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A B S T R A C T   

Under ongoing global warming due to climate change, heat waves in Australia are expected to become more 
frequent and severe. Extreme heat waves have devastating impacts on both terrestrial and marine ecosystems. A 
multi-characteristic heat wave framework is used to estimate historical and future projected heat waves across 
Australia. A Google Earth Engine-based toolkit named heat wave tracker (HWT) is developed, which can be used 
for dynamic visualization, extraction, and processing of complex heat wave events. The toolkit exploits the public 
long-term high-resolution climate datasets to developed nine heat wave datasets across Australia for extreme 
heat wave value analysis. To examine climate change on heat waves and how they vary in time and space, we 
also explore the probability and return periods of extreme heat waves over a period of 100 years. The datasets, 
toolkit and findings we developed contribute to global studies on heat waves under accelerated global warming.   

1. Introduction 

Under ongoing global warming due to climate change, heat waves 
are expected to become more frequent and severe in the future (IPCC, 
2019). Extreme heat waves during the last two decades have been 
recorded across many regions in the world such as those in Europe in 
2003 (Schär et al., 2004), Moscow region in Russia in 2010 (Rahmstorf 
and Coumou, 2011), and Australia in 2013 (Lewis and Karoly, 2013). 
Heat waves in Australia incur significant hazard for both humans and 
ecosystems and cause more deaths than other natural hazards including 
floods, storms and bushfires. In terms of heat wave impacts on ecosys-
tems, extreme heat waves increase the probability of bushfire risk, affect 
crops and food security for terrestrial systems (Luo, 2011), and cause 
catastrophic damage to marine ecosystems (Hobday et al., 2016). 
Moreover, extreme temperatures contribute to widespread unfavorable 
health outcomes and even the death of vulnerable people. 

Although heat wave is commonly known as a period of exceptional 
hot weather event, there is currently no universal informative mea-
surement in climate science community (Alexander and Perkins, 2013). 
To overcome these issues, a set of climate indices developed by the 

Expert Team on Climate Change Detection and Indices (ETCCDI) have 
been widely applied to observational and modeled climate data to un-
derstand previous and future changes in extreme heat wave events 
(Zhang and Yang, 2004; Alexander et al., 2006). The work by ETCCDI is 
extensively recognized as pioneering, however, the indices only measure 
one feature of extreme events such as frequency, intensity or duration 
(PERKINS, 2015). A comprehensive and consistent analysis of heat 
waves is required, which should consider multi-characteristics of heat 
wave events, namely: i) frequency, ii) intensity, iii) duration, and iv) 
spatial extent (Raei et al., 2018). The multi-characteristic heat wave 
definition method used in this study is from a well-known heat wave 
framework constructed by Alexander and Perkins (2013) and includes: a 
minimum temperature approach, a maximum temperature approach, 
and an excess heat factor (EHF) approach. This framework has proven to 
be successful in measuring historical and future projected heat waves. 

However, useful public software or tools that identify all the required 
characteristics of heat waves (frequency-intensity-duration-spatial 
extent) are still rare. Most studies with their own tools cannot fully 
reflect the four characteristics of complex heat wave events (Feron et al., 
2019; Lyon et al., 2019; Li, 2020). By summarizing the classical heat 
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wave definition, an R package called heatwaveR was developed, which 
provides a comprehensive analysis to detect and visualize ocean heat 
waves (Schlegel and Smit, 2017). However, it is inefficient when applied 
to large gridded data products. Global Heat Wave and Warm-spell Data 
Record and Analysis Toolbox (GHWR) which is a MATLAB Toolbox al-
lows processing and extracting heat wave records for any location effi-
ciently. It not only contains multiple definitions but also detects the 
required multi-characteristics (Raei et al., 2018). However, desktop 
applications like GHWR still have a bottleneck when encountering the 
challenges related to accessibility of long-term gridded climate data, 
data storage and computational requirements. In the current era of big 
spatial and Earth Observation (EO) data, users need to deal with a vast 
amount of different spectral, temporal and spatial resolutions data 
(Gomes et al., 2020). To meet these demands, there is need for novel 
technologies based on cloud computing to properly extract heat wave 
information in the server side without having to download vast amounts 
of climate data and provide dynamic visualization, extraction and pro-
cessing of complex heat wave events. Google Earth Engine (GEE), a 
powerful cloud computing geospatial analysis platform, has given re-
searchers the opportunity to use big data for petabyte-scale environ-
mental data analysis (Gorelick et al., 2017). 

With the gridded global reanalysed datasets (e.g., Hadley Centre/ 
Global Historical Climatology Network (HadGHCND), Climate Predic-
tion Centre (CPC)) and regional reanalysis datasets (e.g., The COordi-
nated Regional Downscaling EXperiment (CORDEX), Australian Water 
Availability Project (AWAP)) being freely available, many studies have 
investigated heat waves at various scales (Perkins et al., 2012; Ma et al., 
2020; Christidis et al., 2014). The atmospheric reanalysis datasets are 
quite useful for gaining understanding in how the heat wave will 
change. Reanalysis datasets are created by data assimilation and 
numeric models to represent a synthesized estimate of the atmospheric 
state and provide global scale dataset over several decades or longer. 
One benefit of using reanalysis data is that it extends the study to lo-
cations without observation records. Another important advantage is 
that the spatially contiguous heat wave regions derived from the rean-
alysis data have crucial implications for heat-related impacts such as 
exposure of the community to extreme heat wave events and high en-
ergy demands (Lyon et al., 2019; Li, 2020). However, some heat wave 
assessments are mostly based on climate datasets with relatively coarse 
resolution which would affect the representation of heat waves, result-
ing in biased conclusions. Furthermore, key processes that occur on 
regional scales may not be adequately simulated. Benefiting from those 
newly reanalysed climate datasets and high spatio-temporal gridded 
regional climate datasets, our analysis will explore how these climate 
datasets differ in representing heat waves and how the methods differ in 
identifying and characterizing heat waves. 

Increasingly, researchers are becoming less interested in data in the 
“normal” range and more concerned with the ‘abnormal’ and extreme 
events that are recurrent and unpredictable. Extreme value theory (EVT) 
is the statistical framework that estimates the probability of an extreme 
event occurring in the future (Coles et al., 2001). Because of its impor-
tance, many public packages and toolboxes over the last decade have 
been developed to implement various methods from EVT (Ribatet et al., 
2011; Cheng et al., 2014; Gilleland and Katz, 2016; Heffernan et al., 
2016). It is clear from much of the literature using gridded observed data 
and projected climate model data at regional and global scales that the 
probability of extreme heat waves will change over time (Alexander and 
Perkins, 2013; Purich et al., 2014). Recently, several studies of the risks 
of heat wave by means of the EVT have been published (Ma et al., 2020; 
Tanarhte et al., 2015; Shen et al., 2016). However, the precise proba-
bilities of intensity, frequency and duration of extreme heat wave at a 
continent scale like Australia over the time are still unknown. Mean-
while, the potential impact of climate change on heat wave varies in 
space and time. In this context, we explore the risk of heat waves in 
Australia by performing non-stationary analysis of extreme heat waves 
for the past 100 years. 

In this study, we will develop a multi-method global heat wave data 
record and analysis toolbox (namely heat wave tracker) to process and 
extract heat wave records from multi-source climate datasets. With our 
toolbox’s computational power in handling long-term high-resolution 
climate datasets, we developed nine extreme heat wave datasets in 
Australia for extreme heat wave value analysis. In addition, we first use 
non-stationary generalized extreme values method to analysis the 
characteristics of extreme heat wave events in Australia over the past 
100 years to help adjust policies for climate change adaptation. Finally, 
we also explore how the characteristics of heat waves are projected to 
change across Australia under future climates. 

2. Data and methods 

2.1. Earth observation datasets 

SILO is a database of Australian climate data from 1889 to the pre-
sent hosted by the Queensland Department of Environment and Science 
(DES). It provides daily climate variables on a 0.05◦ grid across Australia 
for research, modelling and climate applications. The datasets are con-
structed from observational data obtained from the Australian Bureau of 
Meteorology (BoM). SILO uses a thin plate smoothing spline to inter-
polate daily climate variables. There is some evidence that the data 
quality of maximum and minimum temperatures corresponds strongly 
to station density, with the largest errors tending to occur where the 
network of observed stations is sparse (Jones et al., 2009). Currently, 
SILO data are uploaded into the GEE data catalog and maintained by 
Earth Observation Data Science (Earth Observation Data Science). 

In addition to using high-resolution interpolated climate data, there 
have been many studies using reanalysed temperature data for heat 
wave studies, such as the latest fifth generation ECMWF (European 
Centre for Medium-Range Weather Forecasts) reanalysed climate data 
(ERA5) and CPC Global Daily Temperature dataset dating back to 1979 
(Physical Sciences Laboratory). ERA5 combines physical modeling and 
data assimilation into a complete hourly-based and consistent dataset. 
For example, minimum and maximum daily air temperature at 2 m from 
EAR5 Daily are calculated based on the hourly 2 m air temperature data. 
The ERA5 Daily used in this study were obtained within the GEE Data 
Catalog (Copernicus Climate Change Service). CPC Global Daily Tem-
perature dataset includes both daily Tmax and Tmin on a 0.5 × 0.5 grid 
from 1979 to the present. This product is constructed by a combination 
of two weather station datasets around the world, namely Climate 
Anomaly Monitoring System (CAMS) and Global Historical Climatology 
Network version 2 (GCHN). These two datasets together have about 
10978 stations around the global, the temperatures from which are 
gridded using Inverse Distance Weighting (IDW) interpolation algo-
rithm. In addition, the temperature lapse rate estimated from 
observation-based global reanalysis temperatures are used to make 
topographical adjustments. Note that observations from CAMS and 
GCHN have less coverage over central Australia and good coverage over 
USA, Europe and China. The lack of accuracy from the sparse density of 
observation stations would impact the identification of heat wave 
events. In this study, CPC dataset netCDF4 files have been transformed 
into GeoTIFFs format using R scripts and uploaded into the GEE Cata-
logue for further analysis. 

For projection periods (2006–2100), Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) that have daily maximum and minimum 
temperature from the historical experiment and two representative 
concentration pathway (RCP) experiments (RCP4.5 and RCP8.5) are 
analyzed in this study. Within the GEE data catalog, the NASA NEX 
dataset contains daily downscaled projections of 21 GCMs under the 
CMIP5 across two greenhouse gas emissions scenarios (Thrasher et al., 
2012). CMIP5 reference periods (1975–2005) and projection periods 
(2006–2100) which contain daily maximum and minimum temperature 
are used to construct multi-model mean composites for summer heat 
wave under two RCP emission scenarios. 
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2.2. Heat wave indices 

The core algorithms behind the toolbox are based on a general heat 
wave framework which employs three separate heat wave identification 
methods (daily minimum and maximum temperature, and the excess 
heat factor) and use the fixed and dynamic thresholds as the baseline to 
determine a heat wave event which has at least three days in a row 
where the threshold is exceeded. From a climatological perspective, heat 
wave indices with absolute thresholds such as ETCCDI may only be 
suitable when studying heat waves in a small region where a single 
climate regime exists. However, for large regional or continental studies 
like Australia where a broad range of climates exist, three separate heat 
wave identification methods used in this study can be readily calculated 
from climatological data is more applicable for representing heat wave 
occurrence across multiple climates. Of which, EHF is not only more 
sensitive than other heat wave indices in measuring heat waves, but is 
also the official definition used Australia-wide (Alexander and Perkins, 
2013; Nairn and Fawcett, 2015). For each grid point, three heat wave 
indices were calculated for the Australian warm season from November 
to March. These indices include:  

1) TX90pct—The 90th percentile of Tmax in calendar day based on a 
centered 15-day window (i.e., 7 days after and before a calendar 
day). The thresholds are calculated for each time period and grid 
point separately.  

2) TN90pct—The 90th percentile of Tmin in calendar day, same time 
period and unit as Tmax.  

3) Excess heat factor (EHF) – EHF is a product of two metrics based on 
Tmean: EHIsig and EHIaccl; The first index is denoted as ‘significance’ 
(EHIsig) and determines how extreme the temperature conditions are 
by comparing the previous 3-day mean with climatology (the 95th 
percentile of the daily mean temperature calculated over the period 
of reference) (Equation (1)); The second index is a measure of 
acclimatization (EHIaccl) and the difference of the 3-day mean to the 
previous 30-day mean (Equation (2)). With this second index, heat 
stress is only likely to occur in summer. From Fig. 1, the threshold 
0 means the unusual 3-day mean temperature is above the 95th 
percentile of the average temperature over a fixed climatological 
period. EHF can also be defined as EHF = | EHIaccl | × EHIsig, which 
means EHIaccl acts as an amplification term on EHIsig, thus EHF can 
be negative. 

EHIsig = (Τi +Τi− 1 +Τi− 2)
/

3
]
− Τ95 (1)  

EHIaccl = (Τi +Τi− 1 +Τi− 2) / 3] − [(Τi− 3 +⋯+Τi− 32) / 3] (2)   

EHF = EHIsig × max [1, EHIaccl]                                                  Eq (3) 

For heat wave identification method based on daily mean tempera-
ture, heat wave represented as excess heat factor (EHF) is a product of 
two metrics: EHIsig and EHIaccl. So, the unit of heat wave is given in ◦C2. 
However, for heat wave identification method based on daily minimum 
and maximum temperature, heat wave is defined as a spell of at least 
three consecutive days with daily minimum and maximum temperature 
exceeding the local 90th percentile of a centered 15-day of window. 
Therefore, the unit of heat wave is given in ◦C. 

Further to these three indices, we used a multi-aspect framework to 
represent heat wave characteristics including:  

(1) Heat Wave Number (HWN) - the total number of discrete heat 
wave events;  

(2) Heat Wave Duration (HWD) - the length of the longest heat wave 
event;  

(3) Heat Wave Frequency (HWF) - the sum of days satisfying positive 
heat wave values;  

(4) Heat Wave Amplitude (HWA) – the peak magnitudes (the highest 
value of the heat wave in a season);  

(5) Heat Wave Magnitude (HWM) – the mean magnitudes (average 
magnitude across all heat waves); 

Among them, HWM and HWA are measures of heat wave intensity, 
while HWD, HWF and HWN are measures of heat wave longevity. 

2.3. Non-stationary generalized extreme value analysis 

Extreme value theory has a rigorous framework for analysis of 
climate extremes and their return levels (Coles et al., 2001). Generalized 
extreme value (GEV) distribution is a combination of three limiting 
distributions: Gumbel, Fréchet, or Weibull comes from the limit theo-
rems for block maxima/minima or annual maxima/minima (Katz, 
2010). A variety of studies apply the GEV to analyze climatic extremes. 
This technique is often referred to as the block maxima approach. 
Another form of the EVT is known as the peak-over-threshold (POT) 
approach, in which extreme values above a high threshold are analyzed 
using a generalized Pareto distribution. Both block maxima approach 
and POT are widely applied in studying climatic extreme events. The 
cumulative distribution function of the GEV can be expressed as: 

Fig. 1. An example schematic of indices used to 
define heat wave-EHF. Short duration heat spikes less 
than three days in a row are not heat waves. In this 
figure the green line is the threshold and black line is 
the EHF. There are four discrete events including red 
and pink heat spikes (HWN); the highest red heat 
spikes is the heat wave amplitude (HWA); the length 
of the longest event is also the red heat spikes (HWD); 
the average heat wave magnitude is the average 
magnitude across four events (HWM); and the sum of 
four heat wave events that above the threshold is 
HWF. The five indices in the figure are calculated for 
each season and annually.   
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ψ(x)=
{

−
(

1 + ξ
(x − μ

σ

))− 1
ξ
}

,
(

1+ ξ
(x − μ

σ

))
> 0 (4) 

The GEV distribution has three distribution parameters θ = (μ,σ,ξ): 
(1) the location parameter (μ) determines the center of the distribution; 
(2) the scale parameter (σ) specifies deviations around μ; and (3) the 
shape parameter (ξ) governs the tail behavior of the GEV distribution. 
For ξ > 0 ξ→0, and ξ < 0 leads to Frechet distributions, Gumbel distri-
bution and Weibull distribution, respectively. 

The extreme value theory for stationary random sequences has been 
extensively studied. In this study, a stationarity process assumes no 
change to extreme’s properties while a non-stationary process is time- 
dependent, and the properties of the distribution would change in the 
future. The location parameter is assumed to be a linear function of time 
to account for non-stationarity, while keeping the other two parameters 
constant: 

μ(t) = μ1t + μ0 (5)  

where t is the time (in years), and β = (μ1, μ0, σ, ξ) are the parameters. In 
this study, a practical package named Non-stationary Extreme Value 
Analysis (NEVA) Matlab package was introduced for assessing extremes 
in a changing climate. NEVA offers a framework for performing non- 
stationary analysis of extremes and provides non-stationary effective 
return levels with t-year return period, and risks of climatic extremes 
using Bayesian inference and also includes simulated ensembles with 
upper bound and lower bound (Cheng et al., 2014). This study estimated 
extremes heat wave metrics based on non-stationary Maximum Likeli-
hood Estimators. Here, from the long term (1920–2019) time series of 
heat wave magnitudes, non-stationary GEV was fitted together with the 
standard error using R package Introduction to Statistical Modeling of 
Extreme Values (ismev). We kept the scale and shape parameters con-
stant, while the location parameters were calculated from the regression 
parameters (μ1, μ0) of Equation (5) at the median of the corresponding 
time period. For example, the median of the corresponding time was 
1970 over the period 1920–2019. For the sub-time periods 
(1980–2019), the estimation for the non-stationary GEV distribution is 
similar. 

2.4. Online heat wave measurement under a framework 

The heat wave tracker is to facilitate the exploitation of the up-to- 
date climate data described in Table 1 by providing users a multi- 
characteristic and multi-source heat wave measurement toolkit. The 
entire process of heat wave measurement at a continental scale is shown 
in Fig. 2. The required inputs for our online system include the historical 
climate data and their future projection. With long time series of climate 
data, two separate methods were used to calculate fixed and dynamic 
thresholds. The fixed thresholds are calculated by the 95th percentile of 
a fix reference period. The dynamic thresholds are based on the 90th 
percentile of a temporal moving window. Three separate heat wave 
indices were then used to determine the heat wave characteristics. The 
core algorithm contains five iterations, three band math operations and 
two spatial operations to retrieve five heat wave characteristics at each 

grid. The first iteration is to do an accumulation of the number of pos-
itive values of heat wave indices. The second and third iteration are 
combined to detect heat wave events, defined as a spell of at least three 
consecutive days with values of heat wave indices exceeding the 
threshold. The fourth iteration is used to find the end point of each heat 
wave events. The fifth iteration is used to accumulate the positive values 
of heat wave indices. Based on those extreme value analyses and heat 
wave characteristics database, we created an online heat wave tracker 
app for public users. 

3. Results 

3.1. Heat wave tracker 

Heat wave tracker is a user-friendly web tool we developed in Google 
Earth Engine (GEE). The temperature datasets and heat wave definition 
outlined above are integrated into this online software tool to study heat 
waves in Australia. The first step is to pre-define the temperature above 
a certain threshold and pre-process the corresponding five-month long 
heat wave records. More precisely, thresholds from the reference period 
of SILO data (1960–1990) and the reference of ERA5 data (1979–1999) 
were calculated beforehand. Then, the multi-source heat wave record 
datasets (e.g., heat wave records between 1990 and 2019 are from SILO, 
2000–2019 are from ERA5, 2000–2019 are from CPC, 2030–2099 are 
from CIMP5) using multi-method are generated and stored in GEE cloud 
data catalog for further visualization analysis to decrease processing 
times. Subsequent steps are performed in the graphical user interface 
(GUI), the users can define the point of interest and select the year, data 
type, heat wave identification method and run the program. Then the 
tool will plot several figures displaying the time-series of heat wave 
records and five heat wave metrics maps (HWN, HWD, HWF, HWM, 
HWA). The information can also be exported (e.g., CSV files) for further 
analysis. In such a case, analysis-ready heat wave records prove to be a 
practical and economical way for real-time and human-interactive 
visualization. Heat wave tracker is freely available from the authors 
for educational and academic purposes at https://github.com/geogi 
smx/Heatwavetracker. The online tool is publicly available at https 
://tensorflow.users.earthengine.app/view/heat-wave-tracker. While 
we have focused on the heat waves of Australia, users can also define 
their own research area and produce their heat wave outcomes. For 
example, users can even use the tool to evaluate the global heat wave 
with ERA5 datasets. 

3.2. How do the datasets differ in representing heat waves? 

Despite the use of the same heat wave definition (EHF), different 
temperature datasets may provide different heat wave metric maps. It 
relates to the issues of spatial resolution, instrumentation, and data 
quality. An example of the spatial variation from different climate 
datasets for heat wave metrics identification is given in Fig. 3, which 
shows the heat waves across Australia in 2018–2019 (over the period of 
November-December-January-February-March) from SILO gridded 
datasets, ERA5 reanalysis datasets and CPC Australia daily temperature 
datasets. Generally, climate datasets with a high spatial resolution are 
much smoother than those with lower spatial resolution (seen in Fig. 3). 

Each heat wave metric between the three datasets shows similar data 
range on the color scale. However, the contiguous spatial distribution 
clearly differs between the three datasets. Specifically, the extreme HWA 
for each dataset all occur over southern Australia while northern 
Australia does not experience extreme heat waves. HWA can increase up 
to 80◦C2 in the northwest of NSW. In ERA5, larger HWA values are more 
confined to lower elevations of southern Australia, whilst HWA in SILO 
and CPC also appear in the central areas. Similar to HWA, the spatial 
pattern of HWM is mainly centered around the south coast and north-
west of NSW. However, the anomalous red spots of HWM in CPC may be 
caused by the coarse resolution. It is interesting to note that the HWF 

Table 1 
Datasets used in this study.  

Dataset 
Name 

Spatial 
Resolution 

Time Period Data Source 

SILO 0.05 × 0.05 1920–2020, 
daily 

EO Data Science (GEE) 

ERA5 0.25 × 0.25 1979–2020, 
daily 

ECMWF reanalysis climate 
data (GEE) 

CPC 0.5 × 0.5 1979–2020, 
daily 

CPC global temperature 
(NOAA) 

CMIP5 0.25 × 0.25 1950–2099, 
daily 

NASA NEX-GDDP (GEE)  
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Fig. 2. The online implementation of heat wave tracker toolkit based on Google Earth Engine, using a framework enables climate data integration for heat wave measurement at a continental scale.  
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and the HWN are similar but do not always overlap. From these three 
datasets, we can see that the HWF and HWN are located in north western 
and southeast Australia. We also find that HWN from CPC can reach up 
to 12 times per year and is about two times larger than that from SILO 
and ERA5, implying that caution should exert when using CPC. The 
HWF has some influences on HWD, which means the extent of HWD 

almost falls in the regions of HWF. 
Since local scale differences can not be detected by simple visuali-

zation or in cell by cell comparison, we used a map comparison method 
named the structural similarity index (SSI) to identify local differences 
in terms of mean, variance and covariance between two maps (Jones 
et al., 2016; Wiederholt et al., 2019; Islam et al., 2020). Based on the 

Fig. 3. Examples of heat wave aspects derived from three different climate datasets in 2018.  
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global average value of the SSI metric, we try to provide a quantitative 
analysis of which climate data set is more reliable with respect to five 
aspects—HWA, HWD, HWF, HWM, HWN. From Table 2, we can see that 
the similarities between three gridded datasets in terms of five aspects 
are quite different. There is strong similarity between ERA5 and SILO 
(0.78) in HWA. The SSI between CPC and ERA5 in HWA is similar (0.68) 
but weaker for SILO (0.67). The strong level of SSI between ERA5 and 
SILO (0.77) is also found in HWD, while ERA5 and CPC has a similarity 
of 0.67, the weakest similarity of 0.66 is from SILO and CPC. The 
occurrence-based aspects like HWF and HWD lead to reduced similarity. 
The weaker similarity in HWN exists between three climate datasets, but 
the SSI between CPC and ERA5 is better (0.56) than CPC and SILO 
(0.55). Overall, it suggests that ERA5 is the most reliable climate dataset. 

3.3. How do the methods differ in identifying and characterising heat 
waves? 

Five heat wave metrics for each method here are defined by ERA5 
(seen in Fig. 4). HWA measured by EHF (◦C2) tends to be higher than 
HWA (Tmax, ◦C) and HWA (Tmin, ◦C) due to the different units. Regions 
that display the higher values in HWA (Tmax) and HWA (Tmin) are very 
similar, mostly located in the southeast and central Australia. While the 
EHF-based HWA not only shows higher values in the southeast but also 
along the coastal regions of South Australia and Victoria. The extreme 
HWA by EHF all exists in the southward of 20◦S. In contrast, HWA is not 
as large as expected in the northern tropical area. As HWM and HWA are 
related to heat wave intensity, their spatial patterns are largely similar. 
For those heat wave aspects (HWD, HWF) related to longevity in 
different ways, HWD and HWF defined by Tmax and Tmin are similar in 
spatial structure, which are centered in northwestern Australia and in 
eastern Australia. However, the lengths of HWD and HWF from Tmax 
and Tmin are about two times higher than HWD and HWF from EHF. 
Compared to northwestern Australia, HWF (EHF) is shorter at 60 days. 
Conversely to HWD and HWF, HWN produces different results in 
northwestern and eastern Australia where there are larger HWN varia-
tions from the EHF method. Fig. 5 shows that the EHF based method 
identifies four distinct heat wave events, while TX90 based method 
detects nine heat wave events and TN90 based method finds three heat 
wave events. The EHF method can combine the characteristics of both 
TX90 and TN90. 

3.4. How does the heat wave risk change in recent climates? 

To explore the heat wave risk in recent climates, the average values 
of HWA (the highest value of the heat wave in a season) over Australia 
for the past 100 years were used. Non-stationary return levels based on 
HWA versus the time covariate across the whole continent were 
generated by NEVA. As shown in Fig. 6a, the effective return levels vary 
over time indicating return level should be chosen for years to have the 
same probability of occurrence. For example, the effective return level 
(HWA) corresponding to a 25-year event during 1920–1944 is 37◦C2; the 
effective return level for a once-in-50-year event (1920–1969) should be 
45◦C2 and the effective return level for a 100-year period (1920–2019) is 
60◦C2. In Fig. 6a, we also observe that there is a strong upward trend (p 
< 0.005) for HWA over Australia during the 1920–2019 period. This 

suggests that heat wave amplitude was increasing under climate change. 
Fig. 6b compares the probability density functions (PDF) of the HWA 
under two different time intervals (1920–2020, 1980–2020). We find 
that there is an obvious warming shift of PDFs of the HWA during 
1920–2020 compared with that during 1980–2020. This is consistent 
with the observed increasing trend in Fig. 6a. In addition, the warm tail 
of the PDFs for the period of 1980–2019 is greater than that of 
1920–2019 implying that extreme heat events have much higher prob-
ability with effects of climate change. We also find that the 2019 heat 
wave event is not rare (over 10-year effective return levels, Fig. 6a), with 
the PDF observed in 2019 for the 1980–2020 higher than that for the 
1920–2020 as shown in Fig. 6b. From the long-term (1920–2019) and 
the short-term (1980–2019) time series of HWA, GEV fits were esti-
mated together with the corresponding ±1.96 standard error for a 95% 
confidence interval in Fig. 6c. It denotes that the 2019 heat wave (HWA 
is 45.6◦C2) has a lower probability of occurrence over 1920–2020 
climate and a higher probability over 1980–2020 climate (over 10-year 
return periods for GEV fit 1980–2020, Fig. 6c). 

3.5. How does the heat wave risk change under future climate conditions? 

Fig. 7 shows the near-future (2030–2060) and far-future 
(2069–2099) projected HWA using CMIP5 GCM datasets under two 
emissions scenarios compared with the 1976–2006 climate. Overall, 
HWA is projected to increase significantly during the two future periods 
and a larger fraction of southern Australia is projected to experience 
more extreme heat wave events. We also see that the average HWA 
derived from CMIP5 multi-GCM ensemble mean ranges from 0 to 10 ◦C2, 
and HWA decreases equatorward to ~3 ◦C2 in the northern Australia. 
Under the two future periods of RCP4.5, the spatial extent of HWA 
mainly aggregates in the southern Australia. Compared with HWA in the 
near-future, HWA in the far-future expands from southeast to western 
and central Australia. Under the two future periods of RCP8.5, HWA not 
only increases its intensity but also expands from south to north. As 
expected, the change in HWA from RCP8.5 is more extreme than that 
from RCP4.5, indicating that greenhouse warming strongly amplifies the 
amplitude of heat wave events. Fig. 8 shows the characteristic of HWD 
changes in the two future periods with different emission scenarios. The 
patterns of change for HWD are opposite to the change for HWA; 
northern Australia shows significant increases and southern Australia 
experience a moderate increase. In the far-future period of RCP4.5, we 
also note that HWD shows a stronger increase in western coastal areas 
and in northern tropical Australia, with HWD across northern tropical 
area reaching ~120 days. Again, in the far-future period of RCP8.5, 
HWD represents an amplification of the RCP4.5 pattern, that is, the 
duration of heat waves is much stronger than for RCP4.5. This indicates 
that the duration of southern Australia heat waves is not as sensitive to 
warming as those in northern Australia, largely due to the southern 
regions being associated with anticyclones and cold fronts. 

4. Discussion 

4.1. Model comparison 

To evaluate the performance of our model, we made a comparison 
with GHWR toolbox of Mojtaba Sadegh (2018). For the comparison, the 
CPC datasets during a period of 1979–2019 were used to model heat 
wave metrics. Both software toolboxes apply EHF-based method to 
measure the heat wave metrics. Note that the definition of EHF is 
composed of the previous three-day mean and the previous thirty-day 
mean. The threshold of the 95th percentile of Tmean was calculated 
based on the 20 years period (1979–2009). Two 2018 heat wave indices 
were obtained from two different software packages. We can see that the 
spatial pattern of HWD from our model is consistent with that of GHWR 
(seen in Fig. 9). However, the comparison of HWM shows large differ-
ence in spatial patterns. Based on the HWM results of Alexander and 

Table 2 
Structural similarity index between different heat wave characteristics from 
three climate datasets.  

Heat wave characteristics ERA5_SILO ERA5_CPC SILO_CPC 

Global SSIHWA 0.78 0.68 0.67 
Global SSIHWD 0.77 0.67 0.66 
Global SSIHWF 0.71 0.59 0.58 
Global SSIHWM 0.76 0.74 0.69 
Global SSIHWN 0.59 0.56 0.55  

M. Zhang et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 147 (2022) 105255

8

Perkins (2013), the HWM of the northern Australia are no more than 12, 
as the tropical climate imposes less diurnal and seasonal variation in 
temperature than that in southern Australia. In contrast, the higher 
HWM values tends to occur in southern Australia and experience higher 
average peak values. Argüeso et al. (2015) reported higher HWM values 
towards the south-west of NSW and lower HWM values to the north 

coast of NSW, is consistent with the spatial pattern from our model. We 
also note that the HWM from GHWR (3-day average) has a similar 
spatial pattern similar to that of HWM from Argüeso et al. (2015), i.e., 
the highest values of HWM are found in the north-west corner and the 
lowest values in the mountains of the south. It means that the heat wave 
metrics from our model are consistent with the original definition of 

Fig. 4. Examples of heat wave aspects of ERA5 from three different methods in 2018.  
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Alexander and Perkins (2013). 

4.2. Heat wave threshold 

The CMIP5 multi-GCM ensemble mean projects that longer summer 
heat waves will occur in northern Australia and hotter heat wave events 
will increase for southern Australia in the late twenty-first century, with 
more extreme change in the higher emission scenario RCP8.5 than for 
the lower emission scenario RCP4.5. The results reveal that the hottest 
heat waves will increase in southern Australia, which may account for 
the increasing trend of severe summer bushfires occurring in southeast 
Australia. Despite the different heat wave definitions and 25-member 
ensemble mean, our model results are consistent with the results from 
Purich et al. (2014). However, possibly due to the coarse resolution of 
the HWD from Purich et al. (2014), trends over Tasmania (an island 
state) are opposite to the overall pattern of change. While the patterns of 
change in Tasmania are consistent with the changes in other continental 
states, it means that our HWD results show promise in simulating 
fine-scale projections without using downscaling techniques. 

Future extreme heat waves in our study are defined relative to a 
historical reference period, we find a substantial increase in amplitude, 
duration and extent in both near-future and far-future periods (seen in 
Figs. 7 and 8). For example, the duration of heat waves can even last 
over the entire warm season in some areas, which amounts to 152 days. 
The amplitude of heat waves significantly increases over southern 
Australia. Such results are not surprising and are in line with other 
findings (Perkins-Kirkpatrick and Gibson, 2017; Lyon et al., 2019). 
However, the sensitivity of heat waves to different heat wave thresholds 
was not explored. Vogel et al. (2020) identified future heat waves with 
different heat wave thresholds: fixed, seasonally moving and fully 
moving, where fixed thresholds are based on hot days relative to a 
historical baseline; seasonal and fully moving thresholds are defined by 
hot days relative to future conditions. They find that using fixed 
thresholds might overestimate future heat waves, while using seasonal 
and fully moving threshold results in little or no changes in future heat 
wave metrics. To better estimate heat wave characteristics and risk in a 
warming world, it would be useful to adopt varying heat wave thresh-
olds for future spatiotemporal heat wave studies. 

4.3. Future needs 

For this study, we use the 5 km SILO gridded climate data, reanalysed 
data (25 km, 50 km) to estimate the heat wave at a large scale. However, 
those climate datasets do not take into account the smaller scale tem-
perature variations, that is, the weather stations used to produce the 
gridded climate data were too sparse to record fine scale variations in 
extreme temperatures. For example, we find that the gridded climate 
data have relatively coarse spatial resolutions and cannot meet the need 
of monitoring heat wave variances in complex settings, and the heat 
wave maps are generally distributed evenly over urban heat islands. 
Furthermore, the location of most weather stations is away from 
building areas and the associated heat islands where extreme heat waves 
pose the greatest risk to human health. This issue can be at least partially 
resolved by using satellite thermal infrared sensing method to monitor 
and analyze heat waves at a local scale. 

The proliferation of land surface temperature (LST) products offers 
an opportunity to study the characteristics of extreme heat waves at the 
community scale and give insight into urban heat wave planning and the 
prevention of heat-related mortality. For example, MODIS LSTs have 
higher spatial resolution (1 km) and temporal resolution (four passes per 
day). MODIS LSTs provide the maximum and minimum products for the 
20 years back to March 5th, 2000, which could be a valuable resource to 
capture extreme heat waves and for regional and local scale heat wave 
research. However, it is difficult to map LST accurately as the temper-
ature are very variable and could be affected by climate factors like 
clouds and wind (Venter et al., 2020). 

Compared to daily satellite data from MODIS (four passes a day), 
Himwari-8 data provides real time data at 10-min intervals, but the 
spatial resolution is 2 km which is also suitable to conduct regional 
studies. The high temporal resolution of Himawari-8 can show the 
diurnal characteristics of extreme heat waves on urban heat waves. 
Despite the limitations of the relatively short time period (from 2015 to 
present) of the historical data archive of Himawari-8, a combination of 
MODIS LST and Himawari-8 LST offers a better solution for obtaining a 
higher spatial resolution while maintaining a higher temporal resolu-
tion, which is extremely useful for characterizing the heat wave char-
acteristics and investigating the relationship between heat waves, land 
cover and population. 

Fig. 5. Distinct heat wave events derived from time series with EHF, TN90 and TX90 at the same point of southeastern Australia.  
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The health or agriculture impacts of heat waves are not only related 
with temperature measurements, but also affected by some additional 
factors. For example, health effects are associated with factors including 
perceived temperature, solar radiation, relative humidity, wind, while 
for agriculture, the parallel occurrence of droughts is highly relevant. 
Due to the problems of short time spans, inconsistency, and biases, these 
additional measurements have limitations on precisely capturing spatio- 
temporal pattern of heat wave impacts. The reason why we choose 
temperature-based heat wave definition is because it can be calculated 
from readily available climatological data and provides information on 
various aspects of heat waves. In other words, the choice of temperature 
rather than other measures is based on their feasibility across varying 
climates on long-term scales. Further, the availability of long-term 
temperature datasets at finer spatial scales can greatly improve our 
understanding of heat wave. We concur that the heat wave definitions 
directly rely on the critical temperature thresholds. However, there is no 
universal temperature threshold for health impacts because of regional 
variability of health status, socio-economic factors, and demographic 
factors (Alexander and Perkins, 2013). This impact also exists in agri-
culture due to varying regional patterns of plant species and physiology. 
Therefore, a given threshold suitable in a small region may not be 
applicable to a continental study like ours. Fischer and Schär (2010) 
explored health-related heat wave indices in three health factors: heat 

wave duration, minimum temperature, and relative humidity. Our study 
also quantified the heat wave duration, minimum temperature-based 
heat wave indices. A combined calculation of temperature and humid-
ity will be considered in our future study. 

5. Conclusion 

We have developed a heat wave toolbox that has the ability to esti-
mate past, current and future changes in heat waves at a continental 
scale. It uses a well-known heat wave framework constructed by Alex-
ander and Perkins (2013) and considers intensity, frequency, magni-
tude, duration and areal extent to explore the spatio-temporal evolution 
of heat wave severity and coverage. This study is the first attempt to 
estimate heat wave events across Australia using high spatio-temporal 
climate datasets. With these heat wave aspects from multi-source data 
and different methods, we were able to investigate the effects of scales, 
data quality and definition. We find that ERA5 datasets are the best in 
characterizing the heat wave events. In exploring the role of different 
methods on the identification of heat waves, we find that heat wave 
characteristics based on the Excess Heat Factor index integrate the 
features of both TX90 based and TN90 based methods. 

With the past 100 years of heat wave datasets, the HWA average 
mean values were calculated and used to estimate non-stationary return 

Fig. 6. (a) Effective return level under the non-stationary assumption with mean HWA value from the continental Australia. (b) The probability density functions 
(PDF) of HWA under 1920–2019 and 1980–2019. (c) Return period of HWA over Australia. The distributions are fit with non-stationary GEV for the climates of 
1920–2019 (red), 1980–2019 (blue). 
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levels and return periods. We find that extreme heat wave events have 
much higher probability due to the effects of climate change. The heat 
wave event in 2019 may be more frequent in the coming decades. For 
the climate by the end of century, using heat wave metrics derived from 
a multi-model ensemble mean, we predict HWA to increase significantly 
during the two future periods and a larger fraction of southern Australia 
is projected to experience more extreme heat wave events. Furthermore, 

the patterns of change for HWD are opposite to those for HWA; northern 
Australia shows significant increases and southern Australia experience 
a moderate increase. The methodology and the cloud computing-based 
toolbox (HWT) is useful for dynamic visualization, extraction, and 
processing of complex heat wave events, and applicable anywhere in the 
world. 

Fig. 7. Near-future (2020–2039) and Far-future (2069–2099) projected climatology for heat wave amplitude obtained from the CMIP5 multi-GCM ensemble.  

Fig. 8. Near-future (2020–2039) and Far-future (2069–2099) projected climatology for heat wave duration obtained from the CMIP5 multi-GCM ensemble.  
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R., Skea, J., Calvo Buendia, E., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., 
Slade, R., Connors, S., Van Diemen, R. (Eds.). 

Islam, M.A., Yu, B., Cartwright, N., 2020. Assessment and comparison of five satellite 
precipitation products in Australia. J. Hydrol. 590. 

Jones, D.A., Wang, W., Fawcett, R., 2009. High-quality spatial climate data-sets for 
Australia. Aus. Meteorol. Oceanogr. J. 58, 233. 

Jones, E.L., Rendell, L., Pirotta, E., Long, J.A., 2016. Novel application of a quantitative 
spatial comparison tool to species distribution data. Ecol. Indicat. 70, 67–76. 

Katz, R.W., 2010. Statistics of extremes in climate change. Clim. Chang. 100, 71–76. 
Lewis, S.C., Karoly, D.J., 2013. Anthropogenic contributions to Australia’s record 

summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709. 
Li, X., 2020. Heat wave trends in Southeast Asia during 1979-2018: the impact of 

humidity. Sci. Total Environ. 721, 137664. 
Luo, Q., 2011. Temperature thresholds and crop production: a review. Climatic Change 

109, 583–598. 
Lyon, B., Barnston, A.G., Coffel, E., Horton, R.M., 2019. Projected increase in the spatial 

extent of contiguous US summer heat waves and associated attributes. Environ. Res. 
Lett. 14. 

Ma, F., Yuan, X., Jiao, Y., Ji, P., 2020. Unprecedented Europe heat in june–july 2019: risk 
in the historical and future context. Geophys. Res. Lett. 47. 

Nairn, J.R., Fawcett, R.J., 2015. The excess heat factor: a metric for heatwave intensity 
and its use in classifying heatwave severity. Int. J. Environ. Res. Publ. Health 12, 
227–253. 

Perkins, S.E., 2015. A review on the scientific understanding of heatwaves—their 
measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 
164–165, 242–267. 

Perkins, S.E., Alexander, L.V., Nairn, J.R., 2012. Increasing frequency, intensity and 
duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39. 

Perkins-Kirkpatrick, S.E., Gibson, P.B., 2017. Changes in regional heatwave 
characteristics as a function of increasing global temperature. Sci. Rep. 7, 12256. 

Fig. 9. Heat wave metrics comparison between HWT and GHWR software tools.  

M. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1364-8152(21)00297-8/sref1
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref1
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref2
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref3
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref3
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref3
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref3
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref4
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref4
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref5
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref5
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref6
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref6
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
https://www.eodatascience.com/
https://www.eodatascience.com/
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref9
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref9
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref9
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref10
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref10
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref11
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref11
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref12
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref12
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref13
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref13
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref13
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref14
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref14
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref15
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref15
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref15
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref15
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref45
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref45
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref45
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref45
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref45
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref16
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref16
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref17
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref17
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref18
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref18
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref19
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref20
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref20
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref21
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref21
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref22
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref22
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref23
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref23
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref23
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref24
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref24
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref25
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref25
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref25
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref26
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref26
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref26
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref27
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref27
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref28
http://refhub.elsevier.com/S1364-8152(21)00297-8/sref28


Environmental Modelling and Software 147 (2022) 105255

13

Physical Science Laboratory. CPC global daily temperature [Online]. Available: https://p 
sl.noaa.gov/data/gridded/data.cpc.globaltemp.html. Accessed 2020.  

Purich, A., Cowan, T., Perkins, S., Pezza, A., Boschat, G., Sadler, K., 2014. More frequent, 
longer, and hotter heat waves for Australia in the twenty-first century. J. Clim. 27, 
5851–5871. 

Raei, E., Nikoo, M.R., Aghakouchak, A., Mazdiyasni, O., Sadegh, M., 2018. GHWR, a 
multi-method global heatwave and warm-spell record and toolbox. Sci. Data 5, 
180206. 

Rahmstorf, S., Coumou, D., 2011. Increase of extreme events in a warming world. Proc. 
Natl. Acad. Sci. Unit. States Am. 108, 17905–17909. 

Ribatet, M., Singleton, R., Team, R.C., 2011. SpatialExtremes: Modelling Spatial 
Extremes. 

Sadegh, Mojtaba, 2018. Global Heatwave and warm spell toolbox [Online]. Available. 
https://github.com/mojtabasadegh/Global_Heatwave_and_Warm_Spell_Toolbox, 
2020.  

Schar, C., Vidale, P.L., LüTHI, D., Frei, C., HäBERLI, C., Liniger, M.A., Appenzeller, C., 
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