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A B S T R A C T   

Agricultural production models predict crop yield by accounting for a variety of species, cultivar, farming 
management, and environmental impacts on crop photosynthesis. Without suitable constraints, however, large 
uncertainties may exist in simulations of crop photosynthesis. Recent advances in retrieving solar-induced 
chlorophyll fluorescence (SIF) at the top-of-canopy (TOC) have provided a promising measurement for crop 
photosynthesis. Within the framework of the APSIM (Agricultural Production Systems sIMulator) model, a SIF 
module was developed to connect crop photosynthesis to TOC SIF emission (SIFtoc) which can be measured by 
remote sensing platforms. The new model (APSIM-SIF) first estimates the leaf-level chlorophyll fluorescence 
emitted over the full SIF spectrum (SIFtot_full) according to CO2 assimilation in crops. The model then mecha-
nistically decomposes the conversion from SIFtot_full to SIFtoc into two factors: the SIF band conversion factor (ε) 
and the fluorescence escape ratio (fesc) that represent the impact of leaf physiological status and plant structure 
properties, respectively. ε can be estimated using leaf structural and biochemical parameters as inputs; fesc for 
near-infrared SIF can be expressed as a function of directional reflectance in the near-infrared region (RNIR), 
Normalized Difference Vegetation Index (NDVI), and the fraction of PAR absorbed by crops (fAPAR). The APSIM- 
SIF model determined more than 90% of the variation in gross primary productivity (GPP), aboveground biomass 
and leaf area index (LAI) measurements for maize (Zea mays L.) at two AmeriFlux sites in the U.S. Midwest and it 
also captured the seasonality of SIF (R2 = 0.84) and GPP (R2 = 0.81) well at an irrigated maize site in China. The 
APSIM-SIF model was also applied to the simulation of TOC SIF emission of maize and soybean (Glycine max L.) 
in the U.S. Midwest during the 2018 growing season. The simulated SIFtoc accounted for more than 75% of the 
variability of daily satellite SIF observations for grid squares with more than 70% crop area. The main contri-
bution of this study lies in two aspects: (1) a physically-based framework is proposed to incorporate the SIF 
module to the APSIM-DCaPST model, and (2) the two important factors used in this framework (ε and fesc) re-
mains largely constant during the peak growing season. These findings provide a theoretically robust and 
operational basis for linking SIF observations with crop growth.   

1. Introduction 

Agricultural production models have been successfully applied to 
diverse research topics such as predicting crop yield, evaluating various 
management strategies, and assessing the impact of climate change on 
crops. One such model, the APSIM (Agricultural Production Systems 
sIMulator) model, has evolved into a platform containing modules that 
simulate various aspects of agricultural production systems and allow 

flexible specification of management scenarios (Holzworth et al., 2014). 
One of the key drivers of crop growth and yield is canopy photosyn-
thesis. In the standard APSIM crop model, daily potential photosynthesis 
rate (biomass accumulation) is estimated based on radiation intercep-
tion and a radiation use efficiency (RUE) (Sinclair and Muchow, 1999) 
scheme. RUE is species specific and varies between different pheno-
logical stages. The impact of air temperature, water supply, vapor 
pressure deficit, CO2 concentration, and plant nutrition are determined 
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by using a series of stress functions that reduce the potential photo-
synthesis rate. Although the RUE type of canopy photosynthesis 
modelling is simple and straightforward, it is not adequate to explicitly 
quantify the specific contribution of these limiting factors in 
photosynthesis. 

Solar-induced chlorophyll fluorescence (SIF) is energy emitted by 
one dissipative pathway of absorbed photosynthetically active radiation 
(APAR). About 1% of APAR is re-emitted by chloroplasts in the longer 
wavelength spectral range of 640 to 850 nm (Porcar-Castell et al., 2014). 
Recent advances in spectroscopy and retrieval algorithms make it 
possible to measure SIF by either remote sensing or near-surface systems 
(Frankenberg et al., 2011; Joiner et al., 2011; Yang et al., 2015), and 
many studies have shown that SIF emission has a close link with plant 
photosynthetic rate. For example, Guanter et al (2014) show that mea-
surements of SIF from satellites can be used to estimate gross primary 
productivity (GPP) of croplands, while Guan et al (2017) show that SIF 
has an advantage over traditional greenness indices estimated from 
reflectance-based indices for detecting the physiological status of crops. 
Several satellite SIF products have been retrieved from space-borne 
spectrometers, including GOME-2 (Joiner et al., 2011), TANSO-FTS 
(Frankenberg et al., 2011), and SCIAMACHY (Sun et al., 2018). 
Among such products, the recent SIF data from the TROPOspheric 
Monitoring Instrument (TROPOMI, Köhler et al., 2018) has a notable 
advantage in spatial and temporal resolution (up to 7 km × 3.5 km with 
daily revisits). 

Many researchers are now using data assimilation or machine 
learning approaches to better constrain crop models. For example, 
Huang et al. (2016) used a Kalman filter algorithm to assimilate 
remotely sensed leaf area index (LAI) time series data with the WOFOST 
crop model, thereby enhancing regional wheat yield predictability 
under climate fluctuations. Despite these advances, remote sensing 
indices, such as Normalized Difference Vegetation Index can only detect 
the “greenness”, rather than the actual photosynthetic activity of vege-
tation, and thus their use results in a certain lag in detecting a response 
to environmental stresses (Lee et al., 2013; Lu et al., 2018). Studies have 
already proven that remote sensing of SIF is a promising indicator of 
photosynthetic status and related stress effects in terrestrial vegetation 
(see the review provided by Mohammed et al., 2019). Combining SIF 
observations with crop models provides a new opportunity to better 
track crop status and growth at much shorter time scales, which may 
allow more accurate predictions of crop yield than previous approaches 
which use directional reflectance in the near-infrared region (NIR) to 
detect plant status. 

SIF emission can be simulated with the canopy radiative transfer 
models (RTMs) or the terrestrial biosphere models (TBMs). To track the 
propagation of SIF photons within the vegetation canopy, a variety of 
SIF RTMs with different degrees of complexity have been developed. For 
example, three-dimensional SIF RTMs including Discrete Anisotropic 
Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2015), the 
FluorWPS model (Zhao et al., 2016), the FluorFLiES model (Gao et al., 
2022) and the FluorFLIGHT model (Hernández-Clemente et al., 2017) 
provide a strong basis to quantitatively interpret the interaction of SIF 
photons with the different components of the forest scene (i.e., tree 
crowns, understory vegetation, soils). By contrast, the soil canopy 
observation photosynthesis energy (SCOPE) model (Van der Tol et al., 
2009), a one-dimensional SIF RTM, shows a strong potential to simulate 
SIF emission in ecosystems with homogeneous canopies (e.g. crops). 
Although producing accurate results, almost all these SIF RTMs have 
high requirements on inputs and are computationally too expensive, 
making them less suitable for global applications. Attempts to add SIF 
modules to TBMs have been made in recent years. Lee et al. (2015) 
developed the equations to simulate SIF emission in the Community 
Land Model version 4 (CLM4) following van der Tol et al. (2014). Qiu 
et al. (2019) implemented a SIF module in the Boreal Ecosystem Pro-
ductivity Simulator (BEPS) to address the impacts of canopy scattering 
on observed SIF. A SIF module has two main jobs: (1) to estimate 

fullband SIF emission (640–850 nm, SIFtot_full) from photosynthetic ac-
tivity, and (2) to calculate the top-of-canopy (TOC) narrowband SIF 
emission (SIFtoc) in the observation direction. In previous efforts (Lee 
et al., 2015; Qiu et al., 2019), a single correction factor was used to 
convert SIFtot_full into SIFtoc. However, this highly aggregated factor did 
not explicitly account for the conversion from broadband to narrowband 
SIF or the strong dependence of SIFtoc on observation direction (Liu 
et al., 2016). Thus, it may have limited application because both the 
broadband to narrowband SIF conversion and the angle effect of SIFtoc 
vary across time and space. 

A cross-scale model for photosynthesis, namely the diurnal canopy 
photosynthesis–stomatal conductance module (DCaPST, Wu et al., 
2019), was recently added to APSIM (APSIM v. 7.8). Compared with the 
empirical RUE approach, the DCaPST module mechanistically simulates 
crop photosynthesis at both leaf and canopy scales (see Section 2.1 for 
details). It enables an evaluation of changes in photosynthetic properties 
and their impact on canopy-level carbon assimilation and crop yield. By 
explicitly representing the key processes of photosynthesis, the new 
APSIM model equipped with the DCaPST module (referred to as APSIM- 
DCaPST) provides an opportunity to connect crop growth with the 
chlorophyll fluorescence emitted by crops. Here, we describe the 
development of a SIF module and its integration into the framework of 
APSIM-DCaPST. All of the steps in the conversion from SIFtot_full to SIFtoc 
are explicitly formulated, and the impact of the controlling factors is 
quantitatively analyzed. Hereafter, we refer to the APSIM-DCaPST 
model with the addition of the SIF module as APSIM-SIF. 

2. Methods and data 

2.1. Brief description of DCaPST 

APSIM is a process-based crop model that includes plant, soil, 
climate, and management modules (Holzworth et al., 2014). Wu et al 
(2019) developed a new photosynthesis module (APSIM-DCaPST) under 
the APSIM crop modelling framework (v. 7.8). APSIM-DCaPST is driven 
by canopy leaf area index, specific leaf nitrogen, and crop water supply 
as well as daily meteorological data (i.e., solar radiation, maximum and 
minimum air temperature, and precipitation), and generates outputs of 
daily growth of shoot biomass (BIOshoot_day, g biomass m− 2 day− 1) that 
are fed back into the crop model. Photosynthesis of both the sunlit and 
shaded leaf fractions of the crop canopy are calculated separately at an 
hourly time step, and summed for the canopy and over the diurnal 
period to obtain daily canopy CO2 assimilation (A, μmol CO2 m− 2 

day− 1). A is then used to calculate BIOshoot_day: 

BIOshoot_day = A ×
44g/mol

1, 000, 000
×

B
1 + root : shoot

(1)  

where B is a conversion factor for biochemical conversion of CO2 to 
biomass and maintenance respiration which is set to 0.41 and 0.34 (g 
biomass (g CO2)-1) for maize and soybean, respectively (Sinclair and 
Horie, 1989); root:shoot is the ratio of biomass allocation between roots 
and above-ground shoots and varies with crop growth stage. Typically, 
this ratio increases in the early stages of crop development and decreases 
towards flowering (Wu et al., 2019). The DCaPST module also uses 
specific leaf nitrogen (SLN, g N m− 2) to represent the crop nitrogen 
status which constrains a variety of key photosynthesis-related param-
eters such as the maximum rate of rubisco carboxylation (Vcmax) and the 
maximum rate of electron transport (Jmax). The APSIM-DCaPST model 
has been validated against field-observed data, and has demonstrated a 
strong predictive power by explaining nearly 90% of the variance in the 
crop yields of C3 wheat and C4 sorghum (Wu et al., 2019). 

2.2. Incorporation of chlorophyll fluorescence into APSIM-DCaPST 

The total SIF emitted from leaves can be thought of as the product of 
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the absorbed photosynthetically active radiation (APAR, mW m− 2) 
multiplied by the plant fluorescence yield (Guanter et al., 2014): 

SIFtot full = PAR × fAPAR × ΦF = APAR × ΦF (2)  

where SIFtot_full (mW m− 2) is the total (all leaves in the canopy) SIF flux 
density within the full SIF spectrum (640–850 nm); PAR (mW m− 2) is 
the flux of photosynthetically active radiation at the top of the canopy, 
and is converted from solar radiation by assuming that the fraction of 
PAR to solar radiation is 50%; fAPAR is the fraction of PAR absorbed by 
the plant, and ΦF is the fluorescence yield (number of photons that 
fluoresce per absorbed photon). In the DCaPST module, APAR (and thus 
fAPAR) is calculated using the procedures set out by de Pury and Farquhar 
(1997). 

In addition to SIF emission, APAR has two pathways: photosynthesis 
(photochemical quenching) and non-photochemical quenching (NPQ) 
or heat. In analogy to ΦF, their yields can be expressed as ΦP and ΦNPQ. 
Moreover, NPQ is the sum of heat loss in light-adapted conditions (ΦN) 
and in dark-adapted conditions (ΦD). So, according to the conservation 
of energy, we have: 

ΦF +Φp +ΦN +ΦD = 1 (3) 

The fraction of each item can be expressed by their rate constants (k) 
as: 

ΦF =
kF

∑
K

Φp =
kP

∑
K

ΦN =
kN
∑

K

ΦD =
kD
∑

K
∑

K = kF + kP + kN + kD

(4) 

and ΦF can be written as (Lee et al., 2015): 

ΦF =
kF

kF + kN + kD
(1 − ΦP) (5) 

Van der Tol et al (2014) suggested that kF = 0.05 and kD = max 
(0.03Tair + 0.0773, 0.87) where Tair is air temperature (◦C); kN can be 
represented as a function of the degree of light saturation (Van der Tol 
et al., 2014): 

kN =
(1 + β)xα

β + xα × ko
N (6)  

where ko
N, α, and β are fitted parameters. Based on measurements of 

cotton growing under unstressed conditions, these parameters have 
been given values of 2.48, 2.83, and 0.114, respectively (Van der Tol 
et al., 2014). x ranges from 0 (photochemistry operating at full effi-
ciency) to 1 (photochemistry totally blocked by feedback), and x can be 
defined as (Lee et al., 2013): 

x = 1 −
ΦP

ΦP0
= 1 −

Je

J0
→ΦP =

Je

J0
ΦP0 (7)  

where ΦP0 is the maximum photochemical yield as observed under dark 
adapted, low light conditions; Je is the actual electron transport rate 
(μmol m− 2 s− 1); and J0 is the maximum potential electron transport rate 
at 25 ◦C (μmol m− 2 s− 1) calculated from APAR and the dark-adapted rate 
constants (Lee et al., 2015). Je can be estimated by (Lee et al., 2015): 

Je =

⎧
⎪⎨

⎪⎩

A
Ci + 2Γ∗

Ci − Γ∗

C3

A C4
(8)  

where Ci (μmol mol− 1) is the CO2 concentration within the intercellular 
air space; Γ* (μmol mol− 1) is the CO2 concentration at the compensation 
point. By combining Eq. (2), (5), (6), (7), and (8), one can obtain SIFtot_full 
for C3 and C4 crops, as follows: 

SIFtot full =
kF

kF +
(1+β)xα

β+xα × ko
N + kD

⎛

⎜
⎜
⎝1 − ΦP0 ×

A Ci+2Γ∗

Ci − Γ∗

J0

⎞

⎟
⎟
⎠× APAR C3 (9)  

SIFtot full =
kF

kF +
(1+β)xα

β+xα × ko
N + kD

(

1 − ΦP0 ×
A
J0

)

× APAR C4 (10)  

where Γ* can be estimated by using the Farquhar-von Caemmerer-Berry 
(FvCB) model (Farquhar et al., 1980) of the leaf photosynthesis-CO2 
response curve; Ci, J0, A, and APAR can be obtained from the APSIM- 
DCaPST model. 

2.3. Conversion of SIFtot_full into SIFtoc(λ) 

SIFtot_full, introduced in Section 2.2, is broadband SIF emission at the 
leaf scale. In contrast, top-of-canopy SIF radiance at a wavelength of λ 
nm (SIFtoc(λ), mW m− 2 nm− 1 sr-1) represents SIF signals propagated 
throughout the canopy and measured by remote sensing or near-surface 
platforms. Due to the scattering/(re)absorption processes inside the 
leaves, as well as in the canopy, SIFtoc(λ) measured at the canopy level is 
only a small proportion of SIFtot_full. Two more steps are needed to obtain 
SIFtoc(λ) from SIFtot_full: (1) converting SIFtot_full into SIFtot(λ) (mW m− 2 

nm− 1), i.e., the total fluorescence emitted by all leaves at a wavelength 
of λ nm, and (2) converting SIFtot(λ) into SIFtoc(λ) by accounting for 
scattering/(re)absorption of SIF signals in the observation direction. 
Note that TOC SIF emission is a function of the canopy structure, sun- 
canopy-sensor geometry, and leaf optical properties. In this study, for 
simplicity, we expressed it as SIFtoc(λ). 

2.3.1. Conversion of SIFtot_full into SIFtot(λ) 
First, we used the leaf excitation-fluorescence matrices (EF-matrices, 

Van der Tol et al., 2019) simulated by the Fluspect model (Vilfan et al., 
2016) to convert SIFtot_full into SIFtot(λ). The EF-matrices (351 × 211) are 
responsible for converting excitation spectra (400–750 nm) into fluo-
rescence emission spectra (640–850 nm) with a 1-nm resolution. Flus-
pect is an extension of the leaf optical model of PROSPECT (Jacquemoud 
and Baret, 1990) which incorporates the simulation of scattering and 
absorption of chlorophyll fluorescence within the leaf. Fluspect pro-
duces four EF-matrices with one backward scattering matrix and one 
forward scattering matrix for both photosystem I (PSI) and photosystem 
II (PSII) as a function of fluorescence quantum efficiency for PSI (Fqe1) 
and PSII (Fqe2), leaf structural, and biochemical parameters. Hence, a 
total of four EF-matrices at 1 nm spectral resolution were calculated: one 
for each photosystem for each side of the leaf. 

In Fluspect, SIFtot(λ) is the product of the summation of these four EF- 
matrices (EFsum) and the irradiance (400–750 nm). As the APSIM model 
does not simulate the solar irradiance spectra, SIFtot(λ) cannot be 
directly obtained from the product of the EF-matrices and the irradiance 
spectra. Alternatively, a SIF band conversion factor (ε(λ), nm− 1) linking 
SIFtot_full to SIFtot(λ) can be defined: 

ε(λ) =
∑750

i=400EFsum(i, λ)
∑850

λ=640
∑750

i=400EFsum(i, λ)
λ ∈ [640nm..850nm] (11) 

Eq. (11) shows that ε was actually calculated as SIF radiance at a 
given wavelength divided by the integral of SIF radiance over the 
fluorescence spectrum. ε (1 × 211) describes the spectral distribution of 
emitted fluorescence at the leaf scale. The applicability of Eq. (11) was 
supported by the strong relationship (R2 = 1.00) between ε and the ratio 
of single-band fluorescence to broadband fluorescence simulated by the 
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Fluspect model (see Fig. S1). Fig. 1 shows an example of ε in the spectral 
range of 640–850 nm. In this example, ε at 740 nm was approximately 
equal to 0.012, suggesting that SIF emission at 740 nm (the thin grey 
band in Fig. 1) accounted for only about 1.2% of SIF emitted from the 
full SIF spectrum (the shaded red area in Fig. 1). 

The shape of ε depends on leaf structural and biochemical parame-
ters, including leaf thickness parameter (N), leaf chlorophyll content 
(Cab, μg cm− 2), carotenoid content (Ccar, μg cm− 2), dry matter content 
(Cdm, μg cm− 2), anthocyanins (Cant, μg cm− 2), senescence material 
fraction (Cs, fraction), leaf water equivalent layer (Cw, cm), and fluo-
rescence quantum efficiency for photosystem I (Fqe1) and photosystem 
II (Fqe2). The sensitivity of ε to these inputs is detailed in Text S1. By 
using ε, one can convert SIFtot_full into SIFtot(λ): 

SIFtot(λ) = SIFtot full × ε(λ) (12)  

2.3.2. Conversion of SIFtot(λ) into SIFtoc(λ) 
Due to the scattering/(re)absorption processes occurring in the plant 

canopy, only part of SIFtot(λ) can escape and thus be observed by a sensor 
above the canopy. That part is SIFtoc(λ). The fluorescence escape prob-
ability (fesc, Mohammed et al., 2019), the ratio between SIFtoc multiplied 
by π and SIFtot, is typically used to determine the fraction of total emitted 
SIF that escapes the vegetation canopy and is detected remotely (Lu 
et al., 2020): 

SIFtoc(λ) =
fesc(λ) × SIFtot(λ)

π (13) 

fesc is determined by the sun-canopy-sensor geometry, leaf optical 
properties, and canopy structure. Recent studies (Liu et al., 2016; Yang 
and van der Tol, 2018) have shown that the scattering/(re)absorption 
processes of NIR SIF can be well expressed by directional reflectance. 
Also, based on spectral invariant theory (Knyazikhin et al., 2011), Zeng 
et al (2019) showed that fesc in the NIR region can be estimated as: 

fesc =
RNIR × NDVI

fAPAR
(14)  

where RNIR represents directional reflectance in the NIR region and 
NDVI is the normalized difference vegetation index. In this study, fAPAR 
was taken from the DCaPST module. 

The schematic representation of the construction and calibration of 

the APSIM-SIF model is illustrated in Fig. 2. The leaf physiological in-
formation for the fluorescence simulation is provided by the DCaPST 
module, while the fluorescence upscaling from leaf level to canopy level 
depends on ε and fesc. The required inputs include the soil, weather, 
cultivar, crop management information and measurements of direc-
tional reflectance, and the main outputs of APSIM-SIF are LAI, above- 
ground biomass, A and SIF emissions (e.g. SIFtot_full, SIFtot, and SIFtoc). 
Observations of LAI (LAIobs) and above-ground biomass (Biomassobs) can 
be used to calibrate the cultivar parameters in the APSIM-SIF model. 
Further, its DCaPST module may be also calibrated using observations of 
A (Aobs) and remotely sensed TOC SIF (SIFtoc_obs). 

2.4. Data 

2.4.1. Study region 
The study region (Fig. S2) consisted of 12 states in the U.S. Midwest: 

North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Mis-
souri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The APSIM-SIF 
model was used to simulate two major crops (maize and soybean) in 
this region. The area of maize in the Midwest in 2018 was 29,522,461 
ha, while the soybean area was 25,439,093 ha. The study region is one of 
the most intense areas of agricultural production in the world, ac-
counting for about 33% and 34% of global maize and soybean produc-
tion, respectively. 

2.4.2. Data for model calibration/evaluation 
We used observations from six crop flux sites located in the United 

States and China for model calibration and evaluation (Table S1). The 
eddy flux data and ground-based crop growth observations were 
measured at two AmeriFlux agricultural sites (US-Ne2 and US-Ne3) 
located at the University of Nebraska Eastern Nebraska Research and 
Extension Center near Mead, Nebraska (Ne), USA. US-Ne2 (41.1649̊ N, 
96.4701̊ W) is an irrigated site equipped with a center pivot system; US- 
Ne3 (41.1797̊ N, 96.4397̊ W) is a rainfed site. Both sites use rotated 
maize-soybean cropping systems. Because of the completeness of their 
data collection, which includes eddy-covariance flux and meteorological 
measurements, along with detailed ground-based crop growth obser-
vations (e.g., aboveground biomass and LAI) (Peng et al., 2018), US-Ne2 
and US-Ne3 are the main sites providing data to calibrate the APSIM-SIF 
model for irrigated and rainfed maize. The other ground-based 

Fig. 1. An example of the SIF band conversion factor (ε, nm− 1, Eq. (11)) simulated by the Fluspect model. The marker indicates the 740 nm wavelength and the gray 
line has a width of 1 nm. The input parameters were set as follows: Cab = 80 μg cm− 2, Ccar = 20 μg cm− 2, Cdm = 0.012 μg cm− 2, Cant = 0 μg cm− 2, Cs = 0, Cw = 0.009 
cm, N = 1.4, Fqe1 = 0.002 and Fqe2 = 0.01. The definitions of these inputs are provided in the main text. 
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measurements of GPP and SIF at 760 nm were from the Daman site, 
located south of Zhangye, Gansu Province, China (CN-Dm, 100.3722◦E, 
38.8555◦N). The major crop type at this site is irrigated maize, which 
was usually sown in early May and harvested in mid-September. The SIF 
observation system at Daman was installed 25 m above the ground on an 
eddy covariance tower. The main component of the SIF system was a 
spectrometer (QE65PRO, Ocean Optics, Inc.) which covers the spectral 
range of 645 – 805 nm with a spectral resolution of 0.34 nm, spectral 
sampling interval of 0.17 nm and signal-to-noise ratio of 1000. Details of 
the SIF measurements can be found in Liu et al., 2021. SIF measurements 
and the eddy flux data during the growing season were collected in 2018 
from day 150 to day 230. Daily maximum temperature, minimum 
temperature, precipitation, and solar radiation collected at these three 
flux tower sites were used as APSIM-SIF forcing data. The soil parame-
ters for the study sites were estimated from the GSDE dataset (see 
below). 

For model calibration, the cultivar parameters for maize (Table S2) 
were determined by minimizing the root mean square error (RMSE) 
between simulated aboveground biomass and LAI and corresponding 
observations at US-Ne2 and US-Ne3. Due to the lack of measurements of 
aboveground biomass and LAI for soybean, the soybean cultivar pa-
rameters were set to default values (Table S3). Three important pa-
rameters (χVcmax25, χJmax25, χgm, Table S4) in the DCaPST module were 
also optimized for maize and soybean by using daily GPP time series at 
these two sites. The planting date and density were optimized according 
to the daily GPP data, and the setting of other management parameters 
referred to the typical agricultural management measures in the area 
(Kukal and Irmak, 2020). These parameters were assumed to remain 
constant across the study region (Table S5). The 30-min GPP values were 
extracted from the difference between ecosystem respiration and the net 
ecosystem exchange of CO2 (NEE) using air temperature, following the 
method proposed by Reichstein et al (2005). The gap-filling and flux 
partitioning processes were performed using the REddyProc tool (http 
s://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb), 
provided by the Max Planck Institute for Biogeochemistry, Germany 
(Wutzler et al., 2018). The daily average of GPP was calculated using 30- 

minute data from 6:00 to 18:00 to match the daily GPP simulations of 
APSIM-DCaPST (Wu et al., 2019). 

The performance of APSIM-DCaPST for maize was evaluated by 
comparing simulated GPP, aboveground biomass, and LAI with corre-
sponding measurements at the US-Ne2 and US-Ne3 sites during the 2011 
and 2013 growing seasons (Table S1). Because US-Ne2 and US-Ne3 were 
also the calibration sites, daily mean GPP from three other sites: Bond-
ville, Illinois (Bo1) near Champaign, Illinois, Brooks Field Site 10 (Br1) 
near Ames Iowa, and Rosemount-G21 (Ro1) near Minneapolis, Minne-
sota were also used to evaluate the photosynthesis processes of APSIM- 
DCaPST more independently. These three sites were rainfed rotational 
maize-soybean cropping systems (Table S1). Ground-based measure-
ments of TOC SIF at 760 nm and in situ measured canopy GPP at the CN- 
Dm site were also used to assess the SIF module. 

2.4.3. Data for the regional simulation 
The spatial distribution of maize and soybean in 2018 (Fig. S2) was 

extracted from the USDA NASS cropland data layer (CDL) dataset. The 
CDL contains annually mapped crop types at a 30-m spatial resolution 
for the contiguous United States since 2008. Daily meteorological in-
puts, consisting of maximum and minimum temperature, precipitation, 
and solar radiation, were obtained from the Daymet V3 dataset 
(Thornton et al., 2016). The required soil data were estimated from the 
gridded Global Soil Dataset for use in Earth System Models (GSDE, 
Shangguan et al. 2014). GSDE provides global soil information at a 
horizontal spatial resolution of 30 arc-seconds. The vertical variation of 
soil properties is represented by eight layers to a maximum depth of 230 
cm (Table S6). Bulk density (BD, g cm− 3), drained lower limit (LL15, mm 
mm− 1), drained upper limit (DUL, mm mm− 1), and saturated water 
content (SAT, mm mm− 1) were acquired from GSDE for each soil layer 
(Fig. S3). BD was directly obtained from GSDE; LL15, DUL, and SAT 
were estimated from the percentages of sand and clay, as described by 
Saxton et al (1986). 

We used the SIF data product provided by TROPOMI on board the 
Copernicus Sentinel-5 Precursor satellite to evaluate TOC SIF simulated 
by the APSIM-SIF model at the regional scale. Köhler et al. (2018) 

Fig. 2. Flowchart of the construction and calibration process of the APSIM-SIF model. The two red dashed rectangles represent the two major components of the 
APSIM-SIF model: the APSIM-DCaPST model and the SIF module. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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developed a data-driven approach to retrieve SIF emission at 740 nm 
from TROPOMI radiance measurements, based on the singular value 
decomposition technique. The TROPOMI SIF product provides daily 
global observations at a high spatial resolution of 3.5 × 7 km at nadir. 
We used data from May to September in 2018 with cloud cover < 0.15. 
The correction factor (Köhler et al., 2018) provided in the TROPOMI SIF 
data product was used to convert instantaneous SIF into daily mean SIF. 
RNIR (Eq. (14)) was calculated as the ratio of the canopy continuous-level 
radiance to the solar irradiance obtained from the TROPOMI SIF product 
(Zhang et al., 2019) to ensure that the observation direction remained 
the same as for the satellite SIF observations. NDVI (Eq. (14)) was 
calculated from the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) 
product (MCD43A4.006), which has a spatial resolution of 500 m, in 
order to minimize potential seasonal effects under different observation 
and illumination conditions (Strahler et al., 1999). The MODIS NDVI 
product was resampled to the spatial resolution of TROPOMI SIF (7 km 
× 7 km) using the Google Earth Engine (GEE, https://earthengine.goog 
le.com) platform. 

2.4.4. The APSIM-SIF simulation 
To match with the TROPOMI SIF product, we conducted the APSIM- 

SIF simulation for maize and soybean in the U.S. Midwest at a spatial 
resolution of 7 × 7 km and at a daily time step. The crop grid squares for 
maize and soybean were resampled from the CDL dataset based on the 
nearest neighbor method. Pixels with a low crop fraction (<10%) were 
not considered. In total, we obtained 6114 grid squares for maize and 
5955 grid squares for soybean (Fig. S2). A three-year period was simu-
lated, consisting of one spin-up year (2017) and two years (2018 and 
2019) for the regional simulation. All the required inputs for the 
regional simulation were converted to the APSIM format and aggregated 
into a spatial resolution of 7 × 7 km. 

3. Results 

3.1. APSIM-SIF evaluation 

3.1.1. Validation of the APSIM-DCaPST model 
The APSIM-SIF model accounted for most of the variability in daily 

GPP for maize at US-Ne2 and US-Ne3, with average R2 values of 0.93 
(RMSE = 2.61 g C m− 2 day− 1) and 0.94 (RMSE = 3.13 g C m− 2 day− 1), 
respectively (Fig. 3a and b). Although the simulated aboveground 
biomass had a strong correlation with the observations (R2 > 0.99), 

Fig. 3. Observations (circles) of daily mean gross primary productivity (GPP, g C m− 2 day− 1, a, b), above-ground biomass (kg ha− 1) (c, d), and leaf area index (LAI, 
m2 m− 2, e, f) for maize at US-Ne2 (left column) and US-Ne3 (right column) in 2011 compared with values simulated by APSIM-SIF (lines). Similar results for 2013 are 
provided in Fig. S4. 
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APSIM-SIF tended to overestimate above-ground biomass in the later 
growing season by a magnitude of around 1500 kg ha− 1 with a relative 
error < 7.5% (Fig. 3c and d). The APSIM-SIF model also accounted for 
more than 90% of the variation in LAI measurements at these two sites 
(Fig. 3e and f), but it appears to have underestimated LAI at high 
observed LAI values. 

The performance of APSIM-SIF in simulating daily GPP for maize and 
soybean was further evaluated at Bo1, Br1, and Ro1 (Table S1, Fig. S5). 
At these three sites, simulated daily maize GPP was well correlated with 
observed GPP, with the model accounting for more than 65% of the 
variability in GPP: 66% (RMSE = 5.35 g C m− 2 day− 1), 85% (RMSE =
3.46 g C m− 2 day− 1), and 83% (RMSE = 3.59 g C m− 2 day− 1) at Bo1, Br1, 
and Ro1, respectively (Fig. S5a, b, c). The model also captured the dy-
namics of photosynthetic activity of soybean well, explaining 64% 
(RMSE = 3.04 g C m− 2 day− 1), 80% (RMSE = 2.65 g C m− 2 day− 1), and 
71% (RMSE = 3.43 g C m− 2 day− 1) of the variability in daily GPP at the 
respective three sites (Fig. S5d, e, f). 

3.1.2. Validation of the SIF module 
The APSIM-SIF model captures the seasonality of TOC SIF (Fig. 4a) 

and GPP (Fig. 4c) at the Daman site well with R2 values of 0.84 (RMSE =
0.22 mW m− 2 sr-1 nm− 1, RRMSE = 24.68%) and 0.81 (RMSE = 2.67 g C 
m− 2 day− 1, RRMSE = 19.33%), respectively. The R2 between simulated 
and observed TOC SIF (SIFtoc_m vs. SIFtoc_o) showed an increasing trend as 
LAI increased (Fig. 4b). SIFtoc_m determined 51% of SIFtoc_o variability 
(RMSE = 0.16 mW m− 2 sr-1 nm− 1, RRMSE = 32.59%) in the low LAI 
values (LAI < 2), indicating the negative effect of soil reflectance caused 
by the sparse canopy. In contrast, SIFtoc_m accounted for 84% of the 
variance (RMSE = 0.22 mW m− 2 sr-1 nm− 1, RRMSE = 23.49%) in SIFtoc_o 
under high LAI levels. We also found that GPP was overestimated by the 
model when LAI values were low: the RRMSE was larger than 60% for 
LAI < 2 (Fig. 4c and d). 

3.2. Regional SIF simulation 

3.2.1. Variability of SIFtoc and fesc 
We produced monthly mean top-of-canopy SIF values (SIFtoc_o, mW 

m− 2 sr-1 nm− 1) from daily TROPOMI SIF observations, for the period 
from June to September (Fig. 5 a-d). We were also able to simulate top- 
of-canopy SIF (SIFtoc_m, Fig. 5e-h) from SIFtot and fesc. Overall, SIFtoc_m 
values were of comparable magnitude to SIFtoc_o for soybean and maize: 
the largest difference between SIFtoc_m and SIFtoc_o being<0.1 mW m− 2 sr- 

1 nm− 1 (11%) in the summer (July and August, Fig. 5f and g), confirming 
that the estimation of SIFtot and fesc was reasonably good. However, the 
difference between SIFtoc_m and SIFtoc_o increased in September (Fig. 5h): 
SIFtoc_m was underestimated by 0.16 and 0.13 for maize and soybean 
(29% and 25%), respectively (Table 1). To check the spatiotemporal 
correspondence between simulated and observed TOC SIF, an empirical 
orthogonal function (EOF) analysis (Sun et al., 2017) was performed on 
the monthly averaged SIFtoc_m and SIFtoc_o in the study region during the 
growing season (June–September), and their temporal and spatial co-
herences for the orthogonal components were investigated. The first two 
EOFs (EOF1 and EOF2) explained 94 % (Fig. S6a and e) and 98% 
(Fig. S6b and f) of the variability in SIFtoc_m and SIFtoc_o, respectively. For 
the first leading mode, SIFtoc_m and SIFtoc_o showed similar spatial pat-
terns, especially in the Corn Belt (Fig. S6a and b), and the Pearson 
correlation coefficient (r) between them was consistently high across 
maize (0.73, Fig. S6d) and soybean (0.63, Fig. S6d). In the second mode, 
SIFtoc_m had a higher correlation with SIFtoc_o (r = 0.78, Fig. S6e and f), 
with r = 0.59 and 0.85 for maize and soybean (Fig. S6h), respectively. 
The time series of the first two components also showed a high similarity 
between SIFtoc_m and SIFtoc_o (Fig. S6c and g). Taken together, the EOF 
analysis showed that the spatiotemporal variations of SIFtoc_m and SIFtoc_o 
were highly consistent, indicating that the APSIM-SIF model had a 
satisfactory performance in simulating TOC SIF in maize and soybean. 

Daily fesc values were also aggregated into monthly values (Fig. 5i-l). 
Poor quality reflectance data may cause large uncertainties in fesc, and 

Fig. 4. Comparisons of daily SIF (a, b) and GPP (c, d) between ground measurements and simulations from APSIM-SIF at the Daman site in 2018. The performance of 
APSIM-SIF with the coefficient of determination (R2), root mean square error (RMSE, mW m− 2 sr-1 nm− 1 for SIF and g C m− 2 day− 1 for GPP), relative root mean 
square error (RRMSE, %) under different LAI levels is shown in the subplots on the right. 
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~ 2% of the available data was discarded by adopting fesc < 0.05 and fesc 
greater than 0.5 as thresholds. Maize had a relatively stable fesc during 
the growing season, varying in the range of 0.12–0.18 (Table 1). The leaf 
angle distribution in maize was more planophile during early stages of 
crop development, although a shift to erectophile canopies may occur 
with increased LAI to avoid overlap between leaves (Dechant et al., 
2020). Because erectophile canopies have smaller fesc than planophile 
canopies (Zeng et al., 2019), this adjustment in leaf angle distribution 
tended to offset the increase in fesc due to increase in LAI, leading to a 
relatively stable pattern of fesc in maize (Table 1). In contrast, the fesc of 
soybean showed a strong increase during the early phase, with a mod-
erate decrease in the peak growth period of the growing season: soybean 
fesc reached a maximum value of 0.32 in June (Fig. 5i, Table 1), 
decreased to 0.21 in July (Fig. 5j, Table 1), and remained almost 

constant at 0.13 in the final two months (Fig. 5k and l, Table 1). The leaf 
angle distribution in soybean largely remained erectophile throughout 
the growing season, which may explain the observed decreasing pattern 
of fesc when the canopy closed (Table 1). In addition, soybean had a 
consistently higher fesc than maize in June and July: soybean fesc was 
almost twice as large as maize fesc in June (Table 1). During senescence, 
the cropland became more heterogeneous as LAI decreased, such that 
fesc derived under the 1-D assumption (see Limitations) may have caused 
more uncertainties (Wang et al., 2020; Zhang et al., 2019). 

3.2.2. Effects of cropland area on the performance of APSIM-SIF 
The spatial distribution of the R2 between daily SIFtoc_m and SIFtoc_o 

(Fig. 6) showed that the performance of APSIM-SIF in simulating TOC 
SIF emission may deteriorate for grid squares with small cropland area. 

Fig. 5. Monthly mean top-of-canopy SIF emission provided by TROPOMI observations (SIFtoc_o, mW m− 2 sr-1 nm− 1), top-of-canopy SIF emission simulated by the 
APSIM-SIF model (SIFtoc_m, mW m− 2 sr-1 nm− 1), and fluorescence escape ratio (fesc) in June (a, e, i), July (b, f, j), August (c, g, k), and September (d, h, l), 2018. 
SIFtoc_o, fesc, and SIFtoc_m are for 740 nm. 

Table 1 
Daily mean and standard deviations (in parentheses) of fluorescence escape ratio (fesc) and top-of-canopy SIF emission (SIFtoc_m, mW m− 2 sr-1 nm− 1), photosynthetically 
active radiation (PAR, MJ m− 2 day− 1), fraction of absorbed photosynthetically active radiation (fAPAR), and leaf area index (LAI, m2 m− 2) of maize (M) and soybean (S) 
simulated by the APSIM-SIF model for U.S. Midwest in June, July, August, and September 2018. SIFtoc_o represents daily mean top-of-canopy SIF emission provided by 
TROPOMI. SIFtoc_m, SIFtoc_o, and fesc are for 740 nm.   

June July August September 

M S M S M S M S 

SIFtoc_o 0.75 
(0.19) 

0.80 
(0.25) 

1.08 
(0.24) 

1.01 
(0.22) 

0.80 
(0.16) 

0.87 
(0.19) 

0.55 
(0.13) 

0.51 
(0.12) 

fesc 0.18 
(0.04) 

0.32 
(0.09) 

0.15 
(0.03) 

0.21 
(0.05) 

0.14 
(0.03) 

0.13 
(0.03) 

0.12 
(0.03) 

0.13 
(0.05) 

SIFtoc_m 0.78 
(0.24) 

0.95 
(0.29) 

1.01 
(0.27) 

1.00 
(0.24) 

0.78 
(0.21) 

0.77 
(0.21) 

0.39 
(0.13) 

0.38 
(0.14) 

PAR 19.98 
(1.82) 

20.07 
(2.58) 

21.71 
(0.89) 

21.84 
(0.83) 

18.43 
(1.10) 

18.33 
(1.15) 

15.81 
(1.66) 

15.87 
(1.71) 

fAPAR 0.63 
(0.06) 

0.34 
(0.03) 

0.92 
(0.02) 

0.66 
(0.03) 

0.92 
(0.03) 

0.94 
(0.03) 

0.81 
(0.05) 

0.78 
(0.18) 

LAI 1.97 
(0.42) 

0.68 
(0.07) 

4.67 
(0.28) 

2.04 
(0.19) 

4.11 
(0.45) 

4.99 
(0.82) 

2.27 
(0.42) 

2.84 
(1.67)  
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For example, among the states where cropland covers most of the area 
(e.g., Illinois and Iowa), a much stronger correlation between SIFtoc_m 
and SIFtoc_o was observed than for those with small, fragmented cropland 
areas (e.g., Kansas and Missouri) (Fig. 6a). The R2 between SIFtoc_m and 
SIFtoc_o increased from 40% to more than 85% when crop fraction 
increased from 30% to 80% (Fig. 6a and b). In particular, R2 reached 
more than 0.75 for grid squares with more than 70% crop area, which 
accounted for around 28% of the total number of grid squares (Fig. 6b). 
In contrast, most R2 values were less than 0.5 for grid squares with 
cropland area of less than 30% (Fig. 6a and b). 

4. Discussion 

4.1. From photosynthesis to TOC SIF 

In related previously published studies, a single correction factor (k), 
which was either a constant or an empirical function of LAI, was used to 
convert leaf-level full broadband SIF emission into a TOC narrowband 
SIF signal. However, as we have shown above, this conversion involves 
two major steps that are very different in their physical basis and con-
trolling factors. Although k is computationally efficient, its use makes it 
difficult to identify the key variables, and may limit development of a 
deeper understanding of the underlying mechanisms operating. 

We mechanistically decomposed this conversion into two factors: the 
SIF band conversion factor ε, and the fluorescence escape ratio, fesc. As 
the conversion is explicitly formulated, any further advances in esti-
mating ε and fesc can be easily employed to improve the performance of 
APSIM-SIF. Further, we found that ε in the NIR region was controlled 
primarily by the quantum efficiency of photosystem II (Fqe2) and leaf 
chlorophyll concentration (Cab), reflecting the impact of plant status and 
growth stage (Fig. S7). Considering that the variation in Cab is relatively 
low in the peak growth season, it is plausible that the estimation of ε in 
the NIR wavelengths can be greatly simplified. 

fesc represents the impact of canopy structure on radiation transfer of 
the SIF signal within plant canopies. It is a complex function of the sun- 
canopy-sensor geometry and canopy structural parameters (e.g., leaf 
area index and leaf inclination distribution) such that use of a simple 
factor, such as k, without observing constraints may not estimate fesc 
with reasonable accuracy. Recent studies (Yang and van der Tol, 2018; 
Liu et al., 2016; Zeng et al., 2019; Lu et al 2020) have shown that 
directional reflectance in the NIR domain has good potential to repre-
sent the scattering/(re)absorption processes in the propagation of NIR 
SIF through vegetation canopies. In other words, the impacts of these 
processes on fesc are implicitly taken into account by incorporating 
directional reflectance. As directional reflectance is concurrently 

measured with TOC SIF and the atmospheric effect is limited in the NIR 
domain (Zhang et al., 2019), the reflectance-based method has a prac-
tical advantage. We also found that fesc remained relatively constant 
across maize (0.14–0.15) and soybean (0.17–0.21) dominated cropland 
during the summer crop growth period (July-August, Table 1). Thus it is 
feasible to determine fesc by using a constant value derived from the peak 
growing season, which may considerably simplify the application of the 
APSIM-SIF model for crop canopies. 

4.2. Limitations 

First, there is room for improvement in the calculation of ε in future 
work. The excitation-fluorescence matrices used in this study were 
developed for maize (PSI) and barley (PSII), respectively (Franck et al., 
2002), and their level of suitability for maize and soybean is not clear. 
Also, there is a lack of understanding regarding how these matrices deal 
with the response to stressful conditions such as high air temperature, 
strong light intensity, high VPD, etc. Additional experiments will be 
needed to evaluate the performance of the matrices under stressful 
conditions. 

Second, the derivation of fesc (Eq. (14)) is based on the spectral 
invariant theory (Knyazikhin et al., 2011) that assumes that the 
contribution of soil to TOC directional reflectance is negligible (i.e., 
‘black soil’). However, for row crops, such as maize and soybean, the 
strips of bare soil between rows can make a substantial contribution to 
TOC radiance prior to the soil surface being completely covered by the 
crop canopy (Zhao et al., 2010). Early or late in the growing season, 
when LAI values are low, fesc may also have large uncertainties due to 
strong soil contamination. 

5. Conclusions 

In this study, the APSIM-SIF model was developed within the 
framework of the new APSIM model and its DCaPST module. Leaf-level 
broadband SIF emission was first estimated according to photosynthetic 
carbon assimilation in crops. In contrast to previous studies, we then 
mechanistically decomposed the conversion from broadband SIF 
emitted from leaves to narrowband TOC SIF into two factors, namely ε 
and fesc. We found that ε is responsible for estimating narrowband SIF 
from the broadband SIF at the leaf scale, and can reveal the impact of 
physiological status. The second factor, fesc, on the other hand, repre-
sents the impact of canopy structure on the radiative transfer of emitted 
SIF. TOC directional reflectance in the NIR region demonstrated good 
potential for estimating fesc. We also show that fesc remained relatively 
constant during the peak growth period of the crop growing season, 

Fig. 6. The spatial distribution of the coefficient of determination (R2) between the daily simulated and observed TOC SIF (mW m− 2 sr-1 nm− 1) (a) and the crop 
fraction (b) within 7 × 7 km grid squares across the U.S. Midwest in 2018. 
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which promotes the APSIM-SIF model’s efficiency. The validation re-
sults show that APSIM-SIF can accurately track dynamic changes in GPP 
and SIF of crops at the site scale. Our findings highlight the importance 
in considering of cropland area on the performance of APSIM-SIF. This 
work contributes to the understanding of the observed signals from 
satellites and crop photosynthesis at the regional scale. Further research 
is needed to combine SIF observations with the APSIM-SIF model to 
improve crop yield prediction. This study not only establishes the 
connection between crop photosynthesis and SIF emission, but also 
provides a general scheme to integrate SIF emission into the photosyn-
thesis process in agricultural system models. 
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