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A B S T R A C T   

Obtaining the minimum temperature of greenhouse (Timin) in advance can determine the lower limit of crop 
growth. Some research thought that was feasible to install sensors in the greenhouse so that can obtain the input 
variables for predicting Timin. However, lots of expenditures would be spent for intensive greenhouse parks. Local 
weather data can be easily and economically obtained so that considered it as an input variable for predicting 
Timin. First, the Pearson correlation coefficients were used to select the relevant input meteorological variables 
and eight different input combinations were consequently constructed. Then, three generalized machine learning 
models (i.e. Random forest, RF; Support vector machine, SVM; and Multiple linear regression, MLR) and two 
deep learning models (i.e. Long-short term memory, LSTM; Gated recurrent unit, GRU) were used to predict Timin 
based on the eight different input combinations. The results showed that the RF and GRU model had the best 
prediction performance among the generalized machine learning and deep learning models, respectively. Deep 
learning models were not sensitive to the number of input variables. In the absence of sufficient meteorological 
factors as input variables, the GRU model generally had better prediction performance than the other models. 
The prediction ability of deep learning models was obviously superior to the generalized machine learning 
models when Timin > 28.5 ◦C or Timin < 13.9 ◦C, particularly for the GRU model. Most of the differences between 
predicted and observed value (Di) of deep learning models distributed between − 1 ◦C and 1 ◦C. And most of the 
predicted Timin by RF, SVM and MLR models were lower than the actual Timin, while the deep learning models 
were relatively stable. Finally, consider the prediction accuracy in terms of lacking input variables and the 
stability of the model, we recommended deep learning models to predict Timin, especially the GRU model.   

1. Introduction 

A greenhouse is an agricultural building incorporating a large win-
dow area, where the windows are made of glass or some other trans-
parent material. Sunlight heats the ground of the greenhouse. Energy is 
released from the ground in the form of infrared radiation which is 
blocked by the glass. This increases the temperature inside the green-
house relative to the outside temperature. Usually, greenhouse provides 

protection for crops in unsuitable seasons by creating a suitable micro-
environment (Critten and Bailey, 2002). Therefore, the well-growth of 
greenhouse crops heavily depends on the environmental management of 
greenhouse. Temperature is one of the most important environmental 
factors in crop growth (Willits and Peet, 1998). Thus, regulation of 
temperature is one of the main goals of environmental management of 
greenhouse. 

In greenhouse, most crops were able to fully grow and develop at 
daytime temperatures of 20–30 ◦C and night temperatures of 14–18 ◦C 
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(Hassanien et al., 2016). Unsuitable temperature will significantly 
hinder plant growth, yield, and fruit quality of crops (Kläring et al., 
2015). Additionally, the lower limit of crop growth is determined by the 
minimum temperature in greenhouse (or Timin). In winter, freeze injury 
occurs when Timin is lower than the optimum temperature for crop 
growth. And heat injury also occurs when Timin is higher than the opti-
mum temperature in summer (Lamaoui et al., 2018; Zeps et al., 2017). 
Then, some measures such as heat preservation, heating and cooling 
need to be taken to make the Timin reach the threshold value suitable for 
crop growth (Attar et al., 2013; Attar et al., 2014; Ylidiz et al., 2012). 
However, the time lag between management and Timin change usually 
failed the maximization of heat energy efficiency of intensively managed 
greenhouses. Thus, timely forecast of Timin before management measures 
can help to improve heat energy efficiency and offer optimal tempera-
ture for crop growth in greenhouse. 

However, temperature change in greenhouse was full of uncertainty 
and typically transient. Thus, accurate temperature forecasting in 
greenhouse remains a challenge, which are mainly the following as-
pects. One the one hand, the change of temperature in greenhouse was 
shown a non-linear tendency (El Ghoumari et al., 2005). Another issue is 
that temperature had strong coupling with other factors in greenhouse 
like soil and crop. This leads to the calculation of unmeasurable pa-
rameters such as soil heat flux density, photosynthesis rate and water 
vapor pressure in predicting greenhouse temperatures (Jung et al., 
2020; Pawlowski et al., 2017). Some useful prediction models for 
greenhouse temperature have been reported in literature (Coelho et al., 
2005; Dombayci and Goelcue, 2009; Du et al., 2012; Yu et al., 2016). 
Generally, there are three categories of greenhouse temperature pre-
diction models: physical models, empirical models, and artificial intel-
ligence models. Although the physical models could effectively predict 
greenhouse temperature, they usually required more observation data 
and computing resources for model calibration (Van Beveren et al., 
2015). The empirical models aimed to reveal the linear relationships 
between prediction variables and input variables, and were widely 
accepted because of their excellent performance in predicting linear 
problems (Reikard, 2009; Wang et al., 2019). However, the empirical 
models could be restricted by the non-linear variations of greenhouse 
temperature. With the development of big data, artificial intelligence 
(AI) has been widely applied in data science. As part of AI, generalized 
machine learning and deep learning algorithms could achieve accurate 
predictions through elucidating the nonlinear relationships between 
input and output variables (He et al., 2020; Yu et al., 2016). Deep 
learning, as an important branch of machine learning, has shown more 
powerful predictive ability than shallow models (Cao et al., 2021; Huang 
et al., 2021). However, there were almost no relevant literature about 
the comparisons between generalized machine learning and deep 
learning models in terms of Timin prediction. 

Generally, these above prediction models of greenhouse temperature 
have their own problems though they could achieve relatively reason-
able prediction accuracies. First of all, physical and empirical models 

were usually complex in structure and required a large number of model 
parameters. These model parameters usually need to be obtained 
through field measurements with specific environmental equipment 
(Chen et al., 2016; Guzman-Cruz et al., 2009). The machine learning 
models were more efficient in predicting greenhouse temperature. 
However, environment-monitoring equipment should be installed in 
greenhouse to obtain the input variables of the models. Therefore, 
although machine learning models were superior to physical and 
empirical models in terms of model structure and predictive perfor-
mance, most previous studies needed specific devices to collect relevant 
data for greenhouse temperature prediction. Usually, it was expensive 
for farmers to set up environment monitoring system in greenhouse 
(Aiello et al., 2018). Hence, it was necessary find a new method to 
predict greenhouse temperature more conveniently and efficiently. 

In greenhouse, the variation of temperature was a non-linear dy-
namic process, and outside environmental factors could inevitably affect 
the inside temperature. Generally, it was feasible to predict greenhouse 
temperature based on several measured outside meteorological factors. 
This was mainly because the dynamics of greenhouse temperature were 
main determined by the differences in energy and mass contents be-
tween inside and outside environments of greenhouse. More impor-
tantly, data of external meteorological factors can be easily and 
economically obtained from local weather stations. However, few 
studies focused on the influences of different outside meteorological 
factors on inside temperature of greenhouse. In addition, the number of 
local meteorological factors that can be obtained was different in 
different regions, which was caused by the differences in the equipment 
of the weather stations. Therefore, the selection of optimal combination 
of input meteorological variables was also a key to Timin prediction, 
especially lacking input variables. 

In response to the above problems in the prediction of the minimum 
temperature in greenhouse or Timin, the objectives of this study were to 
(1) the feasibility of using local meteorological factors as input variables 
to predict Timin; (2) evaluate the performances of different models and 
input variable combinations in dynamic Timin prediction, especially in 
the case of insufficient input variables; and (3) analyze the stability of 
different models based on the distributions of differences between pre-
dicted and observed Timin values (Di). The results of this study will prove 
the reliability of using local meteorological factors as input variables to 
predict Timin, especially lacking input variables. Thereby providing an 
efficient and economical method in intensive greenhouse parks. 

2. Materials and methods 

2.1. Greenhouse and dataset 

All relevant observations were conducted in a typical solar green-
house located in Changle County (N36̊41′, E118̊50′), Weifang City, 
Shandong Province, China (Fig. 1). This type of solar greenhouse was 
very common in northern China. The experiment area was located in 

Nomenclature 

Tair Air temperature (◦C) 
Tomax Outdoor air maximum temperature (◦C) 
Tomin Outdoor air minimum temperature (◦C) 
Rain Rainfall (mm) 
Pa Air pressure (kPa) 
VPD Vapor pressure deficits (kPa) 
Tdp Dew point temperature (◦C) 
RH Relative humidity (%) 
RHmin Minimum relative humidity (%) 
WSta Two-minute average wind speed (m/s) 

WDta Two-minute average wind direction (◦) 
Togmax Outdoor ground maximum temperature (◦C) 
Togmin Outdoor ground minimum temperature (◦C) 
Timin Minimum temperature in greenhouse (◦C) 
RF Random forest 
SVM Support vector machine 
MLR Multiple linear regression 
LSTM Long-short term memory neural network 
GRU Gated recurrent unit neural network 
R2 Decision coefficient 
RMSE Root mean square error (◦C) 
Di Difference between predicted and observed value (◦C)  
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temperate monsoon zone. The minimum temperature in greenhouse or 
Timin was measured by a thermal sensor placed in the center of the 
greenhouse (Fig. 1b). The sensor recorded Timin hourly from 01/20/2017 
to 12/30/2018. Hourly meteorological data between 01/20/2017 and 
12/30/2018 were obtained from the National Meteorological Informa-
tion Center of China (NMIC), including outdoor air temperature (Tair, 
◦C), outdoor maximum temperature (Tomax, ◦C), outdoor minimum 
temperature (Tomin, ◦C), rainfall (Rain, mm), air pressure (Pa, kPa), vapor 
pressure deficits (VPD, kPa), dew point temperature (Tdp, ◦C), relative 
humidity (RH, %), minimum relative humidity (RHmin, %), two minute 
average wind speed (WSta, m/s), two minute average wind direction 
(WDta, ◦), occurrence of ground maximum temperature (Togmax, ◦C), and 

outdoor ground minimum temperature (Togmin, ◦C). These meteorolog-
ical data were also recorded hourly and synchronized with the recording 
frequency of Timin. 

After obtaining the dataset, appropriate input variables were 
selected for the generalized machine learning and deep learning models. 
First, all obtained data should be standardized. It was essential to 
analyze the correlations between meteorological factors and Timin to 
select the relevant input variables effectively. Then, meteorological 
factors with a correlation coefficient>0.5 were selected as input vari-
ables to the models. It was also necessary to investigate the prediction 
performances of different models under different input combinations of 
meteorological variables. Finally, 70 % of the available data were used 

Fig. 1. A real photograph (a) and the diagrammatic sketch (b) of the solar greenhouse (length = 85 m; width = 10 m; height of ridge = 4 m; south roof = 14.5 m; 
north roof = 2 m) investigated in this study. 

Timin 

Tair, Tomax, Tomin
Tair, Tomax, Tomin,

VPD

Tair, Tomax, Tomin,
Tdp

Tair, Tomax, Tomin,
Togmin

Tair, Tomax, Tomin,
VPD, Tdp

Tair, Tomax, Tomin,
VPD, Togmin

Tair, Tomax, Tomni,
Tdp, Togmin

Tair, Tomax, Tomin,
VPD, Tdp, Togmin

Timin 

Random Forest

Support Vector Machines

Multiple Linear Regression

Fig. 2. Framework of Timin prediction based on generalized machine learning and deep learning models. F1 - Fn represent the data series of observed Timin; C1 - Cn are 
the data series of input variables; and P1 - Pn are the data series of final predicted output values. The meanings of variables are referred to the Nomenclature. 
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to train the models and the rest 30 % were used to test the models. The 
training data has passed 10-fold cross-validation, so that the samples of 
highest training accuracy were obtained to train the model. More details 
about Timin prediction with generalized machine learning and deep 
learning models could be found in Fig. 2. 

2.2. Models for Timin prediction 

Random forests (RF) 

For regression, Random forest (RF) is a combination predictor based 
on the prediction of decision trees, in which growing trees depend on the 
value of random vector. The decision tree will get numerical values 
instead of class labels. Random forest will not overfit because of the Law 
of Large Numbers. So it is a reasonable and efficient predictor (Breiman, 
2001). In this study, the ‘Random forest’ package in R language (R 
software, v4.0.3) was used to construct the RF model to predict the Timin. 

Support vector machine (SVM) 

Support vector machine (SVM) is a kind of machine learning pre-
dictor based on kernel function. SVM was proposed by Vapnik in 1995 
and widely used in classification and regression tasks (Vapnik, 1995). 
The SVM maps the input vector to a high-dimensional space, which 
constructs an optimally separated hyperplane. Then a kernel function is 
constructed in the space to perform secondary classification and 
regression of the input data. Thus, it has strong predictive performance, 
but its calculation cost is high. In this study, the ‘e1071′ package was 
used to construct the SVM model to predict Timin in R language. 

Multiple Linear Regression (MLR) 

Multiple linear regression (MLR) is mainly used to deal with the in-
fluences of multiple factors on dependent variables. In the task of mul-
tiple regression prediction, MLR mainly constructs the final predictor by 
constructing the fitting relationship between the observed multiple in-
dependent variables and a dependent variable (Eq. (1)). In this study, 
MLR was directly constructed in the R language to predict Timin. 

y = b0+ b1x1+ b2x2+ b3x3+⋯+ bzxz (1)  

where b0, b1, b2, b3 and bz are the regression coefficients; x1, x2, x3, xz are 
input variables; y is predictive variable. 

Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) model was proposed by 
(Hochreiter and Schmidhuber, 1997) (Fig. 3a) and belonged to recurrent 
neural network (RNN) model. Usually, RNN had some imperfections 
about non-stationarity and long-term dependence when processing 
long-term series data. LSTM changed the basic structure of RNN neural 
unit by adding a forget gate between the input and output gates, so that 
it had long-term memory and the ability to prevent gradient vanishing. 
Therefore, LSTM is more suitable for the task of predicting long-term 
sequence due to its own network structure (Chen et al., 2019). In this 
study, we used the Tensorflow v2.3.1 in Python v3.6.10 to build the 
LSTM network to predict Timin. 

(5) Gated Recurrent Unit (GRU). 
The Gated Recurrent Unit (GRU) model is another variant of RNN 

(Fig. 3b), which was proposed by (Chung et al., 2014). Like LSTM, the 
original GRU was also based on long-term dependence but had fewer 
parameters. GRU can better deal with the prediction problem of long 
sequence data than RNN. Unlike LSTM, GRU only had two gates (update 
gate and reset gate) without output gates and separate memory cells, 
which made all information exposed as information flowed inside the 
unit. However, the structure of GRU was simpler and easier to converge 
than LSTM. Thus, it is difficult to compare the performances of two 
models, except for some specific tasks (Shewalkar et al., 2019). In this 
study, we also used Tensorflow v2.3.1 in Python, v3.6.10 to build the 
GRU network to predict Timin. 

2.3. Statistical indices 

The Pearson correlation coefficient (ρA,B) was used to determine the 
correlation between Timin and meteorological variables (Eq. (2)). The 
performance and accuracy of the five Timin prediction models were 
evaluated based on widely used statistics of coefficient of determination 
(R2; Eq. (3)) and root mean square error (RMSE; Eq. (4)). Generally, R2 is 
closer to 1, indicating the model has higher goodness of fit. And, RMSE is 
closer to 0, indicating the model has smaller deviation. 

Fig. 3. Details of the LSTM (a) and GRU (b) models. h is current hidden state; x is current input; σ are gates. The gates of LSTM from left to right are: input gate, 
output gate, and forget gate. The gate of GRU from left to right are: update gate and reset gate. The symbol tanh is the tanh function. 
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where ρA,B is the Pearson correlation coefficient; A and B are Timin and 
meteorological variables; n is the data sample size. 

R2 =
[
∑n

i=1(Xi − X)(Yi − Y)]2
∑n

i=1(Xi − X)2∑n
i=1(Yi − Y)2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Yi − Xi)2

√

(4)  

where Yi is the model predicted value of Timin on the i-th hour; Xi is the 
measured value of Timin on the i-th hour; Y is the average of Yi; X is the 
average of Xi; n is the data sample size. 

3. Results 

3.1. Selection of combinations of meteorological variables outside the 
greenhouse 

We comprehensively analyzed the relationships between Timin and all 
of the outdoor meteorological variables (Fig. 4). The upper triangular 
part of the matrix represented the correlation coefficients between the 
factors and the lower triangular part was the variations of correlations 
between Timin and 13 meteorological variables. The larger red font 

presented significant correlations. The correlations between Timin and 
different meteorological variables were different. The rankings of cor-
relations between Timin and meteorological variables were: Togmin ˃ Tair 
= Tomax = Tomin ˃ VPD ˃  Tdp ˃ WSta ˃ Rain ˃  WDta ˃ RH ˃  RHmin ˃ Togmax ˃ 
Pa. The variables of Togmin, Tair, Tomax, Tomin, VPD, Tdp, WSta, Rain, and 
WDta were all positively correlated with Timin, while RH, RHmin, Togmax, 
and Pa were negatively correlated. It was obvious that Timin had positive 
correlations with temperature-related variables except for Togmax (Togmin, 
r = 0.87; Tair, Tomax, Tomin, r = 0.83; Tdp, r = 0.64; Togmax, r = -0.22). 
Although Timin had positive correlations with Rain (0.061), WSta (0.18), 
and WDta (0.051), these relationships were obviously weak (Fig. 4). This 
was because the purpose of greenhouse was to provide a windproof and 
rainproof small environment for crop growth, which means that the 
influences of rainfall and wind on Timin were relatively limited in 
greenhouse. The variables of Pa, RH, RHmin, and Togmax were negatively 
correlated with Timin (Fig. 4). Pa obtained the maximum negative cor-
relation coefficient (-0.64). Additionally, Pa also had significant negative 
correlations with Tair, Tomax, and Tomin. This was because the increase of 
air temperature would make the inside air to expand and lead to de-
creases in air density and air pressure. 

For the generalized machine learning models, when the input vari-
able and output variables had high positive correlations, the training 
speed and accuracy of the models will be more excellent. Therefore, the 
meteorological variables that had negative correlations and low corre-
lations (r < 0.5) with Timin were excluded. It was noteworthy that Timin 
had similar r values with Tair, Tomax, and Tomin, which indicated these 
variables might have similar temporal variations, but it did not mean 
these variables were interchangeable. Thus, all of these temperature- 

Fig. 4. Correlation analysis between the 
lowest temperature in greenhouse (Timin) and 
outdoor meteorological variables. The lower 
triangle indicates the correlations between 
variables and the upper triangle indicates the 
correlation coefficients (r) between different 
variables. Red numbers represent signifi-
cantly positive correlations (r > 0.5 and p <
0.001). The meanings of variables were 
referred to the Nomenclature. (For inter-
pretation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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related variables were chosen as input variables for the models. We also 
selected VPD, Tdp, and Togmin as input variables and combined them with 
the three basic variables of Tair, Tomax, and Tomin. Hence, a total of eight 
different input combinations were obtained: (A) Tair, Tomax, Tomin; (B) 
Tair, Tomax, Tomin, VPD; (C) Tair, Tomax, Tomin, Tdp; (D) Tair, Tomax, Tomin, 
Togmin; (E) Tair, Tomax, Tomin, VPD, Tdp; (F) Tair, Tomax, Tomin, VPD, Togmin; 
(G) Tair, Tomax, Tomni, Tdp, Togmin; and (H) Tair, Tomax, Tomin, VPD, Tdp, 
Togmin. 

3.2. Performances of different models in Timi. Prediction 

3.2.1. Influences of eight input combinations in Timin prediction 
The RF (Random forest) model achieved the highest R2 of 0.87 with 

the input Combination F (Tair, Tomax, Tomin, VPD, and Togmin), but the 
lowest RMSE of 4.43 ◦C with the Combination D (Tair, Tomax, Tomin, and 
Togmin) (Table 1). Generally, the R2 values of RF model increased with the 
number of input variables. The RMSE values also showed a downward 
trend (Fig. 5). 

The SVM (Support vector machine) model with the Combination D 
had the optimal prediction performance (R2 = 0.87 and RMSE = 4.52 ◦C 
in Table 1). However, the R2 value of SVM model rose first and then fell 
with the increased number of input variables. The RMSE values of SVM 
showed weak increasing tendency (Fig. 6). Thus, it could be seen that 
addition of excess meteorological variables would affect the final pre-
diction accuracy of the SVM model (Table 1). 

For the MLR (Multiple linear regression) model, it achieved the 
optimal prediction performance (R2 = 0.86 and RMSE = 4.36 ◦C; 
Table 1) with the Combination H (Tair, Tomax, Tomin, VPD, Tdp, and Togmin). 
Although there were strong correlations among Tair, Tomax, and Tomin, the 
relationships between input variables and output variable were weak 
(Fig. 4). When the number of input variables was large, the final pre-
diction of the MLR model was more accurate. Thus, for the MLR model, 
with the increased number of input variables, the prediction of Timin 
became more accurate (Fig. 7). The R2 of the Combination H was 12.3 % 
higher than that of Combination A and the RMSE was reduced by 20.0 % 
compared with Combination A (Table 1). 

The LSTM (Long short-term memory) model had the highest R2 of 
0.844 and the lowest RMSE of 3.88 ◦C with the Combination D. The R2 of 
LSTM model hardly changed with the increase of input variable number, 
only increased by 0.48 % from Combination A to H. At the same time, 
the RMSE values only reduced by 0.27 % (Fig. 8). For the GRU (Gated 
recurrent unit) model, the optimal input variable was the Combination 
H (R2 = 0.866 and RMSE = 3.58 ◦C in Table 1). Similarly, the accuracy of 
GRU model was quite stable with different numbers of input variables, 
since R2 values only increased by 0.81 % and RMSE decreased by 2.74 % 
(Fig. 9). 

As for the two deep learning models, both LSTM and GRU models 
were not sensitive to the number of input variables, or the predictive 
abilities of the models did not fluctuate greatly under different combi-
nations of input meteorological variables. The average R2 and RMSE 
values of different input combinations were calculated to observe the 

overall performances of different models. The largest average R2 of 0.86 
was got with the Combination F (Tair, Tomax, Tomin, VPD, and Togmin) and 
the smallest RMSE of 4.30 ◦C was obtained with the Combination H (Tair, 
Tomax, Tomin, VPD, Tdp, and Togmin). The average R2 of the Combination F 
was only 0.23 % higher than the Combination H (0.85), while the RMSE 
was 4.30 % higher than the Combination H (4.48 ◦C) (Table 1). 
Generally, the five models all had relatively better prediction accuracies 
with the Combination H. But the GRU model had the highest prediction 
accuracies when the input variables were the least. 

The ranges of linear regression slopes of the five models were: 
0.83–0.85 for RF model, 0.77–0.81 for SVM model, 0.61–0.87 for MLR 
model, 0.79–0.83 for LSTM model, and 0.88–0.95 for GRU model, 
respectively (Table 2). In general, the fitting curves of the RF, SVM, 
LSTM, and GRU models were stable under different numbers of input 
variables except for the MLR model. However, the combinations with 
the maximum slopes were different for various models. The combina-
tions with the maximum slopes were the Combinations F, G, H, C, and E 
for the RF, SVM, MLR, LSTM, and GRU models, respectively (Table 2). 
Although the maximum slope values of the RF, SVM, LSTM and GRU 
models did not occurred under the Combination H, the differences were 
limited among the eight combinations. 

3.2.2. Performances of RF, SVM, MLR, LSTM and GRU models in Timin 
prediction 

Under the Combination A (Tair, Tomax, and Tomin; Table 1), the per-
formance rank of the five models in Timin predictions was: GRU > LSTM 
> SVM > RF > MLR. So, the GRU model could obtain the best prediction 
accuracy with the fewest input variables (R2 = 0.86 and RMSE =
3.68 ◦C). At the same time, the performance of MLR was the worst (R2 =

0.76 and RMSE = 5.46 ◦C), which means the MLR model was not suit-
able for Timin prediction when few input meteorological variables were 
available. When the number of input variables reached the maximum (or 
Combination H), the GRU model also had the best prediction perfor-
mance compared to other models (R2 = 0.87 and RMSE = 3.58 ◦C). At 
the same time, the performance of the SVM model was the worst (R2 =

0.84 and RMSE = 4.96 ◦C). Then, the average R2 and RMSE values were 
calculated for different input combinations to assess the overall per-
formances of different models. For generalized machine learning 
models, RF model obtained the best general prediction accuracy (R2 =

0.85 and RMSE = 4.67 ◦C), but the MLR performed the worst (R2 = 0.82 
and RMSE = 5.27 ◦C). And for deep learning models, both the largest R2 

and smallest RMSE were obtained with the GRU model (R2 = 0.86 and 
RMSE = 3.65 ◦C). Therefore, considering the least and most input var-
iables, the RF model was proved to be the suitable generalized machine 
learning model and the GRU model was the suitable deep learning model 
for Timin predictions. 

For slopes of linear regressions between the observed and predicted 
Timin values based on different models, the largest slopes appeared with 
the GRU model under the Combination E (0.95), and the smallest slope 
occurred with the MLR model under the Combination B (0.61) (Table 2). 
Furthermore, the slopes of RF model were less affected by the number of 

Table 1 
Input combination of meteorological variables used in three generalized machine learning (RF, SVM, and MLR) and two deep learning (LSTM and GRU) models in the 
predictions of lowest temperature in greenhouse (Timin) in the model test stage.  

Combinations RF SVM MLR LSTM GRU Means 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

(a) 0.805 4.760 0.836 4.600 0.764 5.455 0.837 4.007 0.859 3.684 0.820 4.501 
(b) 0.836 4.847 0.833 5.094 0.764 5.832 0.840 3.951 0.862 3.650 0.827 4.675 
(c) 0.835 4.845 0.843 4.936 0.812 5.699 0.844 3.876 0.861 3.640 0.839 4.599 
(d) 0.855 4.433 0.868 4.519 0.834 5.330 0.836 4.082 0.859 3.675 0.850 4.408 
(e) 0.837 4.833 0.833 5.093 0.824 4.656 0.842 3.918 0.861 3.730 0.839 4.446 
(f) 0.868 4.517 0.850 4.904 0.835 5.281 0.842 3.967 0.864 3.607 0.852 4.455 
(g) 0.867 4.521 0.859 4.775 0.849 5.547 0.843 3.919 0.862 3.635 0.856 4.479 
(h) 0.864 4.582 0.842 4.956 0.858 4.363 0.842 4.008 0.866 3.583 0.854 4.298 
Means 0.846 4.667 0.846 4.860 0.818 5.270 0.841 3.966 0.862 3.651    
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Fig. 5. Performance of the random forest (RF) model in 
Timin predictions at the test stage. Indices (a)-(h) repre-
sent the prediction results with different combinations 
of input meteorological factors of (a) Tair, Tomax, Tomin; 
(b) Tair, Tomax, Tomin, VPD; (c) Tair, Tomax, Tomin, Tdp; (d) 
Tair, Tomax, Tomin, Togmin; (e) Tair, Tomax, Tomin, VPD, Tdp; (f) 
Tair, Tomax, Tomin, VPD, Togmin; (g) Tair, Tomax, Tomni, Tdp, 
Togmin; and (h) Tair, Tomax, Tomin, VPD, Tdp, Togmin. The 
grey dashed line is the 1:1 line; the blue solid line is the 
fitted line. R2 and RMSE are determination coefficient 
and root mean square error. And the same below. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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Fig. 6. Performance of the support vector machine (SVM) model in Timin predictions at the test stage. Indices (a)-(h) represent the prediction results with different 
combinations of input meteorological factors, which are consistent with Fig. 4. The grey dashed line is the 1:1 line and the blue solid line is the fitted line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Performance of the multiple linear regression (MLR) model in Timin predictions at the test stage. Indices (a)-(h) represent the prediction results with different 
combinations of input meteorological factors, which are consistent with Fig. 4. The grey dashed line is the 1:1 line and the blue solid line is the fitted line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Performance of the long-short term memory (LSTM) model in Timin predictions at the test stage. Indices (a)-(h) represent the prediction results with different 
combinations of input meteorological factors, which are consistent with Fig. 4. The grey dashed line is the 1:1 line and the blue solid line is the fitted line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Performance of the gated recurrent unit (GRU) model in Timin predictions at the test stage. Indices (a)-(h) represent the prediction results with different 
combinations of input meteorological factors, which are consistent with Fig. 4. The grey dashed line is the 1:1 line and the blue solid line is the fitted line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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input variables, since the largest change was only 2.4 %. However, the 
slopes of MLR model were very sensitive to the number of input vari-
ables since the largest change of slope was about 42.5 % (Table 2). The 
average slope of different input combinations of the GRU model was the 
best among the five models (0.91). Comprehensively considering the 
RMSE, R2, and fitting slope between the observed and predicted Timin 
values, the GRU model both showed relatively high prediction accuracy 
and the lowest prediction error (Fig. 9). 

3.3. Dynamics of Timin predicted with different models and input 
combinations 

The predicted dynamics of Timin with different models were incon-
sistent, especially in the different ranges of Timin (Fig. 10). It was obvious 
that the predicted Timin values with RF, SVM and MLR models were 
obviously lower than the observed values when Timin in higher range. 
The prediction performance of SVM and MLR models in lower range of 

Table 2 
Slopes of linear regressions between observed and predicted lowest temperature 
in greenhouse (Timin) based on three generalized machine learning (RF, SVM, and 
MLR) and two deep learning (LSTM and GRU) models under eight different input 
combinations of meteorological variables in the model test stage.  

Combinations RF SVM MLR LSTM GRU Means 

A  0.84  0.77  0.65  0.81  0.91  0.79 
B  0.84  0.77  0.61  0.81  0.93  0.79 
C  0.84  0.79  0.65  0.83  0.91  0.80 
D  0.83  0.78  0.66  0.79  0.88  0.79 
E  0.84  0.78  0.87  0.82  0.95  0.85 
F  0.85  0.80  0.67  0.80  0.91  0.81 
G  0.85  0.81  0.66  0.81  0.89  0.80 
H  0.84  0.79  0.87  0.80  0.92  0.85 
Means  0.84  0.79  0.70  0.81  0.91   

Fig. 10. Comparisons of observed and 
predicted Timin time series based on 
different models under different input 
combinations of meteorological vari-
ables in the model test stages. Indices 
(a)-(h) represent the prediction results 
with different combinations of input 
meteorological factors of (a) Tair, Tomax, 
Tomin; (b) Tair, Tomax, Tomin, VPD; (c) Tair, 
Tomax, Tomin, Tdp; (d) Tair, Tomax, Tomin, 
Togmin; (e) Tair, Tomax, Tomin, VPD, Tdp; (f) 
Tair, Tomax, Tomin, VPD, Togmin; (g) Tair, 
Tomax, Tomni, Tdp, Togmin; and (h) Tair, 
Tomax, Tomin, VPD, Tdp, Togmin. Indices 
(a1) - (h1) represent the different input 
combinations used in the random forest 
(RF) model; (a2) - (h2) the combinations 
used in the support vector machine 
(SVM) model; (a3) - (h3) the combina-
tions used in the multiple linear regres-
sion (MLR) model; (a4) - (h4) the 
combinations used in the long-short 
term memory (LSTM) model; and (a5) - 
(h5) the combinations used in the gated 
recurrent unit (GRU) model, 
respectively.   
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Timin was also unsatisfactory (Fig. 10). The LSTM model had better ac-
curacy in Timin prediction except for the extreme high range (Fig. 10a4- 
h4). The prediction performance of the GRU model was better than the 
other models at different Timin ranges regardless of the input combina-
tion of meteorological variables (Fig. 10a5-h5). 

To assess the prediction performance of Timin dynamic with different 
models in different ranges of Timin, the observed Timin values were sorted 
and divided into three groups (i.e. observed Timin > 28.5 ◦C, upper 
quartile; 13.9 ◦C < observed Timin < 28.5 ◦C, middle; observed Timin <

13.9 ◦C, lower quartile). Then, the variations of R2 and RMSE of the five 
models were analyzed (Fig. 11). When observed Timin > 28.5 ◦C, the GRU 
model under Combination G and H obtained the highest R2 and the 
lowest RMSE among all models (Fig. 11A). Generally, the prediction 
performance of the GRU model was obviously better than the other 
models when observed Timin > 28.5 ◦C. Therefore, the GRU model was 
more suitable for high temperature prediction in summer. 

When observed Timin was in the middle region of 13.9–28.5 ◦C, the 
SVM model under Combination H had the highest R2, while the lowest 
RMSE appeared with the GRU model under Combination A (Fig. 11B). 
However, the change of R2 of SVM model (15.95 %) under the eight 
combinations was higher than that of GRU model (5.1 %). Although the 
R2 of SVM model was 10.68 % higher than that of GRU model, the RMSE 
of GRU model was 20.65 % lower than that of SVM model. Thus, both 
considering the difference of input variables and the prediction error, 
the GRU model was the most suitable mode for Timin prediction in spring 
and autumn when 13.9 ◦C < observed Timin < 28.5 ◦C. 

When observed Timin < 13.9 ◦C, the GRU model under Combination G 
had the highest R2, while the smallest RMSE was obtained with the SVM 
model under Combination A (Fig. 11C). However, the average R2 and 
RMSE of GRU model under all of the combinations were higher than 
those of SVM model. More importantly, the prediction accuracies of the 
three generalized machine learning models were generally lower than 
the two deep learning models except for the RMSE of SVM model. 
Average R2 and RMSE were 0.15 and 3.17 ◦C for RF model; 0.11 and 
2.38 ◦C for SVM model; 0.27 and 3.04 ◦C for MLR model; 0.29 and 
2.65 ◦C for LSTM model; and 0.31 and 2.61 ◦C for GRU model, respec-
tively. This indicated that the generalized machine learning models 
were not very suitable for Timin predictions in winter (observed Timin <

13.9 ◦C). 

3.4. Distributions of the differences in Timin predictions with different 
models and input combinations 

The distributions of the differences between observed and predicted 
Timin values (Di = predicted Timin values – observed Timin values) were 
explored (Fig. 12). With the least number of input variables (or Com-
bination A), the densities of Di between − 1 and 1 ◦C of the deep learning 
models (50.65 % for LSTM model; 51.51 % for GRU model) were obvi-
ously higher than the generalized machine learning models (23.53 % for 
RF model; 29.47 % for SVM model; 18.41 % for MLR model; Fig. 12a). 
With Combination H, the densities of Di between − 1 and 1 ◦C of the deep 
learning models (49.60 % for LSTM model; 48.79 % for GRU model) 
were also better than the generalized machine learning models (18.70 % 
for RF model; 26.01 % for SVM model; 25.15 % for MLR model; 
Fig. 12h). The averaged Di values under all input combinations were 
calculated for each model to analyze the overall Di distributions of 
different models. The distributions of average Di between − 1 and 1 ◦C of 
the deep learning models (52.03 % for LSTM model; 52.82 % for GRU 
model) were significantly better than those of the generalized machine 
learning modes (26.72 % for RF model; 26.03 % for SVM model; 17.08 % 
for MLR model). This indicated that the predicted Timin values with LSTM 
and GRU models were closer to the actually measured values regardless 
of the number of input variables. And more importantly, the Di of deep 
learning models outperformed generalized machine learning models 
when the input variables were insufficient (Fig. 12 a, b, c and d). 

When the number of input variables was minimal (Combination A), 

Fig. 11. Performances of the five models in Timin dynamic predictions at the 
model test stage. Observed Timin values were sorted and divided into three 
ranges: (A) observed Timin > 28.5 ◦C, upper quartile; (B) 13.9 ◦C < observed 
Timin < 28.5 ◦C, middle; and (C) observed Timin < 13.9 ◦C, lower quartile. 
Indices of a-h and 1–8 both represented the eight input combinations of (a or 1) 
Tair, Tomax, Tomin; (b or 2) Tair, Tomax, Tomin, VPD; (c or 3) Tair, Tomax, Tomin, Tdp; (d 
or 4) Tair, Tomax, Tomin, Togmin; (e or 5) Tair, Tomax, Tomin, VPD, Tdp; (f or 6) Tair, 
Tomax, Tomin, VPD, Togmin; (g or 7) Tair, Tomax, Tomni, Tdp, Togmin; and (h or 8) Tair, 
Tomax, Tomin, VPD, Tdp, Togmin. The value of scale line of R2 represented 10 %, and 
RMSE was 1 ◦C. 
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Fig. 12. Distributions of the differences between observed 
and predicted values of Timin based on five different models 
(RF, SVM, MLR, LSTM, and GRU) under eight different 
combinations of input meteorological variables. Indices (a)- 
(h) represent the prediction results with different combina-
tions of input meteorological factors of (a) Tair, Tomax, Tomin; 
(b) Tair, Tomax, Tomin, VPD; (c) Tair, Tomax, Tomin, Tdp; (d) Tair, 
Tomax, Tomin, Togmin; (e) Tair, Tomax, Tomin, VPD, Tdp; (f) Tair, 
Tomax, Tomin, VPD, Togmin; (g) Tair, Tomax, Tomni, Tdp, Togmin; and 
(h) Tair, Tomax, Tomin, VPD, Tdp, Togmin. The x-axis represents 
the differences between predicted and observed values (Di =

observe - predict) and y-axis the frequency density of 
different Di values. The two vertical dotted lines indicate the 
Di values of − 1 and 1. The density of Di is between 0 and 1.   
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the Di < 0 regions of RF, SVM and MLR models accounted for about 
66.64 %, 68.26 %, and 69.59 % of total Di, which were obviously higher 
than the LSTM (57.60 %) and GRU (53.08 %) models. Under Combi-
nation H, the Di < 0 regions of the generalized machine learning models 
(81.23 % for RF model; 81.92 % for SVM model; 71.35 % for MLR 
model) were obviously higher than those of the deep learning models 
(55.37 % for LSTM model; 45.52 % for GRU model). Generally, most of 
the Di of the generalized machine learning models were<0, while the Di 
distributions of deep learning models were relatively stable in Timin 
prediction since the ratio of Di < 0 was closer to the ratio of Di >

0 (Fig. 12). Thus, the generalized machine learning models could un-
derestimate the Timin in greenhouse. Since the predicted Timin was lower 
than the actual Timin, more heat had to be invested to maintain proper 
temperature for crop growth, which resulted in a waste of energy in the 
temperature management of greenhouse. The deep learning models 
generally had good predictive performance and relatively smaller Di 
under different input combinations of meteorological variables. Thus, 
the deep learning model was more suitable for greenhouse Timin 
predictions. 

4. Discussion 

The change of minimum temperature in greenhouse (Timin) in a 
greenhouse was full of uncertainties and was affected by many factors, 
such as the type and size of greenhouse, the environmental factors and 
their coupling effects. Therefore, predicting Timin remains a very chal-
lenging task. In this study, we used local weather data as input variables 
in Timin prediction instead of inside and exterior environmental data 
obtained with sensors. It was undoubtedly the most economical method 
for temperature management in intensive greenhouse production sys-
tem in developing countries. He et al. (2020) found that adding the input 
variable of sunshine hours, which was highly correlated with solar ra-
diation (r = 0.88), had great impacts on the prediction accuracy of 
global solar radiation. In addition, Allouhi et al. (2021) chose the input 
variable of ambient temperature outside greenhouse, which had high 
correlation coefficient (r = 0.95) with the prediction variable of indoor 
greenhouse temperature and then got the highest prediction accuracy 
(R2 > 0.90). Therefore, it was necessary to select the input variables that 
had high correlation coefficients with the prediction variable of Timin. In 
this study, the range of correlation coefficients between local weather 
variables and Timin (r = 0.64–0.87) was generally lower than other 
studies, which may affect the prediction accuracy (Fig. 4). However, the 
R2 of the optimal model (GRU) was close to 0.90 (Fig. 9), which was 
close to prediction accuracy of some other studies (Allouhi et al., 2021; 
Castaneda-Miranda and Castano, 2017; Escamilla-Garcia et al., 2020). 
More importantly, the data acquisition of our methods was more 
economical. Thus, it was reasonable to use local weather data as input 
variables. 

Generalized machine learning models were commonly used to pre-
dict a variety of indicators in greenhouses including temperature (Cas-
taneda-Miranda and Castano, 2017; Chen et al., 2016). In our study, we 
found that the Timin predictions with the RF, SVM and MLR models were 
all affected by the number of input variables (Table 1). Overall, the 
prediction performance of the MLR model was the worst among the 
three generalized machine learning models (Table 1). The RF model had 
relatively better prediction accuracy of Timin, compared to the SVM and 
MLR models (Figs. 5, 6 and 7). The RF, SVM and MLR models generally 
had poor predicted performance than deep learning models when 
observed Timin was in lower (<13.9 ◦C) or higher (>28.5 ◦C) ranges, but 
the RF model was still better than the SVM and MLR models (Fig. 11). 
Generally, the RF model could capture the non-linear and non- 
parametric relationships between the predictor (or Timin) and the input 
variables due to the complex model structure, which made the predic-
tion results of RF model more accurate and stable (Brokamp et al., 
2018). Hence, the RF model was recommended as the ideal generalized 
machine learning models to predict Timin with local meteorological 

variables. Some other studies also found the RF model had excellent 
predictive performance compared to SVM and MLR (Diniz et al., 2021; 
Yang et al., 2017). Tyralis et al. (2021) found that the RF model 
improved the performance of the MLR by 12.75 %, followed by the SVM 
model (-0.45 %) in daily streamflow forecasting. However, our study 
found that the prediction accuracy of the RF and SVM models were 
improved by 12.92 % and 8.44 % compared to the MLR model, 
respectively, implying that SVM was superior to MLR for Timin pre-
dictions. This suggested that different application scenarios and datasets 
could affect the prediction accuracy of different machine learning 
models. 

In this study, the prediction performance of deep learning models 
was notably higher than generalized machine learning models for Timin 
predictions. In particular, the R2 of GRU model averagely was 5.38 % 
higher than and RMSE 44.34 % lower than the MLR model (Table 1). The 
LSTM and GRU models all had the feature of DRNN to call out the state of 
the nerve cells at the previous time through the feedback connection, so 
that it allowed them to use the temporal dynamic behavior of the data to 
build the learning models (Brokamp et al., 2018; Hochreiter and 
Schmidhuber, 1997). However, the basic structures of the LSTM and 
GRU models were different, which made the final prediction results 
different. We found that the GRU models could generally improve R2 

values by 2.50 % over the LSTM model, while the RMSE value also 
decreased by 8.63 % for Timin predictions (Table 1). When Timin >

28.5 ◦C, regardless of the input combinations, the prediction accuracy of 
GRU model was all remarkably higher than the LSTM model (Fig. 11). 
When Timin < 13.9 ◦C, the prediction accuracy of the GRU model was 
slightly better than the LSTM model. On the other hand, when using the 
fewest input variables (Combination A) to predict Timin, the optimal 
predicted performance was obtained by the GRU model among the five 
machine learning models. The corresponding R2 value was improved by 
2.63 % over LSTM model and RMSE value also decreased by 8.76 % for 
Timin predictions (Table 1). Jia et al. (2020) also found similar result in 
the predictions of coal mine gas concentration, where the RMSE value 
was reduced by 7.9 % compared with LSTM model. Nonetheless, Iwendi 
et al. (2020) suggested that the LSTM model (with an average accuracy 
of 96.50 %) was better than the GRU model (with an average accuracy of 
95.29 %) for the assisted patient diet recommendation system. In fact, it 
was difficult to compare the performances of the two models when 
dealing with different tasks. However, most studies suggested that the 
prediction performance of the GRU model was better than the LSTM 
model, especially in terms of prediction error, rate of convergence, and 
running time (Gao et al., 2020; Kisvari et al., 2021). This could be 
explained from the model structures. The LSTM model had three gates 
(forget gate, input gate, and output gate), while the GRU model only had 
two gates (update gate and reset gate). The LSTM model had more pa-
rameters than the GRU model. Therefore, the LSTM model needed more 
data to deal with multi-parameter networks, but with the risks of 
overfitting. Conversely, the GRU model had fewer parameters and was 
easier to converge, but its performance might be not as good as the LSTM 
model when there were substantial amount of data (Shewalkar et al., 
2019). 

The difference between predicted and observed value (Di) can 
determine whether the predicted values underestimated or over-
estimated Timin compared to the observed values. However, few studies 
focused on Di. Our study found that most Di values of generalized ma-
chine learning models were<0 (the ration of Di < 0: 78.37 % for RF 
model; 80.01 % for SVM model; 78.85 % for MLR model), which indi-
cated the general machine learning models underestimated Timin values 
(Fig. 12). Generalized machine learning models had some shortcomings 
when predicting long time-series data. For example, the RF, SVM and 
MLR models did not have memory ability for Timin predictions, resulting 
in poor prediction accuracy when the data structure of training set and 
the test set had difference. In addition, Timin values had different ranges 
in different months so that some extreme Timin values may not be trained 
in the generalized machine learning models. The RF model is a 
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combination of many decision trees by using bootstrapping technique 
(Breiman, 2001; Lahouar and Slama, 2015). Therefore, when the pre-
dicted Timin was too high and did not exist in the training set, the decision 
tree would choose a value that was close but lower than the observed 
Timin in the training set, causing the real Timin to be underestimated. In 
this study, we used support vector regression to predict Timin (Tay and 
Cao, 2001), which is a variant of SVM akin to MLR model in structure. 
When the values of Timin for the train dataset were generally lower than 
the test dataset, the slope of the fitting linear curve of the model without 
higher value was smaller than the slope of the model with higher value, 
which made the predicted valves underestimated. However, the Di 
values of deep learning models were more balanced (Fig. 12). More 
importantly, the deep learning models were proved to be more suitable 
and effective for Timin prediction than the generalized machine learning 
models. In this study, we found that the prediction performance of deep 
learning models was generally higher than the generalized machine 
learning models when dealing with time series tasks, which was 
consistent with some previous studies (Buturache and Stancu, 2021; Jia 
et al., 2020). Actually, the differences of Di between the GRU and LSTM 
models were not obvious. Most of the Di values were distributed between 
− 1 and 1. However, the prediction performance of GRU model was also 
higher than the LSTM model despite insufficient input variables. If the 
local weather station cannot provide the forecasting of enough weather 
variables, the GRU model should be chosen to more accurately predict 
Timin. 

5. Conclusion 

In this study, local weather data were used to predict the minimum 
temperature in greenhouse (Timin). The prediction accuracy was close to 
some other studies that used inside and exterior environmental data 
obtained with sensors. In addition, deep learning models had better 
prediction performance for Timin predictions, especially the GRU models. 
When the number of input variables was insufficient, the GRU model 
had the optimal prediction performance, where the R2 was 2.63 % 
higher and RMSE 8.76 % lower than the LSTM model. 

Furthermore, we found that generalized machine learning models (i. 
e., RF, SVM and MLR) could underestimate Timin. So they should be 
avoided when dealing with time-series variable simulation tasks. How-
ever, the difference between predicted and observed value (Di) values of 
deep learning models (LSTM and GRU) were relatively stable because 
the portions of Di < 0 and Di > 0 were all closer to 50 %. Therefore, 
considering the prediction performance and Di values, we recommended 
deep learning models for Timin prediction, especially the GRU model. 

In general, the GRU models developed for Timin predictions had the 
advantage of high accuracy and low cost since it only used local weather 
data as input variables. It is noteworthy that there are many types of 
greenhouses in the world. The results of this study may be only suitable 
for Timin prediction in common solar greenhouses in China. Therefore, 
specific Timin prediction models toned to be developed for different types 
of greenhouses in specific countries in the future. 
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