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A B S T R A C T   

Irrigation plays an important role in crop yield production in arid and semi-arid regions. However, irrigation 
effects have not been well addressed in the application of crop models at a regional scale due to limited data 
availability, which constrains the reliability and accuracy of simulation results. Assimilating remote sensing 
information into crop models can provide a viable approach to reduce associated uncertainties. In this study, 
regional irrigation data for winter wheat (Triticum aestivum L.) grown on the Loess Plateau was used to calibrate 
and validate the ChinaAgrosys (China Agricultural System) crop model at site and regional scales. Remote 
sensing data was then assimilated into the ChinaAgrosys crop model under four assimilation schemes. Two 
remotely sensed assimilation state variables (i.e., LAI and NDVI) and two assimilation algorithms (i.e., PSO 
(Partical swarm optimization) and SCE-UA (Shuffled complex evolution)) were considered. During the winter 
wheat growing season on the Loess Plateau, 30.6% of the wheat production area was irrigated once, 6.7% was 
irrigated two times, 3.7% was irrigated three times, and the remaining wheat area was rainfed. The R2 values 
between maturity date, LAI, and yield simulated by the ChinaAgrosys crop model and observations at 21 
agrometeorological stations on the Loess Plateau were greater than 0.73, 0.44, and 0.60, respectively, during 
2010–2015. The accuracy and spatial heterogeneity of winter wheat yield estimation were effectively improved 
by assimilating remote sensing data into the ChinaAgrosys crop model based on regional irrigation data. Under 
the four assimilation schemes, the combination of PSO+NDVI produced the highest accuracy for yield estimation 
in Hongtong county (92.8%), followed by SCE-UA+NDVI (92.0%). Our results demonstrated the importance of 
accounting for the spatial heterogeneity of water availability when applying a crop model in arid and semi-arid 
regions. Additionally, our analysis regarding different assimilation state variables and algorithms indicated that 
both simulation accuracy and calculation efficiency should be considered when assimilating remote sensing data 
into a crop model for simulating crop growth at regional scales.   

1. Introduction 

Crop models can simulate photosynthesis, respiration, transpiration, 
and dry matter distribution during periods of crop growth and yield 
production. Over recent decades, crop models have been widely used to 
investigate climate change impacts on crop yield (Bocchiola et al., 
2013), to schedule farmland irrigation (Chimonyo et al., 2016), and to 

analyze effects of drought stress on growth crop and yield (Yin et al., 
2014). However, most crop models were originally developed for 
plot/field-scale studies and their regional application has been con-
strained by the availability of input parameters regarding meteorology, 
soil characteristics, agricultural management, etc. (Lv et al., 2016). 
Satellite remote sensing has rapidly developed and plays an important 
role in quantifying crop planted area, growth monitoring, yield 
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forecasting, and drought assessment at regional scales (Sakamoto et al., 
2013; Park et al., 2016; Chen et al., 2018). Combining satellite remote 
sensing data with crop models can result in continuous spatiotemporal 
modeling of crop growth processes (Jin et al., 2018b; Huang et al., 
2019), and can provide strong support for dynamic monitoring of crop 
growth and yield production at regional scales. Data assimilation 
methods that combine the advantages of crop modeling and remote 
sensing data have been widely developed in recent years (Ines et al., 
2013; Hu et al., 2019). This process is implemented by continuously 
integrating a variety of observation data, and constantly adjusting the 
trajectory of simulations within the dynamic framework of the crop 
model (Huang et al., 2015a). The variables assimilated into a crop model 
may include leaf area index (LAI), normalized difference vegetation 
index (NDVI), evapotranspiration (ET), soil moisture, enhanced vege-
tation index (EVI), etc. (de Wit and van Diepen, 2007; Curnel et al., 
2011; Ma et al., 2013; Huang et al., 2015b; Guo et al., 2019). Previous 
studies have shown that crop model simulation results were improved 
by assimilating biophysical variables obtained from remote sensing data 
(Kang and Özdoğan, 2019; Lei et al., 2020). In contrast, the process of 
upscaling irrigation data to regional scale requires further study. Irri-
gation activities are influenced by many factors, including water avail-
ability, irrigation water price, crop growth conditions, farmers’ 
willingness to irrigate a crop, etc. The timing and amount of irrigation 
events on farmland have a great amount of uncertainty, thereby 
increasing the difficulties in obtaining irrigation data at a regional scale. 
Currently, studies regarding regional irrigation data are mainly focused 
on classifying crop areas as either irrigated or rainfed (Pervez et al., 
2014; Deines et al., 2019; Xie et al., 2019). However, realistically esti-
mating regional crop growth requires information regarding irrigation 
timing and amount, which currently cannot be derived from existing 
irrigation data sets. 

Agricultural production on the Loess Plateau in China is largely 
constrained by water availability. Irrigation plays a critical role in 
ensuring crop productivity. In dry years, irrigated wheat yield can be 2.3 
times greater than rainfed wheat yield (Jin et al., 2016b). The ability of a 
crop model to accurately simulate yield production and water con-
sumption in this region is compromised by the lack of accurate regional 
irrigation data. Usually, a crop in an entire study area is assumed to be 
rainfed or is assumed to use a standard irrigation scenario (Zhang et al., 
2013; Wang et al., 2015; Adhikari et al., 2016). Different water avail-
ability for crops has been considered in some studies, but the spatial 
resolution has been coarse, and the irrigated and rainfed conditions 
were the same for different crops (Mo et al., 2005). In general, it is 
difficult to get reliable irrigation data at a regional scale, and therefore 
the spatial heterogeneity in irrigation data is given less attention when 
applying a crop model at a regional scale. Furthermore, the influence of 
spatial heterogeneity of irrigation data on simulation results is seldom 
considered for the subsequent assimilation of remote sensing data into a 
crop model (De et al., 2012; Huang et al., 2015b; Jin et al., 2016a; 
Gilardelli et al., 2019). Ignoring the spatial heterogeneity of irrigation 
data may lead to some uncertainties for the simulation results of crop 
models in arid and semi-arid regions. 

In this study, wheat production areas on the Loess Plateau were 
classified as either irrigated and rainfed. Irrigation times were then 
assumed based on the local irrigation practices and the estimated wheat 
yield from a light use efficiency model. Taking into account the spatial 
heterogeneity of irrigation data on the Loess Plateau can improve the 
accuracy and reliability of yield estimation when assimilating remote 
sensing data into the ChinaAgrosys (China Agricultural System) crop 
model. The major scientific objectives of this study were to: (1) extract 
regional irrigation data for winter wheat production on the Loess 
Plateau; (2) estimate winter wheat LAI at 250-m spatial resolution using 
the PROSAIL radiation transfer model; (3) evaluate the performance of 
ChinaAgrosys on the Loess Plateau; (4) couple ChinaAgrosys with the 
PROSAIL radiation transfer model, and build schemes for assimilating 
remote sensing data based on spatial irrigation data into ChinaAgrosys. 

2. Materials and methods 

2.1. Study area 

The Loess Plateau is located between 32–41◦N and 103–114◦E with 
an area of 648,700 km2, including 341 counties in Shanxi, Shaanxi, 
Ningxia, Henan, Gansu, Inner Mongolia, and Qinghai provinces/ 
autonomous regions. The southeast Loess Plateau is lower than the 
northwest, and the elevation varies from 500 m to about 3000 m. The 
Loess Plateau is under the influence of a continental monsoon climate, 
and is a transition zone changing from semi-humid to semi-arid climate. 
Precipitation increases from the northwest (150–250 mm) to the 
southeast (above 600 mm), and shows large inter-annual variation. 
Precipitation in wet years can be 2–5 times greater than precipitation in 
dry years. 

In this study, we selected 158 counties that planted winter wheat in 
the central and southern Loess Plateau, which accounted for 46.3% of 
the total counties (Fig. 1). The average winter wheat yields in Gansu, 
Ningxia, Shaanxi, Shanxi, and Henan provinces were 2426, 2206, 4022, 
3031, and 4382 kg ha− 1 in 2011, respectively. Winter wheat is usually 
planted in October and harvested in June of the following year. Pre-
cipitation during the winter wheat growing season is far less than the 
amount needed to meet the demand for crop growth and yield produc-
tion. Irrigation plays an important role in producing high and stable 
winter wheat yield. 

2.2. Data 

2.2.1. Remote sensing data 
The remote sensing data used in this study included MOD13Q1 NDVI 

data (16-day, 250-m resolution) and MOD15A2 LAI data (8-day, 
1000–m resolution) during the years 2010–2015. Two scenes were 
needed for the MODIS data to cover the entire Loess Plateau (path/row: 
h26v05 and h27v05). After applying re-projection, mosaic, and merging 
processing to the MODIS data, 1884 × 3815 pixels in the study area 
were obtained using the vector shapefile of the Loess Plateau boundary. 

2.2.2. Meteorological, soil, and ground observation data 
Meteorological data for the 158 counties on the Loess Plateau were 

obtained for the period of 2010–2015, including daily mean tempera-
ture, maximum temperature, minimum temperature, sunshine hours, 
precipitation, and wind speed. A multivariate linear regression model 
that considered geographic effects (longitude, latitude, elevation, slope, 
and aspect) was used to interpolate meteorological data elements at a 
spatial resolution of 250 m to match the remote sensing data (Jin et al., 
2018a). The spatially explicit soil properties obtained from Dai et al. 
(2013) included soil texture, saturated water content, wilting coeffi-
cient, and field water holding capacity. 

The ground observation data for winter wheat during 2012–2014 
were collected from the Water-saving Agricultural Experiment Station of 
Northwest A&F University at Yangling (Fig. 1). The winter wheat 
cultivar was Xiaoyan22. The data for the period of 2012–2013 and 
2013–2014 were used to calibrate and validate, respectively, the Chi-
naAgrosys crop model. There were a total of 21 winter wheat agro-
meteorological stations across the Loess Plateau. The observation data 
included planting date, maturity date, LAI, yield, etc., which were used 
to evaluate the applicability of ChinaAgrosys. The LAI data at jointing 
and heading stages for six agrometeorological stations in Shanxi prov-
ince were used to validate LAI values that the look-up table (described 
later) generated and that ChinaAgrosys simulated. 

2.3. ChinaAgrosys crop model and parameter sensitivity analysis 

ChinaAgrosys is a comprehensive soil-vegetation-atmosphere model 
in which photosynthesis, transpiration, and stomatal conductance 
models were extended from leaf to canopy scale by integrating the leaf 
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water potential dynamic model with the hydrothermal transfer and 
photosynthetic models in SPAC (Soil-Plant-Atmosphere Continuum). 
ChinaAgrosys considers the crop growth and hydrothermal transfer 
process, and consists of three sub-modules, i.e., soil, crop growth, and 
micro-meteorology. Details regarding ChinaAgrosys can be found in 
Wang et al. (2007). 

The major parameters in ChinaAgrosys affecting physiological pro-
cesses controlling crop growth and development include the develop-
mental rate parameters (c0, c1, nondimensional quantity), LAI 
parameters (a0, a1, a2, a3, nondimensional quantity), crop specific 
parameters (alpha0, initial quantum efficiency; v0, max photosynthesis 
rate, µmol m− 2 s− 1), and yield parameters (b0, b1, b2, nondimensional 
quantity). The most sensitive parameters with respect to crop develop-
ment and yield production were selected based on an analysis of the 
influence of the interrelationships between parameters from simulation 
results. This process was helpful in selecting the optimal values of pa-
rameters for assimilating remote sensing data into ChinaAgrosys, 
thereby improving the efficiency of the optimizing algorithm and 
reducing the computational requirements. The global sensitivity anal-
ysis of the 11 parameters in ChinaAgrosys was implemented using the 
EFAST (Extended Fourier amplitude sensitivity test) method based on 
the observed LAI and yield data at the Yangling experimental station 
from 2012 to 2013. 

The framework of the sensitivity calculation was constructed using 
the sensitivity package written in the R program (http://www.r-project. 
org/), and the executable file and parameters file in ChinaAgrosys were 
called to calculate the sensitivity for the 11 parameters. In the EFAST 
method, the number of calculations for a single process was n × p, where 
n is the number of samples and p is the number of parameters. 

2.4. Classification of irrigated and rainfed wheat, yield estimation, and 
irrigation criteria 

The winter wheat planted area on the Loess Plateau was extracted 
based on the variation of the NDVI time series (Jin et al., 2016b). Yield 
was estimated using a light use efficiency model (Jin et al., 2018a). The 
timing and amount of irrigation for winter wheat was estimated based 
on the classification results and the estimated winter wheat yield, given 

that crop growth and yield production in the study areas are largely 
determined by water availability. Specifically, the irrigation amount 
was set as 0 mm for rainfed wheat; three irrigation levels were used for 
irrigated wheat: irrigated once (when yield<4500 kg/ha; 1 April 2011), 
irrigated twice (when 6000 kg/ha>yield>4500 kg/ha; 1 December 
2010 and 1 April 2011), and irrigated three times (when 
yield>6000 kg/ha; 1 December 2010, 1 April 2011, and 15 May 2011). 
The irrigation amount was 50 mm for each irrigation event according to 
the typical agricultural production practices on the Loess Plateau. 

2.5. PROSAIL radiation transfer model and LAI inversion 

2.5.1. PROSAIL radiation transfer model 
The PROSAIL radiation transfer model consists of two sub-modules 

(i.e., the PROSPECT model and the SAIL model). The PROSPECT 
model simulates hemisphere directional reflectance and transmittance 
at leaf scale in the wavelength range 400–2500 nm. Then leaf reflec-
tance and transmittance are used to drive the SAIL model to simulate 
canopy reflectance. The PROSAIL 5B radiation transfer model used in 
this study was downloaded from http://teledetection.ipgp.jussieu.fr/p 
rosail. Details of the PROSAIL 5B model can be found in Jacquemoud 
et al. (2009). 

2.5.2. LAI inversion 
Leaf area index is an important input variable used in many land 

surface models, and has been widely used in crop growth monitoring 
and yield predication (Sakamoto et al., 2013). When assimilating remote 
sensing data into a crop model at a regional scale, results are mainly 
influenced by the accuracy of retrieved LAI. Generally, there are two 
major ways to retrieve LAI using satellite remote sensing data, i.e., 
empirical/semi-empirical model inversion and physical model inversion 
(Pasolli et al., 2015). At present, the main data sources used to retrieve 
the LAI product at large scales are MODIS, GLASS, and other satellite 
remote sensing data at medium spatial resolutions. The temporal and 
spatial resolution of these LAI products are 8 days to 1 month and 
1–10 km, respectively. The MODIS LAI product is not crop specific, and 
the LAI values of farmland are lower than ground observations 
(Duveiller et al., 2013). Moreover, image resolution is too coarse to be 

Fig. 1. The Loess Plateau study area, counties with winter wheat (colored areas), Yangling experimental station, and 21 winter wheat agrometeorological stations.  
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used on the Loess Plateau due to the highly fragmented farmland in this 
region. Therefore, it is difficult to directly assimilate the 1-km MODIS 
LAI product into a crop model, which may reduce the spatial hetero-
geneity in the simulation results. In this study, LAI at 250-m spatial 
resolution was retrieved for the Loess Plateau based on an NDVI-LAI 
look-up table derived from the PROSAIL radiation transfer model 
(Fig. 2). 

2.5.3. Hyperspectral reflectance data of winter wheat 
Hyperspectral reflectance data for the winter wheat canopy were 

measured with the Analytical Spectral Devices (ASD) Field Spec Pro FR 
(350–2500 nm) spectroradiometer. Instrument calibration was per-
formed using a standard reference board before and after each mea-
surement of the reflectance spectrum. Measurements were made 
between 10:00 and 15:00 when the sky was cloudless and wind speed 
was low. The angle of the spectroradiometer was set as 25º with a height 
of 1.3 m. Each winter wheat sample area was measured 10 times. The 
spectroradiometer data were then used to validate the simulation results 
of the PROSAIL radiation transfer model. 

2.5.4. Conversion between hyperspectral reflectance data and multispectral 
reflectance data 

The observed and simulated winter wheat canopy reflectance ranges 
were 350–2500 nm and 400–2500 nm, respectively. The MODIS image 
was comprised of multispectral reflectance data. The MODIS image data 
were associated with the hyperspectral data using the spectral response 
function. The wide-band reflectance was estimated as follows (Steven 
et al., 2003): 

ρ =

∫
I(λ)R(λ)φ(λ)dλ
∫

I(λ)φ(λ)dλ
(1)  

where ρ is the reflectance of the corresponding band of the satellite 
sensor; I is the ground-measured incident solar radiation; R is the 
vegetation canopy reflectance; λ is the wavelength; φ is the spectral 
response function of the corresponding satellite sensor band, including 
blue, green, red, near infrared, shortwave infrared bands, etc. The 
spectral response function in the spectral library was linearly interpo-
lated to match the spectral resolution of the observed and simulated 

canopy reflectance. 

2.5.5. LAI estimation using the look-up table inversion method 
One MODIS pixel at 1-km spatial resolution would contain 16 pixels 

at 250-m spatial resolution. If the original MODIS LAI data were directly 
used, then all 16 pixels would have the same value. Doing so would 
greatly reduce the spatial heterogeneity in the resulting data simulated 
by the crop model. Therefore, it was necessary to invert winter wheat 
LAI at 250-m spatial resolution before assimilating remote sensing data 
into the crop model on the Loess Plateau. 

The look-up table is a relatively simple method to invert LAI based on 
the radiation transfer model. The method can produce a global optimum 
solution and avoid the shortcoming of the neural network that easily 
obtains the local optimal solution. Additionally, the computation 
complexity and abnormality are lower than seen for numerical optimi-
zation methods. During the LAI inversion, a look-up table containing the 
LAI values generated by the PROSAIL radiation transfer model and the 
corresponding NDVI estimated using canopy reflectance was established 
based on the forward radiation transfer model. 

2.6. PSO and SCE-UA optimization algorithms and objective functions 

Particle Swarm Optimization (PSO) is an intelligent algorithm used 
to simulate bird clustering and foraging that was developed at the end of 
the twentieth century (Kennedy and Eberhart, 1995). Details regarding 
the PSO algorithm can be found in Li et al. (2015). The global optimi-
zation algorithm of SCE-UA (Shuffle Complex Evolution method) has 
been widely used in parameter calibration for hydrological watershed 
models (Duan et al., 1994). 

The continuous data assimilation algorithms of PSO and SCE-UA 
were used in this study. By continuously adjusting the parameters of 
the model, the objective function reached the minimum value when the 
model simulations (of LAI or NDVI) agreed best with the observations. 
The objective function Fmin was calculated as: 

Fmin =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
Xmodel,i − Xobs,i

Xobs,i

)2

n

√
√
√
√
√

(2) 

Fig. 2. Flowchart of the LAI inversion method using the PROSAIL radiation transfer model.  
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where a smaller value of Fmin means a more accurate simulation result 
for the model. In the equation, i = 1, 2, 3, …, n, n is the number of ob-
servations, and Xmodel,i and Xobs,i are the ith model simulation result and 
observation, respectively. 

2.7. Assimilation of remote sensing data into the ChinaAgrosys crop 
model 

The assimilation of remote sensing data into ChinaAgrosys included 
the three major parts of (1) crop model, (2) observation data, and (3) 
assimilation algorithm. The crop model supplied the dynamic frame-
work and simulated the crop growth processes by constantly updating 
the state variables. The observation data included remote sensing data 
and ground observation data, etc. Determining the best match between 
the model simulation values and observation data was realized using the 
data assimilation algorithm. There are two ways to couple the crop 
model with remote sensing data at spatiotemporal scale (Table 1):  

(1) LAI as the assimilation state variable (Fig. 3). The difference 
between LAI values that ChinaAgrorys simulates and the inverted 
remote sensing data is reduced by continuously adjusting the 
parameters of the crop model using the optimization algorithm. 
The optimal parameters are obtained when the objective function 
reaches its minimum value, and then crop yield is estimated 
based on these parameters.  

(2) NDVI as the assimilation state variable (Fig. 3). ChinaAgrosys and 
the PROSAIL radiation transfer model are coupled (the LAI esti-
mated by ChinaAgrosys is input to the PROSAIL radiation transfer 
model), and NDVI is calculated based on the simulated canopy 
reflectance. The difference between NDVI that the coupled model 
generates and that remote sensing data estimates is reduced by 
continuously adjusting the parameters of the crop model using 
the optimization algorithm. The optimal parameters are obtained 
when the objective function reaches its minimum value, and then 
crop yield is estimated based on these parameters. 

The assimilation framework used four modules: (1) the main module, 
whose function was to call the crop model/radiation transfer model and 
submodule for the objective function; (2) the settings for the crop model 
parameters, reading the simulation result, and calling the radiation 
transfer model module; (3) the radiation transfer model module; and (4) 
the objective function module. When running the coupled data assimi-
lation scheme, data for latitude, longitude, altitude, planting date, irri-
gation data, soil property parameters, inverted LAI, and meteorological 
parameters for wheat pixels were written into the corresponding ‘.site’ 
and ‘.control’ files. Then the crop model and radiation transfer model 
were continuously called using the optimization algorithm. During this 
process, the simulated LAI or NDVI was compared with the corre-
sponding state variable to obtain the optimal combination of parameters 
(Fig. 4). 

3. Results 

3.1. Spatial distribution of irrigation times for winter wheat on the Loess 
Plateau 

Irrigated and rainfed wheat areas on the Loess Plateau were classi-
fied according to water availability. Rainfed wheat accounted for 60% of 
the winter wheat area planted on the Loess Plateau, and the rest was 
irrigated wheat. Irrigation times were different throughout the irrigated 
wheat area (Fig. 5). The proportion of the wheat area irrigated one, two, 
and three times on the Loess Plateau was 30.6%, 6.7%, and 2.7%, 
respectively. Hence, water availability for winter wheat on the Loess 
Plateau exhibited great spatial heterogeneity. The difference in water 
availability for winter wheat on the Loess Plateau should be taken into 
account when applying a crop model at a regional scale in order to 
reduce the uncertainty in simulation results that may be induced by the 
uncertain regional irrigation data. 

3.2. Applicability assessment of the ChinaAgrosys crop model on the Loess 
Plateau 

3.2.1. Parameter sensitivity analysis for ChinaAgrosys 
The results of the global sensitivity analysis of parameters for Chi-

naAgrosys showed that the five LAI parameters with the greatest first- 
order sensitivity index values were c1, b2, c0, b0, and b1 with sensi-
tivity values of 30.4%, 23.9%, 21.7%, 11.6%, and 10.5%, respectively. 
The five LAI parameters with the greatest global sensitivity index values 
were c1, b2, c0, b1, and b0 with sensitivity values of 39.1%, 35.2%, 
25.7%, 23.7%, and 22.7%, respectively. The five yield parameters with 
the greatest first-order sensitivity index values were b2, c1, c0, a0, and 
b0 with sensitivity values of 19.6%, 13.7%, 13.3%, 10.2%, and 9.7% 
respectively. And the five yield parameters with the greatest global 
sensitivity index values were b2, a0, c1, c0, and a2 with sensitivity 
values of 31.9%, 23.7%, 23.5%, 22.9%, and 22.6%, respectively (Fig. 6). 
Based on the above results, the parameters of c0, c1, and b2 were 
selected for optimization during the following assimilation of remote 
sensing data into ChinaAgrosys. The initial, minimum, and maximum 
values of the optimized parameters are shown in Table 2. 

Parameter variation in ChinaAgrosys induced corresponding 
changes in maturity date, LAI, biomass, and yield for winter wheat. LAI 
was used as an example to demonstrate the influence of the variation of 
c0, c1, and b2 (Fig. 7). The variation of LAI with changing c0 and c1 
were generally similar, as LAI increased with the increasing c0 and c1 
before the heading stage and vice versa after the heading stage. More-
over, the maximum LAI value and the period of occurrence were also 
influenced by c0 and c1. The b2 parameter mainly affected the 
maximum value of LAI before and after the heading period. LAI tended 
to decrease as b2 increased. 

3.2.2. ChinaAgrosys crop model evaluation at site and regional scales on 
the Loess Plateau 

The ChinaAgrosys crop model was calibrated using the observations 
at the Yangling experimental station for the period 2012–2013. Simu-
lated LAI and cumulative biomass were slightly lower at the early and 
late winter wheat growth stages. Overall, the variations of simulated LAI 
over time were consistent with observations (Fig. 8). 

Simulations with the ChinaAgrosys crop model were evaluated 
against observations at 21 winter wheat agrometeorological stations 
across the Loess Plateau for the period 2010–2015. These regional ob-
servations included maturity date, LAI at jointing and heading stages, 
and yield production. ChinaAgrosys simulated values comparable with 
observations for the study region. The R2 values between simulated and 
observed maturity dates were greater than 0.73, and R2 values for LAI 
and yield were greater than 0.44 and 0.60, respectively (Fig. 9). 

Table 1 
Schemes for assimilating remote sensing data into the ChinaAgrosys crop model.  

Assimilation 
algorithm 

No. Assimilation state 
variable 

Assimilation scheme 

PSO  1 LAI ChinaAgrosys-LAI-MODIS  
2 NDVI ChinaAgrosys-LAI-PROSAIL- 

NDVI-MODIS 
SCE-UA  3 LAI ChinaAgrosys-LAI-MODIS  

4 NDVI ChinaAgrosys-LAI-PROSAIL- 
NDVI-MODIS  
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3.3. Inversion of LAI at 250-m spatial resolution for winter wheat on the 
Loess Plateau 

3.3.1. Calibration and validation of the PROSAIL radiation transfer model 
Parameter ranges for the PROSAIL radiation transfer model were 

determined on the basis of a priori knowledge of field measurements and 
relevant literature (Pasolli et al., 2015; Casas et al., 2014). The param-
eter settings were determined based on the sensitivity analysis (Table 3). 

The parameter sensitivities of the model-simulated results were 
evaluated by continuously changing one of the parameters in the PRO-
SAIL radiation transfer model. Our results (Fig. 10) showed that: (1) the 
sensitive band for the chlorophyll parameter Cab was 550 nm, and 
reflectance increased with increasing Cab; (2) reflectance increased with 
increasing hot spot coefficient (hspot), most noticeably in the near- 
infrared band; (3) reflectance decreased with increasing average leaf 
inclination (LIDFa), most noticeably in the near-infrared band; (4) 
reflectance increased with increasing view zenith angle (tto), most 
noticeably in the near-infrared band; (5) reflectance decreased with 
increasing solar zenith angle (tts), most noticeably in the near-infrared 
band. 

Based on the ASD-observed canopy reflectance of winter wheat, the 
sensitive parameters for the PROSAIL radiation transfer model were 
optimized using the SCE-UA algorithm. Simulated canopy reflectance 
agreed well with observations (Fig. 11). Differences between the simu-
lated results and observations were larger in the near-infrared band than 
in the visible band. Overall, the optimized PROSAIL radiation transfer 
model provided useful data to establish the LAI look-up table. 

3.3.2. Validation of inverted LAI on the Loess Plateau 
Inverted LAI from the look-up table and MODIS LAI were evaluated 

using the ground-observed LAI at winter wheat jointing and heading 
stages at six winter wheat agrometeorological stations in Shanxi prov-
ince from 2010 to 2015. The R2 between look-up table LAI and ground- 
observed LAI was greater than 0.54, indicating a good relationship 
(Fig. 12). The MODIS pixels at 1-km spatial resolution were heavily 
influenced by the effect of mixed pixels, and resulted in lower LAI values 
for MODIS than for the look-up table inverted LAI and ground-observed 
LAI. 

3.4. Assimilation of remote sensing data into the ChinaAgrosys crop 
model 

3.4.1. Site level data-model assimilation 
Winter wheat growth and development during the 2013–2014 

growing season were evaluated using the four schemes to assimilate 
remote sensing data into ChinaAgrosys. The greatest maximum LAI 
value (Fig. 13) was seen for LAI obtained with NDVI as the assimilation 
state variable, followed by the look-up table LAI as the assimilation state 
variable, the ChinaAgrosys crop model simulation without assimilation, 
and MODIS LAI as the assimilation state variable (lowest maximum LAI). 
The corresponding R2 values between the simulated LAI under the four 
assimilation schemes and observed LAI were 0.73, 0.79, 0.75, and 0.86, 
and the RMSE values were 0.89, 0.53, 0.59, and 2.52, respectively. The 
LAI generated by assimilating MODIS LAI into the ChinaAgrosys crop 
model was very low because it was influenced by the low values of 
MODIS LAI during the entire winter wheat growing season. The MODIS 
LAI of winter wheat at the Yangling station was somewhat larger in 
2013–2014 compared with MODIS LAI shown in Fig. 12. This is likely 
due to the highly fragmented planted areas of winter wheat at the 
agrometeorological stations, where MODIS pixels suffered more effects 

Fig. 3. Framework for assimilating remote sensing data into the ChinaAgrosys crop model. The blue section indicates the coupling of the PROSAIL radiation transfer 
model with the NDVI state variable. Without the blue section, the assimilation state variable is leaf area index (LAI). 
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of mixed pixels. The simulation results were improved somewhat by 
assimilating external remote sensing data into the crop model. 
Compared with the simulation results from ChinaAgrosys without 
assimilation, the R2 between the simulated and observed LAI values was 
improved by assimilating NDVI or look-up table LAI into the crop model, 
and the changes in simulated LAI over time agreed well with the growth 
and development of winter wheat. The RMSE between observed LAI and 
simulated LAI generated by assimilating NDVI into ChinaAgrosys was 
the smallest. 

The accuracy of the simulated yield under the four assimilation 
schemes was 93.6%, 92.1%, 91.9%, and 91.8% for the combinations of 
PSO+NDVI, SCE-UA+NDVI, SCE-UA+LAI, and PSO+LAI, respectively 
(Table 4). Accuracy was highest for the PSO+NDVI scheme, and there 
were little differences between the other three schemes. The order of the 
assimilation efficiency (based on computation time) from high to low 
efficiency was PSO+LAI, PSO+NDVI, SCE-UA+NDVI, and SCE-UA+LAI, 

respectively. Overall, the assimilation using the SCE-UA algorithm took 
more time than the PSO algorithm. During the data assimilation process, 
continuous data assimilation algorithms such as PSO and SCE-UA are 
very dependent on the accuracy of the external observation data due to 
the constraints of the algorithms. 

3.4.2. Regional scale data model assimilation 
It was difficult to implement the assimilation of remote sensing data 

into ChinaAgrosys for all of the 3822,830 wheat pixels on the Loess 
Plateau because of the low assimilation efficiency observed at the site 
scale for the Yangling station. Therefore, Hongtong county was selected 
as a representative study area for the assimilation of remote sensing data 
into ChinaAgrosys. There were 206× 199 pixels contained in Hongtong 
county, of which 4881 pixels were winter wheat, and it took about 
2.4–5.9 days to implement the assimilation of remote sensing data into 
ChinaAgrosys. Based on the estimated planting date and irrigation data 
for winter wheat, the assimilation of remote sensing data into ChinaA-
grosys was implemented using two state variables (NDVI and LAI) and 
two assimilation algorithms (PSO and SCE-UA). The accuracy of the 
yield estimation under the four assimilation schemes is shown in  
Table 5. The yield simulation accuracy of the four assimilation schemes 
in Hongtong county in 2011 (ordered high to low) was PSO+NDVI 
(92.8%), SCE-UA+NDVI (92.0%), PSO+LAI (91.0%), and SCE-UA+LAI 
(89.1%). Overall, the accuracy was higher when NDVI was used as 
assimilation state variable than when LAI was used. 

The spatial heterogeneity of rainfed wheat yield was significantly 
larger than that of irrigated wheat yield in Hongtong county (the 
average values of Moran’s I (Moran, 1950) for rainfed and irrigated 
wheat were 0.40 and 0.17, respectively) (Fig. 14 and Fig. 15). Rainfed 
wheat yield is largely determined by precipitation conditions, resulting 
in widely varying yield with large spatial fluctuations. The area of 
Hongtong county is 1563 km2, and irrigation practices are roughly 
similar throughout the region. Irrigated wheat yield is relatively stable 
and exhibits less spatial fluctuation. The estimated yield was higher for 

Fig. 4. Flowchart for estimating winter wheat yield based on the assimilation of remote sensing data into the ChinaAgrosys crop model.  

Fig. 5. Spatial distribution of number of irrigation events during the winter 
wheat growing season on the Loess Plateau, China. 
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irrigated wheat than for rainfed wheat using ChinaAgrosys without the 
assimilation of remote sensing data. The simulation results were 
significantly improved by taking into account the regional irrigation 
data for winter wheat. The spatial patterns and values of the simulated 
rainfed wheat yields were similar to the yields obtained using a light use 
efficiency model. The simulated irrigated wheat yields using a light use 
efficiency model were higher at some pixels, and the results exhibited 
less spatial heterogeneity than those obtained with the assimilation 
schemes (Moran’s I for the light use efficiency model was relatively 
larger). Compared with the results of ChinaAgrosys without assimilation 
of remote sensing data, the accuracy and spatial heterogeneity of the 
estimated yield were further improved not only by assimilating remote 
sensing data into ChinaAgrosys, but also by taking into account the 
regional irrigation data for winter wheat (for irrigated wheat, the 
average Moran’s I under the four assimilation schemes was 0.22, which 
was smaller than the value of 0.45 that was the result of ChinaAgrosys 
without assimilation of remote sensing data). 

4. Discussion 

4.1. Spatial heterogeneity of irrigation data used for crop modeling 

Irrigation plays an important role in crop growth, development, and 

yield production in arid and semi-arid regions, but the spatial hetero-
geneity of irrigation data has been infrequently considered when 
applying crop models at regional scales (Kang et al., 2019; Hu et al., 
2019). Most of the time, crops in study areas have been assumed to be 
rainfed or set to uniform irrigation scenarios (de Wit and van Diepen, 
2007; Curnel et al., 2011; Huang et al., 2015a). The differences between 
irrigated and rainfed crops have been recognized in some studies, but 
the spatial heterogeneity of irrigation data for different crops and irri-
gation times must be further studied (Mo et al., 2005; Gilardelli et al., 
2019). On the one hand, the application of crop models at regional scales 
faces the problem of upscaling irrigation data, but it is difficult to obtain 
regional irrigation data because irrigation activities are affected by 
many factors (Xie et al., 2019). On the other hand, the spatial hetero-
geneity of irrigation data at regional scales is seldom considered when 
assimilating remote sensing data into crop models. Consequently, the 
reliability of the crop modeling results may be reduced due to uncer-
tainty in the regional irrigation data. Moreover, the uncertainty may be 
further transferred to the results of the crop model with assimilated 
remote sensing data. 

Some studies have focused on classifying irrigated and rainfed crops, 
and the major methods used have been digital, unsupervised, and su-
pervised classification (Pervez et al., 2014). The Food and Agriculture 
Organization (FAO), United States Geological Survey (USGS), and In-
ternational Water Management Institute (IWMI) have published global 
irrigation maps (Loveland et al., 2000; Ozdogan and Gutman, 2008). 
However, the current irrigation distribution data cannot meet the de-
mand associated with applying a crop model at a regional scale, espe-
cially the irrigation times and amounts needed by a crop model. In order 
to reduce the uncertainty in regional irrigation data, those data were 
estimated for winter wheat production on the Loess Plateau. First of all, 
the irrigated and rainfed wheat areas on the Loess Plateau were classi-
fied using the method of Jin et al. (2016b). The effect of water 
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Fig. 6. Sensitivity analysis of parameters in the ChinaAgrosys crop model using the EFAST method.  

Table 2 
Initial, minimum, and maximum values of parameters selected for optimization 
in the ChinaAgrosys crop model.  

Parameters Initial value Minimum value Maximum value 

c0 1.00E-04 6.00E-05 9.00E-04 
c1 8.50E-07 6.50E-07 1.05E-06 
b2 5.65 5.10 7.30  
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availability on winter wheat growth and phenology were taken into 
account by this method, and a machine learning algorithm was involved 
to avoid the problem of setting thresholds through repeated attempts. 
Secondly, winter wheat yield was estimated using a light use efficiency 
model, and then the irrigation times for winter wheat were deduced 
from the estimated yield and typical irrigation practices used on the 
Loess Plateau. By doing this, the uncertainty in the regional irrigation 
data was reduced to improve the reliability of the simulation results 
when assimilating remote sensing data into the crop model. 

4.2. Irrigation data needs to be upscaled when applying a crop model at a 
regional scale 

Data for driving a crop model involves meteorology, soil properties, 
crop management parameters, etc. Hence, upscaling this input data is 
the first problem to be solved when applying a crop model at a regional 
scale. Obtaining regional management data (especially irrigation data) 

is generally more difficult that upscaling meteorological and soil data. 
Because crop yields are largely constrained by water availability in arid 
and semi-arid regions, we were able to estimate irrigation times for 
winter wheat from wheat yield data in order to reduce the uncertainty in 
regional irrigation data. This irrigation estimation method goes a step 
further than previous studies in which crop production was treated as 
either rainfed or irrigated under a set, uniform irrigation scenario across 
the entire study area. However, the problem of upscaling irrigation data 
has not been completely solved since crop models need both irrigation 
times and amounts (Tavakoli et al., 2015). 

Soil moisture increases rapidly after a crop is irrigated (Molero et al., 
2016). Soil moisture at high spatial resolution is generated by down-
scaling the coarse-scale satellite soil moisture product (Djamai et al., 
2016). Then the regional irrigation data can be estimated according to 
the variation of soil moisture. This method will further reduce the un-
certainty in regional irrigation data and accordingly improve the 
simulation results of crop models assimilated with remote sensing data. 

4.3. The selection of state variables and assimilation algorithm 

When applying ChinaAgrosys with assimilated remote sensing data 
at the regional scale, the accuracy of the simulation result is mainly 
dependent on the accuracy of the parameters derived from remote 
sensing data. It is difficult to obtain a satisfactory LAI time series due to 
the influence of various factors such as weather conditions, observation 
method, spatiotemporal resolution of remote sensing data, etc. (Huang 
et al., 2015a). In this study, LAI was obtained using a look-up table 

Table 3 
Ranges of parameters to be optimized in the PROSAIL radiation transfer model.  

Parameter Interpretation Unit Upper limit Lower limit 

Cab Chlorophyll a + b content μg/cm2  20  60 
hspot Hotspot parameter − 0  0.8 
LIDFa Average leaf angle degree  20  50 
tto Observer zenith angle degree  0  10 
tts Solar zenith angle degree  30  80  
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method that used inverted radiation transfer data, and the correspond-
ing assimilation result was improved as R2 was slightly lower but RMSE 
was greatly reduced compared with the assimilation result based on 
MODIS LAI. The assimilation result will be improved by increasing the 
accuracy of the inverted LAI. The assimilation result is dependent on the 
accuracy of the inverted parameters for the regional farmland 
ecosystem. Single state variables of either NDVI or LAI were used in the 

assimilation of remote sensing data into a crop model in this study, but 
two variables or multiple variables (NDVI, LAI, evapotranspiration, soil 
moisture, etc.) could be used together to combine the advantages of 
multi-source observations (Ines et al., 2013; Ma et al., 2013; Mishra 
et al., 2015). 

Another important issue that needs to be addressed when consid-
ering the assimilation of remote sensing data into crop models is 
improving computational efficiency (Jin et al., 2018b). Computational 
efficiency is affected by various factors such as the amount of spatio-
temporal data, the size of the study area, the state variables, and the 
algorithm used for the assimilation. The continuous assimilation algo-
rithms of PSO and SCE-UA used in this study were time-consuming. It 
took at least 42.02 s to implement an assimilation process on a single 
pixel using an ordinary computer. The spatial resolution of the winter 
wheat pixel was 250 m and there were 1884× 3815 pixels on the Loess 
Plateau. Consequently, it would take a relatively long time to apply a 
crop model assimilated with remote sensing data to all pixels due to the 
large amount of data. Therefore, in this study Hongtong county was 
selected as a representative case study to implement the assimilation of 
remote sensing data into a crop model. 

The simulation results of crop models assimilated with remote 
sensing data using the PSO and SCE-UA algorithms are largely depen-
dent on the reliability of the observed data (Liu et al., 2015). The 
assimilation result is improved by optimizing the parameters of the crop 
model, which may lack consideration of the uncertainties in both 
observation data and crop model simulation results. This may induce 
some bias in the simulation results and also may be time-consuming. 
Errors in the observation data and in the crop model are considered 
by a sequential data assimilation algorithm such as the ensemble Kal-
man filter (EnKF), which we plan to use in a future study. The EnKF 
algorithm can continuously assimilate the observed data and avoid the 
large number of calculations that the continuous data assimilation al-
gorithms needed (Huang et al., 2016, 2019). The calculation efficiency 
for the crop model assimilated with remote sensing data can be greatly 
improved with the help of parallel computations and a 
high-performance computer (Zhao et al., 2015). Doing so will make full 
use of the advantages of rapidly obtaining large-scale regional data by 
satellite remote sensing and of the simulation products of crop models. 

5. Conclusion 

In this study, the spatial heterogeneity of regional irrigation data for 
winter wheat was considered for the Loess Plateau. Four assimilation 
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Table 4 
Simulated winter wheat yield, simulation accuracy, and simulation computation time for ChinaAgrosys with four assimilation schemes of remote sensing data and 
without assimilation at the Yangling, China, experimental station in 2013–2014.   

Assimilation scheme ChinaAgrosys without assimilation Observation  

PSO + LAI PSO + NDVI SCE-UA + LAI SCE-UA + NDVI 

Yield (kg/ha)  6874  7009  6881  6896  6537 7488 
Accuracy (%)  91.8  93.6  91.9  92.1  87.3 – 
Time (s)  42.02  67.37  102.87  84.69  0.3 –  

Table 5 
Yield estimation for rainfed and irrigated winter wheat in Hongtong county, China, in 2011.   

PSO 
+ LAI 

PSO 
+ NDVI 

SCE-UA 
+ LAI 

SCE-UA 
+ NDVI 

Light use efficiency 
model 

ChinaAgrosys without 
assimilation 

Statistical 
yield 

Rainfed wheat yield (kg/ 
ha)  

2957  3548  2970  3540  3927  2430 – 

Irrigated wheat yield (kg/ 
ha)  

7133  6967  6929  6192  6127  6629 – 

Yield production  4113  4282  4199  4245  4301  3931 4614 
Accuracy (%)  89.1  92.8  91.0  92.0  93.2  85.2 – 
Average Moran’s I  0.22  0.22  0.23  0.22  0.36  0.45 –  
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Fig. 14. Yield estimation for rainfed and irrigated winter wheat in Hongtong county, China, in 2011 when assimilating remote sensing data into the ChinaAgrosys 
crop model. 

N. Jin et al.                                                                                                                                                                                                                                      



Agricultural Water Management 266 (2022) 107583

13

schemes were established for assimilating remote sensing data into the 
ChinaAgrosys crop model. The assimilation schemes were based on two 
state variables (LAI and NDVI) and two algorithms (PSO and SCE-UA). 
The productivity of winter wheat under different water availability 
conditions was evaluated by ChinaAgrosys with and without assimilated 
remote sensing data. The main conclusions of the study were: (1) rainfed 
wheat and wheat that was irrigated once accounted for 60.0% and 
30.6%, respectively, of the wheat area, and the remaining wheat area 
was irrigated two or three times; (2) a look-up table of LAI values was 
established using inverted data from the PROSAIL radiation transfer 
model, and the R2 between the observed LAI at jointing and heading 
stages and the inverted LAI at 250-m spatial resolution was greater than 
0.54 from 2010 to 2015; (3) the global sensitivity analysis of the pa-
rameters of the ChinaAgrosys crop model showed that yield and LAI 
were mainly influenced by the parameters of c0, c1, and b2. The R2 

values between the ChinaAgrosys simulation results (maturity date, LAI, 
and yield) and the observations at 21 agrometeorologcial stations were 
greater than 0.73, 0.44, and 0.60, respectively, showing good 

applicability of ChinaAgrosys for wheat simulation on the Loess Plateau. 
(4) In general, the accuracy of simulation results was higher when NDVI 
was used as the assimilation state variable, and the calculation efficiency 
was higher when the PSO algorithm was used for the assimilation at both 
site and regional scales. The accuracy of simulation results and spatial 
heterogeneity for simulated winter wheat yield were improved by 
assimilating remote sensing data into ChinaAgrosys based on the 
regional irrigation data. When applying a crop model at a regional scale, 
accounting for spatial heterogeneity of regional irrigation data will 
improve the accuracy and reliability of the simulation results that are 
generated by assimilating remote sensing data into the crop model. 
Accuracy and computational efficiency of a crop model assimilated with 
remote sensing data should be considered together, along with the se-
lection of the appropriate assimilation state variables and algorithms. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

Fig. 15. Yield estimation for rainfed and irrigated winter wheat in Hongtong county, China, in 2011 using a light use efficiency model and the ChinaAgrosys crop 
model without assimilation of remote sensing data. 

N. Jin et al.                                                                                                                                                                                                                                      



Agricultural Water Management 266 (2022) 107583

14

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We gratefully acknowledge the support of National Key Research and 
Development Project of China (2019YFC1510204) and Shanxi Province 
Colleges and Universities Science and Technology Innovation Project 
(2020L0729). 

Compliance with Ethical Standards 

Conflict of Interest: The authors declare no potential conflicts of in-
terest for this research. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.agwat.2022.107583. 

References 

Adhikari, P., Ale, S., Bordovsky, J.P., Thorp, K.R., Modala, N.R., Rajan, N., Barnes, E.M., 
2016. Simulating future climate change impacts on seed cotton yield in the Texas 
High Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manag. 164, 
317–330. 

Bocchiola, D., Nana, E., Soncini, A., 2013. Impact of climate change scenarios on crop 
yield and water footprint of maize in the Po valley of Italy. Agric. Water Manag. 116, 
50–61. 

Casas, A., Riaño, D., Ustin, S.L., Dennison, P., Salas, J., 2014. Estimation of water-related 
biochemical and biophysical vegetation properties using multitemporal airborne 
hyperspectral data and its comparison to MODIS spectral response. Remote Sens. 
Environ. 148, 28–41. 

Chen, Y., Zhang, Z., Tao, F.L., 2018. Improving regional winter wheat yield estimation 
through assimilation of phenology and leaf area index from remote sensing data. 
Eur. J. Agron. 101, 163–173. 

Chimonyo, V.G.P., Modi, A.T., Mabhaudhi, T., 2016. Simulating yield and water use of a 
sorghum–cowpea intercrop using APSIM. Agric. Water Manag. 177, 317–328. 

Curnel, Y., de Wit, A.J.W., Duveiller, G., Defourny, P., 2011. Potential performances of 
remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. 
Agric. Meteorol. 151, 1843–1855. 

Dai, Y.J., Shangguan, W., Duan, Q.Y., Liu, B.Y., Fu, S.H., Niu, G.Y., 2013. Development of 
a China dataset of soil hydraulic parameters using pedotransfer functions for land 
surface modeling. J. Hydrometeorol. 14, 869–887. 

Deines, J.M., Kendall, A.D., Crowley, M.A., Rapp, J., Cardille, J.A., Hyndman, D.W., 
2019. Mapping three decades of annual irrigation across the US high plains aquifer 
using landsat and google earth engine. Remote Sens. Environ. 233, 111400. 

Djamai, N., Magagi, R., Goïta, K., Merlin, O., Kerr, Y., Roy, A., 2016. A combination of 
DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture 
estimation at fine scale during cloudy days. Remote Sens. Environ. 184, 1–14. 

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global 
optimization method for calibrating watershed models. J. Hydrometeorol. 158, 
265–284. 

Duveiller, G., Frederic, B., Defourny, P., 2013. Using thermal time and pixel purity for 
enhancing biophysical variable time series: an interproduct comparison. IEEE Trans. 
Geosci. Remote Sens. 51, 2119–2127. 

Gilardelli, C., Stella, T., Confalonieri, R., Ranghetti, L., Campos-Taberner, M., García- 
Haro, F.J., Boschetti, M., 2019. Downscaling rice yield simulation at sub-field scale 
using remotely sensed LAI data. Eur. J. Agron. 103, 108–116. 

Guo, C.L., Tang, Y.N., Lu, J.S., Zhu, Y., Cao, W.X., Cheng, T., Zhang, L., Tian, Y.C., 2019. 
Predicting wheat productivity: integrating time series of vegetation indices into crop 
modeling via sequential assimilation. Agric. . Meteorol. 272–273, 69–80. 

Hu, S., Shi, L.S., Huang, K., Zha, Y.Y., Hu, X.L., Ye, H., Yang, Q., 2019. Improvement of 
sugarcane crop simulation by SWAP-WOFOST model via data assimilation. Field 
Crop. Res. 232, 49–61. 

Huang, J.X., Tian, L.Y., Liang, S.L., Ma, H.Y., Becker-Reshef, I., Huang, Y.B., Su, W., 
Zhang, X.D., Zhu, D.H., Wu, W.B., 2015a. Improving winter wheat yield estimation 
by assimilation of the leaf area index from Landsat TM and MODIS data into the 
WOFOST model. Agric. Meteorol. 204, 106–121. 

Huang, J.X., Ma, H.Y., Su, W., Zhang, X.D., Huang, Y.B., Fan, J.L., Wu, W.B., 2015b. 
Jointly assimilating MODIS LAI and ET products into the SWAP model for winter 
wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 
4060–4071. 

Huang, J.X., Sedano, F., Huang, Y.B., Ma, H.Y., Li, X.L., Liang, S.L., Tian, L.Y., Zhang, X. 
D., Fan, J.L., Wu, W.B., 2016. Assimilating a synthetic Kalman filter leaf area index 
series into the WOFOST model to improve regional winter wheat yield estimation. 
Agric. Meteorol. 216, 188–202. 
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