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• A modified indicator-based method was 
developed to assess wheat yield 
vulnerability. 

• Machine learning was used to obtain 
weights of climate indices when calcu-
lating exposure. 

• Historical vulnerability of wheat yield 
decreased as the improved adaptive 
capacity. 

• The most vulnerable areas were the 
north-western parts of the wheat belt. 

• This vulnerability assessment method 
can be applied to other regions with 
long-term data of crop yield and 
climate.  
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A B S T R A C T   

CONTEXT: Agricultural vulnerability assessment is a comprehensive and powerful analytical tool to locate 
hotspots with states of susceptibility to harm and powerlessness of agricultural system. It plays an important role 
in guiding policy makers to plan and implement adaptation practices to mitigate potential climate risks to crop. 
However, due to the diversity in the methodology of vulnerability assessment, there are still knowledge gaps in 
assessing and comparing crop vulnerability to climate in different regions of the world, including Australia. 
OBJECTIVE: Our main objectives were to: (1) present a vulnerability analytical method for wheat yield, which 
can be applied to different areas where long-term crop yield and climate data are available. (2) quantify temporal 
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Wheat belt 
South-eastern Australia 

changes of the vulnerability of wheat yield to historical climate. (3) identify the most vulnerable region in study 
area to provide guidance for climate mitigation. 
METHODS: Our study developed an indicator-based method using exposure, sensitivity, and adaptive capacity to 
assess the vulnerability of crop yield. We used the long-term recorded wheat yield data, combining with 
comprehensive exposure index to assess climate vulnerability of historical yield with a case study area of south- 
eastern Australia’s wheat belt. 
RESULTS AND CONCLUSIONS: The results showed that from the 1930s to the 1990s, both climate exposure and 
sensitivity had large inter-annual variations with no significant trends detected. However, adaptive capacity 
increased by 34% from 1930s to 1950s, 54% from 1950s to 1970s, and 54% from 1970s to 1990s. By contrast, 
climate vulnerability across the wheat belt decreased by 13% from 1930s to 1950s, 15% from 1950s to 1970s, 
and 33% from 1970s to 1990s. This is mainly due to increased adaptive capacity with the improvement of 
agronomic management practices, technological and socio-economic progress. We identified the areas with the 
highest vulnerability were in the northwestern parts of wheat belt while the least vulnerable areas located in the 
southeast. 
SIGNIFICANCE: We expect that these identified vulnerable hotspots can be used by different landholders to 
allocate natural resources and policymakers to plan the priority mitigation to adapt to climate change in the local 
scale. Moreover, the method of vulnerability assessment used in this study can be applied to other regions around 
the world where long-term crop yield and climate data are available.   

1. Introduction 

Climate change has great impacts on agro-ecological environments, 
leading to significant changes in crop productivity (Yang et al., 2015; 
Kurukulasuriya and Mendelsohn, 2008). For example, from 1980 to 
2008, global wheat yield has decreased by 1.4%–2.0% per decade due to 
the warming climate (Lobell et al., 2011). The cycles of droughts and 
flooding associated with the El Niño phenomenon have explained be-
tween 15% and 35% of global yield variability (Howden et al., 2007). 
The unstable crop yield may increase difficulty of maintaining global 
food security with the growing world population (Ray et al., 2013). 

Numerous studies have used vulnerability assessment to assess the 
impacts of climate change on agricultural crop yield (Lal et al., 1998; Li 
et al., 2014; Sonkar et al., 2019). Climate vulnerability of crop yield can 
be defined as the “degree that crop is susceptible to, or unable to cope 
with, adverse effects of climate change, including climate variability and 
extremes” (McCarthy et al., 2001; IPCC, 2007; IPCC, 2012). It is a 
function of the sensitivity, exposure, and adaptive capacity of crop yield 
to climate change. Vulnerability assessment for crop yield can not only 
assess the impact of climate change and socio-economic development on 
crop productivity, but also analyze the effectiveness and adaptability of 
different agronomic adaptations (Kamali et al., 2018b; Wang et al., 
2020). It is a powerful analytical tool to locate hotspots with states of 
susceptibility to harm and powerlessness (Adger, 2006), which can 
guide policy makers to plan and implement adaptation practices to slow 
down or eliminate potential harm to cropping systems. It plays an 
important role in promoting crop productivity to actively adapt to 
climate change, keeping stable and continuous growth of crop yield, and 
ensuring food security (Senapati et al., 2021; Kamali et al., 2018a). 

In recent years, different methods, mainly including the process- 
based crop growth model (Yue et al., 2015; Wang et al., 2020; Li 
et al., 2015) and the indicator-based method (Sendhil et al., 2018; Neset 
et al., 2019; Gbetibouo et al., 2010), were developed to evaluate the 
vulnerability of crop yield to historical and future climate change 
around the world. The crop growth model is driven by different climate 
data and can simulate the response of yield to climate change, which is 
used to assess the vulnerability under some specific events, such as water 
stress (Li et al., 2015; Kamali et al., 2018a) and heat stress (Semenov and 
Shewry, 2011). However, this method is not comprehensive enough, 
because it usually separately assesses crop vulnerability caused by single 
limiting factor, rainfall (Li et al., 2015; Yue et al., 2015) or temperature 
(Semenov and Shewry, 2011). In general, these limiting factors of 
climate on crop yield can occur at the same time (Sun et al., 2019), and 
often interact on each other (Zaitchik et al., 2006; Bandyopadhyay et al., 
2016). In addition, the crop growth model has a less accurate perfor-
mance in simulating the impacts of extreme weather events, and the 

model cannot consider the impacts of pests and diseases, socio- 
economic, and technological progress (Semenov and Shewry, 2011; 
Wang et al., 2020). On the contrary, the indicator-based method can 
evaluate the vulnerability of a system from multiple dimensions (Pandey 
et al., 2017; Ahmadalipour and Moradkhani, 2018). Indicators related to 
the system are selected from multiple sectors (climate, social economy, 
land use, resources, and infrastructure, etc.) to obtain relatively 
comprehensive vulnerability results. Additionally, the indicator-based 
method has strong customization, as it can select relevant indicators 
according to different research objects and objectives. Therefore, this 
method is a better choice for a relatively comprehensive assessment of 
crop yield vulnerability. Nonetheless, this method also has shortcom-
ings. It is limited in producing a unified set of indicators due to the 
different backgrounds of social economy and management measures in 
different regions. Some researchers have reported that this method is 
unfavourable for vulnerability assessment and comparison on a large 
scale (Hinkel, 2011). We intended to create the possibility of assessing 
and comparing the vulnerability on a large scale. Therefore, we used a 
modified indicator-based method to assess the climate vulnerability of 
agricultural crop yields based on the data of climate and yields. 

Australia is a major food producer and exporter, and its wheat, 
barley, and canola have made up 10%–40% of the world’s export trade 
(AEGIC, 2021). Australia’s grain production is crucial to the national 
economy, and makes an important contribution to the global food se-
curity and the stability of agricultural product prices. However, the crop 
yield in Australia varied greatly from year to year, and even showed a 
stagnant trend in the past 30 years (Hochman et al., 2017). For example, 
during 1989 to 2020, the wheat yield ranged from 0.92 to 2.61 t/ha 
(ABARES, 2021). This disturbing trend of yield was largely explained by 
climate variability. Climate variability resulted in 43% of the total wheat 
yield variation in Australia from 1979 to 2008 (Ray et al., 2015). 
Therefore, it is necessary to assess the climate vulnerability in agricul-
tural crop yield to identify those vulnerable hotspots in Australia. This 
knowledge would allow the development of more targeted policy and 
management implementation to mitigate current climatic challenges 
and reduce future risk (Ericksen et al., 2011; Abson et al., 2012). 

Few studies have assessed the climate vulnerability of crop yield in 
Australia (Bryan et al., 2015; Huai, 2016; Wang et al., 2020). Most of 
these studies used crop simulation models to assess vulnerability under 
climate change. For example, Wang et al. (2020) assessed the biophys-
ical vulnerability of wheat to future climate change using the yield 
simulated from APSIM-Wheat model under different scenarios. How-
ever, they did not consider the impact of socio-economic factors and 
advances in agronomic managements on adaptive capacity. Similarly, 
other researchers assessed the vulnerability based on crop yield, and also 
analyzed the correlation between vulnerability and different capital 
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indicators (e.g. social, human, physical, natural, and financial capital) 
(Bryan et al., 2015; Huai, 2016). However, these studies used a single 
climate index (relative standardized precipitation and evapotranspira-
tion index or maximum annual temperature) to characterize exposure. 
They did not fully take into account the impacts of extreme climate 
events associated with both temperature and rainfall. Thus, there are 
still knowledge gaps on how vulnerable Australia’s wheat production is 
in response to climate change. 

Here, our study developed a modified indicator-based method based 
on exposure, sensitivity, and adaptive capacity to assess the vulnera-
bility of historical wheat yield to climate change in south-eastern 
Australia. Our main objectives were to: (1) present a vulnerability 
analytical method for wheat yield, which can be applied to different 
areas where long-term crop yield and climate data are available. (2) 
quantify temporal changes of the vulnerability of wheat yield to his-
torical climate. (3) identify the most vulnerable region in the study area 
to provide guidance for climate change mitigation. 

2. Materials and methods 

2.1. Study area and data sources 

Our study area is located in the state of New South Wales (NSW) 
wheat belt in the southeast of Australia and covered by 66 shires 
(Table 1), which is a major wheat producing area in Australia. The 
wheat production in this area accounts for 27% of total national wheat 
production and 26% of total national wheat planted area (ABARES, 
2021). Over the past three decades (1989–2020), annual wheat pro-
duction in NSW wheat belt ranged between 3423 kt and 13,110 kt, and 
the harvested area in NSW varied from 2123 to 3800 kha (ABARES, 
2021). Overall, yield per hectare varied greatly from 1.61 to 3.45 t/ha. 

The large inter-annual fluctuation in wheat yield can be largely attrib-
uted to climate variability and change (Wang et al., 2015). 

There are large variations in the climate and topography across the 
wheat belt. During the wheat growing season (April to November), 
average rainfall ranges from 159 mm in the southwest to 677 mm in the 
northeast of the NSW wheat belt (Wang et al., 2017). Wheat growing 
season temperature gradually decreases from 14 ◦C in the north to 12 ◦C 
in the south (Feng et al., 2018). The terrain of eastern parts of study area 
is hills with an altitude of over 500 m. The topography of the western 
and central region of the wheat belt is mainly occupied by plains. Ac-
cording to climate and topography, the wheat belt was divided into 
three sub-regions: (I) northern plains (12 shires), (II) southern plains (33 
shires), and (III) eastern slopes (21 shires) (Fig. 1). 

Wheat yields of 66 shires in the NSW wheat belt were collected from 
Fitzsimmons (2001). Historical daily climate data (rainfall, solar radi-
ation, evapotranspiration, maximum, and minimum temperature) for 
940 weather stations in the study area were obtained from SILO patched 
point dataset (Jeffrey et al., 2001). 

2.2. Vulnerability assessment framework 

We selected the wheat yield and different climate indices in the NSW 
wheat belt to conduct a case study. We systematically assessed the 
spatio-temporal change of exposure (EI), sensitivity (SI), adaptive ca-
pacity (AC), and vulnerability (VI) of 66 shires in 1924–1998. Sensitivity 
is the response of the crop production system to climate change, 
including both beneficial and harmful effects. Exposure indicates the 
extent of change mainly in climate (IPCC, 2012). Adaptive capacity is 
the ability or potential of the crop production system to respond suc-
cessfully to climate and includes adjustments in behaviors, resources, 
and technologies (Watson et al., 1996; Watson et al., 1997). Historical 

Table 1 
Time period of wheat yield data in 66 selected shires in the NSW wheat belt.  

Region ID Shire Period Region ID Shire Period 

I 1 Walgett 1966–2000 II 34 Wagga wagga 1922–2000 
2 Moree Plains 1922–2000 35 Junee 1922–2000 
3 Yallaroi 1922–2000 36 Cootamundra 1922–2000 
4 Bingara 1922–1996 37 Lockhart 1922–2000 
5 Narrabri 1922–2000 38 Urana 1922–2000 
6 Coonamble 1922–2000 39 Jerilderie 1922–2000 
7 Warren 1958–2000 40 Conargo 1922–2000 
8 Bogan 1958–2000 41 Windouran 1922–1996 
9 Gilgandra 1922–2000 42 Culcairn 1922–2000 
10 Coonabarabbran 1922–2000 43 Wakool 1922–2000 
11 Coolah 1922–2000 44 Murray 1922–2000 
12 Gunnedah 1922–2000 45 Berrigan 1922–2000 

II 13 Lachlan 1922–2000 46 Corowa 1922–2000 
14 Narromine 1922–2000 III 47 Inverell 1922–2000 
15 Dubbo 1922–2000 48 Barraba 1922–1996 
16 Wellington 1922–2000 49 Manilla 1922–1996 
17 Cabonne 1922–2000 50 Parry 1922–2000 
18 Parkes 1922–2000 51 Nundle 1922–1996 
19 Forbes 1922–2000 52 Quirindi 1922–2000 
20 Carrathool 1922–2000 53 Murrurundi 1922–2000 
21 Bland 1922–2000 54 Scone 1922–1996 
22 Weddin 1922–2000 55 Merriwa 1922–2000 
23 Cowra 1922–2000 56 Muswellbrook 1922–1996 
24 Young 1922–2000 57 Rylstone 1922–1996 
25 Temora 1922–2000 58 Mudgee 1922–1996 
26 Coolamon 1922–2000 59 Evans 1922–1996 
27 Narrandera 1922–2000 60 Blayney 1922–1996 
28 Leeton 1927–2000 61 Boorowa 1922–2000 
29 Griffith 1927–2000 62 Yass 1922–1996 
30 Wentworth 1922–2000 63 Harden 1922–2000 
31 Balranald 1960–2000 64 Gundagai 1922–1996 
32 Hay 1961–2000 65 Holbrook 1922–1996 
33 Murrumbidgee 1922–2000 66 Hume 1922–2000 

Region I: 12 shires, northern NSW wheat belt; Region II: 33 shires, southern NSW wheat belt; Region III: 21 shires, eastern NSW wheat belt. ID number is the shire 
number in Fig. 1. 
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observed crop yield usually reflects the influence of climate-related and 
non-climate-related factors on cropping system (Eq. (1)). Climatic fac-
tors are the main reasons for wheat yield fluctuation. Non-climatic 
factors are the main driving forces of yield increase, including man-
agement practices (breeding, fertilization, and pesticide application), 
socio-economic, and technology progress, etc. 

Y = Yc + Yt + e (1)  

where Y is the statistical crop yield (kg/ha); Yc (kg/ha) is the climatic 
yield, which is mainly affected by climate variability; Yt (kg/ha) is the 
non-climatic yield, which mainly represents the role of agricultural 
managements; and e is the yield composition influenced by other 
random factors, which can be ignored (Dong et al., 2018). 

We used a commonly-used detrending approach, namely 5-year 
center moving average model (CMA, Eqs. (2)–(3)) (Lu et al., 2017), to 
separate wheat yield into climatic yield (YcCMA) to express the sensitivity 
(climatic yield is negatively related to the sensitivity, thus we use Eq. (5) 
to express), and non-climatic yield (YtCMA) to represent the adaptive 
capacity of wheat yield to historical climate (Eq. (6)) (Dong et al., 2015). 
Exposure was calculated by the sum of six weighted climatic indices in 
Table 2 (Eq. (8)). Finally, the historical vulnerability was calculated by 
adding EI and SI then subtracting AC (Eq. (9)) (Wang et al., 2020). 

The CMA method regarded the crop yield series for 5 consecutive 
years as a changing linear function, which reflected the historical trend 
of the yield series as a whole. The average value simulated by sliding 
linear regression at each year point was the value of the trend at that 
year. They were calculated as: 

mYi =
∑2

j=− 2

1
5

Yi+j (2)  

YtCMAt = mYi (3)  

YcCMAt = Yi − mYi (4)  

where Yi is the original crop yield for the ith year; and mYi is the 5-year 
moving averaged crop yield for the ith year; i = 1,2, …, n; YtCMAi and 
YcCMAi are the trend yield and climate yield for the ith year, respectively. 

SI = − YcCMA (5)  

AC = YtCMA (6) 

To identify whether different detrending approaches affect the re-
sults of vulnerability assessment, we also used another two detrending 
methods, HP Filter (HP) (Eq. S1-S2) and first difference (FD) (Eq. S3-S5), 
to evaluate the vulnerability of wheat yield in the NSW wheat belt. We 
only showed the results using the CMA detrending method in the main 
text. The calculation details of the other two detrending methods were 
provided in our supplementary material. 

Since EI, SI, and AC had different orders of magnitude, we used Eq. 
(7) to standardize EI, SI, and AC, respectively (Wang and Zhang, 2009). 
Meanwhile, this equation was applicable to all data standardization in 
this study. 

Mi
’ =

Mi − Mmin

Mmax − Mmin
(7)  

where Mi
’ is the i element of time series {M1, M2, …, Mn} after stan-

dardization; Mi is the i element of time series {M1, M2, …, Mn} before 
standardization; Mmin = min {M1, M2, …, Mn}, Mmax = max {M1, M2, …, 
Mn}. 

EI =
∑n

i=1
WiSi (8)  

where Wi is the weighting value of the ith indicators (the weighting 
method of six climate indices was shown in 2.3); and Si is the value of the 
ith indicators. We first normalized Si using Eq. (7) (see above) to make it 
dimensionless and then used derived weight to calculate EI (Eq. (8)). 

After EI, SI, and AC were obtained, VI was calculated according to: 

VI = SI +EI − AC (9)  

2.3. Calculation for climate exposure 

We first calculated CDD, CWD, rSPEI, TX90P, FD, and Tmean for 
each climate sites. The 940 sites were assigned into each shire based on 
the boundary of the shire. The number of climate sites in each shire was 
shown in Table S2. Then, the CDD, CWD, rSPEI, TX90P, FD, and Tmean 
for climate sites within each shire were averaged respectively. Here, we 
followed a previous study of Feng et al. (2018) to predict Yc based on 
these six climate indices with random forest (RF) model (Table 2). 

RF is a non-parametric technology based on classification and 

Fig. 1. The distribution of 66 shires and 940 climate stations in three sub- 
regions in the NSW wheat belt. 1–66 represents the ID of the 66 selected 
shires in Table 1. 

Table 2 
Climate variables for calculating exposure index.   

Indicator Name Definition Unit 

CDD Maximum length of dry spell 
Maximum number of 
consecutive days with rainfall 
<1 mm 

Days 

CWD Maximum length of wet spell 
Maximum number of 
consecutive days with rainfall 
≥1 mm 

Days 

rSPEI 

Relative standardized 
precipitation 
evapotranspiration index of 
Apr.-Nov. 

It characterizes drought by 
standardizing the difference 
between precipitation and 
potential evapotranspiration.  

TX90P 

Percentage of days when TX 
(daily maximum 
temperature) > 90th 
percentile 

Let TXij be the daily maximum 
temperature on day i in period j 
and let TXin90 be the calendar 
day 90th percentile centred on 
a 5-day window for the base 
period 1961–1990. The 
percentage of time for the base 
period is determined where: 
TXij > TXin90 

% 

FD Number of frost days 
Annual count of days when 
daily minimum temperature <
0 ◦C. 

Days 

Tmean The change in daily 
temperature 

Average value of daily Tmean ◦C  
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regression trees proposed by Breiman (2001). It uses bootstrap resam-
pling technology to repeatedly extract k samples from the original 
training sample set N to generate a new training sample set, then gen-
erates k classification trees to form a random forest according to the self- 
service sample set. Finally, the prediction result is obtained by the voting 
score of the classification tree (Breiman, 2001). In addition, random 
forest has a great advantage when classifying data: it can give the 
importance score of each variable in the classification process, according 
to the score, and it can screen out the relatively important variables. At 
the same time, the higher importance score of a variable, the more 
capable it is to classify outcome variables. RF has been widely applied to 
agricultural and meteorological research due to the high precision, 
tolerance of abnormal value, and ability to model complex interactions 
between variables (Feng et al., 2018; Jeong et al., 2016). The default 
parameters of RF (ntree = 500 and mtry = 3) were used in our analysis. 
The “%IncMSE” metric was used to calculate relative importance of each 
index. When the variables were randomly replaced, the %IncMSE rep-
resented the average increase of the mean square error of the nodes 
using a variable in the RF model. 

Our RF model had a good performance in predicting Yc with R2 of 
0.89 and nRMSE of 7%. Then, we used the standardized importance 
values of CDD, CWD, rSPEI, TX90P, FD, and Tmean derived by RF model 
(Table S1) as the weight of each index for calculating the exposure of 
each shire (Eq. (8)). 

2.4. Statistical tests 

Statistical analysis of EI, SI, AC, and VI in time series is helpful to 
understand their long-term change process under climate change con-
ditions, and to identify their regular characteristics and change trends. 
We used Mann-Kendall (MK) trend test and continuous wavelet trans-
form (CWT) to identify temporal characteristics of EI, SI, AC, and VI in 
three sub-regions and the whole NSW wheat belt from 1924 to 1998. The 
M-K test was used to analyze data collected over time for consistently 
increasing or decreasing trends (monotonic) in Y values. CWT can 
identify the periodic signal of data in time series (Torrence and Compo, 
1998; Zeri et al., 2019), and it was used as a supplementary test method 
for data without significant change trend by numerous researchers 
(Beecham and Chowdhury, 2010; Li et al., 2019). In addition, EI, SI, AC, 
and VI were derived from climatic factors and wheat yield, which may 
have obvious inter-annual fluctuation in time series. Therefore, it is 
necessary to investigate the fluctuation status of these indicators to test 
whether they have periods with the CWT analysis. 

2.4.1. Mann-Kendall trend test 
MK test is a non-parametric trend test method (Mann, 1945; Kendall, 

1975), which is often used to evaluate the statistical significance of time 
series trends. Its advantage is its ability to test linear or nonlinear trends. 
In addition, MK test is less sensitive to the distribution type of data, and 
also can deal with missing and abnormal values of data. In MK test, the 
statistic S and the standardized test statistic ZMK were calculated as 
follows (Sang et al., 2014; Sayemuzzaman and Jha, 2014): 

S =
∑n− 1

i=1

∑n

j=i+1
sgn

(
Xj − Xi

)
(10)  

sgn
(
Xj − Xi

)
=

⎧
⎨

⎩

+1if
(
Xj − Xi

)
. > 0

0if
(
Xj − Xi

)
= 0

− 1if
(
Xj − Xi

)
. < 0

(11)  

Var(S) =
1
18

[

n(n − 1)(2n+ 5) −
∑q

p=1
tp
(
tp − 1

)(
2tp + 5

)
]

(12)  

ZMK =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ if S > 0

0if S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ if S < 0

(13)  

where Xi and Xj are the corresponding data values of i and j in the time 
series (j > i); n is the length of the data set; tp is the number of data in the 
tied group. A Positive value of ZMK indicates an increasing trend in time 
series, while a negative ZMK value shows a decreasing trend. When |ZMK| 
> Z(1-α/2), there is a significant trend in time series. The Z(1-α/2) value can 
be found in the standard normal distribution table. At the 5% and 1% 
significance level (95% or 99% confidence intervals), time series trends 
are significant if |ZMK| > 1.96 and |ZMK| > 2.58 (Han et al., 2018). 

2.4.2. Wavelet analysis 
CWT is widely used to identify the statistical characteristics of 

climate-related indicators in time series. Morlet wavelet is used in this 
study (Rossi et al., 2011; Roushangar et al., 2018): 

ψ0(η) = π− 1/4eiω0ηe− η2/2 (14)  

where ω0 is dimensionless frequency with a value of 6 here; η (η = s*t) is 
dimensionless time, s is the time scale. 

Continuous wavelet transform of time series (xn, n = 1, …, N) with 
uniform time step (δt) can be defined as the convolution of xn and 
wavelet normalization (Grinsted et al., 2004). It is defined as: 

WX
n (s) =

̅̅̅̅
δt
s

√
∑N

n’=1
xn’ψ0

[
(n’ − n)

δt
s

]
(15)  

where n is the localized time index; n’ is the time variable. 

2.5. Kernel density plot 

Kernel density plot is used to display the distribution of data in x-axis 
continuous data segments. This plot is a variant of the histogram, using a 
smooth curve to draw horizontal values. The advantage of kernel density 
plot over histogram is that it is not affected by the number of grouped 
data and can better show the distribution shape. 

We divided the NSW wheat belt into three sub regions (Fig. 1 and 
Table 1), and then calculated the average values for EI, SI, AC, and VI in 
the 1930s, 1950s, 1970s, and 1990s in each subregion. The “ggplot2” 
package in R software was used to make kernel density plot. 

2.6. Classification for EI, SI, AC, and VI 

We divided these indices into five evaluation grades (Table 3) to 
clearly describe the changes of EI, SI, AC, and VI of 66 shires in NSW 
wheat belt in different historical periods. 

Table 3 
The value interval of different EI, SI, AC, and VI assessment levels.  

Indicators Very 
Low 

Low Moderate High Very 
high 

Exposure (EI) EI <
0.10 

0.10 ≤ EI 
< 0.30 

0.30 ≤ EI <
0.50 

0.50 ≤ EI 
< 0.70 

EI ≥
0.70 

Sensitivity (SI) SI <
0.47 

0.47 ≤ SI 
< 0.57 

0.57 ≤ SI <
0.67 

0.67 ≤ SI 
< 0.77 

SI ≥
0.77 

Adaptive 
Capacity (AC) 

AC <
0.10 

0.10 ≤
AC <
0.30 

0.30 ≤ AC <
0.50 

0.50 ≤
AC <
0.70 

AC ≥
0.70 

Vulnerability (VI) 
VI <
0.20 

0.20 ≤ VI 
< 0.40 

0.40 ≤ VI <
0.60 

0.60 ≤ VI 
< 0.80 

VI ≥
0.80  
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3. Results 

3.1. Descriptive statistics of wheat yield and climate variables 

The long-term wheat yield of the three sub-regions and the whole 
region showed an obvious increase trend (Fig. 2). Yc had a great inter- 
annual fluctuation in all sub regions, and the fluctuation range of re-
gion I was the largest from about − 2.1 to 1.7 t/ha. From 1924 to 1998, 
the fluctuation range of Yc gradually increased indicating that the 
impact of historical climate on wheat yield was gradually intensified. 
There were small differences in Yc obtained by three detrending 
methods. Note that for FD method, the Yc fluctuated more than that of 
another two methods in all sub regions. For the six climate indices, they 
all had large inter-annual fluctuations (Fig. 3), but there was no signif-
icant trend of increasing or decreasing except CWD and rSPEI showing 
an upward trend. 

3.2. Exposure 

Spatially, the exposure level of NSW wheat belt gradually decreased 
from northwest to southeast (Fig. 4 a-d). The number of shires with low 
and very low exposure increased from 34 to 40 and 1 to 13, respectively. 
Conversely, the number of shires with moderate, high, and very high 
exposure decreased gradually from 1930s to 1990s, that is, from 20 to 8, 
6 to 4, and from 4 to 1, respectively. According to the kernel density 
plots of exposure (Fig. 5 a-d), for three sub-regions and the whole region, 
the density distribution curve and the average value line of exposure 
showed an overall slight leftward translation trend. The exposure was 
decreasing from 1930s to 1990s. In addition, the peak value of exposure 
density was the lowest in region I, which meant that the differences of 
exposure level among different shires in region I were quite large. The 
peak in region II, region III, and the whole region were obviously higher 
than that in region I. For the three sub-regions, from 1924 to 1998, the 
variation of exposure showed large inter-annual fluctuations (Fig. 6 a-d). 
The exposure of region I was the highest and had the largest fluctuation 
during the whole study period. It fluctuated from 0.2–0.8. However, 
there was a decreasing trend from 1924 to 1998. The temporal changes 
of exposure in region II and region III were similar, about 0.1–0.6. 

3.3. Sensitivity 

Fig. 4 e-h showed that the spatial distribution of sensitivity level in 
different study periods was varied. In 1930s, the sensitivity of wheat belt 
gradually increased from northwest to southeast. In 1950s, the sensi-
tivity was the lowest as a whole. There were no shires with high and very 
high sensitivity, and the sensitivity in the western areas was higher than 
that in the east. In 1970s, the sensitivity of the whole wheat belt was 
relatively higher. There were 26 shires with high sensitivity. In 1990s, 
the number of shires with high sensitivity increased sharply from 1 in 
1930s to 13 in 1970s, and they were mainly distributed in the southern 
NSW wheat belt. There were also obvious differences in kernel density 
plots of the sensitivity in different sub-regions (Fig. 5 e-h). However, for 
all sub-regions, the sensitivity in 1950s had the highest peak value and 
the lowest average value. This showed that in 1950s, the sensitivity level 
was the lowest in all regions, and the sensitivity differences among 
different shires were also small. For region I, the average sensitivity from 
1930s to 1990s was about 0.6, and the sensitivity differences among 
different shires were small. For region II and region III, the average 
sensitivity values in 1930s, 1970s, and 1990s were all about 0.6, and the 
peak of density decreased gradually with time. That is to say, the 
sensitivity levels of different shires were gradually polarized. In 3 sub- 
regions, the sensitivity changed similarly with time (Fig. 6 e-h), fluctu-
ating between 0.25 and 0.75. Its inter-annual variation was quite large. 

We found that the spatial distribution of sensitivity obtained by 
different detrending methods was quite different (Fig. 4, Fig. S1, and 
Fig. S2). For CMA method, the high climate sensitivity of the whole NSW 

wheat belt appeared in 1970s and 1990s, while that of FD method 
appeared in 1950s and 1990s, and HP method only generated high 
sensitivity in 1950s. For each study period, there were also differences in 
the spatial distribution of sensitivity among the three methods. Take 
1950s as an example, the sensitivity based on CMA method was higher 
in the northwest of the NSW wheat belt, that obtained by HP method 
was higher in the middle area, and the sensitivity based on FD method 
was the highest in the southern wheat belt. According to density plots 
(Fig. 5, Fig. S3, and Fig. S4), the sensitivity value in different detrending 
methods also had large difference in all regions. The order of peak values 
of sensitivity density of the three methods from high to low was SIFD >

SICMA > SIHP. In addition, the sensitivity value of three methods showed 
no significant trend from 1924 to 1998 in line plots. They all had great 
inter-annual fluctuations during the whole study period, and the mag-
nitudes of fluctuation increased with time. However, the magnitudes of 
the fluctuation (MF) of three methods were obviously varied and or-
dered as MFFD > MFCMA > MFHP (Fig. 6, Fig. S5, and Fig. S6). 

3.4. Adaptive capacity 

The adaptive capacity increased gradually from 1930s–1990s in 
NSW wheat belt (Fig. 4 i-l). The number of shires with low and very low 
adaptive capacity declined from 57 to 2, while the number of shires with 
high and very high adaptive capacity rose from 0 to 47. The spatial 
distribution of adaptive capacity for the wheat belt was consistent, 
which increased gradually from west to east. From 1930s to 1990s, the 
kernel density curve and mean value line of adaptive capacity for all 
regions shifted from left to right overall (Fig. 5 i-l), indicating an 
increasing trend in all regions of the study area. However, the adaptive 
capacity of region I was lower than that of region II and region III in each 
year period. Moreover, since the 1950s, the growth rate of adaptive 
capacity became lower than that of the other two sub-regions. For all 
regions, the peak value in 1950s was the highest, and the peaks of 
adaptive capacity in 1930s, 1970s, and 1990s gradually decreased with 
time. This indicated that the gap in adaptive capacity between different 
shires decreased rapidly from 1930s to 1950s, and had gradually 
increased since 1950s. The adaptive capacity of the three sub-regions in 
NSW wheat belt had an obvious increasing trend in time series (Fig. 6 i- 
l). The adaptive capacity level of region I increased from 0.1 to 0.5, and 
that of region II and region III increased more, both from about 0.2 to 
0.75. At the same time, the extreme values of the adaptive capacity level 
of region II and region III were slightly larger than that of region I in the 
whole time series. 

We found that the adaptive capacity obtained by three methods all 
showed a similar spatial distribution, and gradually increased from 
northwest to southeast (Fig. 4, Fig. S1, and Fig. S2). According to the 
kernel density plots, the distribution characteristics of adaptive capacity 
obtained by the three methods were also similar, and the adaptive ca-
pacity increased gradually from 1930s to 1990s (Fig. 5, Fig. S3, and 
Fig. S4). Meanwhile, the adaptive capacity based on three detrending 
methods significantly increased from 1924 to 1998 in all regions. 
However, the magnitude of their inter-annual fluctuation showed dif-
ferences in three detrending methods, ordered in MFFD > MFCMA > MFHP 
(Fig. 6, Fig. S5, and Fig. S6). 

3.5. Vulnerability 

According to the spatial distribution of vulnerability in NSW wheat 
belt (Fig. 4 m-p), the vulnerability was decreasing from northwest to 
southeast. Meanwhile, from 1930s to 1990s, the vulnerability of the 
whole region also decreased. The number of high and very high 
vulnerable shires reduced from 39 to 4, and these shires were mainly 
located in the western and northern part of the wheat belt. The number 
of shires with moderate vulnerability increased by 20 from 1930s to 
1950s, but gradually decreased by 29 after 1950s. Moderately vulner-
able shires were mainly located in the centre of the study area. The 
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Fig. 2. Averaged observed (Y) and detrending (Yc) wheat yields obtained by CMA, HP, and FD methods in three sub regions and the whole NSW wheat belt.  
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number of low and very low vulnerable shires increased from 0 in 1930s 
to 47 in 1990s. 

According to the kernel density plots of vulnerability (Fig. 5 m-p), 
from 1930s to 1990s, the density curve and mean value line in three sub- 
regions and the whole region showed a trend of overall translation to the 
left. We conclude that the vulnerability of the NSW wheat belt was 
decreasing. At the same time, we can know that the density curve and 
mean line of vulnerability in region I were basically between 0.2 and 1.0 
and 0.5–0.8, respectively, and this was obviously higher than those 
between 0 and 0.8 and 0.2–0.6 in regions II and III, respectively. This 
revealed that the vulnerability of region I was higher than that of region 
II and region III during the whole historical period. In addition, the peak 
value of vulnerability kernel density in different regions had little dif-
ference, which increased slightly from 1930s to 1950s, and gradually 
decreased after 1950s. We infer that, apart from 1950s, the vulnerability 
difference among different shires in all regions increased gradually from 
1930s to 1990s. 

For the three sub-regions, vulnerability all decreased from 1924 to 
1998, although its inter-annual differences were relatively large (Fig. 6 
m-p). The vulnerability of region I was the highest and had the largest 
fluctuation during the study period. The average vulnerability of region I 
decreased from 0.9 to 0.4, which was greater than that of region II and 
region III, decreasing from 0.8 to 0.3. In all sub-regions, the maximum 
inter-annual variation of vulnerability occurred after 1980. Meanwhile, 
during 1960 to 1998, the extreme value of the vulnerability level 
increased obviously, which indicated that the difference of the vulner-
ability level of different shires increased. However, for region III, the 
vulnerability difference among different shires was small, only the 
minimum vulnerability range in the last 20 years has widened. We think 
that the vulnerability of different shires in region III was similar from 
1924 to 1980, while that of low vulnerability shires were lower from 
1980 to 1998. 

We found that the spatial distributions of vulnerability obtained by 
the three detrending methods were similar, gradually decreasing from 
northwest to southeast throughout the NSW wheat belt (Fig. 4, Fig. S1, 
and Fig. S2). The kernel density of vulnerability based on three methods 
in different sub regions also showed a similar trend, which gradually 
decreased from 1930s to 1990s (Fig. 5, Fig. S3, and Fig. S4). In addition, 
the vulnerability derived from the three detrending methods 

significantly decreased from 1924 to 1998, and showed inter-annual 
fluctuation in different amplitudes (Fig. 6, Fig. S5, and Fig. S6). 

We used MK test to analyze the trends of exposure, sensitivity, 
adaptive capacity, and vulnerability (Fig. 6 a-p). Meanwhile, the time 
and period characteristics of these four indicators were combined by 
continuous wavelet transform (Fig. 7). The exposure showed a slight 
decreasing trend in three sub-regions and the whole region, but only the 
exposure of region I had passed the significance test (Fig. 6 a-d). At the 
same time, the results of wavelet analysis showed that the high fre-
quency part (HFP) of exposure was mainly distributed in 0-10a in three 
sub-regions, and the wavelet power spectrum energy changed discon-
tinuously in HFP. Among them, region I and region III had an 8-10a 
period passed the significance test in 1930s, while the period of signif-
icance for region II was 4-6a in 1972 (Fig. 7 a-d). Sensitivity level had no 
significant change trend in all regions (Fig. 6 e-h). However, its peri-
odicity was obvious, and had a main oscillation period of 4.5–7.7a in all 
regions. The HFP mainly concentrated in 0–7.7a, but the change was 
discontinuous. In addition, in region I and region III, there were 2-6a 
periods in 1941–1960 and 1996, had passed the significance test. The 
periods of significance for region III were shorter, mainly concentrated 
in 1978 and 1996 (Fig. 7 e-h). Adaptive capacity in different regions all 
had significantly increased (Fig. 6 i-l), while the periodicity was not 
significant, and the HFP existed only in 11.2–16.5a of region I (Fig. 7 i-l). 
The vulnerability of the three sub-regions and the whole region 
decreased significantly with time (Fig. 6 m-p). The results of wavelet 
analysis showed that the HFP of vulnerability in different regions was 
mainly between 0 and 3.6a. In 1966, 1978 and 1996, there were short 
periods of 0–1.8a, which passed the significance test. Also, region I had a 
significant short period of 2–3.6a in 1954 (Fig. 7 m-p). 

To sum up, the trend and periodicity of data can supplement each 
other. Taking adaptive capacity as an example, it had an obvious 
increasing trend with a weak periodic signal in the time series across the 
three subregions and the whole NSW wheat belt. Meanwhile, the data 
with large inter-annual fluctuations, such as exposure, had discontin-
uous periods in the time series. 

4. Discussion 

Our study used a comprehensive index method to assess the 

Fig. 3. Averaged value of standardized CDD, CWD, rSPEI, TX90P, FD, and Tmean in 66 shires of the NSW wheat belt.  
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vulnerability of wheat yield to climate change. We used the trend of 
historical yield as proxy of adaptive capacity, which considered the 
contribution of management, socio-economic, and technological prog-
ress to crop yield (Franke et al., 2019; Bogunovic et al., 2018; Adimassu 
and Kessler, 2016; Olesen et al., 2011). Sensitivity was represented by 
detrending yield, which characterized the final result of wheat affected 
by climate variability and extreme weather events. Furthermore, we 
developed a RF model to predict detrending yield based on six repre-
sentative climate indices. The variable importance derived from RF was 
used to give the weight of six climate indices. Then the weighted sum of 
the six climate indices represented exposure. The exposure index we 
developed here considered the average changes and extreme events of 
rainfall and temperature. 

Sensitivity and exposure are both related to climate factors. The 
differences between them are: when assessing the vulnerability of 
agricultural system to climate change, exposure is essentially the 
magnitude of extrinsic change in climate itself. Conversely, sensitivity is 
the amount of corresponding change to these given amount of exposure 
(Kling et al., 2020). Note that the regions with high sensitivity are not 
always the ones with high exposure. For example, in 1930s, 1950s, and 
1990s, the value of sensitivity for those shires in the eastern and 
southern parts of wheat belt was higher than that in northwestern areas, 

where exposure was the highest during the whole study period (Fig. 4). 
Most previous studies regarding the impact of historical climate on 

crops often use different detrending methods to remove non-climatic 
yield (Yt). Then only climatic yield (Yc) and different climate variables 
were used to establish the relationship between crops and climate 
change. They identified dominant climatic drivers that determine yield 
variations (e.g., Wang et al., 2015). In this study, we not only separated 
Yc and Yt, but also used both Yc and Yt to conduct vulnerability analysis. 
Our vulnerability index can not only reflect the impact of climate on 
crop production system, but also consider the resilience of the system 
itself. This comprehensive assessment is very helpful for locating those 
areas that are unable to cope with adverse climate impacts, which often 
have high sensitivity and exposure, and low adaptive capacity. This 
method is more helpful to the planning of adaptation measures and the 
rational allocation of agricultural resources, compared with studies only 
considering the effects of climate factors. 

We demonstrated that the vulnerability gradually decreased from 
1924 to 1998. Exposure and sensitivity did not increase or decrease 
significantly throughout the study periods, although they fluctuated 
greatly from year to year. However, the adaptive capacity significantly 
increased with time. We found that the adaptive capacity was increased 
mainly because of the improvement of agronomic management 

Fig. 4. Spatial distribution of EI, SI, AC, and VI in NSW wheat belt for 1930s, 1950s, 1970s, and 1990s based on CMA method.  
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practices, technological, and socio-economic progress. For example, 
adjusting the sowing date of crops can make crops grow in a more 
favourable climate condition, avoid frequent risk periods such as heat, 
frost, and drought, then reduce the adverse effects of climate and 
weather on crop production (Gomez-Macpherson and Richards, 1995). 
Furthermore, the emergence of new crop varieties, the application of 
herbicides and chemical fertilizers improve the productivity of crops 
(Anderson et al., 2005). In addition, the improvement of agricultural 
machinery as well as the progress of communication and computer 
technology have improved the efficiency of agricultural production and 
the speed and range of farmers receiving information (Kingwell and 

Pannell, 2005). Finally, the increase of farmers’ livelihood capital is also 
the reason for enhancing adaptive capacity (Huai, 2016). As for sensi-
tivity and exposure, they are highly correlated with climate conditions. 
The climate indices had large inter-annual fluctuations (Fig. 3) with no 
significant trend of increasing or decreasing except CWD and rSPEI. 

Spatially, we found that the vulnerability of region I, located in the 
northwest of the wheat belt, was about 0.45–0.80, higher than the 
0.24–0.60 of the other two sub-regions. At the same time, from 1930s to 
1990s, the vulnerability of region II was slightly higher than that of 
region III, but the difference was small. The main reason was that, under 
the condition of small difference in sensitivity among the three sub- 

Fig. 5. Kernel density of EI, SI, AC, and VI based on CMA method in three sub-regions and the whole NSW wheat belt. The vertical blue dotted line from shallow to 
deep represent the average value of the indicator in 1930s, 1950s, 1970s, and 1990s, respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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regions, the exposure of region I was the highest (Fig. 5), while its 
adaptive capacity was the lowest (Fig. 5). Climate conditions in region I 
were less favourable for wheat growth than other two regions (Fig. 5 a). 
For example, compared with the southeast, the northwest of wheat belt 
has less precipitation and higher temperature (Feng et al., 2019b). This 
dry and hot climate tends to aggravate the adverse effects on wheat 
production (Wang et al., 2020). Moreover, the rainfall pattern in the 
northwest is mainly summer dominant, which means that the main 
rainfall does not fall in the wheat growth period, resulting in less 
available water for wheat in the northwest. On the contrary, rainfall in 
southwest is generally uniform or winter dominant (Wang et al., 2018), 
therefore, wheat in this area can use more effective precipitation. In 
region I, we mainly attributed the lowest adaptive capacity to the 
poorest accessible to natural, financial, and physical resources in the 
northwestern NSW compared with other regions (Schirmer and Hani-
gan, 2015). 

We highlight the need to assess vulnerability on the shire scale. From 
shire scale, we found that Warren (ID: 7), Coonamble (ID: 6), Bogan (ID: 
8), and Walgett (ID: 1) were the most vulnerable areas based on CMA 
detrending method, and they were all located in region I. Also, the 
exposure level of these shires was the highest among 66 shires, while 
their adaptive capacity was almost the lowest. We suspect that this 

combination of factors may explain why they had the highest vulnera-
bility. Policy makers and farmers should give priority to the application 
of effective agricultural adaptation and capital investment in these 
shires. Farmers can try to plant drought-resistant and heat-resistant 
wheat, adjust the sowing date of wheat, or use residue mulching to 
alleviate or eliminate the adverse effects of climate (drought, high 
temperature, frost, etc.) in these shires. These techniques may improve 
the adaptive capacity under high exposure (Zhao et al., 2015). Based on 
the APSIM simulations of the impacts of climate change on wheat pro-
duction for Walgett, Crimp et al. (2019) suggested choosing new vari-
eties with heat and drought resistance, and altering planting decisions to 
adapt climate changes. Furthermore, policy makers and farmers should 
consider whether these shires need to transform and stop growing 
wheat. This proposal was consistent with the change of farming methods 
in the crop belt of northern NSW after the 1990s. Taking Walgett as an 
example, from 1995 to 2001, the planting area of wheat decreased from 
85% to 70%, while that of chickpea increased from 2% to 23% (GRDC, 
2004). 

Conversely, Holbrook (ID: 65), Hume (ID: 66), Harden (ID: 63), and 
Boorowa (ID: 61) were shires with the lowest vulnerability in the wheat 
belt based on CMA detrending method. They were all in region III and 
located in the southeast of the study area. In these shires, the planting 

Fig. 6. The annual averaged value of EI, SI, AC, and VI based on CMA method in three sub-regions and the whole NSW wheat belt in 1924–1998. The top and bottom 
boundaries of shaded areas represent the maximum and minimum value, respectively. ZMK is the increasing (decreasing) rate of EI, SI, AC, and VI during the period 
from 1924 to 1998 in three sub-regions and the whole NSW wheat belt (*** p < 0.001, ** p < 0.01, * p < 0.05). 
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area of wheat should be appropriately increased, so as to make full use of 
the advantages of low vulnerability, thus increasing the wheat produc-
tion. Moreover, the agricultural managements practised in these shires 
can be passed on to other areas with high vulnerability, helping them to 
reduce the vulnerability of wheat production, so as to achieve stable and 
sustained growth of wheat yield. 

We found that there was no difference among the three detrending 
methods in locating shires with the highest vulnerability in the NSW 
wheat belt. The four most vulnerable shires in NSW wheat belt were 
consistent in the three methods. However, when locating shires with 
lowest vulnerability, the results obtained by the three detrending 
methods were different (Holbrook (ID: 65), Hume (ID: 66), Blayney (ID: 
60), and Cootamundra (ID: 36) for HP method; Holbrook (ID: 65), Hume 
(ID: 66), Blayney (ID: 60), and Culcairn (ID: 61) for FD method). 

More work are still needed to explore the issues raised in our 
research. Although we investigated the spatiotemporal changes of 
exposure, sensitivity, adaptive capacity, and vulnerability in the NSW 
wheat belt, we did not assess the vulnerability from 2001 to 2021 due to 
lack of yield data for each shire after 2000. In addition, by comparing 
the vulnerability results of three detrending methods, we found that 
different detrending methods can lead to different results in vulnera-
bility assessment spatially. This has been reported by a previous study of 
Lu et al. (2017), showing detrending methods significantly affect Yc and 
Yt. In addition, Ye et al. (2015) used multiple detrending methods to 
assess crop yield risk and found that the estimated yield loss rate varied 
with different detrending methods. Thus, pre-selecting suitable 
detrending methods according to specific research objectives and 

contents is necessary to reduce the possibility of significant differences. 
Understanding the vulnerability of crop yield to historical climate is an 
indispensable step for assessing the vulnerability of crop productivity to 
future climate change (Uddin et al., 2019; Wang et al., 2020; Ahmada-
lipour and Moradkhani, 2018). The drought intensity of NSW wheat belt 
was predicted to increase in the next few decades, and the drought 
affected area will expand from west to east (Feng et al., 2019a). 
Meanwhile, warm days (TX90P) also show an increasing trend, espe-
cially in the northeast of wheat belt (Wang et al., 2016). Hence, the 
exposure in NSW is likely to increase in the future, and the area with 
high exposure will gradually expand from northwest towards eastern 
and southern districts. In this case, how will the vulnerability of the east 
and south of wheat belt change in the future? Can future adaptive ca-
pacity offset this increasing exposure? Also, do these regions need to 
increase additional agricultural adaptation practices and investment, so 
as to enhance their adaptive capacity? These questions can be answered 
by assessing vulnerability under future climate change. We expect that 
our vulnerability assessment method can be combined with process- 
based crop model driven by global climate models to predict the 
vulnerability of wheat yield in the future. Therefore, we can determine 
whether those less vulnerable areas (the eastern and southern parts of 
the wheat belt) in historical periods can still keep low vulnerability 
under the future climate change. 

5. Conclusion 

We used the data of crop yield and climatic indices in 1924–1998, 

Fig. 7. The wavelet-spectra of annual EI, SI, AC, and VI based on CMA method in three sub-regions and the whole NSW wheat belt in 1924–1998. The red line 
denotes the cones of influence, and the thick solid line shows the 95% confidence level. Yellow and blue area in the figure represent the peak and valley of wavelet 
energy density, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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combining with the methods of yield de-trending and comprehensive 
exposure index to assess wheat yield vulnerability to climate as a case 
study in south-eastern Australia. We found that, from the 1930s to the 
1990s, both exposure and sensitivity had large inter-annual variations 
without significant increasing or decreasing trend. However, adaptive 
capacity increased by 34% from 1930s to 1950s, 54% from 1950s to 
1970s, and 54% from 1970s to 1990s. The vulnerability in the wheat 
belt decreased by 13% from 1930s to 1950s, 15% from 1950s to 1970s, 
and 33% from 1970s to 1990s. This is mainly due to increased adaptive 
capacity with the improvement of agronomic management practices, 
technological and socio-economic progress. Our results highlight that 
the hotspots of wheat yield vulnerability were located in the north- 
western parts of NSW wheat belt. Our study provides useful informa-
tion for policymakers to plan and implement the priority adaptations 
and investments to mitigate the vulnerability in these areas. Meanwhile, 
policymakers should also find ways to make full use of the favourable 
conditions in the southeastern NSW wheat belt, so as to improve the 
state wide potential of wheat productivity. 

Our study emphasizes that vulnerability assessment based on crop 
yield and climate change indices is a useful approach. Additionally by 
using this method, researchers can assess the vulnerability of crop yield 
to future climate change in combination with process-based model 
simulated results. So, we can know whether the exposure and sensitivity 
will increase significantly under future climate change, and whether the 
improvement of adaptive capacity can offset their increase. The 
vulnerability prediction will provide effective guidance for agricultural 
resource allocation and investment planning, so as to achieve the 
maximum benefit of agricultural productivity. We highlight the need to 
apply a simple and universal method for vulnerability assessment. It 
facilitates the comparison of vulnerability in different regions and the 
prediction of future vulnerability. This is of great significance to poli-
cymakers’ precise agricultural management and planning. This infor-
mation will help industry leaders facilitate change in production systems 
of several industries, including wheat, to better prepare farmers for 
climate change and hence, to maintain productivity and profitability 
into the future. 
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