005, Sept.− 21 in 
2007, and Sept.− 17 in 2008, respectively. Cultivars of the experiments 
were ’Changwu 89,134′ in the 2004–2006 growing seasons and ’Chan-
ghan 58′ in the 2007–2009 growing seasons (Table S4). More basic data 
of the eight-year field experiments and information about soil properties 
of the experimental site at Changwu were reported in Ding et al. (2016). 
The field experiment with the shortest growing season of winter wheat 
was conducted under rainout shelters between 2012 and 2013 at the Key 
Laboratory for Agricultural Soil and Water Engineering in Arid Area of 
Ministry of Education of Northwest A&F University at Yangling in 
Shaanxi Province (34◦17′N, 108◦04′E, 506 m), where the cultivar was 
’Xiaoyan 22′ and the sowing dates were Otc-15 in 2012 and Oct.− 15 in 
2013 (Table S4). More details about the experiments can be found in 
Yao et al. (2015). The rest of the experiments were conducted in 
2008–2015 under rainfed conditions at Linfen in Shanxi Province 
(36◦5′N, 111◦45′E, 693.5 m) with a winter wheat cultivar of ’Linfen 45′. 
The experimental factors included planting date and density (Table S4). 
The fertilizer application rate was the same for all treatments, with a 
base fertilizer of 150 kg N ha− 1 and 50 kg P2O5 ha− 1. Fertilizer appli-
cation date was set as the day before sowing. More experimental details 
can be found in Pei et al. (2017). 

2.3. Crop model setting under various emission scenarios 

The relevant parameters of the six crop models (i.e. Apsim, Aqua-
Crop, DSSAT-CERES-Wheat, DSSAT-CSCRP-Wheat, DSSAT-NWheat, 
and STICS) were obtained through the processes of model calibration 
and validation (Tables S5–10). Because the six crop models did not have 
unified tools for parameter optimization. Thus, calibration and valida-
tion of the six crop models were conducted based on the least square 
method in R language. Then, the six validated crop models were used to 
simulate the phenology dates and per unit grain yield of winter wheat 
with observed climatic data (1971–2010) and downscaled climatic data 
(1971–2010, 2041–2060, and 2081–2100) with the 27 GCMs under 
SSP245 and SSP585 scenario across 166 weather stations in the Loess 
Plateau (Fig. 1a). The initial soil water content was reset as 75% of plant 
available water on August 1th. Then, the initial nitrogen contents in 1 m 
soil profile were reset as 80, 70, and 60 kg N ha− 2 in Subregion I, Sub-
region II, and Subregion III, respectively. All simulation scenarios were 
set under rainfed condition, with planting densities of 300, 300, and 500 
plant m− 2 in the three subregions. According to local farmers’ man-
agement practices, the fertilizer schedules of 150 N 60 P 30 K kg ha− 2, 
120 N 80 P 40 K kg ha− 2, and 160 N 40 P 30 K kg ha− 2 were set in the 
three subregions, respectively. The planting dates were automatically 
triggered at 40% of plant available water in 0–30-cm soil layer. Sowing 
widows were set as September 10th-October 20th, September 20th- 
October 20th, and September 20th-October 10th in the three sub-
regions, respectively. Moreover, the response of crop to atmospheric 
CO2 concentration was considered and fitted for scenario SSP245 (Eq. 
(1)) and SSP585 (Eq. (2)) based on the projection data from the SSP 
database (Gidden et al., 2019). Multi-CM ensemble mean was calculated 
based on the projections of the six CMs. The simulation results based on 
historical weather data were used to calculate the relative changes for 
simulation variables based on the downscaled climatic data of the 27 
GCMs.  

Fig. 1. Spatial distributions of winter wheat cultivation areas, three experimental sites for model calibration and validation (Linfen, Yangling, Changwu; three red 
filled triangles), national weather stations (166 blue filled pentagrams in the current planting areas and 131 brown filled circles out of the current planting areas of 
winter wheat), three subregions of winter wheat planting areas (a), with the mean temperature (b; ℃), mean cumulative rainfall (c; mm), and mean cumulative solar 
radiation (d; MJ m− 2) from September of sowing year to June of harvest year of winter wheat in the Loess Plateau of China. Sub-region I: northwestern Henan 
Province and Shanxi Province; Sub-region II: middle and northern Shaanxi Province and southern Inner Mongolia; and Sub-region III: southeastern Gansu Province, 
eastern Qinghai Province, and southern Ningxia Province. 
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[CO2]year = 757.44 +
84.938 − 1537 × y

2.2011 − 38289 × y− 0.45242 + 2.4712 × 10− 4 × (y+ 15)2
+

1.9299 × 10− 5 × (y − 1937) 3
+ 5.1137 × 10− 7 × (y − 1910)4

(2)  

2.4. Simulation of climate-suitable area for winter wheat 

Generally, the species distribution models (SDMs) are used to 
establish statistical relationship between species ‘presences’, ‘absences’, 
and environmental variables (e.g. temperature, precipitation, soil, 
vegetation, and etc.) to determine the environmental conditions 
required for species survival. The variables of ‘presences’ and ‘absences’ 
represent the spatial distributions of climate-suitable and climate- 
unsuitable locations in the SDMs. Based on latitude and longitude of 
‘presences’ and ‘absences’, environmental data were extracted as inputs to 
train and test the models. ‘Presences’ and ‘absences’ were encoded as ‘1′

and ‘0′, which were dependent variables in model training and testing. 
Then, after model testing, the SDMs could estimate the spatial and 
temporal distributions of species survival possibility, forced by the 
spatial environmental data. Researchers usually refer to a threshold to 
determine the acreage distribution of predicted spatial species survival 
possibility. 

In this study, climate-suitable areas of winter wheat were simulated 
with nine widely used species distribution models (SDMs), including 
GAM, GBM, Glmnet, Maxlike, MLP, SVM, RBF, RF, and RPART 
(Table S11). The nine SDMs are integrated in the ‘sdm’ package in R 
language (Naimi and Miguel, 2016). In addition, a total of 20 different 
environment variables (Table S12) related to winter wheat growth and 
development were used in the projections of climate-suitable areas with 
various SDMs. 

2.4.1. Training and testing processes of SDMs 
A bootstrapping procedure was used to train and test the involved 

SDMs with ‘sdm’ package (Naimi and Miguel, 2016). All of the nine 
SDMs need ‘presences’ and ‘absences’ to determine the suitable conditions 
for winter wheat production across the whole research region. To 
determine the spatial distributions of ‘presences’ and ‘absences’, random 
spatial sampling with a sample size of 2000 was executed through the 
‘sdm’ package in R language. Then, ‘presences’ were obtained within the 
891 locations in the cultivation areas of winter wheat surveyed by Jin 
et al. (2018). And, ‘absences’ were the rest 1109 locations out the 
cultivation areas of winter wheat but still in the Loess Plateau. In order 
to reduce the random errors in SDMs simulations, each simulation was 
repeated ten times in the training and testing processes for the nine 
different SDMs according to the bootstrapping procedure. The model’s 
performances in training and testing were quantified with AUC, (the 
area under the ROC curve, Eq. (3)), TSS (the true skill statistic, Eq. (4)), 
and COR (Pearson correlation coefficient, Eq. (5)). 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AUC = 1 −
1

m+ × m−

∑

x+∈D+

∑

x− ∈D−

(W(f (x+) − f (x− )))

W(f (x+) − f (x− )) = 1, f (x+) ≥ f (x− )

W(f (x+) − f (x− )) = 0, f (x+) < f (x− )

(3)  

where, m+ and m− were sample size marked as 1 and 0; D+ and D− were 
the sets marked as 1 and 0; x+ and x− were the sample marked as 1 and 
0; f(x+) and f(x− ) were the model predicted values under a given 
threshold. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

TPR =
TP

TP+ FN

TNR =
TN

FP+ TN
TSS = TPP − FRP − 1

(4)  

where, TP, FN, FP, and TN were true positive, false negative, false pos-
itive, and true negative cases predicted by the models under a given 
threshold, respectively; TPN and TRN were sensitivity and specificity. 

COR =

∑n
i=1(xi − x) × (f (xi) − f (x))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(f (xi) − f (x))2
√ (5)  

where xi, and f(xi) were the observed and predicted values; x, and f(x)
were the mean of observed and predicted values 

2.4.2. Predictions of climate-suitable areas of winter wheat with SDMs 
First, multi-year mean climate related variables (Table S12) from 

observed climatic data in 1971–2010 and downscaled climatic data of 
27 GCMs in 1971–2010, 2041–2061, and 2081–2100 under both emis-
sion scenarios across 297 weather stations were interpolated to resolu-
tion of 1 km using the inverse distance weighting method in the ‘raster’ 
package of R. In order to meet the uniform resolution of SDMs inputs, 
the inputs related to topography and soil physical and chemical were 
resampled to the same resolution as climate related variables. Then the 
environmental variables (Table S12) were used to run the nine different 
validated SDMs. The predictions with each of the nine validated SDMs 
were the mean values of the corresponding ten repeat runs for each of 
the nine validated SDMs. 

Standard deviations of TSS (true skill statistic) values were between 
that of AUC and COR in the testing process (Table S13). In order to 
rationally integrate results of the nine SDMs to an ensemble-SDMs value, 
the weights of different SDMs were calculated as the ratios between TSS 
of corresponding SDMs and sum of TSS. Then, the predictions of 
weighted-ensemble SDMs were calculated for current and future con-
ditions based on the 27 GCMs. The SDMs-predicted survival possibility 
or climate suitability of winter wheat ranged 0–1 in each pixel in 
1971–2010, 2041–2060, and 2081–2100 based on the 27 GCMs under 
both SSP245 and SSP585 scenarios. In this study, we set 0.5 as the 
threshold value to determine the ‘presences’ and ‘absences’ for all pro-
jections. Thus, we could obtain climate-suitable areas of winter wheat 
predicted by nine individual SDMs in different time windows. However, 
the projections were climate-suitable areas rather actual areas of winter 

[CO2]year = 62.044 +
34.002 − 3.8702 × y

0.24423 − 1.1542 × y2.4901 + 0.028057 × (y − 1900)2
+

0.00026827 × (y − 1960) 3
− 9.2751 × 10− 7 × (y − 1910)4

− 2.2448 × (y − 2030)
(1)   
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wheat in various time windows in the Loess Plateau. Thus, SDMs might 
estimate the spatial temporal distribution of the species survival possi-
bility in forest, residential, grass, and etc. Thus, taking into account the 
bias between the simulated acreage and the statistical acreage, a 
correction method provided by Wang et al. (2018) was used to correct 
the predicted climate-suitable areas according to the statistical areas of 
winter wheat cultivation in the China Statistical Yearbook (2007–2014) 
(Eq. (6)). The correction factors (Table S14) obtained were therefore 
used to calculate the acreage of climate-suitable areas under future 
climate change. 
⎧
⎪⎪⎨

⎪⎪⎩

Factor =
AreasSDM baseline

AreasChina NBOSO

AreasSDM future =
AreasSDM future projection

Factor

(6)  

where Factorwas the correction factors for the climate-suitable areas of 
winter wheat predicted by nine individual species distribution models 
(SDMs);AreasSDM baselinewas multi-year mean climate-suitable areas of 
winter wheat predicted by SDMs in the baseline (1971–2010) with 
observed climate data, million hectare;AreasChinaNBOSO was statistical 
areas of winter wheat cultivation in the China Statistical Yearbook 
(2007–2014), million hectare;AreasSDM future was the corrected multi- 
year mean climate-suitable areas of winter wheat predicted by SDMs 
under four future climate change scenarios, million hectare;AreasSDM
future projection was the uncorrected multi-year mean climate- 
suitable areas of winter wheat predicted by SDMs under four future 
climate change scenarios, million hectare. 

2.5. Projections of regional production of winter wheat 

The projections of regional production of winter wheat were based 
on the predictions of per unit yields of winter wheat with six CMs and 
CM ensemble and the projections of climate-suitable areas of winter 
wheat with nine SDMs and weighted-ensemble SDMs driven by observed 
climatic data and downscaled climatic data from the 27 GCMs. The 
regional production of winter wheat projected by the combination of six 
CMs, CM ensemble, nine SDMs, weighted-ensemble SDMs, and 27 GCMs 
under four change scenarios (Scen) in the Loess Plateau and three sub-

regions (Reg), or [Produncrion Reg
GCM Scen]

SDM
CM (million tons) was the product 

of the average per unit yield [YieldReg
GCM Scen]CM (kg ha− 1) projected by the 

corresponding combination of CMs, GCMs, Reg and Scen and the climate- 
suitable areas [AreasReg

GCM Scen]SDM(million hectare) projected by the cor-
responding combination of SDMs, GCMs, Reg, and Scen (Eq. (7)). 

Additionally, the percentage was calculated as the ratio between the 
absolute change of production in 2041–2060 and 2081–2100 compared 
to 1971–2010 under SSP245 and SSP585 and production driven by 
observed climatic data. 
[
Produncrion Reg

GCM− Scen
]SDM
CM =

[
Yield Reg

GCM− SCen

]

CM ×
[
Areas Reg

GCM− Scen
]

SDM

(7)  

2.6. Identification of uncertainty sources in yield, areas, and production 
projections 

The contributions by different sources to the uncertainties in the 
projections of per unit yield, climate-suitable areas, and regional pro-
duction of winter wheat were analyzed in the Loess Plateau under future 
climate change. First, three-way ANOVA analysis was conducted to 
assess the uncertainties in projected per unit yields caused by six CMs, 
27 GCMs, four change scenarios, and their interactions (Eq. (8)). Next, 
the same method was used to assess the uncertainties in projected 
climate-suitable areas (Eq. (9)). Finally, four-way ANOVA analysis was 
conducted to analyze the uncertainties in projected regions production 
of winter wheat, taking into account a total of 15 uncertainty sources 
(Eq. (10)). 

Tyield = Pyield, CM +Pyeld, GCM +Pyield, Scen +Pyield, CM× Scen +

Pyield, CM×GCM +Pyield, GCM×Scen+Pyield, CM×GCM× Scen
(8)  

Tareas = Pareas, SDM + Pareas, GCM + Pareas, Scen + Pareas, SDM×Scen+

Pareas, SDM×GCM + Pareas, GCM×Scen + Pareas, SDM×GCM×Scen
(9)    

where Tyield was the total uncertainty in projected per unit grain yields of 
winter wheat under future climate change; Pyield,CM, Pyield,GCM, Pyield,Scen, 
Pyield,CM×Scen, Pyield,CM×GCM, Pyield,GCM×Scen, and Pyield,CM×GCM×Scenwere the 
proportions of uncertainty contributed by CM (crop model), GCM 
(Global climate model), Scen (Emission Scenario), and their interactions; 
Tareas was the total uncertainty in projected climate-suitable areas under 
future climate change; Pareas,SDM, Pareas,GCM, Pareas,Scen, Pareas,SDM×Scen, 
Pareas,SDM×GCM, Pareas,GCM×Scen, and Pareas,SDM×GCM×Scenwere the proportions 
of uncertainty contributed by SDM (Species distribution model), GCM, 
Scen, and their interactions; Tproduction was the total uncertainty in pro-
jected regional production of winter wheat under future climate change; 
Pproduction,CM, Pproduction,GCM, Pproduction,SDM, Pproduction,Scen, Pproduction,CM×GCM, 
Pproduction,CM×SDM, Pproduction,CM×Scen, Pproduction,GCM×SDM, Pproduction,GCM×Scen, 
Pproduction,SDM×Scen, Pproduction,CM×GCM×SDM, Pproduction,CM×GCM×Scen, Pproduction,

CM × SDM × Scen, Pproduction,GCM×SDM×Scen, and Pproduction,CM ×GCM ×

SDM × Scen were the proportions of uncertainty contributed by CM, 
SDM, GCM, Scen, and their interactions, respectively. 

3. Results 

3.1. Changes of the phenology and grain yield of winter wheat 

The parameters estimated and verified with relevant field experi-
ment data (Fig. S2) were used in the six CMs to simulate the phenology 
dates and per unit yield of winter wheat under various scenarios. 
Compared with the baseline of 1971–2010 (Table S15), future climate 
change accelerated the development of winter wheat and reduced the 
growing days (Fig. 2a, b), which was mainly due to the rise of temper-
ature (Fig. S3a). The mean anthesis dates, which were simulated with 
the CM ensemble driven by 27 GCMs across the 166 weather stations in 
the Loess Plateau, were 13 and 20 days earlier in 2041–2060 and 

Tproduction =

Pproduction, CM + Pproduction, GM + Pproduction, SDM + Pproduction, Scen +

Pproduction, CM×GCM + Pproduction,CM×SDM + Pproduction ,CM×Scen+

Pproduction, GCM×SDM + Pproduction, GCM×Scen + Pproduction, SDM×Scen+

Pproduction, CM×GCM×SDM + Pproduction, CM×GCM×Scen + Pproduction, CM×SDM×Scen+

Pproduction, GCM×SDM×Scen + Pproduction, CM×GCM×SDM×Scen

(10)   
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2081–2100 under SSP245; and 18 and 38 days earlier under SSP585, 
respectively (Fig. 2a). In addition, the advancing of anthesis dates was 
greater than the maturity dates in 2081–2100 under SSP585, especially 
in the phenology simulations with the AquaCrop, DSSAT-CSCRP-Wheat, 
and DSSAT-NWheat model (Figs. S4a, d, e and S5a, d, e). Although warm 
regions (Subregions I and II) would become warmer than cold region 
(Subregions III) (Fig. S3a), changes of life cycle of winter wheat in warm 
regions were less than those in cold regions under future climate change 
(Fig. 2b). 

Compared with the per unit yield (4343 kg ha− 1 in Table S15) of the 
baseline of 1971–2010, most of the 27 GCMs agreed on the rise of per 
unit yield in future periods across the 166 weather stations in the Loess 
Plateau. Over the whole region, multi-GCMs mean of CM ensem-
bleprojected yield changes were 12.4% in 2041–2060 and 15.2% in 
2081–2100 under SSP245, which were lower than the changes under 
SSP585, about 17.1% in 2041–2060 and 27.5% in 2081–2100 (Fig. 2c). 

The wet and warm Subregion II had the largest increase in simulated 
yields (Fig. 2c). Although yields were projected to increase in the future 
by most combinations of CMs and GCMs, the magnitudes of yield 
changes were remarkably different (Fig. S6). Among the six CMs, the 
DSSAT-NWheat model projected the lowest magnitude of yield changes 
in the Loess Plateau, since the mean yield change of multi-GCMs pro-
jections was 2.7% in 2041–2060 and 5.2% in 2081–2100 under SSP245, 
and 5.2% in 2041–2060 and 24.6% in 2081–2100 under SSP585 
(Fig. S6e). The AquaCrop model projected more than 56.3% yield in-
crease in the future under both SSPs scenarios in the Loess Plateau 
(Fig. S6b). Additionally, the trends of yield change varied among the six 
CMs in future period under both SSPs scenarios in the Subregion III. 
Yield changes were projected to stay at the level of baseline by the 
DSSAT-CERES-Wheat, DSSAT-NWheat, and STICS models (Fig. S6c, e, f) 
and to be greater than the baseline by the Apsim, AquaCrop, and DSSAT- 
CSCRP-Wheat models (Fig. S6a, b, d) in Subregion III. 

3.2. Changes of climate-suitable areas for winter wheat 

Both observed and downscaled weather data from the 27 GCMs were 
used to drive the multiple SDMs to simulate climate-suitable areas for 
winter wheat in the Loess Plateau. In the baseline of 1971–2010, 
climate-suitable areas of winter wheat projected by the SDMs shared the 
same spatial pattern with the planting areas obtained through remote 
survey (Jin et al., 2018) (Fig. S7a–j). Temperature-related and 
rainfall-related variables had relatively lager influences on the 
SDM-predictions than the rest 17 variables. For example, the variables of 
PWM (Rainfall of wettest month), MTCM (Minimum temperature of the 
coldest month), and TR (Temperature range) were the top-3 influential 
factors and their relative influences were 15.8%, 15.7%, and 12.7% 
(Fig. S7k), respectively. 

Predicted climate-suitable areas by the ensemble-weighted SDMs 
driven by the 27 GCMs were compared with the predictions in the 
baseline of 1971–2010. Compared with the spatial distribution of 
planting areas of winter wheat in the baseline, the spatial distribution 
was projected to extend northward in Subregion I and westward in 
Subregion III in 2041–2060 under SSP245, but retract westward in 
Subregion III in 2041–2060 under SSP585 (Fig. 3a, c). The mean 
climate-suitable areas based on multi-GCMs projections were predicted 
to be 3.45 and 3.40 million hectares in 2041–2060 under SSP245 and 
SSP585, respectively (Table 1). The projected changes of the mean 
climate-suitable areas were unremarkable under SSP245 (− 0.5%) and 
SSP585 (− 2.0%) scenarios in 2041–2060 (Fig. 3e). However, the Loess 
Plateau would lose about 10.9% and 24.7% of climate-suitable areas for 
winter wheat under SSP245 and SSP585 in 2081–2100 (Fig. 3e), with 
projected climate-suitable areas of 3.09 and 2.61 million hectares. The 
losses of climate suitability mainly occurred in Subregion III (Fig. 3b, d), 
about − 15.0% and − 51.1% under SSP245 and SSP585 (Fig. 3e), 
respectively. In Subregion I, climate-suitable areas for winter wheat 
would extend northward and retract eastward under SSP245 and 
SSP585 (Fig. 3b, c), with climate-suitable areas of 1.65 and 1.63 million 
hectares in 2041–2060 under SSP245 and SSP585, and 1.42 and 1.35 
million hectares in 2081–2100 (Table 1). In Subregion II, the changes of 
climate-suitable areas for winter wheat were remarkable in 2081–2100, 
about − 7.6% and − 17.1% under SSP245 and SSP585 (Fig. 3e). 

In addition, the changes of climate-suitable areas predicted by the 
nine SDMs varied under the four climate change scenarios in the Loess 
Plateau. The GAM model projected unremarkable change in climate- 
suitable areas under SSP245 and SSP585 in 2041–2060, but the mean 
climate-suitable areas of multi-GCMs declined about 74.6% and 91.4% 
under SSP245 and SSP585 in 2081–2100 (Fig. S8a). Compared with the 
baseline of 1971–2010, the Glmnet, Maxlike, MLP, and RBF models 
projected reductions in climate-suitable areas in 2041–2060 and 
2081–2100 both under SSP245 and SSP585 (Fig. S8c–f). The mean 
climate-suitable areas projected by the GBM model and multi-GCMs 
would increase more than 9.6% in the future in the Loess Plateau 

Fig. 2. Projected change days of anthesis (a), days of maturity (b), and per unit 
yield (c) based on the ensemble crop models (CMs) in 2041–2060 and 
2081–2100 under SSP245 and SSP585 scenarios across all of the weather sta-
tions in the whole region and the three subregions (Subregion I, II, and III). 
Data presented are changes of mean values in 2041–2060 and 2081–2100 with 
the 27 selected global climate models (GCMs) at all of the weather stations 
compared to the baseline of 1971–2010. In each box, there are 27×166, 27×77, 
27×59, 27×30 values corresponding to the 27 selected global climate models 
(GCMs) and numbers of weather stations in the Loess Plateau, Subregion I, II, 
and III, respectively. Box boundaries indicate the 25th and 75th percentiles; the 
black line within the box marks the median; circle with crossed lines marks the 
mean; whiskers below and above the box indicate the 10th and 90th percen-
tiles, respectively. And the same below. 
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(Fig. S8b). Compared with the baseline, the predicted climate-suitable 
areas by the RF, RPART, and SVM models would increase in 
2041–2060 both under SSP245 and SSP585, but decline in 2081–2100 
under SSP585 (Fig. S8g–i). 

3.3. Changes of regional winter wheat production 

The per unit yield projected by six CMs and CM ensemble and 
climate-suitable areas projected by nine SDMs, and TSS weighted- 
ensemble SDMs driven by 27 GCMs were integrated to project the 
changes of regional winter wheat production in the Loess Plateau under 
future climate change. Based on the simulations with CM ensemble, TSS 
weighted-ensemble SDMs, and 27 GCMs, most GCM projected increases 
in regional winter wheat production. The mean winter wheat production 
of multi-GCMs would increase by 14.6% and 19.7% in 2041–2060 and 
by 4.9% and 3.5% in 2081–2100 under SSP245 and SSP585 (Fig. 4a), 

which was mainly due to the increases in per unit yield of winter wheat. 
The mean winter wheat production of multi-GCMs were projected to be 
17.66 million tons and 18.20 million tons in 2041–2060 and to be 16.41 
million tons and 16.10 million tons in 2081–2100 under SSP245 and 
SSP585, respectively (Table 2). In addition, the magnitude of changes in 
winter wheat production varied spatially under the four climate change 
scenarios (Fig. 4a). Under SSP245, mean winter wheat production of 
multi-GCMs was projected to increase by 19.0% in 2041–2060 and by 
4.5% in 2081–2100 in Subregion I, by 13.7% and 10.3% in Subregion II, 
and by − 0.3% and − 12.0% in Subregion III (Fig. 4a). Thus, regional 
winter wheat production in warm and wet regions (Subregion I and II) 
could benefit from future climate change. However, future climate 
change might damage regional winter wheat production in dry and cold 
Subregion III (Fig. 4a). 

Generally, the changes of regional winter wheat production pro-
jected by the six CMs with ensemble-SDMs and multi-GCMs were less 
than 50.0% in 2041–2061 and 2081–2100 both under SSP245 and 
SSP585 in the Loess Plateau (Fig. S9). Most CMs projected increase in 
winter wheat production with ensemble-SDMs and multi-GCMs in 
Subregion II, but the trends of projected winter wheat production varied 
among of the six CM under the four climate change scenarios in Sub-
region I and Subregion III (Fig. S9). 

However, variations among the nine SDMs could lead to larger dif-
ferences in temporal and spatial changes of projected winter wheat 
production (about − 52.2%~101.4%, Fig. S10) than the variations 
among the six CMs. The changes of winter wheat production shared the 
similar pattern with the change of projected climate-suitable areas 
(Figs. S7 and S10). In addition, the slopes of linear regressions between 
changes of regional winter wheat production and changes of per unit 
yield of winter wheat were less than 0.14, while the slopes between 
changes of regional winter wheat production and changes of climate- 
suitable areas for winter wheat were 0.14~0.16 (Fig. 4b, c). These sta-
tistics showed that the changes in climate-suitable areas for winter 
wheat could contribute more to the changes in regional winter wheat 
production than the changes in per unit yield of winter wheat. 

Fig. 3. Spatial distributions of multi-GCM-median climate-suitable areas of winter wheat cultivation projected by the TSS-weighted ensemble of nine species dis-
tribution models (SDMs) with 27 GCMs under the SSP245 and SSP585 scenarios in the Loess Plateau of China. Changes of climate-suitable planting areas are 
presented for the period of 2041–2060 under SSP245 (a), 2081–2100 under SSP245 (b), 2041–2060 under SSP585 (c), and 2081–2100 under SSP585 (d) compared 
with the baseline of 1971–2010. Cyan pixels represent the areas that would become suitable (or Gain); green pixels the areas that are currently suitable (or Stable); 
and gray pixels the areas that would become unsuitable (or Loss). Relative changes in climate-suitable areas of winter wheat are projected in the Loess Plateau and 
three subregions (Subregion I, II, and III) under the SSP245 and SSP585 scenarios (e). The elements of each box are the SDM-predictions with 27 GCMs. 

Table 1 
Multi-GCM means of projected climate-suitable areas (million hectare) based on 
the ensemble-weighted SDMs in 2041–2060 and 2081–2100 under SSP245 and 
SSP585 in the Loess Plateau and three subregions (Subregion I, II, and III), 
respectively. The SDMs-predicted climate-suitable areas of winter wheat under 
future climate were adjusted based on the actual areas of winter wheat culti-
vation in the China Statistical Yearbook (2007–2014) with the correction factor 
shown in Table s14.   

SSP245 SSP585 
Regions 2041–2060 2081–2100 2041–2060 2081–2100 

The Loess 
Plateau 

3.45 
(2.87–3.93)a 

3.09 
(2.54–3.62) 

3.40 
(2.67–3.75) 

2.61 
(1.99–3.24) 

Subregion I 1.65 
(1.35–1.90) 

1.42 
(1.08–1.89) 

1.63 
(1.28–1.91) 

1.35 
(0.99–1.91) 

Subregion II 1.39 
(1.28–1.58) 

1.31 
(1.20–1.50) 

1.37 
(1.22–1.54) 

1.18 
(0.74–1.58) 

Subregion III 0.47 
(0.30–0.61) 

0.42 
(0.23–0.63) 

0.46 
(0.23–0.64) 

0.24 
(0.08–0.64)  

a The number outside is the mean value and the numbers in the parentheses 
are the minimum and maximum values. 
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3.4. Sources of uncertainties in the projections of yield, climate-suitable 
areas, and production 

The uncertainty sources (i.e. GCMs, CMs, SDMs, Scen, and their in-
teractions) in the projections of per unit yield, climate-suitable areas, 
and production of winter wheat were analyzed through the ANOVA 
methods (three-way ANOVA for per unit yield and climate-suitable 
areas; four-way ANOVA for regional production). It was found that 
CM dominated the projection uncertainties of winter wheat yield in the 
Loess Plateau and contributed about 38.8% of total uncertainty, which 
was larger than contributed by the rest six possible sources (Fig. 5a). 

Emission scenario additionally contributed nearly 36.1% of total un-
certainty in the Loess Plateau (Fig. 5a). The uncertainty contributed by 
emission scenario was 33.9% in Subregion II, which was much higher 
than those in Subregion I and III. Yield projection uncertainty contrib-
uted by CM in Subregion I was more than those in Subregion II and III 
(Fig. 5a). 

The contributions of different sources to the projection uncertainties 
of climate-suitable area were more uniform than those in per unit yield 
predictions (Fig. 5b). Among all of the uncertainty sources, the SDM 
constituted about 25.4% of total uncertainty, followed by the in-
teractions of GCM×SDM, SDM×Scen, and SDM×Scen×GCM (Fig. 5b). 
Emission scenario did not contribute much projection uncertainty for 
climate-suitable areas as for per unit yield. The interactions contributed 
more projection uncertainty for climate-suitable area (about 15.0% 
~25.0%) than for per unit yield (<15.0%) (Fig. 5b). Additionally, the 
GCM also contributed more projection uncertainty for climate-suitable 
area (about 10.8%) than for per unit yield (about 2.2%) (Fig. 5b). 
However, no factor was consistently the dominant source of projection 
uncertainty of climate-suitable areas in the three subregions. For 
instance, in Subregion III, the interaction of GCM×SDM contributed the 
most projection uncertainty for climate-suitable areas among the seven 
possible sources. 

Main factors were no longer the largest uncertainty contributors in 
the projections of regional winter wheat production in the Loess Plateau, 
which was different from the projections of per unit yield and climate- 
suitable areas (Fig. 5c). Interaction of GCM×SDM contributed the 
largest portion of uncertainty (about 20.9% of total uncertainty) among 
the 15 possible sources. Generally, the uncertainty contributions in 
winter wheat production projections by various SDMs varied in different 
subregions. In particular, the contribution of SDM was surpassed by the 
interactions of GCM×SDM, SDM×Scen×GCM, and SDM×Scen in Sub-
region II. However, SDM was the second largest uncertainty source 
(about 20.3% of total uncertainty) in the projections of regional winter 
wheat production under future climate in the Loess Plateau, as well as 
the largest uncertainty contributor among the four main factors of CM, 
GCM, Scen, and SDM (Fig. 4c). Although uncertainty contributed by 
SDM increased with numbers of SDM involved in their combinations, 
SDM was always the largest contributor among four main factors 
(Fig. S11). Thus, large uncertainty contributed by SDM might not de-
pends on the SDM combinations. Notedly, the portions of uncertainty 
contributed by SDM and Scen in the projections of winter wheat pro-
duction were similar to those in the projections of climate-suitable areas. 
Uncertainties contributed by CM were exceeded by Scen and GCM, 
namely CM was the smallest contributor among the four main factors of 
CM, GCM, Scen, and SDM (Fig. 5c). CM contributed about 3.0% of total 
uncertainty in the projections of regional winter wheat production in the 
Loess Plateau, which was far smaller than in the projections of per unit 
yield (Fig. 5a, c). Furthermore, the portion of projection uncertainty 
contributed by SDM-related factors was about 70.1% and was about 
5.3% by CM-related factors. This indicated that the prediction uncer-
tainty of regional winter wheat production was more determined by the 
projection uncertainty of climate-suitable areas than that by the pro-
jection uncertainty of per unit yield of winter wheat (Fig. 5d). 

Fig. 4. Changes of regional winter wheat production based on per unit yield 
projected by ensemble crop models (CMs) and corrected climate-suitable areas 
projected by weighted-ensemble SDMs driven by 27 GCMs in 2041–2060 and 
2081–2100 under the SSP245 and SSP585 scenarios compared to the baseline 
of 1971–2010 (a); linear regression between the change of winter wheat pro-
duction and the change of per unit yield of winter wheat (b), and linear 
regression between the change of winter wheat production and the change of 
climate-suitable areas of winter wheat (c) in the Loess Plateau. The winter 
wheat production was the product of the average per unit yield projected by CM 
ensemble and the climate-suitable areas projected by TSS-weighted ensemble 
SDMs driven by 27 GCMs under four climate change scenarios in the Loess 
Plateau and its three subregions. There were 27 projected production values of 
winter wheat based on the 27 GCMs in each box (a) or under each change 
scenario (b-c). 

Table 2 
Multi-GCM means of projected regional production (million tons) of winter wheat based on the ensemble of crop models and ensemble-weighted SDMs in 2041–2060 
and 2081–2100 under SSP245 and SSP585 in the Loess Plateau and the three subregions (Subregion I, II, and III), respectively.   

SSP245  SSP585 
Regions 2041–2060 2081–2100  2041–2060 2081–2100 

The Loess Plateau 17.66 (14.28–19.30) a 16.40 (13.07–19.13)  18.20 (13.94–20.29) 16.08 (11.58–20.61) 
Subregion I 8.56 (6.95–9.79) 7.64 (5.63–9.58)  8.32 (6.43–9.62) 7.81 (10.80–10.36) 
Subregion II 7.49 (6.61–9.34) 7.31 (6.34–8.57)  8.16 (7.03–9.14) 8.31 (5.13–10.36) 
Subregion III 2.05 (1.22–2.81) 1.91 (1.00–2.80)  2.21 (1.06–3.06) 1.27 (0.41–2.50)  

a The number outside is the mean value and the numbers in the parentheses are the minimum and maximum values. 
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4. Discussion 

In this study, based on the combinations of CMs, SDMs, and GCMs, 
we gained a deeper understanding of the spatial and temporal changes of 
per unit yield, climate-suitable areas, and regional production of winter 
wheat under future climate change in the Loess Plateau of China. 
Furthermore, we comprehensively quantified the contributions of 
different uncertainty resources in the projections of per unit yield, 
climate-suitable areas, and regional production of winter wheat in this 
region. For per unit yield projections, there was an increasing trend in 
spite of a reduction in wheat growth period, which was probably due to 
the rising in rainfall and CO2 in wheat growing season (Jägermeyr et al., 
2021; Yang et al., 2015). The results of this study (especially in Subre-
gion I and II) were contrary to the decrease trend reported by LV et al. 
(2013). The discrepancy of crop model, model setting, emission sce-
narios, and GCMs between the two studies might give rise to the con-
trary trends for per unit yield. For example, LV et al. (2013) used only 
one crop model (wheat-grow) driven by three selected GCMs from 
CMIP3 under A1, A2, and B1 emission scenarios. By contrast, we used six 
crop models and 27 GCMs. Our projected yield was based on multiple 
crop model ensemble rather than one individual model. Additionally, 
there were relative larger bias in phenology simulations reported by LV 
et al. (2013). 

At Changwu of the Loess Plateau, per unit yield of winter wheat was 
projected to increase by 4.0%− 11.2% based on the ensemble-crop- 
model simulations under the emission scenarios in CMIP5 (Wang 
et al., 2020). However, their projected increase of per unit yield was 
lower than that in this study (about 12.4%− 27.5%). In the parts of 
Shaanxi and Gansu province located in the Loess Plateau, Ye et al. 
(2020) pointed out that potential wheat yield would increase by 5.0%−

10.3% based on simulations with ensemble-crop models under +2.0 ◦C 
and 487 ppm CO2 scenario. We found that wheat productivity increased 
more under CMIP6 than other studies under CMIP5 in the same area as 
our study (Saddique et al., 2020; Yang et al., 2020; Zheng et al., 2020) 
This is consistent with the result of Jägermeyr et al. (2021). They re-
ported that global wheat productivity had a higher increase under 
CMIP6 than that under CMIP5. In addition, the discrepancy of different 
crop modeling ensembles might be also explained the differences be-
tween the projected yields in our research and those in some recent 
studies. 

Despite alteration in the spatial pattern of climate suitability of 
winter wheat in 2041–2060 under both SSP245 and SSP585 scenarios, 
climate-suitable areas reduced under the four climate change scenarios 
in the Loess Plateau. However, Yang et al. (2015) reported that there 
could be an increase of 80.0% for crop planting areas in 2011–2040 in 
the Loess Plateau. This contradiction was probably due to the discrep-
ancies of input variables and modeling concepts between Yang et al. 
(2015) and this study. For instance, cumulative temperature (> 0 ◦C) 
was applied by Yang et al. (2015) to estimate crop planting areas in 
future periods. However, climate suitability of crops depends not only 
on temperature, but also on precipitation, topography, land use, and etc. 
(Rana et al., 2020; Wang et al., 2018). He et al. (2019) reported 10.7%, 
18.8%, and 14.7% reductions in climate-suitable areas for summer 
maize cultivation in China at 1.5 ◦C global warming under RCP2.6, 
RCP4.5, and RCP8.5, and 17.3% and 14.7% reductions at 2.0 ◦C global 
warming under RCP4.5 and RCP8.5. The projected reductions in 
climate-suitable areas in this study were consistent with the results of 
He et al. (2019), which was mainly due to the similarity in model var-
iables and concepts. In this study, the main reason for projected re-
ductions in climate-suitable areas was probably the temperature rise, 

Fig. 5. Contributions of uncertainties (%) in 
the projections of per unit yield (a), climate- 
suitable areas (b), and regional production (c) 
of winter wheat in the Loess Plateau and its 
three subregions (Subregion I, II, and III). The 
main contributions to the projection un-
certainties of winter wheat production by 
different contributors were summarized in 
subplot (d). The uncertainty sources of winter 
wheat production were dissected into crop 
simulation model (CM), global climate model 
(GCM), emission scenario (Scen), species dis-
tribution model (SDM), and their interactions. 
Light green, green, light blue, and gray repre-
sent the Loess Plateau, Subregion I, and Subre-
gion II, and Subregion III, respectively. In 
subplot (d), main contributors to the projection 
uncertainties of winter wheat production in the 
Loess Plateau were CM-related sources (i.e. CM, 
GCM×CM, CM×Scen, and GCM×CM×Scen; 
pink box), SDM-related sources (i.e. SDM, 
SDM×Scen, GCM×SDM, and SDM×Scen×GCM; 
orange box), and the rest sources (i.e. Scen, 
GCM, CMS×SDM, GCM×Scen, GCM×

CM×SDM, CM×SDM×Scen, and GCM×CM×

SDM×Scen; purple box).   
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which was also consistent with the results of He et al. (2019). Similarly, 
Ramirez-Cabral and Kumar (2016) also suggested that heat was one of 
the main factors limiting and reducing the distributions of common bean 
under current and future conditions. 

Most of previous related research mainly focused on the projections 
of per unit grain yield based on simulations with climate-crop models 
under future climate change. Globally, spatial distributions of crop 
cultivation areas have changed under recent climate change. Although 
how climate change affects crop production at different scales (Lobell 
et al., 2011; Ye et al., 2020) has been discussed, the planting areas of the 
crops investigated were always assumed to be stable. However, this is 
not the truth. In this study, we integrated multiple CMs, SDMs, and 
GCMs to investigate the regional production of winter wheat in the Loess 
Plateau of China, taking into account the changes of crop 
climate-suitable areas under future climate change. Most of the simu-
lations based on the combinations of CMs and GCMs agreed on increases 
in projected per unit yield of winter wheat, but decreases in projected 
climate-suitable areas for winter wheat under the four climate change 
scenarios in the Loess Plateau. Generally, current main crop models 
could correctly simulate the attainable yields of given crops, but they 
lack delicate descriptions of the responses of crop growth and devel-
opment to extreme climatic events. This contradiction may contribute to 
the phenomenon that current crop models might underestimate the in-
fluences of extreme weather conditions on crop yield reduction under 
future climate change (Feng et al., 2019). On the other hand, the SDMs 
usually worked from the perspective of environment, but lack the 
feedback mechanism of crops to environment, which may lead to the 
overestimations of negative impacts of climate change on climatic 
suitability of crops. Engelhardt and Neuschulz (2020) suggested that 
potential effects of climate change on future distributions of nutcracker 
might be overestimated when trophically-interacting plants were 
ignored in future projections. In addition, the SDMs models are statis-
tical models trained by historical environmental variables, which might 
limit its ability in future projection when environmental conditions 
changed. Santini et al. (2021) suggested that the degree of environ-
mental similarity between the present and future environmental con-
ditions was an important predictor for the predictive accuracy of future 
projections when using SDMs. 

Through the analysis of projection uncertainty of regional winter 
wheat production under future climate change, the contributions by 
different sources to total uncertainty were quantified in this study. In the 
Loess Plateau, the interaction of GCM×SDM was identified as the main 
source of uncertainty in the projections of regional winter wheat pro-
duction. This was because the projection uncertainty of region winter 
wheat production was more contributed by the projection uncertainty of 
climate-suitable areas than by the projection uncertainty of per unit 
yield of winter wheat. In addition, the uncertainty contributed by GCM 
in per unit yield predictions could be superposed to the uncertainty 
contributed by GCM×SDM interaction in climate-suitable areas pro-
jections. Consequently, the interaction of GCM×SDM became the 
dominant uncertainty contributor in the projections of regional winter 
wheat production. Actually, Thuiller et al. (2019) also found that there 
was no absolute dominant factor among the SDMs, GCMs and RCPs in 
uncertainty partitioning of future projections of global biodiversity. 

Some previous research based on climate-crop-model method sug-
gested that CM (crop model) dominated the projection uncertainty of 
grain yield under future climate change in the Loess Plateau. Among the 
four main factors (i.e. CM, GCM, Scen, and SDM), SDM and CM were the 
largest and smallest uncertainty contributors in the projections of 
regional winter wheat production with consideration of changes in crop 
climatic suitability. Generally, CM dominated the projection uncertainty 
of per unit yield of winter wheat, notwithstanding the changes of per 
unit yield contributed less to the changes of regional production than the 
changes of climate-suitable areas of winter wheat (Fig. 3b, c). Further-
more, the projection uncertainties of per unit yield and climate-suitable 
areas contributed separately by GCM and Scen would be superimposed 

to the projection uncertainty of regional winter wheat production. 
Finally, SDM was the dominant contributor in projection uncertainty of 
climate-suitable areas of winter wheat. The ranking of contributors to 
projection uncertainty of regional winter wheat production was as: SDM 
> GCM > Scen > CM. In other words, CM was relatively certain in the 
projections of regional winter wheat production taking into account the 
changes in crop climatic suitability under future climate. In general, the 
comprehensive uncertainty analysis in this study could help to rationally 
integrate the modeling method theory of global climate models, crop 
modeling, and species distribution modeling on the projection of global 
wheat production under future climate change. However, in future 
studies, other possible uncertainty resources, including the parameter 
optimization strategies of CM and SDM models, variable settings of SDM 
models, determination of ‘presences’ and ‘absences’, management prac-
tice settings in CM models, and etc., should also be considered in the 
projections of regional winter wheat production with consideration of 
changes of crop climatic suitability under future climate. Furthermore, 
different management options in crop models such as changing sowing 
date, irrigation or fertilize strategy, planting density are likely to affect 
wheat growth and yield, which may lead to different results in uncer-
tainty analysis and need to be further studied (Xiong et al., 2019). 

5. Conclusions 

This comprehensive study of winter wheat production projection 
revealed opposite trends of per unit grain yield and climate-suitable 
areas of winter wheat under future climate change in the Loess 
Plateau of China. Although rise in yield per hectares could offset the 
negative influences of climate change on winter wheat production in the 
Loess Plateau to some extent, the changes of climate-suitable areas of 
winter wheat could affect winter wheat production more seriously than 
the changes of per unit yield. In addition, the uncertainties contributed 
by the GCMs (Global climate models) in the predictions of per unit yield 
and climate-suitable areas could be superimposed in the projections of 
regional winter wheat production under future climate change. Crop 
models were proved relatively more certain than the GCMs and SDMs 
(Species distribution models) in the projections of winter wheat pro-
duction with consideration of the changes of crop climatic suitability in 
the future. 
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Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. 
Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. 
Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, 
(eds.)]. In press. 
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