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A B S T R A C T   

Runoff projection under future climate scenarios has been widely studied to investigate the impacts of climate 
change on regional water availability. However, uncertainty in runoff projection due to different ETp inputs has 
not been fully assessed. This study firstly adopted the physically-based Penman model, temperature-based 
Hargreaves model, and radiation-based Abtew, Jensen-Haise, and modified Makkink models to drive Xinan-
jiang (XAJ) model, thus investigating the influence of different potential evapotranspiration (ETp) inputs on 
runoff simulation. Then, we used the validated XAJ model to project runoff in North Johnstone catchment, 
northeast Australia. Lastly, we quantified the uncertainty caused by 34 global climate models (GCMs), different 
representative concentrative pathway (RCP) scenarios (RCP4.5 & RCP8.5), and different ETp models with the 
technique of three-way analysis of variance (ANOVA). We found that XAJ model performed well (R2 ≥ 0.88, NSE 
≥ 0.86) and showed low sensitivity to different ETp inputs in runoff simulation and projection. Under future 
climate scenarios, spring and winter runoff had a large decrease, which was mainly caused by the decrease in 
rainfall. The mean decreases in spring and winter runoff were 14.6% – 20.1% and 10.3% – 15.2% respectively by 
2090s under RCP8.5. GCMs (50.9% – 67.4%) and their interaction with RCPs (35.4% – 46.6%) were the 
dominant factors resulting in uncertainty in runoff projection. Our study not only advanced the understanding of 
the impacts of different ETp inputs on runoff projection but also offered insights on the understanding of the roles 
different factors played in the uncertainty in runoff projection. We expect such knowledge can provide a way 
forward to narrow down the uncertainty in runoff projection, thus providing more robust information for policy 
makers in water management.   

1. Introduction 

Runoff is one of the key processes in water transport both for surface 
water bodies (e.g., rivers, lakes, wetlands, and oceans) and groundwater 
(Ghasemizade and Schirmer, 2013; Kuchment, 2004). The amount of 
runoff from each rainfall event has direct or indirect influences on water 
availability in many aspects of human activities such as agricultural and 
industrial production, and domestic life (Allan et al., 2020; Devi et al., 
2015). Previous studies have shown that climate change with increased 

temperature and changed rainfall patterns has great impacts on runoff 
(Arnell and Gosling, 2013; Bosshard et al., 2013; Im et al., 2009). For 
instance, Arnell and Gosling (2013) found that more than 47% of the 
land surface would experience increases in mean annual runoff whereas 
around 36% of that would witness mean annual runoff decrease due to 
changes in temperature and rainfall. Meanwhile, considerable variation 
in the impact of climate change on runoff has been found among 
different regions (Arnell and Gosling, 2013; Do et al., 2017; Shen et al., 
2014). Providing a robust projection of regional runoff under climate 
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change plays a significant role in understanding local water resources 
management and revealing the impacts of a changing climate on local 
hydrological cycle (Allan et al., 2020; Yan et al., 2020). 

Different kinds of methods such as climate elasticity (Xing et al., 
2018; Yang and Yang, 2011), Bayesian approach (Freni et al., 2009), and 
hydrological model (Chiew et al., 2018; Islam et al., 2014) can be used 
for runoff simulation and projection. Compared with other methods, one 
of the most important advantages of hydrological models is that they are 
capable to detect the hydroclimate response to changes by offering a 
comprehensive and reliable approach at a certain catchment (Guo et al., 
2017a; Li et al., 2020). In previous studies, hydrological models were 
widely used as powerful tools to investigate runoff response to climate 
change (Fowler et al., 2018; Pechlivanidis et al., 2016; Vaze and Teng, 
2011). Specifically, historical observed rainfall and runoff sequences are 
used to calibrate and validate the performance of hydrological models. 
Then, runoff can be projected by the calibrated hydrological models 
forced with the climatic factors derived from global climate models 
(GCMs) (Arnell, 2011; Chen and Yu, 2015). For instance, Senent-Apar-
icio et al. (2017) investigated the influence of climate change on runoff 
in Mediterranean Europe with SWAT model and found that runoff would 
decrease due to the increase in temperature and decrease in rainfall. In 
Western Australia, Islam et al. (2014) downscaled climatic data from 11 
GCMs under A2 and B1 emission scenarios to drive LUCICAT model for 
the future rainfall-runoff projection. They found that projected decrease 
in rainfall would result in a large decrease in runoff for Western 
Australia in the mid and late of 21st century. 

According to closed water balance, runoff for a certain region is 
roughly the difference between rainfall and actual evapotranspiration 
(ETa) in a long-term period (Montaldo and Oren, 2018). Therefore, the 
estimation of ETa is expected to influence the simulation of runoff 
(Riegger and Tourian, 2014). In the process of runoff simulation with 
most hydrological models, potential evapotranspiration (ETp) is an 
essential input to calculate ETa used for simulating runoff (Bai et al., 
2016; Li and Zhang, 2017). However, various ETp models generally 
produce different ETp estimates (Feng et al., 2016; Kumar et al., 1987; 
Kumar Roy et al., 2020). In this case, which ETp model could produce 
better runoff simulation is an important question to answer (Dakhlaoui 
et al., 2020; Oudin et al., 2005; Seiller and Anctil, 2016). In other words, 
will the difference in ETp estimates result in different runoff simula-
tions/projections? Addressing this question is important in runoff pro-
jection under a changing climate as ETp is greatly influenced by future 
climate (Pan et al., 2015; Zheng et al., 2017). 

Oudin et al. (2005) adopted ETp estimated by 27 ETp models to drive 
four rainfall-runoff hydrological models and investigate the influence of 
different ETp inputs on historical runoff simulation over 308 catchments 
across France, Australia, and the United States. They found that these 
hydrological models showed low sensitivity to ETp inputs but 
temperature-based and radiation-based ETp models yielded the best 
runoff simulation. Under future climate scenarios, Seiller and Anctil 
(2016) assessed the sensitivity of 20 hydrological models in runoff 
projection to ETp estimated by 24 different equations. They found that 
the different ETp inputs exerted moderate influence on runoff projec-
tion. In Korea, Bae et al. (2011) investigated the sensitivity of three 
hydrological models to seven ETp methods in runoff projection with 
downscaled climate data from 13 GCMs. They concluded that the in-
fluence of different ETp on runoff projection became larger. On the 
contrary, Dakhlaoui et al. (2020) found that discharge simulated by 
three hydrological models was not sensitive to the ETp estimates under 
different climate conditions. In summary, though studies about the in-
fluence of different ETp inputs on future runoff projection are becoming 
common, there is no consistent conclusion yet. 

Another unavoidable challenge in future runoff projection is the 
uncertainty caused by many factors such as GCMs, hydrological models 
(Knutti and Sedláček, 2012; Teng et al., 2015), and emission scenarios 
(Woldemeskel et al., 2016). For instance, Teng et al. (2012) projected 
runoff based on 15 GCMs with five hydrological models in southeast 

Australia and found that uncertainty caused by GCMs was much larger 
than that caused by hydrological models. Vetter et al. (2017) investi-
gated the uncertainty in runoff projection caused by five GCMs, four 
RCPs, and nine hydrological models across 12 large-scale catchments 
worldwide. They found that GCMs and RCPs were the main factors 
resulting in the uncertainty. Similarly, Chegwidden et al. (2019) found 
that the choice of RCPs or GCMs was the main source influencing the 
spread in annual streamflow volume and timing. These studies would 
provide useful information to quantify the dominant source of uncer-
tainty in runoff projection. However, few of them considered the 
possible contribution of different ETp inputs and their interaction with 
other factors to the uncertainty in runoff projection. Given that ETp is 
essential for runoff projection, especially the influence of ETp may 
become larger under future climate scenarios (Seiller and Anctil, 2016), 
it is necessary to include ETp in the uncertainty analysis in runoff 
projection. 

Thus, the objectives of this study are dual: 1) to investigate the in-
fluence of different ETp inputs both in historical runoff simulation and 
future runoff projection; 2) to quantify the relative contribution of 
GCMs, RCPs, ETp models, and their interaction to the uncertainty in 
runoff projection. To achieve these goals, we calibrated and validated 
Xinanjiang (XAJ), a rainfall-runoff hydrological model driven by 
different ETp inputs against observed historical runoff at a humid 
catchment in northeastern Australia. Then, we used validated XAJ 
model to project future runoff under RCP4.5 and RCP8.5 with climate 
data downscaled from 34 GCMs. Based on the projected runoff, we 
quantified the relative contribution of different factors with the method 
of analysis of variance. We expect this study can offer further insights 
into the impacts of different ETp inputs on runoff projection and help to 
clarify the role of ETp inputs on the related uncertainty. The knowledge 
from this study will be helpful to guide the ETp model choice in future 
runoff projection. Results in this study can also provide a way forward to 
narrow down uncertainty in runoff projection. 

2. Materials and methods 

2.1. Study area 

The study area is North Johnstone catchment (17◦16′ S – 17◦38′ S, 
145◦28′ E – 146◦40′ E, Fig. 1), locating in the Wet Tropics of Queens-
land, Australia. It covers an area of 924 km2, with elevation ranging 
from 18 m to 1370 m (Zhang et al., 2020). The mean maximum and 
minimum temperatures in this catchment are around 26.0 ◦C and 
16.7 ◦C, respectively. Mean annual rainfall in this catchment is around 
2530 mm and mean annual runoff is around 1900 mm. The area is 
influenced by the monsoon and tropical lows/depressions, thus most of 
its rainfall occurs in austral warmer months from December to May. 
Specifically, the mean summer (Dec - Feb) and autumn (Mar - May) 
rainfall is around 1120 mm and 840 mm whereas the mean rainfall in 
winter (Jun - Aug) and spring (Sep - Nov) is around 300 mm and 270 
mm, respectively. Correspondingly, the production of runoff also 
showed seasonal difference, larger than 70% of runoff yielded in sum-
mer and autumn. Fig. 2 showed the seasonal temporal trends of potential 
evapotranspiration, rainfall, and runoff in North Johnstone catchment in 
the research period. It showed that rainfall in summer and autumn is 
generally higher than evapotranspiration whereas spring and winter 
rainfall were lower than evapotranspiration. In other words, spring and 
winter are relatively drier than summer and autumn in this region. 

Pasture and conserved natural rainforest are the main vegetation 
types of the catchment. The area of pasture and conserved natural 
rainforest cover 51% and 37% of the catchment, respectively (Rafiei 
et al., 2020). Banana, sugarcane, tea, and tropical fruit are the main 
agricultural product in the catchment. Meanwhile, runoff from this 
catchment is one of the water sources running to the Great Barrier Reef 
(GBR). Thus, changes in runoff here may have an influence on the 
ecological function of GBR. 
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2.2. Observed historical climatic data and downscaled future climatic 
data 

Historical daily climatic data from ten weather sites (Fig. 1) within or 
near by the catchment was extracted from the Scientific Information for 
Land Owners (SILO) patched point dataset (https://www.longpaddock. 
qld.gov.au/silo/datadrill/index.php) (Jeffrey et al., 2001). These data 
included maximum temperature (Tmax), minimum temperature (Tmin), 
maximum relative humidity (RHmax), minimum relative humidity 
(RHmin), solar radiation (Rs), and rainfall. On the one hand, they were 
used to estimate historical ETp and drive Xinanjiang model for historical 
runoff simulation. On the other hand, they were used to do second bias 
correction for GCMs output as a part of the statistical downscaling 
procedure. 

Monthly Tmax, Tmin, Rs, and rainfall under RCP4.5 and RCP8.5 were 
downscaled from 34 GCMs grids to these ten sites with the method 
developed by Liu and Zuo (2012). In detail, the monthly gridded climate 
data from GCMs were firstly interpolated to the ten sites with inverse 
distance-weighted interpolation method. Then, bias correction was 
carried out to correct the stationary bias and systemic errors embedded 
with the site-specific monthly GCM projections against SILO historical 
data. Lastly, daily climatic data at these sites were generated using a 
stochastic weather generator (Liu and Zuo, 2012). The detailed infor-
mation about the 34 GCMs can be referred to Shi et al. (2020). 

These downscaled climate data were used to estimate ETp under 
climate change scenarios. Then, the ETp and downscaled rainfall were 
used in XAJ model as inputs for runoff projection. In theory, the 
downscaled climate data from GCMs would be comparable to the 

Fig. 1. Location of the North Johnstone River catchment, Queesland, Australia and the distribution of 10 weather stations and the location of Tung Oil gauge (a 
hydrologic gauge station). 

Fig. 2. Seasonal ETp estimated by Ab, HS, JH, Mak, and Penman models, and seasonal rainfall and runoff in North Johnstone catchment from 1998 to 2017.  
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observed ones if the bias correction in the second step was perfect during 
the downscaling procedure. Thus, the projected runoff with downscaled 
climate data was also expected to be similar to those of an otherwise 
identically simulated with observations. However, as the bias correction 
in the second step mainly works for stationary bias and systemic errors 
(e.g., mean bias and projected trends in the future), and fails in cor-
recting the bias caused by misrepresentation of dynamical (physical) 
processes or non-stationary biases caused by GCMs (Haerter et al., 2011; 
Yang et al., 2016). In other words, the runoff projected with downscaled 
climate data is not likely to be as the same as the one of an otherwise 
identically simulated with observations. The difference between runoff 
projected with downscaled GCM data and runoff identically simulated 
with observations can be viewed as biophysical biases. In this study, we 
adopted a secondary bias-correction method (Yang et al., 2016) to 
correct the multi-year averages of projected runoff with the following 
equation. 

Roff = RoffG − (Rof fGbl − Rof fObl) (1)  

where Roff is the projected value after the second bias-correction; RoffG 
is the projected value from XAJ model driven by downscaled climate 
data; RoffGbl is the mean projected runoff over a historical baseline 
period with downscaled climate data; RoffObl is the corresponding mean 
runoff over the historical period with observed climate data. 

2.3. Empirical ETp models 

Air temperature and solar radiation are two key factors influencing 
ETp. It’s reported that they can explain about 80% of variations in ETp 
(Almorox et al., 2015; Priestley and Taylor, 1972; Samani, 2000). 
Meanwhile, compared with other climatic factors (e.g. wind speed), air 
temperatures downscaled from GCMs are more reliable under future 
climate scenarios (Guo et al., 2017b). Furthermore, Oudin et al. (2005) 
reported that temperature-based ETp models can produce reliable runoff 
simulation. Therefore, this study adopted both the physically-based 
Penman model, the commonly used temperature-based Hargreaves 
(HS), and radiation-based models including Jensen-Haise (JH), Abtew 
(Ab), and modified Makkink (Mak) to investigate the influence of 
different ETp inputs on runoff simulation. Their performance in esti-
mating ETp has been demonstrated in Shi et al. (2020). The mathe-
matical expressions of these empirical ETp models were shown in the 
following equations. 

The physical-based Penman model: 

ETp, Penman =
0.408Δ
Δ + γ

(Rn − G) +
γ

Δ + γ
6.43(1 + 0.536u2)(es − ea)

λ
(2)  

where Rn (MJ m− 2 day− 1) is the net radiation determined by the dif-
ference between the net solar (shortwave) radiation (Rns, MJ m− 2 day− 1) 
and the net longwave radiation (Rnl, MJ m− 2 day− 1) (Allen et al., 1998), 
as shown in equation (3). G (MJ m− 2 day− 1) is soil heat flux density, zero 
for periods of a day or longer (Allen et al., 1998; Irmak et al., 2012); u2 
(m s− 1) is wind speed at 2 m height; es (kPa) is saturation vapor pressure; 
ea (kPa) is actual vapor pressure; (es-ea) (kPa) is saturation vapor pres-
sure deficit; △ (kPa ◦C− 1) is the slope of the vapor pressure curve; γ (kPa 
◦C− 1) is the psychrometric constant; and λ is the latent heat of vapor-
ization of water, 2.45 MJ kg− 1 at 20 ◦C. 

Rn = Rns − Rnl (3)  

where the net solar (shortwave) radiation (Rns, MJ m− 2 day− 1) and the 
net longwave radiation (Rnl, MJ m− 2 day− 1) is estimated by the 
following equation (4) and equation (5), respectively. 

Rns = (1 − α)Rs (4)  

where Rs (MJ m− 2 day− 1) is measured solar radiation extracted from 
SILO; α is albedo, varying from 0.20 to 0.25 for green vegetation cover. 

This study adopted the FAO recommended value, 0.23 (Allen et al., 
1998). 

Rnl = 4.903 × 10− 9 ×
(Tmax + 273.06)4

+ (Tmin + 273.06)4

2

× (0.34 - 0.14
̅̅̅̅̅
ea

√
) ×

(

1.35 ×
Rs

Rso
− 0.35

)

(5)  

where Tmax (◦C) is maximum air temperature; Tmin (◦C) is minimum air 
temperature; ea (kPa) is actual vapor pressure; Rso (MJ m− 2 day− 1) is 
clear-sky radiation, which is estimated by the station elevation and 
extraterrestrial radiation. 

The radiation-based models: 

ETp,JH = 0.0102(T + 3)Rs (6)  

ETp,Ab = 0.01786
RsTmax

λ
(7)  

ETp,Mak = 0.7
Δ

Δ + γ
Rs

λ
(8) 

Parameters in these equations have the same meaning with that in 
Penman model. 

The temperature-based model: 

ETp,HS = 0.0023 × 0.408Ra(Tmax − Tmin)
0.5
(T + 17.8) (9)  

where Ra (MJ m− 2 day− 1) is extraterrestrial radiation, estimated from 
equation (10); Tmax, Tmin, and T (◦C) are maximum, minimum, and mean 
air temperatures, respectively. 

Ra =
24(60)

π Gscdr [ωssin(φ)sin(δ) + cos(φ)cos(δ)sin(ωs) ] (10)  

where Gsc is solar constant, 0.0820 MJ m− 2 min− 1, dr is inverse relative 
distance Earth-Sun; ωs(rad) is sunset hour angle; φ(rad) is station lati-
tude; δ(rad) is solar declination. dr and δ are determined by the number 
of the day in the year while ωs is a function of φ andδ. More details about 
the calculation of these parameters can be referred to Allen et al. (1998). 

2.4. Xinanjiang (XAJ) model 

As a lumped conceptual rainfall-runoff hydraulic model, the XAJ 
model has been widely used to simulate runoff in humid and sub-humid 
regions (Li et al., 2012; Zhang et al., 2019). Due to the consistent per-
formance of XAJ model in runoff simulation, it also has been widely used 
to investigate the response of runoff to climate change (Seiller and 
Anctil, 2014; Tian et al., 2013). XAJ model is divided into four sub- 
models, namely a three-layer evapotranspiration sub-model, runoff 
production sub-model, separation of runoff components sub-model, and 
flow concentration sub-model (Zhang et al., 2019; Zhao, 1992). Fig. 3 
and Table 1 showed the flow chart and 16 parameters used in XAJ 
model, respectively. The area-mean daily rainfall and ETp are inputs for 
this model and daily runoff and ETa are the outputs. The runoff simu-
lated by XAJ model is based on the assumption that runoff is produced 
after the soil moisture content of the aeration zone has reached field 
capacity (Zhao, 1992). 

2.5. Calibration and validation of XAJ model and scenario analysis 

The calculated ETp and the observed rainfall at all ten sites were used 
to calculate the area-mean ETp and area-mean rainfall to drive XAJ 
model for runoff simulation. Historical daily observed discharge from 
the Tung Oil gauge, which received most of the streamflow from the 
catchment was extracted from the Bureau of Meteorology website (http 
s://www.bom.gov.au/waterdata/) were used to calibrate and validate 
XAJ model. 

The historical climatic data from 1998 to 2010 were used to calibrate 
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XAJ model while the data from 2011 to 2017 were used for model’s 
validation. This study used SCE-UA (Shuffled Complex Evolution 
method developed at the University of Arizona), a global optimization 
method to optimize XAJ model parameters (Zhang et al., 2019). Firstly, 
individual ETp model was used to calculate ETp and drive XAJ model. 
Then, the parameters calibrated by a certain ETp model were used to 
validate XAJ model for other ETp models in addition to the one used for 
calibration. In other words, cross-model validation was carried out 
among these ETp models to investigate the sensitivity of XAJ model to 
different ETp inputs. Then, the group of parameters that produced the 
best runoff simulation for all ETp models were used in runoff projections 
with downscaled climatic data under future climate scenarios. The 
empirical models including JH, Ab, Mak, and HS were used to project 
future runoff in order to investigate the influence of different ETp 
models on runoff projection. 

Nash-Sutcliffe Efficiency (NSE), coefficient of determination (R2), 
and root mean square error (RMSE) were used to evaluate the perfor-
mance of the XAJ model driven by different models-estimated ETp 
against observed runoff. The NSE has been widely used in comparing 
hydrologic model performance (Fang et al., 2020; Li et al., 2009). It 
ranges from -∞ to 1. The value of 1 represents that the model-simulated 

runoff perfectly matches with the observed runoff. Therefore, the closer 
the NSE value is to 1, the better the hydrological model performs. 
Generally, a hydrological model with NSE and R2 larger than 0.50 is 
capable of effectively simulating stream flow for a certain catchment 
(Zhang et al., 2019). The NSE, R2, and RMSE were calculated with the 
following equations: 

NSE = 1 -
∑N

i=1

(
Qobs,i − Qsim,i

)2

∑N
i=1

(
Qobs,i − Qobs

)2 (11)  

R2 =

[∑N
i=1

(
Qobs,i − Qobs

)(
Qsim,i − Qsim

) ]2

∑N
i=1

(
Qobs,i − Qobs

)2∑N
i=1

(
Qsim,i − Qsim

)2 (12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
Qobs,i − Qsim

)2

√

(13)  

where Qobs,i (mm day− 1) was the observed runoff for i-th day; Qsim,i (mm 
day− 1) was simulated runoff for i-th day,; Qobs (mm day− 1) and Qsim (mm 
day− 1) are the corresponding mean daily values of observed runoff and 
simulated runoff in the research period. 

To project the change of runoff in the future period, we divided the 
downscaled climatic data into five time periods, namely baseline period 
from 1998 to 2017; near future period from 2021 to 2040 (2030s); 
middle future period from 2041 to 2060 (2050s); far future period from 
2061 to 2080 (2070s); and further future period from 2081 to 2100 
(2090s). 

2.6. Partitioning uncertainty to different sources 

Analysis of variance (ANOVA) method is capable of separating the 
total observed variances into different sources and considering the 
interactive contributions of different sources (Bosshard et al., 2013; Lee 
et al., 2021). In other words, one of the advantages of ANOVA method is 
that it quantifies both uncertainty related to each source and uncertainty 
related to the interaction among different sources (Morim et al., 2019; 
Yip et al., 2011). Interaction effects in ANOVA represent the combined 
effects of factors on the dependent variable. Thus, this method has been 
widely used in uncertainty analysis in climate change impact assessment 
(Lee et al., 2021; Morim et al., 2019; Wang et al., 2020a). For instance, 
Yip et al. (2011) adopted ANOVA method to quantify the total uncer-
tainty in climate projections into uncertainties related to GCMs, RCPs, 
and their interaction. Morim et al. (2019) adopted a three-way ANOVA 
method to quantify the uncertainty in wind-wave climate projections 
related to GCMs, RCPs, and different wave modelling methods. GCMs, 
RCP scenarios (RCP4.5 and RCP8.5 for 2030s, 2050s, 2070s, and 2090s, 
respectively), and ETp models are the sources contributing to the un-
certainty for runoff projection in our study. Accordingly, we adopted a 
three-way ANOVA method and varied the 34 GCMs, 4 ETp models, and 8 
RCP scenarios (RCP4.5_2030s, RCP4.5_2050s, RCP4.5_2070s, 

Fig. 3. The structure layers of the XAJ model.  

Table 1 
The 16 parameters used in XAJ model to simulate runoff.  

Layers Parameters Meaning of parameters (units) 

Evapotranspiration UM Areal mean tension water capacity in the 
upper layer (mm) 

LM Areal mean tension water capacity in the 
lower layer (mm) 

C Coefficient of deep evapotranspiration 
Runoff production WM Areal mean tension water capacity (mm) 

B Exponent of the tension water capacity 
(mm) 

IM Ratio of the impervious to the total area 
of the basin 

Separation of runoff 
components 

SM Areal mean of the free water capacity of 
the surface soil layer (mm) 

EX Exponent of the free water capacity 
curve 

KG Outflow coefficient of the free water 
storage to groundwater 

KI Outflow coefficient of the free water 
storage to interflow 

Flow concentration CI Recession constant of the interflow 
storage 

CG Recession constant of groundwater 
storage 

CS Recession constant of surface water 
storage 

L Lay time (day) 
KE Parameters of the Muskingum method 

(h) 
XE Parameters of the Muskingum method  
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RCP4.5_2090s, RCP8.5_2030s, RCP8.5_2050s, RCP8.5_2070s, and 
RCP8.5_2090s) in all possible combinations (which is 1088 subsets in 
total) to analyze the relative and interactive contribution of these 
sources. That is, the ANOVA was fit based on the projected mean sea-
sonal runoff x(g, r, e) for the g-th GCM, r-th RCP scenarios, and e-th ETp 
model. Equation (14) to Equation (29) showed the calculation of total 
sum of squares and squares due to individual effects and interactive 
effects. The calculation was conducted with the aov() function of R 
software. 

SST = SSGCMs + SSRCPs + SSETp,models
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

main effects

+

SSGCMs:RCPs + SSGCMs:ETp,models + SSRCPs:ETp,models+SSGCMs:RCPs:ETp,models
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

interaction effects

(14)  

where SSGCMs, SSRCPs, and SSETp,models represents the variance due to 
GCMs, RCPs, and ETp models, respectively; SSGCMs:RCPs, SSGCMs:ETp,models, 
SSRCPs:ETp,models, and SSGCMs:RCPs:ETp,models represents the variance due to 
the interaction among GCMs, RCPs, and ETp models. 

SST =
∑Ng

g=1

∑Nr

r=1

∑Ne

e=1
[x(g, r, e) − x(⋅, ⋅, ⋅)]2 (15)  

SSGCMs = NrNe

∑Ng

g=1
[(x(g, ⋅, ⋅) − x(⋅, ⋅, ⋅, ) ) ]2 (16)  

SSRCPs = NgNe

∑Nr

r=1
[(x(⋅, r, ⋅) − x(⋅, ⋅, ⋅) ) ]2 (17)  

SSETp, models = NgNr

∑Ne

e=1
[(x(⋅, ⋅, e) − x(⋅, ⋅, ⋅) ) ]2 (18)     

SSGCMs:RCPs:ETp,models = SST − SSGCMs − SSRCPs − SSETp,models
− SSGCMs:RCPs − SSGCMs:ETp,models − SSRCPs:ETp,models

(22) 

where. 

x(⋅, ⋅, ⋅) =
1

NgNrNe

∑Ng

g=1

∑Nr

r=1

∑Ne

e=1
x(g, r, e) (23)  

x(g, ⋅, ⋅) =
1

NrNe

∑Nr

r=1

∑Ne

e=1
x(g, r, e) g = 1, ...,Ng (24)  

x(⋅, r, ⋅) =
1

NgNe

∑Ng

g=1

∑Ne

e=1
x(g, r, e) r = 1, ...,Nr (25)  

x(⋅, ⋅, e) =
1

NgNr

∑Ng

g=1

∑Nr

r=1
x(g, r, e) e = 1, ...,Ne (26)  

x(g, r, ⋅) =
1

Ne

∑Ne

e=1
x(g, r, e) g = 1, ...,Ng, r = 1, ...,Nr (27)  

x(g, ⋅, e) =
1
Nr

∑Nr

r=1
x(g, r, e) g = 1, ...,Ng, e = 1, ...,Ne (28)  

x(⋅, r, e) =
1

Ng

∑Ng

g=1
x(g, r, e) r = 1, ...,Nr , e = 1, ...,Ne (29)  

where Ng, Nr, and Ne are the numbers of GCMs, RCP scenarios, and ETp 
models, respectively. 

After calculating the total sum square and sum squares for each 
uncertainty source, the relative contribution of each uncertainty source 
was calculated as the proportion of the partial variances (SS) to the total 
sum of the variances (SST). 

3. Results 

3.1. Calibration and validation of the XAJ model 

As one of the key inputs in runoff simulation, difference was 
observed in ETp estimated by different models (Figure S1). For instance, 

more ETp estimated by Ab was lower than 4 mm day− 1 whereas JH 
estimated ETp were more likely to be higher than 4 mm day− 1. However, 
the observed runoff and simulated runoff from the XAJ model (driven by 
different ETp inputs) did not show great difference, as indicated by 
similar R2 (Fig. 4, top panel), NSE (Fig. 4, middle panel), and RMSE 
(Fig. 4, bottom panel) both in calibration and validation periods. Take 
the validation period as an explanation, R2, NSE, and RMSE ranged from 
0.88 to 0.89, 0.86 to 0.88, and from 2.74 mm day− 1 to 2.90 mm day− 1, 
respectively. The high R2 and NSE indicated that XAJ model was capable 

SSGCMs:RCPs = Ne

∑Ng

g=1

∑Nr

r=1
〈x(g, r, ⋅) − {x(⋅, ⋅, ⋅) + [x(g, ⋅, ⋅, ) − x(⋅, ⋅, ⋅) ] + [x(⋅, r, ⋅) − x(⋅, ⋅, ⋅) ] } 〉2

= Ne

∑Ng

g=1

∑Nr

r=1
[x(g, r, ⋅) − x(g, ⋅, ⋅) − x(⋅, r, ⋅) + x(⋅, ⋅, ⋅) ]2

(19)  

SSGCMs:ETp, models = Nr

∑Ng

g=1

∑Ne

e=1
〈x(g, ⋅, e) − {x(⋅, ⋅, ⋅) + [x(g, ⋅, ⋅) − x(⋅, ⋅, ⋅) ] + [x(⋅, ⋅, e) − x(⋅, ⋅, ⋅) ] } 〉2

= Nr

∑Ng

g=1

∑Ne

e=1
[x(g, ⋅, e) − x(g, ⋅, ⋅) − x(⋅, ⋅, e) + x(⋅, ⋅, ⋅) ]2

(20)  

SSRCPs:ETp,models = Ng

∑Nr

r=1

∑Ne

e=1
〈x(⋅, r, e) − {x(⋅, ⋅, ⋅) + [x(⋅, r, ⋅) − x(⋅, ⋅, ⋅) ] + [x(⋅, ⋅, e) − x(⋅, ⋅, ⋅) ] } 〉2

= Ng

∑Nr

r=1

∑Ne

e=1
[x(⋅, r, e) − x(⋅, r, ⋅) − x(⋅, ⋅, e) + x(⋅, ⋅, ⋅) ]2

(21)   
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to simulate observed runoff very well. Meanwhile, the results suggested 
that ETp models (i.e. Penman model) which had more complicated 
structures were not always likely to outperform the simple empirical 
models in runoff simulation. Fig. 5 showed the daily runoff temporal 
trends from 1998 to 2017. It showed that temporal trends of observed 
runoff were well replicated by XAJ model regardless of the ETp inputs. 
This finding also confirmed that the difference of ETp inputs had little 
influence on the runoff simulation. 

3.2. Changes in rainfall and potential evapotranspiration under future 
climate scenarios 

Compared with the baseline period (1998–2017), the change of 
rainfall under future climate scenarios showed seasonal difference 
(Fig. 6). In general, the decreases in spring and winter rainfall were 
higher than that in summer and autumn. The mean decreases for spring 
rainfall ranged from 2.% to 3.5% under RCP4.5 and from 5.3% to 11.1% 

under RCP8.5. The corresponding mean decreases for winter rainfall 
ranged from 3.4% to 8.8% and from 6.2% to 7.1%, respectively. 

Contrary to the decreases in seasonal rainfall, all seasonal ETp would 
increase in the future (Fig. 7). The magnitudes of increases showed 
variation among ETp models. Specifically, JH and Ab generally pro-
jected higher increases in ETp than HS and Mak did. Another pattern 
showed by ETp increases was that the increases under RCP8.5 were 
higher than that under RCP4.5. Meanwhile, the increases of ETp also 
became higher with the time getting into the further future periods. The 
mean increases of spring ETp projected by JH (Ab) varied from 1.9% 
(1.8%, 2030s) to 8.0% (6.4%, 2090s) under RCP4.5 while Mak (HS) 
projected increases ranged from 0.7% (0.3%, 2030s) to 3.0% (3.5%, 
2090s). Under RCP8.5, the JH (Ab) projected increases ranged from 
3.0% (2.9%, 2030s) to 16.5% (13.1%, 2090s) and Mak (HS) projected 
increases ranged from 1.3% (0.8%, 2030s) to 5.1% (7.1%, 2090s). 

Fig. 4. The R2, NSE, and RMSE (mm day− 1) between observed and simulated runoff with the five groups of parameters are shown in Table 2. The cross-model 
validation method was used to calibrate XAJ model. 

Fig. 5. The observed daily runoff and the simulated daily runoff by XAJ model with calibrated parameters of Ab model (as in Table 2, marked with red) during 
calibration (1998–2010) and validation (2011–2017) periods in the North Johnstone catchment. 
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Fig. 6. Projected seasonal changes in rainfall (%) in 
the North Johnstone catchment in the near 
(2021–2040, 2030s), middle (2041–2060, 2050s), far 
(2061–2080, 2070s), and further future periods 
(2081–2100, 2090s) under RCP4.5 and RCP8.5 sce-
narios based on 34 GCMs compared with the baseline 
period (1998–2017). The upper and lower box 
boundaries indicate the 75th and 25th percentiles; the 
black line and the black dot within the box represents 
the median and mean values, respectively; the upper 
and lower whiskers are the 10th and 90th percentiles.   

Fig. 7. Projected seasonal changes in ETp (%) in the North Johnstone catchment in the near (2021–2040, 2030s), middle (2041–2060, 2050s), far (2061–2080, 
2070s), and further future periods (2081–2100, 2090s) under RCP4.5 and RCP8.5 scenarios based on 34 GCMs compared with the baseline period (1998–2017). The 
upper and lower box boundaries indicate the 75th and 25th percentiles; the black line and the black dot within the box represents the median and mean values, 
respectively; the upper and lower whiskers are the 10th and 90th percentiles. 

Fig. 8. Projected seasonal changes in runoff 
(%) with different ETp inputs in the North 
Johnstone catchment in the near 
(2021–2040, 2030s), middle (2041–2060, 
2050s), far (2061–2080, 2070s), and further 
future periods (2081–2100, 2090s) under 
RCP4.5 and RCP8.5 scenarios based on 34 
GCMs compared with the baseline period 
(1998–2017). The upper and lower box 
boundaries indicate the 75th and 25th per-
centiles; the black line and the black dot 
within the box represents the median and 
mean values, respectively; the upper and 
lower whiskers are the 10th and 90th 
percentiles.   
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3.3. Changes in runoff under future climate scenarios 

The changes of runoff under future climate scenarios with different 
ETp inputs were shown in Fig. 8. We found that the seasonal difference 
of changes in runoff was similar to that in rainfall. In other words, spring 
and winter runoff generally showed larger decreases than that in sum-
mer and autumn. Furthermore, runoff would generally experience larger 
decreases under RCP8.5 than that under RCP4.5 for the same future 
period. For example, XAJ model with all ETp inputs projected a slight 
decrease (around 0.7%) in spring runoff under RCP4.5 by 2030s 
whereas the decrease was around 15.7% under RCP8.5. By 2090s, the 
decrease of spring runoff projected with different ETp inputs ranged 
from 10.1% (Mak) to 13.1% (JH) under RCP4.5 and from 14.6% (Mak) 
to 20.1% (JH) under RCP8.5. The mean decreases of winter runoff 
varied from 2.1% (Mak) to 3.4% (JH) by 2030s and from 5.9% (Mak) to 
8.9% (JH) by 2090s under RCP4.5. The corresponding decreases under 
RCP8.5 were 7.4% (Mak) − 9.3% (JH) by 2030s and 10.3% (Mak) 
− 15.2% (JH) by 2090s. 

To investigate the relationship between changes in runoff and 
changes in rainfall and ETp, the scatter plots between them were shown 
in Fig. 9. The R2 between changes in runoff and ETp was not larger than 
0.46 whereas the R2 between changes in runoff and rainfall was no less 
than 0.86. This finding indicated that changes in runoff were mainly 
caused by changes in rainfall. 

3.4. Uncertainty in runoff projection 

Fig. 10 displayed the relative contribution of different sources to the 
uncertainty caused in runoff projection for each season. GCMs generally 
contributed the most to the uncertainty, ranging from 50.9% to 67.4%. 
The interaction between GCMs and RCPs also played a significant role in 
the total uncertainty, ranging from 35.4% to 46.6%. In contrast, the 
uncertainty caused by different ETp models was minor for all seasons, 
even though it was getting larger in winter than that in spring. The 
minor role of ETp models may be explained by the fact that runoff 
projection via XAJ model was rarely influenced by the difference of ETp 
models, as shown in Fig. 8 and Fig. 9. 

4. Discussion 

4.1. Low sensitivity of XAJ model to different ETp inputs 

Compared with XAJ model driven by physically-based Penman 
calculated ETp, it showed comparable (or even better) ability in runoff 
simulation with temperature-based (HS) and radiation-based ETp in-
puts. For instance, with the same R2 and NSE, RMSE produced by XAJ 
model with Penman-ETp was even larger (0.05 mm day− 1) than that 
produced by XAJ model with Ab and HS ETp inputs (Fig. 4). In spite of 
the small difference among different ETp inputs, XAJ model performed 
well in reproducing daily observed runoff (Fig. 5), with R2 larger than 
0.88, NSE larger than 0.86, and RMSE less than 3.23 mm day− 1 (Fig. 4). 

Fig. 9. The relationship between changes in simulated seasonal runoff and changes in ETp and rainfall.  

Fig. 10. The relative contribution of GCMs, RCPs, ETp models, and their interactions to the total uncertainty in runoff projections for each season in the North 
Johnstone catchment. 
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Under future climate scenarios, runoff projected with different ETp in-
puts also showed similar change patterns (Fig. 8). These findings 
demonstrated the low sensitivity of XAJ model to different ETp inputs. 
Similar results were also reported in previous studies (Dakhlaoui et al., 
2020; Kelleher and Shaw, 2018). In detail, Dakhlaoui et al. (2020) 
compared runoff projection by three hydrological models with different 
ETp estimations in Northern Tunisia. They claimed that hydrological 
projections with different ETp estimations were similar, indicating the 
low sensitivity of hydrological models to different ETp inputs. 

Overall, we found that the difference in runoff projection yielded by 
different ETp inputs was small for XAJ model. This could be partially 
explained by the fact that the difference in ETp estimates was trade off 
by difference in the calibrated model’s parameters. For instance, the 
coefficient of deep evapotranspiration (C, shown in Table 2) was 
different as a result of the different ETp inputs. In other words, the 
calibration procedure of XAJ model with different ETp inputs also pro-
duced different parameters, thus trading off the difference in ETp inputs 
and yielding similar and good runoff simulation. Considering that some 
downscaled daily climate data (e.g. wind speed or relative humidity) are 
not always available to support the use of complicated ETp models 
(Oudin et al., 2005; Randall et al., 2007), the low sensitivity of XAJ 
model to ETp inputs is helpful to improve our confidence in the use of 
temperature-based or radiation-based ETp models in future runoff 
projection. 

4.2. Runoff projections based on XAJ under future climate scenarios 

This study predicted a general decrease in runoff under future 
climate scenarios, especially for spring and winter (Fig. 8). A decrease in 
runoff under a changing climate was reported by previous studies both 
in northeast and other parts of Australia (Eccles et al., 2021; Nguyen 
et al., 2020; Potter et al., 2010). For example, in southwest Western 
Australia, Barria et al. (2015) found that projected runoff by 2050–2080 
would decrease by 10%-80% compared to runoff in 1970–2000. In a 
subtropical catchment of Queensland, Eccles et al. (2021) investigated 
the influence of climate change on runoff with climatic data downscaled 
from multi-model ensemble GCMs to drive a lumped conceptual hy-
drological model. They found that both high and mean streamflow were 
predicted to decrease. Note that their decreases in spring and winter 
were much larger than that in summer and autumn, which is consistent 
with our results. 

Decrease in runoff was mainly caused by a decrease in rainfall 
though the increasing ETp also amplified the reduction (Fig. 6). We 
found that the R2 between projected changes in runoff and rainfall was 
more than 0.86 (Fig. 9), which was much higher than its correlation with 

changes in ETp. This demonstrated that rainfall is the main driving 
factor in the change of projected runoff as reported by Charles et al. 
(2020). They claimed that increasing ETp would cause an additional 
reduction in runoff under a warming climate but changes in rainfall 
mainly determine the relative results. Similarly, Donohue et al. (2011) 
assessed the sensitivity of runoff to changes in precipitation and ETp 
based on Budyko’s curve. They found that the change of precipitation 
caused larger change in runoff than that caused by the same change of 
ETp. In this study, the dominant role of rainfall in influencing runoff 
changes may also partially explain the low sensitivity of XAJ model to 
different ETp inputs. 

Rainfall in North Johnstone catchment mainly occurs in summer and 
autumn (Fig. 2) (Zhang et al., 2020). By contrast, spring and winter are 
dry seasons for this catchment. The decreases of future rainfall and 
runoff will make these two seasons drier compared to baseline, which is 
likely to result in severe influence on the agricultural production and 
ecological functions in this catchment (Potter et al., 2010). For instance, 
the concentrations of nutrient and sediment may become larger as the 
flushing times tend to be longer apart with the dry seasons getting drier 
(Eccles et al., 2020; Eccles et al., 2021). Meanwhile, water consuming 
industries such as irrigators, forestry, and wetland in this region may 
face increasing demands and competition for water during these drier 
seasons (Petheram et al., 2012). 

4.3. Uncertainty in runoff projection 

We found that GCMs followed by interaction between GCMs and 
RCPs was the dominant source of uncertainty in projected runoff 
changes (Fig. 10). Similar results were reported by other studies. Lee 
et al. (2021) found that GCMs accounted for more than 45% of the total 
uncertainty in the projection of streamflow caused by hydrological 
model parameters, GCMs, and RCPs at Coastal Plain of the Chesapeake 
Bay watershed. At global scale, Arnell and Gosling (2013) reported that 
GCM-related uncertainty in hydrological projection was the largest 
among uncertainty caused by GCMs, emission scenarios, and the natural 
variability in hydrological regimes. The dominant role of GCMs played 
in the uncertainty in runoff projection may be attributed to the large 
uncertainty in rainfall projected by GCMs. According to Woldemeskel 
et al. (2016), GCMs accounted for around 90% of the uncertainty in 
rainfall projection. Therefore, the large uncertainty in rainfall projection 
caused by GCMs is likely to be transmitted to runoff projection as GCMs- 
downscaled rainfall is an essential input for XAJ model. As Petheram 
et al. (2012) reported in their study that the largest uncertainty in runoff 
projection was caused by rainfall projections from different GCMs. The 
high R2 (≥0.86) between change in runoff and rainfall in our study also 
support this conclusion. Different pathways of carbon dioxide, other 
anthropogenic emissions of greenhouse gases, aerosols and so on were 
associated with different RCPs and used as inputs to force GCMs to 
generate different climate simulations (Meinshausen et al., 2011). In 
other words, GCMs projections under different RCPs will result in 
different temperature and rainfall changes. Therefore, great contribu-
tion from the interaction between GCMs and RCPs to the uncertainty in 
runoff projection was not unexpected (Lee et al., 2021). 

Compared to uncertainty caused by GCMs, uncertainty caused by 
ETp models was small though its contribution in autumn and winter 
became larger (Fig. 10). This finding may be explained by the fact that 
the projection of runoff is more influenced by rainfall instead of ETp 
(Charles et al., 2020; Rajulapati et al., 2020), as shown in Fig. 9 that R2 

between change in runoff and change in ETp was barely larger than 
0.40. The uncertainty in runoff projection poses a great challenge for 
decision makers in taking measures to adapt to the possible water 
scarcity and stress. Though it is impossible to avoid uncertainty in 
climate projections, it is possible to reduce uncertainty from them 
(Hawkins and Sutton, 2011; Shoaib et al., 2018). For instance, nar-
rowing down uncertainty from GCMs can be realized by screening the 
performance of GCMs and choosing GCMs which can well replicate 

Table 2 
Five groups of parameters calibrated with different ETp inputs estimated by 
different models to drive XAJ model. The group of parameters marked with red 
was used for future runoff simulation.   

Ab HS JH Mak Penman 

WUM 10 10 10 10 10 
WLM 90 90 90 90 90 
C 0.0461 0.0567 0.026 0.0292 0.02 
WM 120 120 120 120 120 
B 0.35 0.35 0.35 0.35 0.35 
IM 0.0399 0.04 0.04 0.04 0.0399 
SM 52 60 53 53 53 
EX 1.1057 1.3508 1.3873 1.1607 1.0363 
KG 0.3001 0.3001 0.3002 0.3 0.3001 
KI 0.4997 0.4501 0.4998 0.5 0.4988 
CI 0.8383 0.843 0.825 0.8381 0.8411 
CG 0.9805 0.9824 0.9854 0.9818 0.9839 
CS 0.1 0.1 0.1 0.1 0.1 
L 0 0 0 0 0 
KE 24 24 24 24 24 
XE 0.2923 0.1603 0.1286 0.3536 0.2517  

L. Shi et al.                                                                                                                                                                                                                                       



Journal of Hydrology 612 (2022) 128042

11

historical observations for runoff projection. Wang et al. (2020b) 
quantified how many GCMs should be used to fully cover the uncertainty 
caused by them in runoff projection and concluded that at least 10 GCMs 
should be used. Therefore, attention should be paid both to the quality 
and to the quantity of GCMs used in runoff projection. In addition, 
another key requirement for reducing uncertainty in climate change 
impact assessment in hydrology is to better characterize climate change 
at the local level. The accuracy of climate system modeling has been 
improved over the last decades (Chen et al., 2021; Woldemeskel et al., 
2016) with incorporating important physical processes, increasing 
models’ complexities, and improving model’s resolution. Chen et al. 
(2021) found that the latest Coupled Model Intercomparison Project 
Phases 6 (CMIP6) performed better in simulating extreme precipitation 
in Western North Pacific and East Asia. 

4.4. Limitations of this study 

In this study, we only used one hydrological model to assess the 
impacts of climate change on runoff. Previous studies demonstrated that 
the direction of projected future runoff change by different hydrological 
models for a certain catchment is likely to be consistent (Pechlivanidis 
et al., 2016; Teng et al., 2012). However, it is very important to adopt 
multiple hydrology models to investigate the magnitude of runoff 
change under future climate. In addition, as only one hydrological 
model was used in this study, the contribution of hydrological models to 
uncertainty in runoff projection was not investigated. Some studies 
concluded that uncertainty caused by hydrological models was small 
compared with that caused by GCMs and RCPs (Aryal et al., 2019; 
Bosshard et al., 2013; Gosling and Arnell, 2011). For example, Teng 
et al. (2012) adopted five hydrological models with downscaled climate 
data from 15 GCMs to investigate climate change impact on runoff in 
southeastern Australia and analyzed the uncertainty caused by different 
sources. They found that the uncertainty in runoff change caused by 
GCMs with a certain hydrological model was around four or five times 
larger than the uncertainty caused by hydrological models with a certain 
GCM. Even so, it is still necessary to include this factor in the future 
study to avoid the possible underestimation of the total uncertainty 
related with runoff projection (Bosshard et al., 2013). Note that our 
results were specific to a certain catchment projected by XAJ model. It 
may yield discordant conclusions when different catchments or hydro-
logical models are used. For instance, Jung et al. (2012) claimed that 
uncertainty in hydrological projection at rain-dominated basin was 
different with that in the snow-dominated basin. Therefore, it is neces-
sary for future research to consider more hydrological models to 
investigate the influence of ETp models at multiple contrasting 
catchments. 

5. Conclusions 

We investigated the influence of different ETp inputs on runoff 
simulation and projection with XAJ model in North Johnstone catch-
ment, northeast Australia. Meanwhile, we quantified the contribution of 
GCMs, RCPs, ETp models, and their interaction to the uncertainty in 
runoff projection with a method of three-way analysis of variance. Our 
findings indicated that XAJ model performed well in runoff simulation, 
in the study catchment. We found that XAJ model with different ETp 
inputs projected similar decreases in spring and winter runoff while a 
small change in summer and autumn runoff. It is feasible to adopt simple 
empirical ETp models to project runoff especially when some down-
scaled climate data (e.g., winds and vapour pressure) are not available. 
We also found that GCMs and its interaction with RCPs contributed the 
most to the uncertainty in runoff projection. This highlighted the ne-
cessity to adopt multiple GCMs and RCPs to comprehensively project the 
potential influence of climate change on runoff. Our finding also provide 
a way forward to narrow down the uncertainty in runoff projection. 

Note that all our results are specific to XAJ model at a wet tropical 

catchment. In future studies, we expect to employ more hydrological 
models with different ETp inputs driven by the latest CMIP6 climatic 
data to quantify the uncertainty on runoff projection at various 
catchments. 
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