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Abstract: Accurate characterization of spatial patterns and temporal variations in dryland vegetation
is of great importance for improving our understanding of terrestrial ecosystem functioning under
changing climates. Here, we explored the spatiotemporal variability of dryland vegetation phenology
using satellite-observed Solar-Induced chlorophyll Fluorescence (SIF) and the Enhanced Vegetation
Index (EVI) along the North Australian Tropical Transect (NATT). Substantial impacts of extreme
drought and intense wetness on the phenology and productivity of dryland vegetation are observed
by both SIF and EVI, especially in the arid/semiarid interior of Australia without detectable seasonal-
ity in the dry year of 2018–2019. The greenness-based vegetation index (EVI) can more accurately
capture the seasonal and interannual variation in vegetation production than SIF (EVI r2: 0.47~0.86,
SIF r2: 0.47~0.78). However, during the brown-down periods, the rate of decline in EVI is evidently
slower than that in SIF and in situ measurement of gross primary productivity (GPP), due partially to
the advanced seasonality of absorbed photosynthetically active radiation. Over 70% of the variability
of EVI (except for Hummock grasslands) and 40% of the variability of SIF (except for shrublands) can
be explained by the water-related drivers (rainfall and soil moisture). By contrast, air temperature
contributed to 25~40% of the variability of the effective fluorescence yield (SIFyield) across all biomes.
In spite of high retrieval noises and variable accuracy in phenological metrics (MAE: 8~60 days),
spaceborne SIF observations, offsetting the drawbacks of greenness-based phenology products with
a potentially lagged end of the season, have the promising capability of mapping and characterizing
the spatiotemporal dynamics of dryland vegetation phenology.

Keywords: SIF; EVI; phenology; NATT

1. Introduction

Vegetation phenology, the study of the periodic biological life cycle events of plants, is
a critical regulator of carbon and water cycling in terrestrial ecosystems [1]. The trend of
global warming has aroused great interest in understanding and monitoring the dynamics
of vegetation phenology under the changing climate [2]. As a valuable indicator of climate
variability and ecosystem responses [1,3], accurate measurement of land surface phenol-
ogy (LSP) is crucial for better explicating the land–atmosphere–energy exchange and its
representation in terrestrial biosphere models [4–7].
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Phenological studies are usually conducted at the species- or ecosystem-level through
ground-based field techniques [4], such as visual inspection, eddy covariance flux towers,
near-surface spectral radiometers, and digital cameras [8]. Satellite-based observation,
providing a unique and feasible way for examining broader-scale phenomena [4], has
notably expanded the horizon of traditional phenology observation [2]. Vegetation indices,
which are combinations of surface reflectance at two or more wavelengths designed to
highlight a particular property of vegetation [9–11], can depict spatiotemporal patterns of
the timing of plant growth, senescence, and dormancy at seasonal and inter-annual time
scales [12]. The enhanced vegetation index [9], normalized difference vegetation index [13],
and leaf area index (LAI) derived from optical satellite sensors are widely applied for
tracking large-scale vegetation seasonality.

Dryland vegetation, covering approximately 40% of the global land surface [14],
is exceedingly susceptible to climate conditions, mainly owing to chronic physiological
stress [10,15–17]. Numerous phenology studies based on satellite remote sensing have
examined temperature-driven ecosystems of the Northern Hemisphere [4,18,19]; however,
the phenological dynamics of dryland vegetation under climate variability and extreme
events have not been thoroughly investigated as a result of the intrinsic sensitivity and
complexity [15]. Given that the mixed and heterogeneous arrangement of water-limited
ecosystems confounds the extraction of the phenophase, Walker et al. (2014) assessed
dryland vegetation phenology across an elevation gradient in Arizona, USA, by fusing syn-
thetic Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery [15].
The significant spatiotemporal variations in savanna biomes with diverse tree-grass ra-
tios implies that grass-containing xeric savanna is especially sensitive and vulnerable to
hydro-climatic variability [20]. Besides, previous studies found that growing season re-
trieved from the greenness-based approach overestimates the photosynthetically active
duration, indicating a divergence between greenness and function [21,22]. On the basis of
the complex composition of plant functional types, as well as the highly dynamic climate
in Australia, accurately assessing the phenological characteristics of dryland vegetation
remains challenging [23].

In contrast to the reflectance-based approaches, fluorescence measurements directly
from the core of photosynthetic machinery present a fresh manner of remotely sensing veg-
etation growth and response. Recent studies found that satellite-based observations of SIF
can detect interannual and seasonal variations in gross primary production of vegetation in
North America [24–26]. Wu et al. (2018) found strong spatiotemporal consistency between
satellite-based SIF and GPP products across the Contiguous United States [27]. Although
photosynthesis and greenness exhibit an analogous seasonality in deciduous forests, satel-
lite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis
and greenness dynamics in boreal evergreen forests [28,29]. Continuous observations
of satellite-based SIF and vegetation indices contribute to improved understanding of
large-scale variations in vegetation phenology and function [21].

By comparing EVI and the photochemical reflectivity index, Smith et al. (2018) demon-
strated that chlorophyll fluorescence derived from GOME-2 more accurately captures
seasonal and interannual variations of gross primary productivity across dryland ecosys-
tems of southwestern North America [30]. Through evaluating the SIF time series derived
from GOME-2 with tower-based GPP in Australia, Sanders et al. (2016) found that natural
biome types, such as savanna and open woodland, showed weaker correlations relative to
agricultural biomes [31]. Taking into account the sparse spatial resolution of the existing
spaceborne SIF product, as well as the varying mixtures of trees, shrubs, and grasses
in Australia’s dryland ecosystems, a high-resolution contiguous SIF product (SIFoco2_005)
was utilized to explore the phenology dynamics of dryland vegetation along the North
Australian Tropical Transect [23]. They found that these up-scaled SIF data at a 0.05◦

spatial resolution outperformed EVI for characterizing seasonal onset and senescence of
dryland vegetation and suggested it had the potential for large-scale mapping of phenology
dynamics as opposed to traditional reflectance-based vegetation indices. Nevertheless,
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SIFoco2_005 was generated by the OCO-2 native SIF along with MODIS reflectance using
machine learning [32], and it therefore showed an enhanced accuracy in determining the
phenological transition of GPP derived from flux tower measurement as a consequence of
it containing both structural and physiological information. However, whether the original
SIF observation can accurately capture the phenology dynamics of Australia’s dryland
vegetation under climate variability remains unclear.

In arid and semiarid ecosystems, rainfall strongly affects the strength and occurrence
of photosynthetic and respiratory activities and is the dominant driver for vegetation
phenology and productivity [33–35]. The seasonality of Acacia-dominated woodlands (as
measured by EVI) was found to show substantial responsiveness to hydroclimatic vari-
ability [4]. Additionally, approximately 80% of the variations in the length of the growing
season of major dryland biomes along the NATT could be attributed to the variability of
annual precipitation [4]. Nevertheless, there is a knowledge gap regarding how and to what
extent major environmental and climatic drivers determine the phenological dynamics of
fluorescence (as a surrogate of photosynthesis).

The objectives of this study were: (1) to evaluate the spatial patterns and seasonal
variations of dryland vegetation phenology across NATT under a dynamic climate; (2) to
contrast the differences in phenological metrics derived from satellite-observed SIF and EVI;
(3) to determine the dominant factor that drives the interannual and seasonal variability of
each vegetation variable among major biome types.

2. Materials and Methods
2.1. Study Area

This study was conducted at a regional scale between 12◦S and 23◦S and 128◦E and
138◦E, which is known as the Northern Australian Tropical Transect (Figure 1). This region,
particularly the northern NATT, has a classic monsoon climate pattern, which receives
more than 80% of its annual precipitation during November to April [4]. From the northern
mesic tropics to xeric central Australia, mean annual rainfall ranges from 1700 mm to
approximately 300 mm [4].

Correspondingly, the vegetation follows a wet–dry gradient that shifts from Eucalyptus-
dominated forests, open forests, and woodlands in the coastal northern areas to Acacia-
dominated open woodlands, scattered shrubs, and Hummock grassland into the vast
inland [4]. More detailed descriptions with respect to ecosystems, climate, and soils of the
entire study region can be found in Ma et al. (2013) and Hutley et al. (2011) [4,36].

To contrast satellite observation with ground-based evidence, we selected five rep-
resentative flux tower sites across the extensive study area: Howard Springs (AU-How
(131.15◦E, 12.495◦S)), Dry River (AU-Dry (132.371◦E, 15.259◦S)), Sturt Plains (AU-Stp
(133.3502◦E, 17.1507◦S)), Alice Springs Mulga (AU-ASM, (133.2493◦E, 22.2828◦S)), and Ti
Tree East (AU-TTE (133.64◦E, 22.287◦S)) [37]. The major vegetation types over the five
sites, respectively, are Eucalyptus woodland (AU-How), Eucalyptus open forest (AU-Dry),
Tussock grassland (AU-Stp), Mulga open woodland (AU-ASM), and Corymbia savanna
(AU-TTE) (http://www.ozflux.org.au/, accessed on 1 October 2020).

2.2. Satellite Data

In this study, we utilised satellite-based SIF records obtained from the Global Ozone
Monitoring Experiment-2 (GOME-2) onboard the MetOp-B platform. This dataset is the
retrieval of the far-red chlorophyll fluorescence peaking at 740 nm, based on a simpli-
fied radiative transfer model in the company of a principal component analysis [22].
Monthly global coverage of SIF data at a 0.5◦ × 0.5◦ spatial resolution (level 3, Version 28)
from March 2013 to March 2019 was obtained from NASA Goddard Space Flight Centre
(https://avdc.gsfc.nasa.gov/, accessed on 1 July 2020). The daily orbital data (level 2,
Version) were also used to aggregate 16-day interval records for higher temporal resolution
analysis. Given that the data provider of GOME-2 SIF suspended updating in March 2019,
we introduced a novel SIF product (from July 2018 to June 2019) derived from TROPOMI

http://www.ozflux.org.au/
https://avdc.gsfc.nasa.gov/
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onboard the Sentinel-5 Precursor satellite as a supplementary in this study. A data-driven
method was employed to retrieve the SIF signal using spectral measurements ranging from
743 nm to 758 nm. The daily orbital TROPOMI SIF at a 0.05◦ spatial resolution (obtained
from ftp://fluo.gps.caltech.edu/data/tropomi/, accessed on 1 August 2020) was likewise
aggregated to 16-day series by the mean value.
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Figure 1. (a) Land cover map of the Northern Australian Tropical Transect (NATT) study area (data 
source: Dynamic Land Cover Dataset). Black triangles refer to the five flux tower sites. Photographs 
show the ground-view of each flux tower site linked with the black arrow (image source: 
www.ozflux.org.au, accessed on 1 October 2020). (b) The locations of the study area over the Aus-
tralian continent (image source: Google Earth). 
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Figure 1. (a) Land cover map of the Northern Australian Tropical Transect (NATT) study area (data
source: Dynamic Land Cover Dataset). Black triangles refer to the five flux tower sites. Photographs
show the ground-view of each flux tower site linked with the black arrow (image source: www.ozflux.
org.au, accessed on 1 October 2020). (b) The locations of the study area over the Australian continent
(image source: Google Earth).

We used the Moderate Resolution Imaging Spectroradiometer (onboard Aqua, Col-
lection 6) MYD13C1 (0.05◦, 16-day) and MYD13C2 (0.05◦, monthly) Vegetation Indices’
products from January 2007 to June 2019 downloaded from NASA Earth Observation
data (https://search.earthdata.nasa.gov/search, accessed on 1 August 2020). EVI is an
optimized version of vegetation indices that effectively reduces soil background influences
and is widely used as a proxy of canopy greenness. The equation of EVI is:

EVI = 2.5
ρNIR − ρred

ρNIR + 6ρred − 7.5ρblue + 1
(1)

where ρblue, ρred, and ρNIR are reflectance in the blue, red, and near-infrared bands, respec-
tively. To reduce noise and uncertainties, only the best-quality data were retained in this
study by removing pixels for which the quality control flag of the first 2 bits was neither 00
nor 01, and pixelwise EVI time series data were smoothed using the Savitzky–Golay filter.

MODIS daytime Land Surface Temperature (LST, MYD11C3, Version 6) at a monthly
scale and a 0.05◦ spatial resolution was included in this study, collected from NASA Earth
Observation data (https://search.earthdata.nasa.gov/search, accessed on 1 August 2020).
Similarly, bad-quality data were removed by eliminating pixels with a quality control flag.

To examine the impact of solar radiation on vegetation seasonality, monthly pho-
tosynthetic active radiation (PAR) at a 1◦ spatial resolution was downloaded from the

ftp://fluo.gps.caltech.edu/data/tropomi/
www.ozflux.org.au
www.ozflux.org.au
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
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NASA Langley Research Centre, Cloud and Earth’s Radiant Energy System (CERES, Ed4.1),
including adjusted surface PAR, both direct and diffuse fluxes under all-sky conditions
(http://ceres.larc.nasa.gov, accessed on 1 August 2020). The total PAR was computed as
the sum of both direct and diffuse PAR [38]. As recent studies suggested EVI outperformed
the MODIS fPAR (fraction of absorbed PAR) products in estimating the APAR [39], we refer
to EVI × PAR as an alternative estimate of APAR:

APAR ≈ EVI × PAR (2)

2.3. Climate Data and Land Cover Map

To assess the interaction of environmental drivers and vegetation, monthly air temper-
ature (at a 2 m height) and soil moisture content (surface 0–7 cm depth, root zone 28–100 cm
depth) based on ERA-5 reanalysis data were downloaded from Copernicus Climate Change
Service (https://cds.climate.copernicus.eu/, accessed on 1 July 2020).

Global monthly precipitation based on Integrated Multi-Satellite Retrievals for Global
Precipitation Measurement (IMERG, Version 6, Final run, 2007–2019) at a monthly scale
and a 0.1◦ spatial resolution was collected from the NASA Precipitation Processing System
(https://pps.gsfc.nasa.gov/, accessed on 1 August 2020).

The National Dynamic Land Cover Dataset (DLCD) was used in this research, ob-
tained from Geoscience Australia and the Bureau of Agricultural and Resource Economics
and Sciences (http://www.ga.gov.au/scientific-topics/earth-obs/landcover, accessed on
1 July 2020). Given that some biome types were only covered by a few pixels over the study
region, closed Tussock grassland, dense shrubland, and closed forest were, respectively,
re-grouped into open/closed Tussock grassland, dense/open shrubland, and closed/open
forest (Figure 1). This dataset, validated with abundant field sites, was aggregated to a 0.5◦

spatial resolution by the most frequent values.

2.4. Eddy Covariance Data

The original level 3 (AU-How, AU-Dry, AU-Stp) and level 6 (AU-ASM, AU-TTE)
flux data provided by the OzFlux network (http://www.ozflux.org.au/, accessed on
1 October 2020) were used to pre-process, including quality control assessment, removal
of outliers, and gap-filling [33]. In order to estimate daily mean GPP with hourly eddy
covariance and meteorological data, flux partitioning for level 3 data was conducted in
the open-source R scientific computation environment (Version 3.5.1) associated with the
REddyProc package (Version 1.2) [40]. This tool used the gap-filling and flux partitioning
algorithms to partition level 3 data into GPP and field ecosystem respiration [41]. The
daily-estimated flux data were, respectively, aggregated into monthly and 16-day GPP to
match with satellite-based observations.

2.5. Phenological Metrics

Owing to the fact that Ma et al. (2013) demonstrated the capability of singular spectrum
analysis (SSA) in the analysis of nonlinear dynamics in NATT [4], we also employed
the same method to smooth and reduce the noise in satellite-based SIF, EVI time series.
Correspondingly, following Ma et al. (2013) [4], 37 composite periods of the window
length and four leading components were selected to configure the parameters in the SSA
implementation (Figure 2). After interpolating to daily time series from SSA-reconstructed
SIF, EVI series, we used the PhenoDeriv function from the “GreenBrown” package to derive
the key phenological metrics. Five metrics were extracted:

1. The start of the growing season (SOS), defined as the date halfway between the
minimum value and the fastest greening rate;

2. The peak of the growing season (POS), the date of the maximum value;
3. The end of the growing season (EOS), the date halfway between the fastest brown-

down rate and minimum value;

http://ceres.larc.nasa.gov
https://cds.climate.copernicus.eu/
https://pps.gsfc.nasa.gov/
http://www.ga.gov.au/scientific-topics/earth-obs/landcover
http://www.ozflux.org.au/
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4. The rate of spring green-up (RSP), the amplitude of EVI or SIF between POS and SOS
divided by the periods (days) between POS and SOS;

5. The rate of autumn senescence (RAU), the amplitude of EVI or SIF between POS and
EOS divided by the periods (days) between POS and EOS
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Figure 2. Schematic diagram of phenological metrics’ retrieval. The curve refers to the seasonal
SSA-re-reconstructed EVI or SIF profile at a daily scale. SOS: the start of the growing season; POS: the
peak of the growing season; EOS: the end of the growing season; RSP: the rate of spring green-up;
RAU: the rate of autumn senescence.

To examine the interaction of environmental drivers and vegetation variables, the
coefficient of determination (r2) was calculated across four major biome types. A t-test was
utilized to examine the statistical significance level of the relationships (p-value). To further
explore the difference between SIF and EVI, we interpreted SIF with fPAR and SIFyield,
expressed as:

SIFPAR =
SIF
PAR

(3)

SIFyield =
SIF

EVI × PAR
(4)

Data processing, analysis, and visualization were conducted in the open-source R
scientific computation environment (Version 3.6.2) and the associated packages contributed
by the R user community (http://cran.r-project.org, accessed on 1 August 2020).

3. Results
3.1. Seasonal and Inter-Annual Variations over Local Sites

Figure 3 shows the inter-annual variations in eddy-covariance-estimated GPP and
satellite-based SIF, EVI over five selected flux sites during 2014–2019. Generally, both
satellite variables, especially EVI, exhibited the capacity for capturing the seasonal and
inter-annual dynamics of dryland vegetation as indicated by tower-based GPP (r2 ranging
from 0.47 to 0.86). Compared with northern mesic sites, the two southern semi-arid
sites (AU-ASM, AU-TTE) displayed much higher inter-annual variability, of which there
was no seasonality detected by satellite observation nor field measurement in 2018–2019
(Figure 3d,e). Likewise, there was significant hysteretic senescence in EVI as opposed to
GPP and SIF over two southern sites, in particular in the wet year of 2016–2017 (Figure 3d,e).
The POS of SIF was mostly advanced relative to those of EVI. Furthermore, we found that
multi-year series of GOME-2 SIF were more erratic and deviated from the fitted SSA-
reconstructed curves than GPP and EVI across northern humid sites, as well as southern
arid sites.

http://cran.r-project.org
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Figure 3. Time series of SSA-reconstructed tower-based GPP, GOME-2 SIF, MODIS EVI over (a) AU-
How, (b) AU-Dry, (c) AU-Stp, (d) AU-ASM, and (e) AU-TTE. R-squared (r2) refers to the relationship
between GPP and EVI (green) and GPP and SIF (orange), respectively. Vertical dashed lines refer to
the peak of the growing season in each hydrological year.

To assess the ability of SIF and EVI to track the seasonal dynamics of dryland veg-
etation as delineated by tower-based GPP, mean seasonal cycles of vegetation variables
(normalized to unity at the maxima) over five selected tower sites during 2014–2019 are
shown in Figure 4. For northern mesic site AU-How, GOME-2 SIF indicates a consistent
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growing season with tower data, in contrast to the 1–2-month lagged seasonal profile of
EVI during both the green-up and senescent periods (Figure 4a). Conversely, a notably
advanced springtime increase and earlier autumn drop are observed in SIF relative to
tower-based GPP and EVI for the AU-Dry site (Figure 4b). For three semi-arid and arid
sites (AU-Stp, AU-ASM, AU-TTE), both GPP and SIF show a slightly narrower mean
seasonal profile as opposed to two northern sites (Figure 4c–e). Besides, there is substan-
tial later senescence in EVI as compared with GPP, SIF, and APAR (≈EVI× PAR) over
southern water-limited sites. Likewise, the seasonal profiles of APAR significantly shifted
1~2 months earlier relative to those of EVI over all selected sites.
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AU-Dry 
SIF-GPP −56 3 −53 −38 −10 32 −63 −71 −42 −47 −75 60 
EVI-GPP −6 5 −27 −16 −8 12 −39 −55 −5 −23 −78  40 

AU-Stp 
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AU-ASM 
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3.2. Biogeographic Patterns of Vegetation Phenology 

To contrast the difference in the timing of seasonal greening derived from two satel-
lite-based vegetation indicators and assess spatial variability over the NATT, the region-
wide phenology maps based on EVI (Figure 5) and SIF (Figure 6) were generated. Besides, 
three representative years, 2014–2015 (normal year), 2016–2017 (wet year), and 2018–2019 

Figure 4. (a–e) Seasonal cycle (mean) of tower-based GPP, GOME-2 SIF, MODIS EVI, and EVI × PAR
over 5 selected local sites during 2014–2019. Curves are normalized with respect to unity at the
maximum annual value. (f) Seasonal cycle (mean) of PAR over 5 selected local sites during 2014–2019.
Satellite observations were extracted within a 3 × 3 window centred at each flux tower site (SIF:
1.5◦ × 1.5◦; EVI and EVI × PAR: 0.15◦ × 0.15◦).

The differences of key phenological metrics (SOS and EOS) derived from satellite-
observed SIF and EVI as compared with tower-based GPP over five flux tower sites during
2014–2019 are presented in Table 1. For SOS over three northern sites (AU-How, AU-Dry,
and AU-Stp), the mean absolute errors (MAE) of both SIF and EVI ranging from 7 to 32 days
were generally less than those over two southern arid sites (AU-ASM and AU-TTE, ranging
from 31 to 54 days). On the contrary, there was a larger discrepancy in EOS at AU-How
and AU-Dry (MAE ranges from 39 to 60 days). Besides, for two southern sites (AU-ASM
and AU-TTE), the differences of EOS between EVI and GPP were notably larger than those
between SIF and GPP.
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Table 1. Summary of differences (days) in SOS and EOS derived from SIF, EVI compared with that derived from tower-based GPP. Negative values represent an
earlier green-up (SOS) or senescence (EOS) of SIF, EVI relative to that of GPP.

SOS EOS

Site Data 2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 MAE 1 2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 MAE

AU-How
SIF-GPP 6 24 −4 −21 0 11 −80 20 7 44 −42 39
EVI-GPP −17 −12 10 3 −6 10 9 74 83 24 15 41

AU-Dry SIF-GPP −56 3 −53 −38 −10 32 −63 −71 −42 −47 −75 60
EVI-GPP −6 5 −27 −16 −8 12 −39 −55 −5 −23 −78 40

AU-Stp SIF-GPP 2 −21 −33 −21 19 −5 −14 −14 0 8
EVI-GPP −3 0 6 17 7 3 12 22 10 12

AU-ASM
SIF-GPP 22 108 −25 52 −11 9 −31 17
EVI-GPP 37 86 −10 44 14 84 34 44

AU-TTE
SIF-GPP 15 −134 −13 54 −2 9 −27 13
EVI-GPP 67 −25 1 31 20 84 42 49

1 MAE: mean absolute error.
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3.2. Biogeographic Patterns of Vegetation Phenology

To contrast the difference in the timing of seasonal greening derived from two satellite-
based vegetation indicators and assess spatial variability over the NATT, the region-wide
phenology maps based on EVI (Figure 5) and SIF (Figure 6) were generated. Besides, three
representative years, 2014–2015 (normal year), 2016–2017 (wet year), and 2018–2019 (dry
year), were selected to evaluate the impact of inter-annual precipitation variability on
vegetation phenology. We found large spatial and inter-annual variations in the timing of
key phenology transition dates retrieved from EVI (Figure 5), particularly in the southern
arid/semi-arid NATT (18◦S~23◦S). In the extremely dry year of 2018–2019, EVI exhibited no
seasonality over nearly the entire southern NATT as compared with detectable phenology
in normal and wet years (Figure 5). There is a remarkable lagging trend in key phenological
metrics (especially POS and EOS) in 2014–2015 (normal year) and 2016–2017 (wet year)
from north to south across the study area, of which Eucalyptus-dominated woodlands
distributed in the humid northern NATT started to green-up earlier (September to October).
By contrast, the SOS of Acacia-dominated woodlands and Hummock-dominated grasslands
distributed in the arid inland was generally 1–2 months behind (November to December).
Similarly, the peak and end of the growing season in the south were 2–3 months delayed
compared to those in the north during the normal/wet years.

The spatial patterns of vegetation phenology derived from SIF across NATT are shown
in Figure 6. Consistent with the in situ comparison, the key phenological metrics of most
pixels derived from SIF were generally earlier than those derived from EVI. There was a
contrary spatial pattern in the timing of transition dates between EVI and SIF, in which
arid/semiarid ecosystems over the southern NATT exhibited advanced POS (December to
January) and EOS (March to April) as opposed to POS (February to March) and EOS (April
to May) over the northern humid area (Figure 6d–h). With reference to the normal/wet
years, larger latitudinal changes in the peak of season between the north (11◦S–17◦S) and
south (17◦S–23◦S) NATT under the extremely dry condition of 2018–2019 were observed,
and fractional pixels in the south were likewise without detectable phenology (Figure 6c,f).

With the purpose of further contrasting the differences in the seasonal profile derived
from SIF and EVI, the relationship between green-up rate and brown-down rate of two
satellite-based indicators among four major vegetation types are shown in Figure 7. For
the semiarid/arid biomes (Hummock grasslands and shrublands), the majority of pixels
displayed considerably higher green-up rates than senescence rates (RSPEVI > |RAUEVI|),
of which the absolute senescence rate (|RAUEVI|) of Hummock grasslands was mostly
less than 0.002 d−1 (Figure 7a,b). By contrast, for northern sub-humid/humid biomes
(Eucalyptus-dominated forests and woodlands and Tussock grasslands), there were notably
rapid and comparable rates of green-up and senescence (0.0005~0.004 d−1) (Figure 7c,d).
On the other hand, RSPSIF and RAUSIF ranging from 0.002~0.010 nW m−2 nm−1 sr−1 d−1

had fewer discrepancies in spite of diverse biomes (Figure 7e–h).

3.3. Interaction between Environmental Drivers and Vegetation Variables

To investigate the dominant factors controlling the seasonal and inter-annual variations
in vegetation, the biome-specific relationships of the time series of principle environmental
drivers and vegetation variables (SIF, SIFPAR, SIFyield, and EVI) during 2014–2019 are shown
in Figure 8. Apart from forests and woodlands, root zone soil moisture was most relevant
for EVI (r2: 0.42~0.79) relative to other drivers; among those, temperature-related drivers
were poorly correlated (r2 < 0.16) (Figure 8a2–a4). By contrast, both moisture-related
drivers, as well as land surface temperature highly corresponded with EVI over northern
humid forests and woodlands (Figure 8a1). There were strong correlations (r2 > 0.8)
between SIF and EVI over forests and woodlands and Tussock grasslands as compared
with moderate correlations (r2: 0.21, 0.38) over water-limited ecosystems (Figure 8b1–b4).
Similarly, compared with temperature-related drivers (r2: 0~0.3), water-related factors
(especially soil moisture) were more associated with SIF among all biomes. After removing
the impact of solar radiation, there was an enhanced agreement between EVI and PAR-
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normalized SIF (SIFPAR) over Tussock grassland, shrublands, and Hummock grasslands
(r2: 0.51~0.86) (Figure 8c2–c4). Likewise, the correlation between root zone soil moisture
and SIFPAR was strengthened relative to those with SIF regardless of different vegetation
types. Precipitation and surface soil moisture agreed well with the effective fluorescence
yield (SIFyield) over forests and woodlands, as well as Tussock grasslands (r2: 0.38~0.62)
(Figure 8d1–d2). In addition, there was a moderately increased correlation between air
temperature and SIFyield (r2: 0.22~0.4) in comparison to those with SIF or SIFPAR (r2: 0~0.2).
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Figure 5. Spatial patterns of vegetation phenology based on EVI over the NATT study area across
three representative hydrological years, (a,d,g) 2014–2015 (normal year), (b,e,h) 2016–2017 (wet year),
and (c,f,i) 2018–2019 (dry year). The filled pixels (grey shaded areas) are either water body or without
detectable phenology. SOS: the start of growing season; POS: the peak of growing season; EOS: the
end of growing season. Blank circles represent 5 selected eddy covariance flux tower sites.
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Figure 6. Spatial patterns of vegetation phenology based on (a–h) GOME-2 SIF and (i–k) TROPOMI
SIF over the NATT study area across three representative hydrological years, 2014–2015 (normal
year), 2016–2017 (wet year), and 2018–2019 (dry year). The filled pixels (grey shaded areas) are either
water body or without detectable phenology. SOS: the start of growing season; POS: the peak of
growing season; EOS: the end of growing season. Blank circles represent 5 selected eddy covariance
flux tower sites.
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Figure 8. Relationships between climatic–environmental drivers and vegetation variables of
(a1–a4) EVI, (b1–b4) SIF, (c1–c4) SIFPAR, and (d1–d4) SIFyield among four major biome types across
the NATT during 2014–2019. (p-value < 0.001).

4. Discussion
4.1. Ground Interpretations of the Satellite-Observed Vegetation Phenology

Although the five selected sites exhibited distinct seasonality revealed by eddy covari-
ance flux measurements of vegetation production (GPP), both satellite-based SIF and EVI
generally captured seasonal dynamics and inter-annual variations over a variety of biomes
(Figures 3 and 4). In comparison with the greenness-based vegetation index, GOME-2 SIF
displayed more consistently a seasonal profile with tower-based GPP (Figure 4). Especially,
there was a significant “hysteresis effect” during the senescent period of EVI relative to that
of GPP over water-limited ecosystems (Hummock grasslands and shrublands), consistent
with previous findings [4]. In the wet year of 2016–2017, there was a considerably delayed
senescence of EVI over two southern sites (AU-ASM and AU-TTE), relative to those of
GPP and SIF (Figure 3). Besides, we found that the autumn senescence rates of EVI were
considerably slower than the spring green-up rates of EVI over these arid/semiarid biomes
(Figure 7); however, RAU and RSP of SIF were generally comparable. Aside from the
slow chlorophyll degradation leading to a gradual decrease of EVI [42], another possible
reason causing the discrepancies between EVI and SIF during the brown-down phase is
that the rapid decline in solar radiation in the arid southern NATT gave rise to the swiftly
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dropping SIF signals (Figure 4f). After removing the impact of the PAR on SIF, there was a
remarkably enhanced correlation between EVI and SIFPAR across southern water-limited
biomes (Figure 8b3–b4).

In contrast to GOME-2 SIF, EVI had an improved capability (higher r2) of tracking
the interannual and seasonal variations in GPP over most sites (except AU-Stp, Figure 3),
probably owing to the substantial footprint mismatch between flux tower measurement
and satellite observations (EVI: ~5 km, SIF: ~50 km). Moreover, as compared with the
reflectance-based vegetation index, the high retrieval noises over the low-productivity
region resulted in more erratic SIF signals [43], giving rise to a relatively weaker correlation
with tower-based GPP. Given the sparse spatial resolution of satellite-based SIF data,
Wang et al. (2019) utilized a high-resolution contiguous SIF product (SIFOCO2_005) over the
NATT and found that SIFOCO2_005 outperformed EVI at AU-ASM with a stronger temporal
consistency with tower-based GPP [23]. However, this up-scaled dataset was generated
by native OCO-2 SIF signals along with MODIS reflectance through a machine learning
method [32], and it therefore contains information of canopy structure and chlorophyll
content, like greenness-based indices. Even though EVI showed a tighter correlation with
the GPP (higher r2) than SIFOCO2_005 at AU-Dry and AU-Stp in Wang et al.’s (2019) studies,
congruent with our results [23], nevertheless, the high spatiotemporal SIF data derived
from TROPOMI onboard the Sentinel-5 Precursor launched in 2017 exhibiting striking
consistency with field measurement has great potential of characterizing the phenological
dynamics of dryland vegetation in the future [44].

4.2. Spatial Patterns of Vegetation Phenology

Distinct biogeographic patterns in the timing of transition dates, especially POS and
EOS, derived from SIF and EVI were observed (Figures 5 and 6), of which there was a
considerable latitudinal shift in vegetation phenology (EVI) with a gradually delayed
trend from north to south. This is in accordance with the in situ comparison that EVI
displayed significantly late senescence at southern xeric sites as compared with GPP and
SIF, particularly in the wet year of 2016–2017. In addition, the spatial phenomenon was in
line with Ma et al.’s (2013) findings [4], that the majority of EOS based on EVI in wet years
(2005–2006, 2010–2011, and 2016–2017), especially in the southern NATT, was generally
later than those in normal (2001–2002, 2014–2015) and drought years (2007–2008, 2018–2019)
(Figure 5), probably as a consequence of the aforementioned “hysteresis effect”. On the
contrary, there was less difference in the spatial patterns of EOS based on SIF between the
north and south NATT, as well as in normal/wet years (Figure 6), of which both showed
apparently earlier EOS, presumably due to the rapidly decreasing solar radiation over
the southern inland. However, as an example of moderately inconsistent phenological
metrics compared with field measurement GPP (Table 1), the coarse spatial and temporal
resolution of GOME-2 SIF, as well as high retrieval noises, impeded the full potential of
capturing the seasonal and interannual variations in vegetation. Considering the drawbacks
of existing greenness-based phenology products, as well as the highly heterogeneous
composition of dryland ecosystems, our findings imply that new spaceborne SIF with
improved spatiotemporal resolution, such as TROPOMI, has great capability for advancing
our understanding of phenological characterization in Australia.

Furthermore, SIF and EVI displayed a stronger temporal consistency over northern
mesic biomes (forests and woodlands and Tussock grasslands) relative to southern xeric
biomes (Hummock grasslands and shrublands) (Figure 8). Soil moisture can explain more
than 60% of the seasonal and interannual variability in EVI over most biomes (except
Hummock grasslands), suggesting it is the dominant factor controlling the dynamics of
vegetation greenness across the NATT. By contrast, the temperature-related drivers could
barely explain less than 5% of the variability (except forests and woodlands). Despite
the fact that solar radiation has substantial impacts on the SIF signal, temperature- and
moisture-related factors almost equally contributed to the process of light use efficiency
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for fluorescence (SIFyield, except forests and woodlands). This could partially explain the
temporal discrepancies between SIF and EVI across diverse biomes.

5. Conclusions

In summary, we utilized satellite-based SIF and EVI observations to investigate the
spatial patterns and seasonal dynamics of vegetation phenology across wet and dry years
along the North Australian Tropical Transect. Considerable impacts of drought and wet
extremes on the phenology and production of dryland vegetation were revealed by both
SIF and EVI, especially in the arid/semiarid interior of Australia. Although EVI exhibited
a considerably delayed senescence relative to SIF and GPP, phenological metrics derived
from SIF had more variable accuracy in contrast to those derived from the greenness-based
vegetation index. In addition, EVI exhibiting stronger correlation with tower-based GPP
(r2: 0.47~0.86) can be a superior indicator to track the seasonal and interannual variation in
dryland vegetation production than the spatially coarse SIF dataset (r2: 0.47~0.78). In spite
of the sparse sampling and high retrieval noises of GOME-2 SIF products, which offset
the drawbacks of greenness-based phenology products with a potentially lagged end of
the season, spaceborne SIF retrieved from state-of-the-art instruments (such as TROPOMI,
OCO-2) has the promising potential of assessing the characterization of the phenology
dynamics of dryland ecosystems.
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