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A B S T R A C T   

Crop yield is greatly impacted by climate change, and a systemic assessment of its impacts on crop yields is 
essential. Aiming to investigate the impact of climate change on spring and summer maize yields in main maize 
growing areas of China, the observed meteorological and maize yield data over 1988–2017 at the 121 sites 
(including 85 sitess for spring maize and 36 sites for summer maize) in main maize growing areas of China were 
collected. The first-order difference, Sen’s slopes and trend test, multi-collinearity detection, Pearson correlation, 
stepwise linear and nonlinear regression methods were used, and the best statistical regression models between 
maize yield and climate variables have been established. Of these, the Sen′s slopes quantify the trend magnitude 
of the related climate variables and spring/summer maize yields during maize growth period. The Pearson 
correlation coefficients assess the relationship between pairs of climatic variables and maize yields, while the 
multi-collinearity analysis determines the mutually independent climatic variables with maize yields. The 
stepwise multi-variate linear and nonlinear regressions were conducted to obtain the best functions of the one- 
order-differences of spring (summer)maize yields at the 85 (36) sites. The results indicated that: (1) Generally, 
the precipitation and temperature during growth seasons was rising, while relative air humidity and sunshine 
hours was declining. Both the yields of spring and summer maize showed increasing trends. (2) Spring maize 
yields were more related to relative humidity, sunshine hours and precipitation, while summer maize yields were 
more related to precipitation and temperature. (3) The multivariate nonlinear functions performed better than 
the linear relationship. Based on the coefficient of determination, climate change has explained 5.8–87.6% 
variability of spring maize yield and 6.6–78.5% variability of summer maize yield. (4) The contribution 
importance rank of climate variables to yields of spring and summer maize was precipitation > relative humidity 
> sunshine hours > minimum temperature > maximum temperature > average temperature. The wet-cold and 
wet-warm climate, especially the former, had positive effects on maize yield. In conclusion, climate variables 
affect spring and summer maize yields and their best relationships were site-specific in China. Our research 
provides new insights for maize planting management under climate change.   

1. Introduction 

Climate change and variability has wide and far-reaching impacts on 
human and natural systems (Easterling et al., 2000; Wuethrich, 2000; 
Tao et al., 2006), and this impact will continue to spread. Climate 
change, characterized primarily by global warming, was one of the most 
serious challenges facing the global ecosystem (Alexandrov and 

Hoogenboom, 2000; Hussain et al., 2009). According to the fifth 
assessment report made by United Nations Intergovernmental Panel on 
Climate Change (IPCC) working group I, the global average temperature 
rose by 0.85 ◦C from 1880 to 2012, and 1983–2012 could be the 
warmest 30 years in the last 1400 years in the northern hemisphere 
(IPCC, 2013). Also, climate change in China has undergone obvious 
trend variation since last century (Chao et al., 2014). The average 
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surface temperature in China from 2001– 2010 was 1.03 ◦C higher than 
1961–1990, and the average temperature in China in 2015 was 1.46 ◦C 
higher than 1961–1990 with a warmer range higher than the global 
average (Wang et al., 2016). Global warming and climate fluctuation 
have comprehensively affected the growth of crops and threatened the 
stability of crop production. Therefore, it is necessary to evaluate the 
response mechanisms between climate change and crop growth. 

The comprehensive effects of climate change on crop yields have 
been studied by using statistical methods based on historical data 
(Chmielewski and Potts, 1995; Isik and Devadoss, 2006; Tao et al., 
2012), nested crop models and regional climate scenarios based on 
simulation data (Muchena and Iglesias, 1995; Tao and Zhang, 2011; Liu 
et al., 2012; Chen et al., 2020). The statistical models were used to 
represent the relationship between dependent variable (crop yield) and 
independent variables (climatic variables). Usually, crop simulation 
models were used to predict the impact of future climate change on crop 
yields, however the application of statistical analysis methods can pro-
vide more direct and accurate information for the assessment of the 
impact of climate change on crop production (Peng et al., 2004). The 
primary advantages of statistical models were its limited dependence on 
field calibration data and transparent evaluation of constructed model 
uncertainties through higher coefficient of determination (R2) and lower 
confidence interval (P value) (Lobell and Burke, 2010). 

From the statistical respects, many studies (Welch et al., 2010; Zhao 
et al., 2015; Adisa et al., 2018) focused on establishing linear regression 
models by combining the selected climate variables with the yield to 
quantify the roles of climate variables on explaining yield change. 
However, only a few studies (Feng et al., 2018; Liu et al., 2019) 
considered the multicollinearity characteristics of the climate variables. 
Without considering the multicollinearity of climatic variables, the 
statistical regression results would be exaggerated or weakened in 
explaining yield change based on temperature or other climate vari-
ables. Regarding statistical models, the linear regression models 
(including single variable or multiple variables) were used commonly 
(Peng et al., 2004; Lobell, 2007; Everingham et al., 2016), while few 
studies (Like Lobell et al., 2011; Gao et al., 2018; Li et al., 2020) have 
taken into account the non-linear characteristics of climate and crops. A 
key consideration in statistical analysis whether the linear regression 
model truly satisfies the interpretation of yield change or not. If not, the 
establishment of nonlinear regression model of yield may perform bet-
ter, which needs to be clarified clearly. 

Maize is one of the most important food crops in the world (Jones 
and Thornton, 2003; Niu et al., 2013; Yang et al., 2017; Abera et al., 
2018). The increase of maize yield is crucial to the human life, human 
welfare, and development of national agriculture and animal husbandry. 
On the one hand, maize efficiency was sensitive to climate change from 
sowing to harvesting (Adams et al., 1998; Bassu et al., 2014). The effect 
of global warming on maize yield growth was mainly negative (Lobell 
and Field, 2007; Liu et al., 2013; Hawkins et al., 2013; Ureta et al., 
2016). Climate change affected the growth days and phenology phase of 
maize through a combination of various climate variables (mainly 
temperature and precipitation play a major role), and these conditions 
shortened photosynthesis and grain filling processes and ultimately 
affected maize yields (Olesen and Bindi, 2002; Chen et al., 2010; Liu 
et al., 2013). From another hand, maize yield change can directly or 
indirectly reflect climate change. It is important to study the interactive 
and feedback between maize and climate change. 

The impact of climate change on China’s maize yield has not been 
well researched. Limitations of previous research include: (1) Some of 
the previous research focused on the provincial scale (Tao et al., 2008; Li 
et al., 2011; Zhang and Huang, 2012; Chen et al., 2014). The others were 
based on the site scale in the China’s main maize planting belt, including 
the northeast (Zhao et al., 2015; Zhao et al., 2016), northwest (Wang 
et al., 2004), southwest (Li et al., 2014) and Huang-Huai-Hai regions 
(Liu et al., 2010; Chen et al., 2012; Xiao and Tao, 2016). (2) Spring and 
summer maize were two types. Due to data lacking, limited studies have 

selected the entire maize belt as study area to investigate the climate 
change effects on China’s spring and summer maize yields. (3) The 
linear regression models (including single or multiple variables) were 
used commonly to study the relationships of climate change and crop 
yield (Peng et al., 2004; Lobell, 2007; Everingham et al., 2016), while 
only a few studies (Like Lobell et al., 2011; Gao et al., 2018; Li et al., 
2020) have considered the non-linear characteristics of climate and 
crops. 

Overall, there are still gaps in the research of climate variability ef-
fects on maize yields using both linear and nonlinear regression func-
tions in China’s main maize planting belt. Our objectives were: (1) to 
investigate the trends in climatic variables and spring/summer maize 
yields at different sites over 1988–2017 so as to supply an overall 
background for further establishment of regression functions for maize 
yields, (2) to determine the best linear and nonlinear relationships be-
tween the related climatic variables and maize yield after removal of 
variable multicollinearity, and (3) to compare the impacts of climate 
change on spring and summer maize yields based on the final best 
functions. Our study provide references to quantify climate variability 
on the spring and summer maize growth and yields. 

2. Materials and methods 

2.1. The studied area and data source 

There are six main maize growing areas in China, namely the north 
spring maize area, the Huang-Huai-Hai Region, the southwest mountain 
area, the southern hilly area, the northwest inland area, and the 
Qianghai-Tibetan-plateau area. The largest maize planting area was 
located along the narrow belt from northeast to southwest (Wang, 2010; 
Yang et al., 2017). The daily climatic and maize yield data over 
1988–2017 at the 121 sites (mainly distributed in the narrow maize belt 
where spring or summer maize are planted) were collected from the 
China Meteorological Data Sharing Service Network (http://data.cma. 
cn/) after strict quality control and inspection. There were 85 sites for 
spring maize and 36 sites for summer maize, respectively. The elevation 
and spatial distribution of the selected sites are mapped in Fig. 1. 

The collected climatic variables include precipitation (Pre, mm), 
sunshine hours (Sun, h), air relative humidity (Hum,%), average tem-
perature (Tave, ◦C), minimum temperature (Tmin, ◦C) and maximum 
temperature (Tmax, ◦C). The maize growth season was focused on and the 
growth period average value was used (rather than annual average) to 
further assess the impact of climate change on maize yields. 

We classified the types of maize as spring and summer maize ac-
cording to the sowing and maturity dates. The periods from planting to 
maturity were April to September for spring maize and June to October 
for summer maize. The basic geographical information, annual mean 
climate variables and yields during the maize growing period are 
referred to Tables S1 and S2. 

2.2. Methods 

2.2.1. Computation of the Sen′s slope and variation coefficient 
The magnitudes (overall rate) of the trend of the studied time series 

(climate variables and maize yields), namely the Sen′s slope (β), were 
evaluated using the statistic proposed by Sen (1968). A positive (nega-
tive) β indicated increasing (decreasing) trend in time series. When β =
0, there was no trend. Sen’s slope method calculated the median value of 
the sequence and was not affected by outliers. It was stricter than the 
linear slope of the time series. For the time series xt (t = 1, 2, …, n, n =
30 years), the formula for calculating Sen′s slope (β) was as follows: 

β = Median(
xj − xi

j − i
),∀j > i (1) 

The variation coefficient CV was the ratio of the mean value and 
standard deviation (Nielsen and Bouma,1985). CV values were 
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calculated to show the temporal variability of yield or climatic variables. 
Variability levels were classified as weak, moderate, or strong with Cv ≤

0.1, 0.1 < Cv < 1.0 and Cv ≥ 1.0, respectively. β and CV values were 
obtained for the annual mean climatic variables and maize yields versus 
time. 

2.2.2. The best equations between maize yield and the related climatic 
variables 

The first-difference value reflected directly the variation of a variable 
in the two consecutive years. The method of first-order difference can 
eliminate the mixed effects of non-climate factors such as crop variety, 
fertilizer and irrigation schedules on crop growth to the greatest extent 
(Nicholls, 1997). This approach has been applied popularly by Lobell 
et al. (2005), Lobell and Field (2007) and Bhatt et al. (2014) before 
assessing climate change effects on crop yields. This is an approved de- 
trending analysis approach which minimized the confounding in-
fluences of long-term variations (such as cultivars, crop management 
practices, fertilizers and pesticides) in yields by calculating their first 
difference values (Prabnakorn et al., 2018). It was applied here before 
analyzing the relationship between maize yield and climatic variables. 
The subsequent regression models were established on the basis of the 
first differences of the climate variables and maize yields. 

The relationship between crop yields and several climatic variables 
could be linear or non-linear. These quantitative equations can reflect 
how different climatic variables or climate change affected crop yields. 
For example, Li et al. (2020) applied both linear and non-linear 
regression methods to investigate the climate change effects on cotton 
growth and yield indices. Linear functions had limitations in revealing 
non-linear characteristics of climate change on crop yields and generally 
performed worse than non-linear equations (Malone et al., 2009; Lobell 
et al., 2007). Still, the multi-variable linear regressions were necessary 
for selecting the key climatic variables that affect maize yields before 
conducting non-linear multi-variate regressions. 

The detail procedures for determining the best equations between 
maize yield and climatic variables are as follows. 

First, the Pearson correlations between maize yield and each the 
related climatic variables (Pre, Sun, Hum, Tmax, Tmin and Tave) were 

conducted at the significance level of 0.05. We obtained the Pearson 
correlation coefficient (r) which can reflect the degree of linear corre-
lation between two variables. The rank of the importance of different 
climatic variables were elementary determined according to the r 
values. 

Second, the multicollinearity among the studied six climate variables 
(Pre, Sun, Hum, Tmax, Tmin and Tave) was analyzed using the variance 
inflation factor (VIF) (Mansfield and Helms, 1982). The formula of VIF is 
as follows: 

VIF =
1

1 − R2 (2)  

where R2 is the coefficient of determination between pairs of variables xi 
and xj (i, j = 1, 2, …, 6, i ∕= k). The smaller the VIF values, the stronger 
the independence between the analyzed climate variables. Therefore, 
VIF < 10 indicated that the studied climatic variables had no statistical 
collinearity (Doetterl et al., 2015; Laubhann et al., 2009; Scheller and 
Mladenoff, 2008). The climatic variables with VIF > 10 was not 
considered further to establish regression models of maize yields due to 
their high collinearity. The VIF values of six climate variables were 
calculated at each site and we removed the climate variable which had 
the largest VIF value among the climatic variables that had VIF > 10. 
This procedure was repeated until the VIF value of all the remaining 
climate variables were less than ten. We kept the most representative set 
of climate variables that can affect maize yield by removing the climate 
variables with higher collinearity. The first collinearity test was con-
ducted for six climate variables at the 85 sites for spring maize, and five 
independent climate variables were found for 42 sites. The second 
collinearity test was conducted for the rest of 43 sites, and we found that 
there were 38 sites which had four independent climate variables. The 
third collinearity test was conducted for the last five sites and three 
independent climate variables were retained. Finally, we selected the 
independent climate variables for each site (Table S3). Similar proced-
ure was conducted for 36 sites of summer maize and the estimated VIF 
values are referred to Table S4. 

Third, the remained climate variables with VIF < 10 were used 
further for multi-variate linear regression. The number of climatic 

Fig. 1. Spatial distribution of the agrometeorological sites and digital elevation in the main maize growing areas of China.  
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variables increased from one to kk gradually (kk is the number of in-
dependent climate variables selected by multicollinearity method) for 
the multi-variate linear regression, described by the following equation 
(Nicholls, 1997): 

ΔY =
∑

εiΔxi (3)  

where ΔY and Δxi are the first-order differences of maize yield and 
climate variables (i = 1, 2, . . , kk,), εi represents the ith coefficients. The 
model stability was assessed by the adjusted coefficient of determination 
(R2

adj). Greater R2adj values indicated that the model was more stable 
(Zhang and Li, 2016) at a significance level (0.05 here). The model 
prediction ability was assessed by relative root mean square error 
(RMSE). Smaller RMSE values indicated better model prediction ability 
(Liu et al., 2013). The detail formula for estimating R2

adj and RMSE were 
referred to Li et al. (2020) and will not be described in detail here. There 
were five, ten, ten, 15 and one equation (total 31 equations) during the 
one-, two-, …, to five-variable linear regression procedure at each site. 
The key climatic variables that played important roles in affecting maize 
yields could be selected with the largest R2

adj and the smallest RMSE 

values among the 31 equations. Through this process, the invalid vari-
ables were removed and the best linear equation for maize yield was 
selected for each site. 

Fourth, we conducted the nonlinear multi-variable regression by 
considering the first, second and third power and product of the climatic 
variables. We assumed the number of key climatic variables was m, then 
2m + C2

mnon-linear climatic variables could be considered to conduct 
nonlinear multi-variable regression, and total 3m + C2

mclimatic variables 
or their combinations were used. The regression procedure with input 
climatic variable number of one-, two-, …, to 3m + C2

mcontained 

C1
3m + C2

m
, C2

3m + C2
m
, C3

3m + C2
m
, …, to C3m + C2

m
3m + C2

m 
equation(s), respectively. 

So, a total of 
∑3m+C2

m
j=1 Cj

3m + C2
m 

equations for maize yield were obtained at 
each site. 

Finally, from all the available linear or non-linear equations, the 
equation with the largest R2

adj and the smallest RMSE was chosen as the 
best equation of the maize yield. The best model showed the climate 
change effects during the growing season. The flow chart of this research 
is shown in Fig. 2. 

Fig. 2. The framework of this research.  
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3. Results 

3.1. Temporal and spatial variations 

3.1.1. Climatic variables 
The box plots of temporal and spatial variations for Pre, Sun, Hum, 

Tmax, Tmin and Tave during the maize growing seasons of spring maize 
over 1988 to 2017 at the 85 sites are illustrated in Fig. 3. The fluctuation 
ranges for Pre, Sun, Hum, Tmax, Tmin, and Tave were 7–1717 mm, 
458–2776 h, 28–87%, 15–29 ◦C, 2–20 ◦C and 8–24 ◦C, respectively. The 
CV values of Pre, Sun, Hum, Tmax, Tmin, and Tave ranged from 0.47 - 0.68, 
0.18–0.23, 0.13–0.17, 0.10–0.16, 0.29–0.37 and 0.15–0.2, respectively. 
The variability levels of all climatic variables were moderate, and the 
rank of the variability level was Pre > Tmin > Sun > Tave > Hum > Tmax. 
The differences and ranges in the climatic variables reflected the general 
climate conditions in the studied area of spring maize, and of summer 
maize. 

The box plots of temporal and spatial variations in the Pre, Sun, Hum, 
Tmax, Tmin and Tave during the summer maize growing seasons over 1988 
to 2017 at the 36 sites are illustrated in Fig. 4. The fluctuation ranges for 
Pre, Sun, Hum, Tmax, Tmin, and Tave were 2–1328 mm, 403–1946 h, 

31–82%, 24–33 ◦C, 10–20 ◦C and 18–24 ◦C, respectively. The CV values 
of Pre, Sun, Hum, Tmax, Tmin, and Tave ranged from 0.53- 0.73, 0.12–0.29, 
0.16–0.24, 0.03–0.06, 0.08–0.12, and 0.04–0.05, respectively. The 
variability levels of Pre, Sun and Hum were moderate and of Tmax, Tmin, 
and Tave were weak. The variability extent of the climatic variables was 
Pre > Sun > Hum > Tmin > Tave > Tmax. 

3.1.2. Yields of spring and summer maize 
The temporal and spatial variations in the yields during maize 

growing seasons of 1988 to 2017 at the total 121 sites in China, are 
illustrated as box plots in Fig. 5. Yields of spring maize and summer 
maize fluctuated within ranges of 1.2–16.7 t ha− 1 and 0.3–11.6 t ha− 1, 
respectively. The variation range of the variation coefficient of yields of 
spring maize and summer maize were 0.15–0.58 and 0.21–0.55, 
respectively. The concentrated middle parts of the boxes show the 
general increase in the maize yields in the last 30 years, but the growth 
rate has slowed down in recent years. This may be due to i) global 
warming affected yield growth, and ii) the improvement space of the 
yield increasing technology were limited. 

The doubled yield increase of spring maize yields in 2017 maybe 
combination effects of climate change and crop management practices. 

Fig. 3. The box plots and variation coefficient curves of the climatic variables during spring maize growth season over 1988–2017 at the 85 sites in China. Horizontal 
line: median; box-boundaries: 25th and 75th percentiles; whiskers: 10th and 90th percentiles; triangles: outliers; red lines: variation coefficient curve of the climatic 
variables (similar below). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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However, among the 85 spring maize sites, only 8 sites for spring maize 
contained the yield data in 1988–2017 and 1 site contained yield data in 
1991–2017 (Table S5), which only represented 10.6% of the total sites. 
Nicholls (1997) showed that the fluctuations in wheat yield was caused 

by climate change and the slow increase in yield was caused by crop 
management practices. Although it is difficult to obtain and observe 
long-term crop management and to quantify its impacts on maize yields, 
we preliminary inferred that the doubled yield increase of spring maize 

Fig. 4. The box plots and variation coefficient curve of the climatic variables during summer maize growth season over 1988–2017 at the 36 sites in China.  

Fig. 5. The box plots and variation coefficient curve of maize yield over 1988 – 2017 at the 121 sites in China.  
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yields in 2017 was more affected by crop management practices. 
Among the 36 summer maize sites, yield data during 1988–1995 

were only available at 11 sites, accounting for 30.6% of the total studied 
sites (Table S6). To reveal which climate variables contributed to the 
decrease of the summer maize yield in 1988–1995, the Pearson’s cor-
relation coefficients (r) between the first-order difference of maize yield 
(ΔY) and six related climate variables (ΔXi) during the maize growing 
season in 1988–1995 are presented in Table 1. The results showed that: 
(1) The average r values between ΔY of summer maize and ΔPre, ΔTave, 
ΔHum, ΔSun, ΔTmi, ΔTmax were − 0.13, 0.05, 0.18, − 0.27, 0.09 and 
0.007, respectively. (2) Among the 11 sites, ΔY were negatively corre-
lated with ΔPre at 7 and with ΔSun at 8 sites, of which, 1 and 1 sites 
exhibited significant correlations, respectively. (3) Since Pre had a larger 
increase trends during the growth periods of summer maize than spring 
maize over the past 30 years (section 3.1.1), it indicated that the summer 
maize yield decrease in 1988–1995 may attribute to precipitation in-
crease and sunshine hour decrease. 

The feedback of spring maize and summer maize yields in 
1988–1995 to precipitation is opposite. This is mainly due to the 
different sowing and growth periods of spring maize and summer maize. 
Spring maize is sown during April to early May, and when precipitation 
increases in the flourishing period (June to July) of spring maize, the 
growth and yield of spring maize will be promoted, and thus a positive 
feedback of precipitation effect on spring maize yield occurred. While 
summer maize is mainly sown during end of June to early July, when 
precipitation increases, the germination rate of summer maize and its 
growth will be decreased, which decrease summer maize yield, so the 
feedback of precipitation on summer maize yield is negative. 

3.2. Variations of Sen′s slope values 

3.2.1. For the climatic variables 
In Fig. 6, Pre showed an increasing trend, while Sun and Hum showed a 

decreasing trend during 1988–2017 at most sites of spring maize and 
summer maize, and Tave, Tmin and Tmax at most sites showed significant 
increasing trends. For Pre, Sun and Hum, the Sen′s slope values of spring 
and summer maize were 0.46 and 0.57 mm a− 1, − 0.24 and − 2.69 h a− 1 

and − 0.12 and − 0.13 % a− 1, and for Tave, Tmin and Tmax, values were 
0.03 and 0.03 ◦C a− 1, 0.04 and 0.05 ◦C a− 1 and 0.04 and 0.02 ◦C a− 1, 
respectively. 

3.2.2. For spring and summer maize yields 
From 1988 to 2017, maize yields at most sites showed increasing 

trends, only 11 sites of spring maize sites and seven sites of summer 
maize showed insignificant decreasing trends (Fig. 7). Yield increased in 
most spring maize and summer maize sites and increase range of both 
ranged from 0.037 to 0.72 and 0.046 to 0.37 t ha− 1 a− 1, respectively. 
The average yield growth of spring maize and summer maize was 0.21 

and 0.12 t ha− 1 a− 1, respectively. The increase of spring maize yield in 
northeast, northwest and south China was generally increasing. The 
increase of summer maize yield in Huang-Huai-Hai region and north-
west China increased slowly. 

3.3. The best equations between maize yield and the related climatic 
variables 

3.3.1. Pearson’s correlation 
The rank of the importance of different climatic variables were 

elementarily determined according to the Pearson correlation coeffi-
cient (r). The r values between the first differences of yields (ΔY) and 
climatic variables (Δxi) during the maize growing season are shown in 
Fig. 8. The results showed that: (1)The average Pearson correlation 
coefficient values over 30 years of spring maize between ΔY and ΔHum, 
ΔSun, ΔPre, ΔTmin, ΔTmax and ΔTave were 0.050, 0.048, 0.023, − 0.007, 
0.004 and − 0.00051, respectively. Spring maize yields were most 
positively correlated with Hum, Pre and Sun at 47, 52 and 46 sites, with 
four, two and six sites exhibiting significant correlations (P-value ≤
0.05), respectively. The correlations of spring maize yields with Tmix and 
Tave were negative at 37 and 40 sites, respectively, with significant 
correlations at three and four sites. Spring maize yields were positively 
correlated with Tmax at 47 sites, with three sites exhibiting significant 
correlations. Therefore, the ranking of climate variables affecting spring 
maize yields can be obtained by absolute values of r, i.e. Hum > Sun > Pre 
> Tmin > Tmax > Tave. (2)The average r values between ΔY of summer 
maize and ΔPre, ΔTave, ΔTmax, ΔTmin, ΔSun and ΔHum were 
− 0.055,0.033,0.025, 0.022, 0.011 and − 0.007, respectively. The 
strongest positive correlations between summer maize yields and Tave, 
Tmax, Tmin and Sun were found at 19,19,18 and 18 sites, respectively, 
being significant at two, one, two and one sites, respectively. Summer 
maize yields were most negatively correlated with Pre and Hum at 21 and 
17 sites with three and one sites exhibiting significant correlations, 
respectively. Therefore, the ranking of climate variables affecting sum-
mer maize yields can be obtained by the absolute r values, i.e. Pre > Tave 
> Tmax > Tmin > Sun > Hum. 

In conclusion, the overall ranking of climate variables affecting 
spring and summer maize yields may vary due to maize type, 
geographical and technical differences. Ultimately, we concluded that 
Pre, Hum, Sun, Tmin, Tmax and Tave were all key variables affecting maize 
yield. Their variations were random by nature although the r values had 
opposite signs at some adjacent sites (Figure S1). 

3.3.2. The best equations of spring and summer maize yields 

3.3.2.1. The best single and multivariate linear regression equations. We 
took the site 51709(Kashen) as an example for denoting the results of 
selecting the best single and multivariate linear regression equations. 
From the collinearity test, five climate variables of Pre, Hum, Sun, Tmin, 
Tmax were found to be independent from each other. The linear corre-
lation function between ΔY and the selected five variables are given in 
Table 2. A best linear function ΔY = 0.426ΔTmin was selected (with the 
largest R2

adj of 0.151 and the smallest RMSE of 1.374). 
The multivariate linear regression functions of ΔY, correlated with 

two-, three-, four- and five-climate variables, and their performance 
(shown by R2

adj and RMSE) are given in Table 3. The best two-, three-, 
four-, and five-variate linear regression functions were selected (bold in 
Table 3). Of them, the two-variable equation (ΔY = − 0.29ΔSun +

0.381ΔTmin) had the largest R2
adj and the smallest RMSE values, therefore 

it was selected as the best multivariate linear equation for ΔY. In addi-
tion, Sun and Tmin were the most important climatic variables affecting 
summer maize yield of the site 51709. By further comparing the per-
formance of the best single and multivariate linear functions, the two- 
variable equation (ΔY = − 0.29ΔSun + 0.381ΔTmin) performed better 
than the best single-variate linear function for ΔY at the site 51709. 

Table 1 
The Pearson’s correlation coefficients (r) between the first-order difference of 
summer maize yield (ΔY) and the first-order difference of six climate variables 
(ΔXi) during the maize growing season in 1988–1995. * and ** denote passing 
the significance test at levels of P < 0.05 and P < 0.01.  

Site ΔYield vs.  
ΔPre ΔTave ΔRhu ΔSun ΔTmin ΔTmax 

51656  0.321  0.079  0.058  − 0.222  0.033  0.005 
51708  − 0.332  0.231  0.501  − 0.258  0.344  0.137 
51709  -0.76*  0.495  − 0.444  − 0.602  0.644  0.266 
51716  − 0.29  0.82*  − 0.078  − 0.227  0.904*  0.59 
51777  0.558  − 0.298  0.675  − 0.418  − 0.172  − 0.427 
51810  − 0.549  0.22  0.124  0.485  0.042  0.295 
51814  − 0.16  − 0.443  0.499  − 0.945**  − 0.234  − 0.57 
57025  − 0.53  0.173  − 0.204  0.239  0.166  0.168 
57034  − 0.28  0.647  − 0.333  0.458  0.769  0.572 
57043  0.371  − 0.664  0.74  − 0.81  − 0.743  − 0.446 
57044  0.167  − 0.685  0.417  − 0.619  − 0.747  − 0.517  
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3.3.2.2. The best multivariate nonlinear regression equations. After we 
obtained the key climate variables that affected maize yield at each site, 
we obtained the stepwise nonlinear regression functions. Also taking the 
site 51709 as the example, there were 5, 20, 35, 35, 21, 7 and 1 (total 

124 equations) multivariate nonlinear equations for ΔY which were 
described by ΔSun and ΔTmin with seven items of ΔSun, ΔTmin, ΔSun ×

ΔTmin, ΔS2
un, ΔT2

min, ΔS3
un and ΔT3

min (Table 4). Finally, the performance 
of the best linear and nonlinear equations was compared for ΔY of 

Fig. 6. Sen′s slope values of the climatic variables during maize growth season over 1988–2017 at the 85 sites for spring maize and at the 36 sites for summer maize 
in China. Red and blue grids represent increase and decrease trends, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Sen′s slope of yields for spring and summer maize at the 121 sites in China.  
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summer maize and the equation ΔY = − 0.405ΔSun + 0.631ΔSun ×

ΔTmin + 0.759ΔT3
min(with R2

adj of 0.238 and RMSE of 1.253) was the best 
multivariate nonlinear equation for ΔY of summer maize at the site 
51709. 

We found that the single variate linear regression performed worse 
than multivariate linear regression, and the linear regression performed 
worse than the nonlinear regression. We implied that the crop growth, 
development and production were affected by climate change non-
linearly to a great extent at the site 51709. This was reasonable since 
climate change is complex. 

3.3.2.3. The site-specific best equations. Similarly, we compared the best 

single or multivariate linear and multivariate nonlinear functions and 
their performance to select the best functions for spring maize at the 
other 85 sites (Table 5). The number of best nonlinear equations was 
larger than the best linear equations. Among the 85 sites, 58 sites had the 
best nonlinear equations (linear at 27 sites). The climatic variables 
quantitatively explained the extent of yield change with 0.058 (site 
50468) <R2

adj < 0.876 (site 53646). At the site 50468, yield change was 
only related Pre with a smallest R2

adj among all sites. The site 53646 had 
the largest R2

adj for nonlinearly correlating yield change with the related 
climatic variables in all sites.R2

adj values of multivariate non-linear 
functions were generally larger (AverageR2

adj = 0.51), which indicated 
the nonlinear attributions of the yield change. We found the selected 
best equations could be simple (single variable for 32 sites) or complex 
(multi-variate for 53 sites). Among the best equations of the 85 sites, 
yields at the 43 (or 40, 37, 29, 27 and 5) sites were related to Pre (or Hum, 
Sun, Tmin, Tmax, and Tave, respectively). Yield was mostly related to Pre, 
Hum and Sun, followed by Tmin and Tmax, and the least related to Tave. 
However, we were uncertain how much the role of Pre and Hum played 
on the development of maize yields. 

The best functions for summer maize yields and their performance at 
the selected 36 sites are presented in Table 6. Similar to spring maize, 
there were more nonlinear equations (26 sites) than linear equations (10 

Fig. 8. Pearson’s correlation coefficients between the first-order differences of maize yield (ΔY) and the related climatic variables (Δxi).  

Table 2 
Fitted single variable correlation equations for ΔY and the performance at the 
site 51709.  

No. of equation Equation R2
adj RMSE P-value 

1 ΔY = -0.08ΔPre  − 0.03  1.514  0.679 
2 ΔY = 0.006ΔHum  − 0.037  1.519  0.975 
3 ΔY = -0.35ΔSun  0.09  1.424  0.063 
4 ΔY ¼ 0.426ΔTmin  0.151  1.374  0.021 
5 ΔY = 0.131ΔTmax  − 0.019  1.506  0.498  
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sites). The fitted performance varied with 0.066<R2
adj < 0.785. The ΔY 

function of the site 51814 contained only a single nonlinear variable 
(T2

max) and had the smallest R2
adj among all sites. The ΔY function of the 

site 54534was a two-variables (Sun and Hum × Tmin) nonlinear expres-
sion with the largest R2

adj.R
2
adj of non-linear multivariate functions were 

generally larger (AverageR2
adj = 0.46), which indicated the important 

climate change effects on yields. But at a few sites, the best equations 
also were kept linear. The selected best equations were simple at 15 sites 
but complex at 21 sites. Among the regressive equations of the 36 sites, 
yields at the 19 (or 17, 15, 11, 8 and 0) sites were related to Pre (or Hum, 
Sun, Tmin, Tmax, and Tave, respectively). Like spring maize, yield of 

Table 3 
The fitted multivariate linear equations for ΔY correlating with two, three, four, to five climate variables and their performance at site 51709.  

No. of climatic variables No. of equation Equation R2
adj RMSE P-value 

2 1 ΔY = − 0.191ΔPre + 0.149ΔHum  − 0.059  1.507  0.808 
2 2 ΔY = − 0.157ΔPre − 0.381ΔSun  0.08  1.404  0.129 
2 3 ΔY = − 0.006ΔPre + 0.425ΔTmin  0.119  1.374  0.074 
2 4 ΔY = − 0.013ΔPre + 0.124ΔTmax  − 0.058  1.506  0.797 
2 5 ΔY = − 0.14ΔHum − 0.401ΔSun  0.073  1.410  0.142 
2 6 ΔY = 0.128ΔHum + 0.46ΔTmin  0.135  1.361  0.058 
2 7 ΔY = 0.116ΔHum + 0.196ΔTmax  − 0.048  1.499  0.706 
2 8 ΔY = − 0.29ΔSun + 0.381ΔTmin  0.207  1.304  0.019 
2 9 ΔY = − 0.376ΔSun + 0.184ΔTmax  0.091  1.396  0.111 
2 10 ΔY = 0.535ΔTmin − 0.185ΔTmax  0.143  1.356  0.052 
3 11 ΔY = − 0.129ΔPre − 0.04ΔHum − 0.39ΔSun  0.044  1.520  0.257 
3 12 ΔY = − 0.217ΔPre + 0.291ΔHum + 0.466ΔTmin  0.124  1.344  0.1 
3 13 ΔY = − 0.144ΔPre + 0.209ΔHum + 0.17ΔTmax  − 0.081  1.492  0.822 
3 14 ΔY = − 0.079ΔPre− 0.309ΔSun + 0.364ΔTmin  0.182  1.299  0.046 
3 15 ΔY = − 0.081ΔPre − 0.386ΔSun + 0.142ΔTmax  0.059  1.393  0.217 
3 16 ΔY = − 0.129ΔPre + 0.564ΔTmin − 0.271ΔTmax  0.121  1.346  0.104 
3 17 ΔY= 0.002ΔHum− 0.289ΔSun + 0.382ΔTmin  0.175  1.304  0.05 
3 18 ΔY = - 0.046ΔHum − 0.389ΔSun + 0.16ΔTmax  0.056  1.396  0.227 
3 19 ΔY = 0.066ΔHum + 0.529ΔTmin − 0.144ΔTmax  0.112  1.564  0.116 
3 20 ΔY = - 0.269ΔSun + 0.436ΔTmin − 0.088ΔTmax  0.181  1.300  0.047 
4 21 ΔY= − 0.169ΔPre + 0.136ΔHum − 0.273ΔSun + 0.39ΔTmin  0.156  1.293  0.089 
4 22 ΔY = − 0.09ΔPre + 0.015ΔHum − 0.383ΔSun + 0.145ΔTmax  0.02  1.398  0.36 
4 23 ΔY = − 0.284ΔPre + 0.245ΔHum + 0.574ΔTmin − 0.223ΔTmax  0.113  1.325  0.145 
4 24 ΔY = − 0.159ΔPre− 0.282ΔSun + 0.467ΔTmin − 0.19ΔTmax  0.166  1.285  0.079 
4 25 ΔY = − 0.043ΔHum − 0.281ΔSun + 0.436ΔTmin − 0.11ΔTmax  0.148  1.358  0.098 
5 26 ΔY= − 0.225ΔPre+0.11ΔHum − 0.255ΔSun+

0.48ΔTmin − 0.176ΔTmax  
0.135  1.281  0.138  

Table 4 
The fitted multivariate nonlinear equations for ΔY and their performance at the site 51709.  

No. of Equation No. of climatic variables Equation R2
adj RMSE P-value 

1 1 ΔY = − 0.206ΔSun × ΔTmin 0.007 1.487 0.285 
2 1 ΔY = 0.175ΔS2

un − 0.005 1.496 0.364 
3 1 ΔY = 0.285ΔT2

min 0.047 1.694 0.135 
4 1 ΔY = − 0.312ΔS3

un 0.064 1.444 0.1 
5 1 ΔY = 0.406ΔT3

min 0.134 1.388 0.029 
6 2 ΔY = − 0.34ΔSun − 0.018ΔSun × ΔTmin 0.055 1.424 0.183 
7 2 ΔY = − 0.337ΔSun + 0.145ΔS2

un 0.077 1.407 0.134 
8 2 ΔY = − 0.292ΔSun + 0.201ΔT2

min 0.095 1.393 0.105 
9 2 ΔY = − 0.308ΔSun − 0.049ΔS3

un 0.055 1.423 0.182 
10 2 ΔY = − 0.227ΔSun + 0.318ΔT3

min 0.148 1.352 0.048 
11 2 ΔY = 0.407ΔTmin − 0.05ΔSun × ΔTmin 0.121 1.373 0.071 
12 2 ΔY = 0.439ΔTmin − 0.027ΔS2

un 0.119 1.374 0.073 
13 2 ΔY = 0.375ΔTmin + 0.112ΔT2

min 0.129 1.366 0.063 
14 2 ΔY = 0.368ΔTmin − 0.21ΔS3

un 0.163 1.340 0.038 
15 2 ΔY = 0.279ΔTmin + 0.192ΔT3

min 0.135 1.362 0.058 
16 2 ΔY = - 0.162ΔSun × ΔTmin + 0.112ΔS2

un − 0.02 1.479 0.493 
17 2 ΔY = - 0.025ΔSun × ΔTmin + 0.268ΔT2

min 0.011 1.457 0.332 
18 2 ΔY = 0.035ΔSun × ΔTmin − 0.337ΔS3

un 0.028 1.443 0.263 
19 2 ΔY = 0.351ΔSun × ΔTmin + 0.69ΔT3

min 0.147 1.352 0.048 
20 2 ΔY = − 0.003ΔS2

un + 0.287ΔT2
min 0.01 1.457 0.334 

21 2 ΔY = 0.097ΔS2
un − 0.285ΔS3

un 0.037 1.678 0.234 
22 2 ΔY = − 0.091ΔS2

un + 0.459ΔT3
min 0.106 1.411 0.088 

23 2 ΔY = 0.176ΔT2
min − 0.228ΔS3

un 0.054 1.646 0.186 
24 2 ΔY = − 0.057ΔT2

min + 0.449ΔT3
min 0.102 1.387 0.094 

25 2 ΔY = − 0.108ΔS3
un + 0.342ΔT3

min 0.109 1.382 0.086 
… … … … … … 
124 7 ΔY= − 0.514ΔSun+0.082ΔTmin+0.579ΔSun × ΔTmin

− 0.106ΔS2
un+0.114ΔT2

min+0.172ΔS3
un+0.69ΔT3

min 

0.114 1.239 0.216  
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Table 5 
The best regression equation for spring maize yield and their performance at the 85 sites.  

Site number Equation R2 
adj RMSE P-value 

50442 ΔY = 0.578ΔTmin + 0.267ΔS2
un + 0.52ΔS3

un 0.353 0.958 0.003 
50468 ΔY = − 0.304ΔPre 0.058 0.891 0.109 
50739 ΔY = 0.537ΔSun − 1.213ΔTmax 0.764 1.110 0.001 
50742 ΔY = 0.476ΔSun 0.116 3.478 0.195 
50745 ΔY = 0.403ΔH3

um 0.132 1.123 0.03 
50756 ΔY = 0.792ΔHum + 1.167ΔSun + 0.642ΔH2

um − 0.499ΔS2
un 0.734 0.498 0.008 

50774 ΔY = 0.336ΔHum − 0.473ΔSun − 0.319ΔPre × ΔSun+

0.279ΔHum × ΔSun + 0.412ΔP2
re − 0.745ΔP3

re 

0.459 0.493 0.002 

50775 ΔY = 0.518ΔPre × ΔTmin 0.242 0.981 0.004 
50844 ΔY = 0.601ΔPre 0.282 1.737 0.066 
50851 ΔY = 0.875ΔP3

re 0.688 0.241 0.052 
50853 ΔY = 0.315ΔPre 0.066 0.952 0.096 
50867 ΔY = 1.197ΔTave - 1.476ΔHum − 1.717ΔTmax + 0.607T2

max 0.400 1.137 0.136 
50873 ΔY = 1.589ΔHum - 1.28ΔTmin + 0.581ΔPre × ΔHum - 0.388

ΔHum × ΔTmin - 0.897ΔSun × ΔTmin − 1.811ΔH3
um + 0.963ΔT3

min 

0.314 0.834 0.03 

50936 ΔY = 1.598ΔSun + 0.855ΔTmin + 1.62ΔSun × ΔTmin + 1.412ΔS2
un 0.717 0.483 0.054 

50953 ΔY = 0.797ΔPre − 0.597ΔP3
re 0.171 0.643 0.033 

50955 ΔY = 0.444ΔHum + 0.445ΔH2
um 0.261 0.856 0.122 

50978 ΔY = - 0.31ΔS2
un + 0.502ΔT2

max + 0.571ΔS3
un + 0.353ΔT3

max 0.374 0.711 0.004 
51133 ΔY = - 1.119ΔPre + 0.383ΔPre × ΔTmin + 0.552ΔT2

min + 0.703ΔP3
re − 0.485ΔT3

min 0.255 1.129 0.045 
51238 ΔY = 0.286ΔSun − 0.525ΔHum × ΔSun − 0.537ΔH2

um 0.169 2.536 0.05 
51334 ΔY = - 0.404ΔPre × ΔSun 0.124 2.506 0.056 
51346 ΔY = 0.625ΔSun + 0.512ΔTmin + 1.163ΔPre × ΔTmin − 2.167ΔHum

×ΔTmin − 0.384ΔS2
un − 0.588ΔT2

min − 0.754ΔS3
un − 0.593ΔT3

min 

0.551 1.884 0.001 

51358 ΔY = 0.32ΔHum 0.071 2.190 0.084 
51368 ΔY = − 0.771ΔHum − 1.035ΔSun − 3.729ΔPre × ΔHum −

0.457ΔPre × ΔSun − 0.831Hum × ΔTmin − 1.913Hum × ΔTmax

− 1.476ΔTmin × ΔTmax + 1.898ΔP2
re + 0.656ΔS2

un 

0.321 2.319 0.046 

51379 ΔY = 1.084ΔHum − 1.487ΔSun + 1.297ΔTmax − 1.489ΔHum × ΔTmax

+0.674ΔSun × ΔTmax − 0.815ΔH2
um − 0.697ΔT2

max − 1.245ΔH3
um

+0.638ΔS3
un − 1.295ΔT3

max 

0.566 1.574 0.002 

51431 ΔY = − 0.633ΔTmax + 0.503ΔS3
un 0.332 2.756 0.002 

51436 ΔY = - 0.332ΔPre + 0.713ΔTmin − 0.269ΔPre × ΔSun

+0.772ΔPre × ΔTmax − 0.668ΔSun × ΔTmin + 3.942
ΔTmin × ΔTmax − 2.539ΔT2

max + 1.032ΔP3
re − 1.075ΔT3

min 

0.56 1.147 0.001 

51567 ΔY = - 2.076ΔHum − 1.127ΔSun + 2.596ΔHum × ΔSun + 1.52ΔHum × ΔTmax

+0.649ΔSun × ΔTmax + 4.05ΔH2
um + 1.902ΔH3

um − 0.628ΔS3
un 

0.693 0.815 0.008 

51633 ΔY = 0.72ΔHum + 0.666ΔTmin + 1.435ΔTmax − 0.917ΔPre × ΔHum

+0.933ΔPre × ΔTmin − 0.799ΔPre × ΔTmax − 0.885ΔHum × ΔTmax −

0.581ΔTmin × ΔTmax + 0.452ΔP3
re − 1.379ΔT3

min − 1.329ΔT3
max 

0.582 1.628 0.002 

51828 ΔY = − 0.488ΔHum − 0.364ΔH2
um 0.262 1.088 0.029 

52203 ΔY = - 0.329ΔPre × ΔTmin − 0.599ΔP2
re + 0.647T2

min

+0.838ΔP3
re − 0.486ΔH3

um − 0.321ΔT3
min 

0.522 1.241 0.001 

52533 ΔY = 0.724ΔPre + 0.714ΔHum + 0.814ΔSun + 0.933ΔTmax 0.693 0.508 0.004 
53564 ΔY = 0.755ΔPre − 0.396ΔSun − 1.169ΔTmin + 1.23ΔTmax 0.716 1.213 0.055 
53585 ΔY = 0.836ΔPre 0.649 1.549 0.01 
53646 ΔY = - 0.779ΔPre − 1.448ΔHum + 4.018ΔSun − 1.723ΔTmax

+0.421ΔP3
re + 1.765ΔH3

um − 3.799ΔS3
un + 1.324ΔT3

max 

0.876 0.357 0.096 

53674 ΔY = 0.949ΔPre − 0.768ΔSun − 0.351ΔTmin + 1.027ΔTmax 0.52 1.311 0.054 
53681 ΔY = 0.687ΔPre 0.396 2.854 0.041 
53775 ΔY = 3.264ΔPre − 3.504ΔHum − 2.815ΔSun + 2.841ΔTmin 0.737 9.503 0.338 
53845 ΔY = − 0.9ΔPre 0.772 0.469 0.006 
53853 ΔY = 0.79ΔT3

min 0.561 2.097 0.02 
53863 ΔY = − 0.914ΔHum + 0.518ΔSun + 0.703ΔTmin − 1.522ΔTmax 0.082 0.930 0.392 
53882 ΔY = - 0.493ΔSun − 0.673ΔPre × ΔTmin − 0.763ΔHum × ΔSun 0.595 0.491 0.01 
53915 ΔY = − 0.746ΔPre × ΔHum 0.482 1.612 0.034 
53976 ΔY = − 1.456ΔPre + 0.553ΔHum + 0.476ΔSun + 0.705ΔTmin − 1.813ΔTmax 0.46 0.754 0.149 
54049 ΔY = 0.877ΔHum 0.736 1.636 0.002 
54072 ΔY = - 0.67ΔTave × ΔTmax - 0.891ΔT3

max 0.492 11.16 0.027 
54076 ΔY = 0.649ΔH3

um 0.356 1.024 0.031 
54080 ΔY = - 3.064ΔTmin + 1.092ΔPre × ΔTmin − 0.947ΔHum × ΔTmin

+0.694ΔP2
re + 3.449ΔT3

min 

0.726 0.303 0.018 

54094 ΔY = 0.401ΔTmax + 0.344ΔP3
re + 0.289ΔH3

um 0.377 0.810 0.002 
54134 ΔY = 0.479ΔTmin + 0.482ΔS2

un − 0.402ΔT2
min 0.288 1.041 0.098 

54154 ΔY = − 0.688ΔTmax 0.426 1.319 0.009 
54156 ΔY = 0.535ΔP3

re 0.207 2.555 0.09 
54165 ΔY = − 0.718ΔTmin 0.446 3.657 

(continued on next page) 
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summer maize was most closely related to Pre, Hum and Sun, followed by 
Tmin and Tmax, and least related to Tave. 

4. Discussions 

4.1. The comparison of yield response to climate change between spring 
and summer maize 

4.1.1. Climate background and yield response differences of spring and 
summer maize 

In our study, spring maize was mainly planted in the northeast, north 
and northwest China (76 sites). Only 9 sites were located in the south-
west China. The north of China was in the cold temperate zone char-
acterized by low temperature, short frost-free period in winter with 
precipitation range of 400–800 mm. with 60% of precipitation 
concentrated in July to September (Wang, 2010). Such climatic condi-
tions fitted a cropping system of one-harvest each year, in which spring 
maize was sown around April and harvested around September to 
October with an average growth period of about five months. 

Summer maize was planted in the Huang-Huai-Hai region (20 sites, 
the warm temperate monsoon climate) and northwestern China (16 
sites). The Huang-Huai-Hai region was characterized by high tempera-
ture (8 ◦C <Tave < 15 ◦C), strong evaporation and uneven distribution of 
rainfall ranging from 500 to 900 mm (Xiao et al., 2020). Waterlogging 
was common in summer, and drought was common in spring (Wang, 

2010). This climatic background fitted a cropping system of twice- 
harvest each year or intercropping of winter wheat with summer 
maize sown in June to July and harvested during September to October 
with an average growth period of about four months. The distinct dif-
ferences in climate conditions during the growth period resulted in 
sensitive growth and yield responses of maize, which ultimately affected 
the yield change of spring and summer maize. 

From our results, over the past 30 years, yields of spring maize 
increased more than yields of summer maize. It was expected since the 
planting area of spring maize gradually extended to the north under the 
global warming. The increment of spring maize yield decreased from 
northeast to north, northwest and southwest China, and the increment of 
summer maize yield decreased from Huang-Huai-Hai plain to northwest 
and southwestern China. Our results were consistent with Xu et al. 
(2017) who studied the impact of climate change on yield potential of 
maize across China using Global Agro-Ecological Zones (GAZA) model 
over 1960–2010. The variation trends of Pre, Hum and Tmin had more 
adverse effects on the yields of spring and summer maize. This result was 
expected because the sowing dates, growth lengths and climatic condi-
tions differed for spring and summer maize. Yields differed for spring 
and summer maize under different climate background even if two types 
of maize were planted in the same area at the same time (e.g. Gao et al., 
2018). 

Table 5 (continued ) 

Site number Equation R2 
adj RMSE P-value 

0.03 
54171 ΔY = − 0.863ΔHum + 1.524ΔH3

um 0.735 0.817 0.002 
54186 ΔY = − 0.465ΔPre − 1.017ΔSun − 0.57ΔPre × ΔSun 0.454 0.350 0.09 
54213 ΔY = − 0.511ΔTmin 0.194 1.464 0.074 
54218 ΔY = − 0.706ΔPre 0.443 1.474 0.015 
54223 ΔY = 0.718ΔPre − 0.937ΔHum − 0.578ΔTmin 0.576 1.052 0.019 
54243 ΔY = − 2.394ΔHum × ΔTmax − 2.323ΔT2

max − 1.358ΔH3
um − 1.008ΔT3

max 0.11 1.484 0.365 
54260 ΔY = 0.701T3

ave 0.418 1.135 0.035 
54266 ΔY = 1.176ΔSun + 1.079ΔTave × ΔSun 0.745 0.925 0.002 
54326 ΔY = 0.324ΔSun − 0.887ΔTmin + 0.359ΔSun × ΔTmin 0.814 1.333 0.009 
54333 ΔY = − 1.91ΔSun − 0.335ΔTmin + 1.946ΔTmax + 1.092ΔSun × ΔTmin

− 1.557ΔTmin × ΔTmax + 0.877ΔT2
min − 0.809ΔT2

max 

0.541 0.746 0.224 

54348 ΔY = - 0.793ΔP2
re 0.554 1.736 0.033 

54349 ΔY = − 0.825ΔPre + 0.789ΔP2
re − 0.401ΔH2

um 0.56 0.858 0.049 
54362 ΔY = 0.741ΔSun 0.504 0.885 0.006 
54377 ΔY = 0.502ΔPre + 0.924ΔTave + 0.669ΔPre × ΔTave − 0.63ΔP2

re + 0.677ΔT2
ave 0.746 0.259 0.027 

54405 ΔY = - 1.943ΔSun + 1.564ΔS3
un 0.278 1.11 0.133 

54452 ΔY = 0.651ΔHum 0.36 1.985 0.03 
54454 ΔY = 6.25ΔHum × ΔTmax + 2.856ΔH2

um + 3.652ΔT2
max

− 2.255ΔH3
um − 2.281ΔT3

max 

0.102 0.988 0.475 

54472 ΔY = 2.747ΔTmax − 1.275T2
min − 3.069ΔT3

max 0.769 0.714 0.008 
54486 ΔY = 0.615ΔHum + 2.434ΔTmax − 0.931ΔHum × ΔTmax+

1.005ΔH2
um − 2.221ΔT2

max + 0.508ΔH3
um − 2.22ΔT3

max 

0.745 0.651 0.102 

54493 ΔY = 0.576ΔSun 0.257 0.833 0.064 
54563 ΔY = 0.624ΔPre × ΔHum 0.322 0.574 0.04 
54584 ΔY = − 0.859ΔPre − 0.705ΔH3

um 0.378 1.691 0.061 
56280 ΔY = 0.467ΔSun 0.131 2.674 0.148 
56479 ΔY = - 0.827ΔP3

re + 1.715ΔH3
um + 2.065ΔS3

un − 1.016ΔT3
max 0.845 0.327 0.261 

56985 ΔY = 0.377ΔPre + 2.67ΔHum + 2.983ΔTmax

+0.405ΔP3
re − 2.932ΔH3

um − 2.666ΔT3
max 

0.76 0.355 0.169 

57259 ΔY = − 0.924ΔPre − 0.65ΔSun + 0.515ΔTmin 0.545 0.235 0.115 
57313 ΔY = 1.303ΔHum × ΔSun + 1.225ΔH2

um + 0.529ΔS3
un 0.313 0.808 0.118 

57318 ΔY = 2.06ΔPre − 3.826ΔHum − 0.328ΔTmin

+3.171ΔP2
re − 1.877ΔH2

um − 0.92ΔS2
un 

0.742 0.359 0.181 

57415 ΔY = 0.536ΔPre 0.208 0.631 0.089 
57512 ΔY = − 0.803ΔT3

min 0.555 1.496 0.055 
57633 ΔY = 0.661ΔT3

max 0.366 1.059 0.038 
57808 ΔY = − 0.424ΔH3

um + 0.884ΔT3
min − 1.042ΔT3

max 0.827 0.189 0.042 
58269 ΔY = − 0.526ΔP3

re 0.217 1.270 0.053  
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4.1.2. Sensitivity of spring and summer maize yield to climate variables 
According to our Pearson correlation results, we concluded that 

spring maize was more sensitive to Hum and Sun, and summer maize was 
more sensitive to Pre and temperature (Tmin, Tmax and Tave). For spring 
maize, the sensitivity of yield was ranked as Hum > Sun > Pre > Tmin >

Tmax > Tave. Hum played a key role in maize yields, however, often it’s 
roles were overlooked because of its proper coordination with other 
climatic factors (Hsiao et al., 2019). When Hum increased, pollen was 
inactivated during silk therefore affected the maize yield (Matsuda and 
Higuchi, 2015). The sensitivity of spring maize to Sun were stronger than 
that of Pre and temperature. This result was inconsistent with Zhao et al. 
(2015) who studied the relationships between climatic variables and 
climate-induced yield of spring maize in Northeast China from 1978 to 
2010. And they indicated that Sun was not the major limiting factor to 
yield of spring maize compared with temperature and Pre. We suggest 
that the reason for this difference may be that solar radiation was 
reduced due to severe environmental pollution over past years. 
Compared with Pre, Sun was the most influential factor affecting maize 
photosynthesis which played key role for forming maize dry matter. 

The sensitivity of spring maize to Pre was stronger than that of 
temperature. This result was consistent with Xu et al. (2017) who found 
that the arable land in the northern regions of China where natural 
rainfall did not meet the water demands for the production of spring 
maize both in terms of volume and frequency, and annual Pre change 

and water stress more serious on maize yield than other meteorological 
factors. 

For summer maize, we ranked the sensitivity of yield as Pre > Tave >

Tmax > Tmin > Sun > Hum. The sensitivity of summer maize to Pre was 
stronger than that of temperature, which agreed with Chen et al. (2012) 
who explored factors affecting summer maize yield under climate 
change in Shandong Province of China in 1957–2007. Chen et al. (2012) 
concluded that Pre had a greater influence than light and temperature on 
yield. Gao et al. (2018) conducted comparison analysis of climate factor 
to maize productivity in the North China Plain based on experimental 
data from 2009 to 2016. They found that summer maize yield was more 
sensitive to Pre in silking stage but more sensitive to temperature and 
solar radiation in the later growth stages. High temperature and strong 
sunshine in the main producing areas of summer maize accelerated 
evaporation of water in the soil, which affected the yield. The sensitivity 
of summer maize yield to air humidity was not obvious because of the 
strong opposite effect of precipitation and temperature on air humidity. 

Maize yields were sensitive to Tave, especially in summer maize, but 
Tave performed worst in interpreting yield change. Also, Prabnakorn 
et al. (2018) showed that the use of Tave to assess rice yield variations 
provided greater uncertainty than the use of Tmin and Tmax. From our 
results, since Tave had high collinearity with Tmin and Tmax thus was 
removed from the regression process. However, the effects of Tave could 
be judged roughly from that of Tmin and Tmax considering its high 

Table 6 
The best regression equation for summer maize yield and their performance at the 36 sites.  

Site number Equation R2 
adj RMSE P-value 

51642 ΔY = − 0.498ΔPre  0.207  1.654 0.025 
51644 ΔY = 0.613ΔPre × ΔTmax  0.332  0.783 0.012 
51656 ΔY = - 0.381ΔHum × ΔTmin  0.097  1.341 0.098 
51708 ΔY = 0.358ΔH2

um  0.093  1.084 0.067 
51709 ΔY = − 0.405ΔSun + 0.631ΔSun × ΔTmin + 0.759ΔT3

min  0.238  1.253 0.02 
51716 ΔY = - 0.307ΔSun + 0.481ΔT3

min  0.318  0.943 0.003 
51777 ΔY = - 0.743ΔHum × ΔSun − 0.519ΔPre × ΔHum − 0.445ΔH3

um  0.471  1.203 0.002 
51810 ΔY = 0.352ΔHum  0.092  0.879 0.061 
51811 ΔY = − 1.925ΔH3

um − 1.888ΔS3
un − 0.604ΔT3

min  0.577  1.837 0.154 
51814 ΔY = − 0.313ΔT2

max  0.066  0.819 0.093 
53959 ΔY = − 0.701ΔH2

um + 0.859ΔT2
min  0.679  0.521 0.085 

53980 ΔY = 0.798ΔPre × ΔHum + 0.67ΔH3
um  0.610  0.338 0.015 

53991 ΔY = 0.803ΔPre − 0.831ΔTmin − 0.594ΔPre × ΔTmin  0.683  1.048 0.019 
54503 ΔY = 0.607ΔHum × ΔSun  0.305  0.609 0.036 
54518 ΔY = 0.744ΔSun × ΔTmax  0.509  0.54 0.006 
54520 ΔY = − 0.495ΔPre − 0.615ΔHum − 0.503ΔTmax  0.482  0.445 0.107 
54534 ΔY = 0.737ΔSun + 0.529ΔHum × ΔTmin  0.785  0.799 0.009 
54540 ΔY = 0.583ΔSun  0.257  1.198 0.077 
54614 ΔY = 0.491ΔSun  0.165  1.544 0.105 
54624 ΔY = − 1.531ΔPre − 0.894ΔTmin − 0.857Tmax + 0.87ΔP3

re + 1.041ΔT3
min  0.280  0.959 0.272 

54827 ΔY = 0.862ΔP3
re + 1.128ΔS3

un  0.213  0.945 0.275 
54846 ΔY = − 0.642ΔP2

re + 1.062ΔS2
un  0.743  0.29 0.007 

54849 ΔY = - 0.907ΔSun - 0.764ΔPre × ΔSun + 0.706ΔP3
re + 1.55ΔS3

un  0.546  0.643 0.032 
54852 ΔY = 0.545ΔPre − 1.264ΔTmin + 1.024ΔTmax  0.479  0.821 0.108 
54900 ΔY = − 0.746ΔPre  0.52  0.699 0.002 
54906 ΔY = 1.642ΔPre − 0.883ΔHum + 0.754ΔPre × ΔHum

+ 1.114ΔP2
re − 0.993ΔH2

um − 1.688ΔP3
re  

0.756  0.997 0.015 

54915 ΔY = 0.626ΔSun  0.337  1.179 0.022 
56193 ΔY = 0.529ΔH3

um  0.208  1.33 0.077 
57025 ΔY = - 1.025ΔPre + 0.501ΔHum + 0.473ΔP2

re − 0.492ΔH2
um + 0.662ΔP3

re  0.268  1.190 0.049 
57034 ΔY = 0.549ΔSun − 0.602ΔHum × ΔTmin − 0.482ΔSun × ΔTmin

+0.815ΔH2
um − 0.573ΔS2

un + 0.675ΔH3
um  

0.519  0.612 0.005 

57043 ΔY = − 0.777ΔPre + 0.917ΔHum + 1.656ΔPre × ΔHum

− 0.677ΔPre × ΔSun + 1.788ΔHum × ΔSun − 0.919ΔP2
re  

0.45  1.222 0.012 

57044 ΔY = - 1.033ΔPre × ΔTmin + 0.947ΔHum × ΔTmin  0.283  1.482 0.023 
57048 ΔY = − 0.64ΔTmax  0.351  0.452 0.025 
57096 ΔY = 0.545ΔPre × ΔHum + 1.165ΔP2

re − 1.42ΔH2
um  0.552  0.618 0.035 

57143 ΔY = 0.555ΔPre + 1.528ΔTmax − 0.847ΔT3
max  0.278  0.704 0.142 

58130 ΔY = − 0.832ΔPre  0.665  1.074 0  
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connection with Tmin and Tmax. 

4.1.3. Contribution of warmer climate on increasing spring maize yield 
Our results also showed that the variation trend of Tmin in the past 30 

years were larger than that of Tmax, this may have promoted to increased 
yields. Nicholls (1997) found that the increase in yields of Australian 
wheat was caused more by the increased Tmin than the increased Tmax 
and Pre. Our results agreed with Nicholls (1997) in that the spring maize 
yield was more sensitive to Tmin compared to Tmax. However, summer 
maize yield was more sensitive to Tmax than Tmin due to the high tem-
perature and rainy weather during the growth period of summer maize. 

Warming may have negative or positive impacts on crop production 
at low or high latitudes, depending on whether the overall temperature 
of the studied region is above the optimal temperature for crop pro-
duction (IPCC 2001). Bhatt et al. (2014) reported that warming had 
positive impacts on maize yields at some high latitudes areas in the 
Koshi basin of Nepal, benefiting from favorable available water and soil 
fertility conditions. Chen et al. (2014) found that average temperature 
had a positive effect on maize yields in northeast and northwest China at 
high latitudes, and maize yield increased 0–7.5% with 1 ◦C increase in 
temperature. Our results showed that spring maize yield in the northeast 
and northwest China at high latitudes also increased with rising tem-
peratures (especially the minimum temperatures), which was partially 
consistent with Bhatt et al. (2014) and Chen et al. (2014). 

4.1.4. Maize yields formation processes and mechanisms under climate 
change 

The accumulation of dry matter of maize was formed by daily 
accumulation of carbon through photosynthesis throughout the growth 
period (Dong et al., 1993). Therefore, the material source of maize yield 
was photosynthesis. Photosynthetic characteristic shown that moderate 
temperature and sufficient sunshine could promote photosynthesis to 
some extent. There was evidence that inappropriately increased tem-
perature had negative effects on photosynthesis (Ruiz and Ursula, 
2014), consistent with our results. In our study, over the past 30 years, 
sunshine hours had a larger decline trends during the growth periods of 
summer maize than spring maize, this may lead to a smaller increase in 
summer maize yield than spring maize. Furthermore, on the basis of the 
shorter growing periods of summer maize than spring maize, the 
growing periods of summer maize was shorter due to the rising 
temperature. 

Water was one of the raw materials for photosynthesis. When water 
stress occurred in plants, the photosynthetic reaction was blocked, thus 
weaken the accumulation of dry matter. Our results shown that Pre had a 
larger increase trends during the growth periods of summer maize than 
spring maize over the past 30 years, while the summer maize yield in-
crease range was smaller than spring maize. There are three reasons for 
this: (1) when Pre increased, Sun was reduced and decreased photosyn-
thesis; (2) when Pre increased, Hum was increased and restricted the 
pollen germination, which would affect maize yield; (3) During the 
period of maize grain filling, increased Pre would affect the filling rate. 
The specific effects of Hum on photosynthesis was not well determined 
and was often combined with other climate variables (such as Pre). 

At our 121 studied sites, the contribution of climatic variables to 
account for yield change was ranked as Pre > Hum > Sun > Tmin > Tmax >

Tave. Our results were consistent with earlier research (Pedram et al., 
2011; Waha et al., 2013; Bhatt et al., 2014) that Pre was more powerful 
in explaining the variability of maize yields. Also, Pre affected Hum and 
Sun. When Pre increased, Hum increased and solar radiation decreased, 
affected photosynthesis and dry matter accumulation. 

4.2. Evaluation of applicability of the best regression model 

The responses of crop yield to climate change are very complex. The 
regression functions established in our research are very useful to 
quantitatively understand the response of crops to climate. Nicholls 

(1997) estimated the contribution of climate trends to Australian wheat 
yields from 1952 to 1992 with linear regression model, and found that 
30–50% of the increase in wheat yields was caused by increase in 
climate trends. Lobell and Field (2007) found that variations in the 
annual yields of global six crop yields (wheat, rice, maize, soybean, 
barley and sorghum) from 1961 to 2002 were explained at least 29% by 
climatic variations. Chen et al. (2011) conducted linear regression an-
alyses of climate factors (Tave, Tmin, Tmax and Pre) of 72 meteorological 
sites in Northeast China and maize yield over the period 1965–2008. 
They showed that the daily Tmin was the dominant factor to maize yield 
compared other climatic factors. Linear regression models can be used to 
capture the net climate effect of multivariate climate variables. 

However, there was complex feedback of crop yield to climate 
change and climate change has a non-monotonic effect on crop yield. 
Therefore, nonlinear equations performed much better than linear 
equations. There were different shapes of the nonlinear regression 
equations, for example, the second order polynomial function (Lobell 
et al., 2007), quadratic type (Almaraz et al., 2008), mixed linear and 
nonlinear (Li et al., 2020), or combining linear, quadratic terms with 
interaction terms (Malone et al., 2009). The effects of climate variables 
varied in explaining the yield variability, which were 46–80% of 12 
crops in California from 1980 to 2003 (Lobell et al., 2007), 62% of maize 
in the Montergie region of south-western Quebec over 1973–2005 
(Almaraz et al., 2008), 8.5–75.3% for seed cotton yield in Xinjiang, 
China over 1986–2017 (Li et al., 2020), and 54% of maize yield in six 
counties of Iowa over 1995–2005 (Malone et al., 2009). We added a 
cubic item to linear, quadratic and interaction term by considering the 
multicollinearity of climatic variables. We found varying explanation 
ability of climatic variables on maize yields (5.8–87.6%) since the 
climate and yield variability occurred. The introduced cubic terms and 
interaction terms played important roles in explaining maize yield 
variation than the square terms and linear. 

We found that the key climatic factors in the best regression model of 
spring and summer maize yields had spatial variability. This was 
consistent with Li et al. (2020) who investigated the spatial variable 
cotton yields and climate variables in Xinjiang, China. From the adjusted 
R2 values, the climate change explained 5.8–87.6% of spring maize 
yields variability and explained 6.6–78.5% of summer maize yields 
variability. We found that maize yield was sensitive to climate change at 
a great extent. Climate variables that affect maize yields may differ even 
at adjacent sites. Therefore, our results are useful as a reference for 
maize breeding scientists to develop new high-yielding varieties ac-
cording to yield associated factors in different regions. 

The feedback of climate change and crop growth are complex. We 
introduced the best linear and nonlinear regression models, but there 
may be other selective equations. Further research is needed to find even 
better equations that could explain higher variability in maize yields 
affected by climate change. Due to many constraints, the effects of 
extreme weather events on maize yields were not considered. Future 
studies should consider the effects of climate change and extreme 
weather on maize yields, and use more appropriate optimal regression 
models to assess the dual feedback mechanism between climate and 
maize growth. 

5. Conclusions 

In the maize planting belt of China, the Pre, Hum and Sun during crop 
growth periods and spring/summer maize yields had moderate vari-
ability over 1988–2017, so did Tave, Tmin and Tmax of spring maize. 
Whereas Tave, Tmin and Tmax of summer maize had low variability. The 
Pre, Tave, Tmin and Tmax series of spring (summer) maize at 53 (22), 83 
(33), 79 (33) and 83 (34) out of 85 (36) sites had increasing trends, 
while Hum and Sun of spring (summer) maize at 73 (30) and 47 (28) out 
of 85 (36) sites exhibited decreasing trends. Spring/summer maize 
yields both showed increasing trends, of which the trend magnitudes of 
spring maize yields were greater. 
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The climate variables contributed to the variability of maize yields to 
different extents. Pre, Hum, Sun, Tmin, Tmax and Tave accounted for 2.3%, 
5%, 4.8%, 0.7%, 0.3%, and 0.05% of spring maize yield variability ac-
cording to the Pearson correlation coefficients between the climatic 
variables and maize yield. Similarly, Pre, Hum, Sun, Tmin, Tmax and Tave 
accounted for 5.5%, 0.7%, 1.1%, 2.2%, 2.5%, and 3.3% of summer 
maize yield variability. Spring maize yield was more sensitive to Hum, 
Sun and Pre and summer maize yield was more sensitive to Pre and 
temperature. 

The contribution of climatic variables to spring/summer yields 
variability ranked as Pre > Hum > Sun > Tmin > Tmax > Tave. Both the wet- 
cold and wet-warm climate, especially the wet-cold climate, had posi-
tive effects on maize yield. However, the dry-warm climate had negative 
effects on maize yield. Climate change explained 5.8–87.6% of vari-
ability in spring maize yields and 6.6–78.5% of variability in summer 
maize yields, respectively, which were also site-specific. The multivar-
iate nonlinear functions (especially cubic and interaction terms) per-
formed better than the linear ones in explaining maize yield variability. 
Future research would focus on prediction of maize yields under climate 
change using some global climate models and downscaling methods. 
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