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A B S T R A C T   

Much progress has been made in predicting terrestrial gross primary productivity (GPP) from solar-induced 
chlorophyll fluorescence (SIF). However, SIF-GPP relationships are mostly built by statistically relating top-of- 
canopy (TOC) SIF observations (SIFTOC) to eddy covariance flux-tower GPP estimates. We developed a 
process-based model, based on the mechanistic light response (MLR) model, to mechanistically link SIFTOC with 
the photosynthetic activity of vegetation. To apply this mechanistic model at the canopy scale, we 1) reformulate 
the equations by replacing the fraction of open PSII reaction centers (qL) and the maximum quantum yield of 
photosystem II (ФPmax) with nonphotochemical quenching (NPQ) and the quantum yield of photosystem II (ΦP); 
2) reconstruct hemispherical broadband SIF fluxes at photosystem II (PSII) from the directional observed SIFTOC 
that is contributed from photosystem I and II; 3) estimate other key parameters including KDF (ratio between the 
rate constants for constitutive heat loss and fluorescence), Cc (chloroplastic CO2 partial pressure), and Γ* 
(chloroplastic compensation point of CO2) at the canopy scale based on assumptions and in-situ measurements. A 
comparison against flux-tower based GPP at a winter-wheat study site, demonstrates that the modeled GPP, 
driven by SIFTOC at 760 nm, air temperature, incoming photosynthetically active radiation (PAR), and directional 
reflectance in the red and near-infrared region, is able to quantify canopy photosynthesis with good accuracy at 
both half-hourly (R2 = 0.85, RMSE = 5.62 μmol m− 2 s− 1, rRMSE = 9.10%) and daily (R2 > 0.90, RMSE = 3.25 
μmol m− 2 s− 1 and rRMSE = 8.69%) scales. The present model enhances our ability to mechanistically estimate 
GPP with SIF at the canopy scale, an essential step to model carbon uptake using satellite SIF at regional and 
global scales.   

1. Introduction 

During photosynthesis, absorbed photon energy may be used in three 
alternative pathways: photochemistry, heat loss (nonphotochemical 
quenching, NPQ), or re-emitted as chlorophyll a fluorescence (ChlF) in 
the spectral range 640–850 nm (Meroni et al., 2009; Mohammed et al., 
2019; Porcar-Castell et al., 2021). Leaf-level pulse-amplitude modula
tion (PAM) or “active” measurements of ChlF, often combined with leaf- 
level measurements of gas exchange, have been used for more than three 
decades to quantify the probability of an absorbed photon taking a given 

pathway and relate that probability to plant photosynthetic status 
(Magney et al., 2017; Meeker et al., 2021; Zhang et al., 2019). In the last 
ten years, improvements in remote sensing instrumentation and 
retrieval algorithms have enabled the passive detection of solar-induced 
chlorophyll fluorescence (SIF) within both Fraunhofer lines and atmo
spheric oxygen absorption bands (i.e., O2–B and O2-A and at 687 nm 
and 760 nm, respectively) from ground-based, airborne, and space- 
borne remote-sensing platforms (Du et al., 2020; Frankenberg et al., 
2014; Yang et al., 2015). SIF has an advantage over actively induced 
ChlF (i.e., PAM fluorescence) in that it can be used to track plant 
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photosynthesis at scales larger than single leaves under natural 
conditions. 

A number of studies have shown that SIF observations have a strong 
correlation with gross primary production (GPP) in a variety of terres
trial ecosystems, including crops (He et al., 2020), deciduous forests 
(Yang et al., 2015), and evergreen forests (Kimm et al., 2021; Magney 
et al., 2019a). Currently, statistical regressions are typically used to 
estimate GPP from SIF. Specifically, a model (e.g., a regression) 
describing the SIF-GPP relationship for a given plant functional type 
(PFT) is first trained by comparing SIF observations and flux-tower 
based GPP; this optimized model is then used, with satellite measure
ments of SIF as inputs, to generate GPP estimates at regional and global 
scales. Although such methods are simple and efficient, one should be 
aware of their limitations: (1) spatial heterogeneity may cause large 
uncertainties (Desai et al., 2008), especially in sparsely instrumented 
regions, (2) the established SIF-GPP relationships may not always hold 
in space or time due to parameter variability within a PFT (Xiao et al., 
2011), and (3) it is difficult to mechanistically attribute variations in SIF- 
GPP relationships to relevant structural and/or physiological factors. 

Recently, Gu et al. (2019a) developed the mechanistic light response 
(MLR) model which explicitly considers the key mechanisms linking 
ChlF emission with C3 and C4 photosynthesis. They showed that 
photosynthetic CO2 assimilation is a function of the broadband 
(640–850 nm) chlorophyll fluorescence flux density emitted from 
photosystem II (PSII), the fraction of open PSII reaction centers (qL, 
Kramer et al., 2004), the maximum quantum yield of photosystem II 
(ФPmax), the ratio between the rate constant for constitutive heat loss 
(KD) and fluorescence emission (KF) in PSII (KDF), and the probability 
that fluorescence photons escape from photosystem II reaction centers to 
the canopy (fesc_P-C). The MLR model provides a mechanistic framework 
potentially allowing estimation of GPP from top-of-canopy (TOC) SIF 
observations, but a few challenging issues have to be addressed before it 
can be used for practical applications: (1) extracting the PSII contribu
tion to TOC SIF (fPSII), (2) estimating the key parameters, especially qL 
and KDF, (3) linking measurements of narrowband SIF with broadband 
SIF, and (4) eliminating the impacts of canopy structure and varying 
solar-view geometries on TOC SIF. 

In this study, we establish a framework to directly quantify canopy 
CO2 assimilation from TOC SIF observations. We show that the roles of 
qL and ФPmax in the original MLR model can be replaced by the quantum 
yield of photosystem II (ΦP) and NPQ. We also provide the methods for 
estimating ΦP, NPQ, fPSII, and fesc_P-C at the canopy scale. A leaf-level 
measurement system, developed to determine KDF, is described, and 
the performance of the proposed model for estimating photosynthetic 
CO2 assimilation is evaluated using flux-tower based GPP estimates from 
a winter-wheat study site. 

2. Flux-tower site and data 

2.1. Study site 

The automatic spectral, gas-flux, and meteorological observations 
were made at the Yangling experimental-agriculture site (108◦ 04′ E, 34◦

17′ N) in northwest China during the wheat-growing season of 2021. 
The Yangling site is located in the Institute of Water-saving Agriculture 
in Arid Areas of China (IWSA), Northwest A&F University, Shannxi 
Province, China (Fig. 1a). Yangling has a semi-arid to sub-humid climate 
with an average annual precipitation of 630 mm and an average annual 
air temperature of 12.9 ◦C (Yu et al., 2016). The topography is flat, and 
the soil is silty clay loam with the bulk density of 1.35 g cm− 3, the field 
capacity of 0.42 m3 m− 3, the permanent wilting point of 0.0875 m3 m− 3 

(Wang et al., 2020). Flood irrigation was applied when the soil water 
content was less than 60% of the field capacity (Yu et al., 2016). The 
crop type during the study period was winter wheat (Triticum aestivum, 
cv. Xinong 979), sown on 20 October 2020 and harvested on 10 June 
2021. The winter wheat was planted in rows and reached a maximum 
crop height of 90 cm. Data collection started on 16 December 2020 and 
ended shortly before harvest on 8 June 2021, a period encompassing the 
full range of growing stages: tillering (Fig. 1b), erecting (Fig. 1c), 
jointing, booting, flowering, and maturity (Fig. 1 e–f). 

2.2. Tower-based SIF data 

An automatic, six-channel SIF instrument (AUTOSIF-2-8, Bergsun 

Fig. 1. The Yangling study site. (a) A regional map showing the location of the site in northwest China. (b–f) Photographs of the SIF measurement system, showing 
the six vegetation targets (labeled in d), and the flux measurement system. 
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Inc., Beijing, China) was deployed on six tripods about 2 m above the 
plant canopy to sample outgoing canopy radiance around the flux tower 
(Fig. 1d). This six-channel system reduces the footprint mismatch be
tween SIF and fluxes measurements compared with SIF-measuring sys
tems which have only a single vegetated target. The system contains a 
customized spectroradiometer (QE Pro, Ocean Optics, Dunedin, Florida, 
USA) with a signal-to-noise ratio of 1000, a spectral resolution of 0.34 
nm, a sampling interval of 0.17 nm, and a spectral range of 645–805 nm. 
An optical multiplexer (MPM-2000, Ocean Optics, Dunedin, Florida, 
USA) was used to switch between a channel collecting the downwelling 
solar irradiance using a cosine corrector (CC-3, Ocean Optics, Dunedin, 
Florida, USA), a blind channel for correcting dark current, and six nadir- 
looking bare fibers with a field of view of 25◦ to obtain upwelling 
radiance. Hence, the SIF instrument had six measurement footprint 
circles each with a diameter of about 0.9 m. Both the spectroradiometer 
and multiplexer were enclosed in a dry, temperature-controlled 
container at 25 ± 1 ◦C. After correcting dark current and optimizing 
integration time, the “sandwich” method (downwelling-upwelling- 
downwelling) proposed by Meroni et al. (2008) was applied to reduce 
the negative impacts of unstable weather conditions (e.g., moving 
clouds). We performed a radiometric and spectral calibration of the 
system before installation. 

We used the singular vector decomposition (SVD) method (Chang 
et al., 2020; Guanter et al., 2013; Liu et al., 2021) to retrieve SIF from the 
continuous spectral measurements. The SVD approach assumes that the 
SIF-free spectrum can be expressed as a linear combination of singular 
vectors obtained from a SIF-free training dataset (Guanter et al., 2012; 
Guanter et al., 2013), which, in this study, consisted of the continuous 
downwelling solar spectral measurements. The SVD approach does not 
require strictly synchronous measurements of downwelling irradiance 
and upwelling radiance, meaning that the negative impact of irradiance 
and radiance measurement mismatch on SIF retrieval can be kept to a 
minimum (Chang et al., 2020; Gu et al., 2019b). A spectral fitting 
window of 740–780 nm was adopted to retrieve TOC SIF observations in 
the near-infrared band (Liu et al., 2021). The retrieved SIF values were 
then aggregated into 30-min average data. 

2.3. Eddy-covariance flux and meteorological measurements 

An eddy-covariance (EC) system, measuring the CO2 flux, was 
mounted on an adjustable-height tripod near the spectral measurement 
system at the Yangling site during the wheat growing season (Fig. 1 
b–d). The site was large enough to accommodate the ~120 m fetch of 
the EC system. The EC system contained an open-path infrared gas 
analyzer (LI-7500A; LICOR, Lincoln, NE, USA) and a three-dimensional 
sonic anemometer (CSAT-3, Campbell Scientific, Logan, UT, USA). The 
sensors were installed at 2 m above the ground and pointed towards the 
prevalent wind direction. Relative humidity (RH) and air temperature 
(Tair) (HMP60, Vaisala Inc., Helsinki, Finland), global incoming short
wave radiation (Rg) (LI-200SZ, LI-COR, Lincoln, NE, USA), and photo
synthetically active radiation (PAR) (LI-190SA, LI-COR, Lincoln, NE, 
USA) were measured 1.5 m above the soil surface during the growing 
season. Soil temperature (Tsoil) and soil volumetric water content (SWC, 
m3 m− 3) were observed at three depths (20, 40, and 60 cm below the 
ground surface) using a dielectric permittivity meter (Model 5™, 
METER Environment, Pullman, WA, USA). Thirty-minute averaged 
values of all the meteorological variables mentioned above were 
recorded by a datalogger (CR1000, Campbell Scientific, Logan, UT, 
USA). 

The EddyPro 7 (LI-COR Inc., Lincoln, Nebraska, USA) software was 
used to convert the raw data (10 Hz) into 30-min fluxes of net ecosystem 
exchange (NEE). Poor quality flux data (flag 2) were rejected. Unrea
sonable flux data, such as CO2 fluxes outside of the range − 50 to 50 
μmol m− 2 s− 1, sensible heat fluxes less than − 200 W m− 2 or greater than 
500 W m− 2, and latent heat fluxes less than − 200 W m− 2 or greater than 
800 W m− 2 were also rejected (Wagle and Kakani, 2014). Furthermore, 

flux data recorded during periods of precipitation, sensor malfunction, 
or during calm conditions (when the friction velocity was less than 0.1 
m s− 1) were also excluded (Liu et al., 2020; Wagle et al., 2019). The 
REddyProc-based online tool developed by the Max Planck Institute for 
Biogeochemistry was used to fill gaps in the data and to partition the 
CO2 flux into its ecosystem respiration and GPP components using NEE, 
RH, Tair, Tsoil, and Rg as inputs (https://www.bgc-jena.mpg.de/REddyP 
roc/brew/REddyProc.rhtml). The gap-filling algorithm in REddyProc 
can fill missing values in both the meteorological variables (Tair, Rg, and 
VPD) and the flux data (Falge et al., 2001; Reichstein et al., 2005; 
Wutzler et al., 2018). The daytime-based partitioning approach (Lasslop 
et al., 2010) was used to estimate ecosystem respiration (ER) by fitting a 
light-response curve between NEE and Rg (Falge et al., 2001; Lloyd and 
Taylor, 1994). Then, 30-min GPP values were obtained as the difference 
between NEE and ER. 

3. Framework to estimate GPP using SIF observations 

3.1. Reformulation of the MLR model 

The MLR model (Gu et al., 2019a) shows that the actual rate of linear 
electron transport (J, μmol m− 2 s− 1) can be estimated from SIF, qL, and 
other parameters. However, qL has been studied relatively little (Gu 
et al., 2019a), which may limit its practical usage (see the Discussion 
section). To the best of our knowledge, there is no well-evaluated model 
of qL at the canopy scale. To obtain J and GPP from SIF, we can replace qL 
with other photosynthetic parameters that can be measured or modeled 
as a function of environmental conditions. The fundamental relationship 
between SIF and J is (Gu et al., 2019a): 

J =
KP × SIFTOC FULL PSII

KF × fesc P-C
(1) 

where KP is the rate constant of photochemical quenching, KF is the 
rate constant for fluorescence emission in PSII that is a presumptive 
constant scalar (Zaks et al., 2012), SIFTOC_FULL_PSII is TOC broadband SIF 
(640–850 nm) emitted from PSII (μmol m− 2 s− 1), and fesc_P-C is the 
probability that a SIF photon escapes from the PSII light reactions inside 
the leaves to the top of the canopy (Appendix A). It is noteworthy that 
SIFTOC_FULL_PSII/fesc_P-C represents the broadband total (all leaves in the 
canopy) SIF flux density (μmol m− 2 s− 1) emitted by PSII which is 
hereafter referred to as SIFTOT_FULL_PSII. We also have (van der Tol et al., 
2014): 

KP =

(
Fm ' − Fs

Fs

)

×(KN +KF +KD) (2a) 

KN =

(
Fm − Fm '

Fm '

)

×(KF +KD) (2b) 

where KN is the rate constant for regulated energy-dependent heat 
dissipation; Fs is the steady-state fluorescence yield; Fm and Fm' are the 
maximum fluorescence chlorophyll yields from dark-adapted and light- 
adapted states, respectively. Note that NPQ and ΦP can be expressed as 
(Bilger and Björkman, 1990; Genty et al., 1989): 

NPQ =
Fm − Fm '

Fm '
(3a) 

ΦP =
Fm ' − Fs

Fm '
(3b) 

By inserting Eq. (3a) into Eq. (2b), we obtain NPQ = KN/(KF + KD). 
Meanwhile, Eq. (3b) can be rewritten as: 

ΦP

1 − ΦP
=

Fm ' − Fs

Fs
(4) 

Combining Eqs. (2a), (2b), (3a), and (4), we have: 

KP =
ΦP

1 − ΦP
×(1+NPQ)× (KF +KD) (5) 
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Note that KDF = KD/KF, so Eq. (5) can be expressed as: 

KP

KF
=

ΦP × (1 + NPQ) × (1 + KDF)

(1 − ΦP)
(6) 

By replacing the ratio of KP to KF in Eq. (1) with Eq. (6), we have: 

J =
ΦP × (1 + NPQ) × (1 + KDF) × SIFTOC FULL PSII

(1 − ΦP) × fesc P-C
(7) 

Under the assumptions that Rubisco (ribulose 1⋅5-bisphosphate 
carboxylase/oxygenase) and TPU (triose phosphate utilization) limita
tions are ignored, and insufficient NADPH (Nicotinamide adenine 
dinucleotide phosphate) limits the regeneration of the RuBP (ribulose- 
1,5-bisphosphate) (Gu and Sun, 2014), GPP for C3 and C4 species can be 
expressed by the mechanistic equation (Gu et al., 2019a): 

GPP =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cc − Γ*
4Cc + 8Γ*

×
ΦP × (1 + NPQ) × (1 + KDF) × SIFTOC FULL PSII

(1 − ΦP) × fesc P-C
C3

1 − ζ
3

×
ΦP × (1 + NPQ) × (1 + KDF) × SIFTOC FULL PSII

(1 − ΦP) × fesc P-C
C4

(8) 

where Cc is the chloroplastic CO2 partial pressure (μbar or μmol 
mol− 1); Γ* is the chloroplastic compensation point of CO2 (μbar) (Gu 
et al., 2019a; Long and Bernacchi, 2003); ζ is the fraction of total elec
tron transport of mesophyll and bundle sheath allocated to mesophyll, 
assumed to be 0.4 (von Caemmerer, 2000). Eq. (8) provides a basis for 
quantifying CO2 assimilation via measurement of fluorescence radiance 
in practical applications. Below, we provide the methods to estimate 
these key parameters and variables at the canopy scale. The procedure 
for quantifying GPP from the observed SIF is shown in Fig. 2. 

3.2. Estimation of SIFTOT_FULL_PSII 

3.2.1. Separating the contribution of PSII to TOC SIF 
SIF emission measured at the canopy scale is narrowband (e.g., 760 

nm) and contains contributions from both photosystem I (PSI) and 
photosystem II (PSII). As a first step in applying Eq. (8), the contribution 
of PSI to TOC SIF observations should be excluded. TOC SIF emission can 
be represented as a linear combination of PSI and PSII fluorescence 
radiance (Bacour et al., 2019; Magney et al., 2019b). In particular, the 
contribution of PSII to TOC SIF at 760 nm (SIFTOC_760_PSII, mW m− 2 

nm− 1 sr− 1) can be expressed as (Bacour et al., 2019): 

SIFTOC 760 PSII = fPSII × SIFTOC 760 (9a) 

fPSII =
m2 × ε

m1 + m2 × ε (9b) 

where fPSII (%) represents the contribution of PSII fluorescence to 
SIFTOC_760; ε is a factor controlling the contribution from PSII fluores
cence. Based on a large number of SCOPE (Soil Canopy Observation of 
Photosynthesis and Energy fluxes) simulations, Bacour et al. (2019) 
showed that, at 760 nm, m1 and m2 were equal to 0.00561 and 0.00917, 
respectively. The parameters m1 and m2 (Eq. (9b)) are determined by 
isolated PSI and PSII fluorescence emission spectra at 760 nm measured 
in very diluted particle suspensions of light-harvesting complexes 
(Pedrós et al., 2010). They can be considered as the most suitable 
reference fluorescence emission spectra in simulation (Franck et al., 
2002; Pedrós et al., 2008). The ratio between SIF photons emitted from 
PSI at a given wavelength and the counterpart from PSII is not altered in 
the SIF scattering and (re)absorption processes. Thus, at a specific 
wavelength (i.e., 760 nm in this study), the relative contribution of PSI 
and PSII SIF at canopy level should be equal to that of the photosystem 

Fig. 2. Flowchart for quantifying canopy CO2 assimilation from solar-induced fluorescence (SIF). SIFTOC_760, top-of-canopy (TOC) SIF at 760 nm; fPSII, photosystem II 
(PSII) contribution to SIFTOC_760; SIFTOC_760_PSII, contribution of PSII to TOC SIF at 760 nm; fesc_P-C, the probability that a SIF photon escapes from the PSII light 
reactions to the top of the canopy; fesc_L-C, the probability of a fluorescence photon escaping from leaf level to canopy level; 0.9, the escape probability of SIF photon 
from the photosystems to the leaf surface; SIFTOT_760_PSII, total SIF emitted from all leaves in the canopy at photosystem level at 760 nm; fC(λ), the conversion ratio of 
SIFTOT_760_PSII to SIFTOT_λ_PSII at a given wavelength λ (640 ≤ λ ≤ 850 nm); SIFTOT_FULL_PSII, broadband total (all leaves in the canopy) SIF flux density emitted by PSII; 
ΦP, the quantum yield of photochemical quenching in PSII; NPQ, nonphotochemical quenching; J, linear electron transport; Γ*, chloroplastic compensation point of 
CO2; Cc, Chloroplastic CO2 partial pressure; GPPSIF, gross primary productivity deriving from SIF observations. 
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(PS) level. ε is estimated as the ratio of the fluorescence yield in PSII at 
the steady-state condition (ФF) to the minimum fluorescence yield with 
a maximum proportion of open PSII reaction centers (ФF0) (Bacour et al., 
2019): 

ε =
ΦF

ΦF0
(10) 

Here, ФF0 is the reference fluorescence yield under dark-adapted 
conditions, and ФF can be estimated from ФP, KD, KN, and KF (Bacour 
et al., 2019; Koffi et al., 2015; Lazár, 2015; Lee et al., 2015; Porcar- 
Castell et al., 2014; van der Tol et al., 2014): 

ΦF =
KF

KD + KF + KN
×(1 − ΦP) (11) 

Both KD and KF remain constant (Porcar-Castell, 2011). For 
simplicity, the four rate constants of the deexcitation pathways are 
expressed in units relative to (KD + KF) and KD and KF are assumed to 
have values of 0.9 and 0.1, respectively (see the Estimating of KDF sec
tion). Accordingly, NPQ should be equal to KN due to NPQ = KN/(KF +

KD). Because the maximum photochemical yield, ΦPmax, was assumed to 
be 0.8 (van der Tol et al., 2014), the maximum value of KP was set to 4, 
resulting in ФF0 = 0.02 (KN = 0). However, KN, the first-order constant 
rate for a regulated process of thermal dissipation, varies with envi
ronmental conditions and can be modeled as a function of Tair and PAR 
(Bacour et al., 2019): 

KN = a× χc ×
1 + b
b + χc ×

exp(d×Tair+e)

PARf (12) 

The fitting parameters, a (16.042), b (5.74), c (2.167), d (− 0.014), e 
(− 0.00437), and f (0.00576), are provided by Bacour et al. (2019). χ is 
defined as (van der Tol et al., 2014): 

χ = 1 −
ΦP

ΦPmax
(13) 

where ФPmax is assumed to be 0.8 and ФP is constrained by the most 
limiting factors between the carboxylation rate and electron transport 
rate (Bacour et al., 2019; Maxwell and Johnson, 2000; Porcar-Castell 
et al., 2014; van der Tol et al., 2014): 

ΦP =
min(AC,AJ)

APAR × β
×

4Cc + 8Γ*
Cc − Γ*

(14) 

where AC and AJ represent Rubiso-limited and RuBP-limited gross 
CO2 assimilation (μmol m− 2 s− 1), respectively (Yin and Struik, 2009). AC 
is determined by the maximum carboxylation capacity of Rubisco at 
25 ◦C (Vcmax25, μmol m− 2 s− 1), Cc and Γ*. AJ is determined by APAR 
(absorbed PAR, μmol m− 2 s− 1) and the maximum capacity of the elec
tron transport rate (Jmax, μmol m− 2 s− 1), Cc and Γ*. In detail, Jmax is 
calculated from Tair and Jmax at 25 ◦C (Jmax25, μmol m− 2 s− 1) (June et al., 
2004): the ratio Jmax25/Vcmax25 for C3 species is linearly related to Tair 
with a slope of 0.035 and intercept of 2.59 (Bacour et al., 2019; Kattge 
and Knorr, 2007). In this study, Vcmax25 of winter wheat was set as 60 
μmol m− 2 s− 1 (Bacour et al., 2019). β is the proportion of absorbed PAR 
received by PSII, assumed to be 0.5 (Galmés et al., 2007; Hendrickson 
et al., 2004; Maxwell and Johnson, 2000). APAR is estimated from 
directional reflectance (see below). After determining Cc and Γ* (Section 
3.4), Eq. (14) is used to approximate ФP, which is then used to calculate J 
from Eq. (7). Note that ФP from Eq. (14) is a function of photosynthetic 
parameter (i.e., Vcmax25), leaf biochemical trait (i.e., chlorophyll con
tent), canopy structure (i.e., fAPAR), and environmental factors (i.e., PAR 
and Tair). Vcmax25 is species-specific and assigned a fixed value for the 
winter wheat. Thus, ФP estimated from Eq. (14) is considered to contain 
limited information on plant physiology. As a consequence, simply using 
the product ФP × APAR may result in a bias in the estimate of J. 

3.2.2. Downscaling from TOC to photosystem level 
Next, the directional SIFTOC_760_PSII (mW m− 2 nm− 1 sr− 1) must be 

downscaled from the canopy level to the photosystem level, namely 
SIFTOT_760_PSII (mW m− 2 nm− 1), by dividing by the canopy SIF escape 
probability at 760 nm (fesc_P-C is for 760 nm, hereafter in this paper) and 
integrating over the hemispherical space: 

SIFTOT 760 PSII = π× SIFTOC 760 PSII

fesc P-C
(15) 

Zeng et al. (2019) showed that the probability of a fluorescence 
photon escaping from leaf level to canopy level (fesc_L-C) could be 
expressed as: 

fesc L-C =
NIRV

fAPAR
(16) 

where NIRV is the product of the normalized difference vegetation 
index (NDVI) and canopy reflectance in the NIR region (Badgley et al., 
2017), and fAPAR is the photosynthetically active radiation absorption 
efficiency. To calculate NIRV and NDVI, we used 680 nm for red 
reflectance (R680) and 755 nm for NIR reflectance (R755). The escape 
probability of SIF photon from the photosystems to the leaf surface can 
be approximated by the leaf albedo that is rather stable with a value 
around 0.9 in the NIR region (Liu et al., 2020; Lu et al., 2020). Conse
quently, fesc_P-C in the NIR bands can be estimated as: 

fesc P-C = 0.9× fesc L-C (17) 

Liu et al. (2019) showed that fAPAR could be estimated from the wide 
dynamic range vegetation index (WDRVI, Gitelson (2004)): 

fAPAR = ψ × fAPARgreen (18a) 
fAPARgreen = 0.516×WDRVI+ 0.726 (18b) 

where fAPARgreen is the fraction of PAR absorbed by the green leaves 
of a canopy; ψ is a coefficient factor assumed to be 0.79 in this study 
because leaf chlorophyll content values, measured by a chlorophyll 
concentration meter (MC-100, Apogee Instruments, Inc., Logan, UT, 
USA), were higher than 20 μg cm− 2 (Du et al., 2017; Siegmann et al., 
2021). The WDRVI is defined as: 

WDRVI =
0.1 × R755 − R680

0.1 × R755 + R680
(19)  

3.2.3. Reconstructing broadband SIF at photosystem level 
We then need to reconstruct broadband SIFTOT_FULL_PSII from 

narrowband SIFTOT_760_PSII: PSII SIF emitted from all leaves in the canopy 
at a given wavelength λ (SIFTOT_λ_PSII, mW m− 2 nm− 1) over the spectral 
range of 640–850 nm can be estimated from SIFTOT_760_PSII. Based on a 
PSII SIF spectrum dataset simulated by the Soil Canopy Observation of 
Photosynthesis and Energy (SCOPE) model (version 1.73; van der Tol 
et al. (2009)), we used the SVD technique (Zhao et al., 2014) to inves
tigate the relationship between SIFTOT_λ_PSII and SIFTOT_760_PSII. To make 
this dataset represent the majority of actual scenes, a total of 6720 
samples with different leaf biochemical and leaf structural properties, 
canopy structure, and sun-canopy-sensor geometry were generated to 
simulate SIF at PS level (Text S1). The remaining input parameters were 
fixed at their default values. The SVD analysis showed that the first 
principal component (PC1) explained more than 99% of the variance in 
this simulated dataset, suggesting that the spectral shape of PSII SIF 
remains roughly stable throughout the leaf and canopy structural ef
fects, allowing the conversion ratio (fC(λ), see Text S1 for details) of 
SIFTOT_λ_PSII to SIFTOT_760_PSII to be estimated by PC1. fC(λ) is theoreti
cally determined by the fluorescence emission spectra of isolated PSI 
and PSII. In practice, the PSI and PSII fluorescence emission spectra used 
in SCOPE (i.e., the fixed fluorescence shapes) were measured in a dilute 
suspension of light-harvesting complexes to avoid (re)absorption arti
facts (Pedrós et al., 2010). Previous studies have suggested the measured 
fluorescence emission spectra of isolated PSI and PSII complexes can be 
assumed to remain almost unchanged (Franck et al., 2002; Pedrós et al., 
2010). Thus, fC(λ) at a specific wavelength (640 < λ < 850 nm) is a 
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constant, allowing reconstructing broadband SIF at photosystem level 
from SIFTOT_760_PSII. Detailed descriptions of estimating the conversion 
ratio by using PC1 can be found in the supplementary materials (Text 
S1). SIFTOC_FULL_PSII/fesc_P-C in Eq. (1) (i.e., SIFTOT_FULL_PSII) should have 
units of μmol m− 2 s− 1, while SIFTOT_λ_PSII has units of mW m− 2 nm− 1, so 
we also performed the unit conversion when obtaining SIFTOT_FULL_PSII: 

SIFTOT FULL PSII =
∑850

λ=640

(

SIFTOT 760 PSII × fC(λ)×
λ × 106

h × c × NA × 103 × 109

)

(20) 

where h is the Planck constant (6.63 × 10− 34 J⋅s); c is the speed of 
light (3 × 108 m s− 1); NA is the Avogadro constant (6.02 × 1023 mol− 1); λ 
is the wavelength (nm); 103 is used to convert milliwatts (mW) to Watts 
(W); 109 is used to convert nanometers (nm) to meters (m) in λ; 106 is 
used to convert moles (mol) to micromoles (μmol) in NA. 

3.3. Estimation of KDF 

In the original MLR model, the ratio between KD and KF, KDF, was 
assumed to be 19 (Gu et al., 2019a). However, its value has been set to 
around 9 in other studies (Atherton et al., 2016; Porcar-Castell et al., 
2006; Zaks et al., 2012). According to its definition, KDF can be estimated 
from the maximum fluorescence quantum yield of PSII under dark- 
adapted conditions (ФFmax, Porcar-Castell et al., 2006). Here, ФFmax 
was defined as the ratio of the PSII fluorescence emission, obtained from 
the maximum fluorescence quantum yield in the dark-adapted leaves 
and presented in photon flux density units (μmol m− 2 s− 1), to the 
absorbed incident photosynthetic active radiation in PSII. We have: 

KDF =
1

ΦFmax
− 1 (21a) 

ΦFmax =
KF

KF + KD
(21b) 

ΦFmax =
ChlFPSIImax

ω × PARSP
(21c) 

where ChlFPSIImax is the broadband chlorophyll fluorescence flux 
from PSII, presented in photon flux density units (μmol m− 2 s− 1), which 
corresponds to the maximum fluorescence quantum yield obtained with 
fully dark-adapted leaves. PARSP is the photon flux density of a satura
tion pulse (μmol m− 2 s− 1), and ω was the product of light absorption 
efficiency in PSII and the escape probability of fluorescence photons 

from the photosystem level to leaf level (Gu et al., 2019a). 
To estimate KDF by measuring fluorescence flux, we developed a leaf- 

level concurrent instrument (Fig. 3) by integrating an LI-6800 portable 
gas-exchange system (LI-COR Biosciences, Lincoln, Nebraska, USA), a 
PAM fluorometer (Dual-PAM-100, Heinz Walz GmbH, Effeltrich, Ger
many), and two QE Pro spectrometers. The gas-exchange system regu
lated environmental conditions in the leaf chamber, while the PAM 
fluorometer was used to induce the maximum fluorescence quantum 
yield obtained with fully dark-adapted samples using the saturation 
pulse method (PARSP = 10,000 μmol m− 2 s− 1). The spectrometers syn
chronously measured upward and downward fluorescence emission 
from 670 to 850 nm (ChlFmax, mW m− 2 nm− 1 sr− 1) during the initial 
saturation pulse. The reason for using the 670–850 nm range is 
explained by Meeker et al. (2021). Details of the process of estimating ω 
are given in the supporting material (Text S2). Concurrent measure
ments were conducted on intact and fully developed leaves of winter 
wheat at the Yangling site, in and around the location of the SIF ob
servations. During the measurements, air relative humidity and flow 
rate were maintained at 50% and 500 μmol s− 1, respectively. In addi
tion, air temperature (15, 25, and 35 ◦C) and CO2 concentration (200, 
400, and 600 ppm) in the leaf chamber were manually set as described in 
Table 1. ChlFmax was converted to ChlFPSIImax by using Eqs. (9a)–(10). 
To extract PSII ChlF, the coefficients m1 and m2 in Eq. (9b) for the other 
bands were obtained from the PSI and PSII fluorescence emission 
spectrum used in the SCOPE model (Bacour et al., 2019; van der Tol 
et al., 2009). ФF0 and ФF in Eq. (10) were set to Fo and Fm measured by 

Fig. 3. Schematic of the KDF measurement system. (a) a customized leaf chamber coupled with a pulse-amplitude modulation (PAM) fluorometer and two spec
trometers to conduct fluorescence flux measurements induced by a saturation pulse in dark-adapted conditions. The black rectangle indicates that the leaf chamber 
was painted with black acrylic paint as a light trap, and the red trapezoid represents a saturation light pulse emitting from a PAM fluorometer. (b) a photograph of the 
KDF measurement system including an LI-6800 gas-exchange chamber (LI-COR Biosciences, Lincoln, Nebraska, USA), a Dual-PAM-100 fluorometer (Dual-PAM-100, 
Heinz Walz GmbH, Effeltrich, Germany), and two QE Pro spectrometers (Ocean Optics, Dunedin, Florida, USA). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 1 
Variation in KDF in winter wheat under two different CO2 concentration and air 
temperature treatments.  

CO2 (ppm) Tair (◦C) KDF Means ± SE 
(n = 4) 

200 15 11.5 12.2 11.6 13.1 12.1 ± 0.7 
200 25 10.6 11.7 12.8 9.9 11.2 ± 1.3 
200 35 11.6 12.4 11.7 11.0 11.7 ± 0.6 
400 15 10.9 12.9 11.6 11.8 11.8 ± 0.9 
400 25 12.0 11.7 12.0 11.4 11.8 ± 0.3 
400 35 11.8 12.3 13.5 11.8 12.3 ± 0.8 
600 15 12.5 12.8 10.4 12.5 12.1 ± 1.1 
600 25 11.5 11.5 12.8 12.0 12.0 ± 0.6 
600 35 11.8 12.4 13.0 13.5 12.7 ± 0.8 

There are no significant differences in KDF for the two treatments (p > 0.05). 
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PAM fluorometry, respectively. Our results showed that KDF varied in a 
small range between 11.0 and 12.7 (Table 1). Note that ФFmax should 
increase as PARSP increases. Thus, KDF decreases with increased PARSP 
and reaches its minimum value at infinite PARSP. In other words, KDF 
should at least be smaller than 11.0. We therefore assumed KDF = 9 in 
this study (KD = 0.9 and KF = 0.1). 

3.4. Estimation of Γ* and Cc 

Next, we need to estimate Γ* and Cc in Eq. (8). Γ* was estimated as 
(Katul et al., 2010; Liu et al., 2017): 

Γ* = 36.9+ 1.18×(Tair − 25)+ 0.036×(Tair − 25)2 (22) 

and Cc could be estimated as (Wu et al., 2019): 

Cc = Ci −
Anet

gm
(23) 

where Ci is intercellular CO2 partial pressure (μbar); Anet is net CO2 
assimilation rate (μmol m− 2 s− 1); gm is mesophyll conductance to CO2 
(mol m− 2 s− 1 bar− 1). As a simplification, gm was assumed to be infinite 
(van der Tol et al., 2009) and, consequently, Cc was considered to be 
equal to Ci. 

An iterative process was used to estimate Ci, as described below:  

(1) calculate the initial Ci as a constant fraction of Ca: 

Ci = 0.7×Ca (24) 

where Ca is the ambient air CO2 partial pressure (μbar) and the 
default ratio of Ci: Ca was set to 0.7 for C3 wheat (Wu et al., 2019).  

(2) estimate Anet using the initial Ci: 

Anet = min(AC,AJ) − Rd (25) 

where both AC and AJ are from Eq. (14); Rd is dark respiration (μmol 
m− 2 s− 1) and calculated as Rd = 0.015 × Vcmax (Collatz et al., 1991); 
Vcmax is the maximum carboxylation rate (μmol m− 2 s− 1) which is 
calculated as (Bonan, 1995; Chen et al., 1999): 

Vcmax = Vcmax25 × 2.4(Tair − 25)/10 × f (Tair)× f (N) (26a) 

f (Tair) =
1

1 + exp
(

− 220000+710×(Tair+273)
Rgas×(Tair+273)

) (26b) 

f (N) =
N
Nm

(26c) 

where Vcmax25 is the maximum carboxylation rate at 25 ◦C assumed 
to be 60 μmol m− 2 s− 1 for winter wheat (Bacour et al., 2019); Rgas is the 
molar gas constant (8.3143 m3 Pa mol− 1 K− 1); N and Nm are the leaf 
nitrogen content (1.2%, Kimball et al. (1997)) and the maximum ni
trogen content (1.5%, Bonan (1995)), respectively.  

(3) Estimate the stomatal conductance for CO2 (Gc, mol m− 2 s− 1) 
using a modified Ball–Woodrow–Berry model (Wang and Leun
ing, 1998) 

Gs = Go +
a × fw × Anet

Cs × (1 + VPD/Do)
(27a) 

Gc = 0.64×Gs (27b) 

where Go is the residual conductance (mol m− 2 s− 1), assumed to be 
0.01 (Wang and Leuning, 1998); Cs is the CO2 concentration at the leaf 
surface (μmol mol− 1), assumed to be the product of a/(a-1) and Ci; a is a 
parameter related to Ci, assumed to be 11.0 (Wang and Leuning, 1998); 
D0 (kPa) is an empirical parameter related to stomatal sensitivity to 
VPD, assumed to be 1.5 (Wang and Leuning, 1998); fw is a parameter 
related to soil moisture, which is eastimated by the soil water content at 
the field capacity and at the wilting point and the measured SWC (Wang 

and Leuning, 1998); Gs is the stomatal conductance for water vapor 
(mol m− 2 s− 1); 0.64 is a factor to convert the molecular diffusivity of 
water vapor to CO2 (Ju et al., 2006).  

(4) Calculate a new Ci based on the CO2 diffusion model (Ju et al., 
2006): 

Ci = Ca −
Anet

Gc
(28)    

(5) Iterate (Eqs. (24)–(28)) until the estimated Ci is stable, i.e. when 
the difference in Ci between two successive iterations is less than 
0.1 ppm. Ci from the last iteration (Eq. (28)) represents the final 
value used in the SIF-based photosynthesis model (Eq. (8)). 

4. Results 

4.1. Temporal patterns of the measurements 

The seasonal patterns of the required inputs for our model (air 
temperature (Tair), incoming PAR, direction reflectance at 680 and 755 
nm (R680, R755), and TOC SIF at 760 nm (SIFTOC_760) and measured GPP 
(GPPEC) are shown in Fig. 4. 

Tair maintained a generally increasing trend during the study period, 
increasing from below 0 ◦C in late December to more than 25 ◦C in early 
June, with the highest daily mean Tair being approximately 33.8 ◦C on 
07 June 2021 (Fig. 4a). Several cold spells were also observed. For 
example, on 25 February 2021 the daily mean temperature fell to 4.8 ◦C 
(black dashed line in Fig. 4a). The time series of incoming PAR increased 
similarly to Tair, but its seasonal trend was less pronounced: maximum 
PAR increased from 565 μmol m− 2 s− 1 in December 2020 to 1280 μmol 
m− 2 s− 1 in June 2021 (Fig. 4b). 

R680 decreased as the fractional vegetation cover increased and it 
appeared saturated with a mean value of around 0.03 after March 2021 
(Fig. 4c), a result of R680 of vegetation being lower than that of soil. In 
contrast, R755 exhibited a different seasonal dynamic: it increased from 
0.2 in mid-February to 0.4 in late March due to the enhanced scattering 
effect in the NIR band, and it started to decrease in mid-April as a result 
of crop yellowing (Fig. 4c). NDVI, being a function of both R680 and R755, 
remained relatively stable with a mean value around 0.4 until mid- 
January, showed a significant increase at the most intensive plant- 
growth stage in early spring, and appeared saturated at a value of 
0.95 from mid-March through harvesting (Fig. 4d). As expected, NDVI 
remained insensitive to short-term changes in Tair and day-to-day vari
ability in incoming PAR (Fig. 4d). Both NIRv and fAPAR were obtained 
from reflectance: the seasonal trajectory of NIRv was more similar to 
R755 (Fig. 4e), while that of fAPAR more closely resembled the magnitude 
and timing of NDVI trend (Fig. 4f). 

SIFTOC_760 not only exhibited a strong seasonal pattern as stems and 
leaves developed, with a rapid increase from 0.1 (mW m− 2 nm− 1 sr− 1) in 
the winter to higher than 1.0 (mW m− 2 nm− 1 sr− 1) in the summer, but 
also had hour-to-hour variations, driven mainly by incoming PAR, 
leading to strong fluctuations in March–June (Fig. 4g). GPPEC generally 
followed the temporal pattern of SIFTOC_760: its values increased sub
stantially from about 5 μmol m− 2 s− 1 in mid-January to more than 30 
μmol m− 2 s− 1 at the end of March; it then showed strong variability in 
the range 10 to 35 μmol m− 2 s− 1 throughout the rest of the growing 
season (Fig. 4h). Compared to the reflectance-based indices, both SIF
TOC_760 and GPPEC had a much higher sensitivity to changing environ
mental conditions, showing dramatic decreases when cold spells 
occurred (Fig. 4g–h). 

4.2. The performance of the model for estimating GPP 

Fig. 5 shows the correlation coefficient (R2), root-mean-squared 
error (RMSE) and relative root-mean-square error (rRMSE) between 
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observed GPP (GPPEC) and simulated GPP (GPPSIF) from Eq. (8) at both a 
half hourly (Fig. 5a) and daily (Fig. 5b) time step. Overall, the proposed 
model explains 85% of variance (RMSE = 5.62 μmol m− 2 s− 1 and rRMSE 
= 9.10%) in half-hourly GPP (Fig. 5a), and its performance improves at 
the longer time step: GPPSIF accounts for 91% of the variability (RMSE =
3.25 μmol m− 2 s− 1 and rRMSE = 8.69%) in the daily GPPEC time series 
(Fig. 5b). Both regression lines have a slope close to 1.0, indicating that 
GPPSIF was very similar to GPPEC. We also made a direct comparison 

with the commonly used linear regression approach that scaled SIF
TOC_760 to GPPEC as shown in Fig. S5. Although SIFTOC_760 and GPPEC 
were correlated with overall R2 > 0.82, the saturation of GPPEC at high 
SIFTOC_760 values was also observed (> 1.4 mW m− 2 nm− 1 sr− 1 for half- 
hourly data, Fig. S5a; > 0.9 mW m− 2 nm− 1 sr− 1 for daily data, Fig. S5b). 
In contrast, GPPSIF estimated by the proposed model displayed a strong 
linear relationship with the tower GPPEC even at high SIFTOC_760 values 
as shown in Fig. 5. To assess the impact of the choice of KDF value on the 

Fig. 4. Seasonal variations of Tair (◦C, a), 
PAR (μmol m− 2 s− 1, b), R650 (c), R755 (c), 
NDVI (d), NIRv (e), fAPAR (f), SIFTOC_760 (mW 
m− 2 nm− 1 sr− 1, g), and GPPEC (μmol m− 2 

s− 1, h). Light-blue circles indicate half- 
hourly data (Nhalf_hourly = 3394), and blue 
triangles represent daily mean values (Ndaily 
= 171). Black dashed lines (a, g, and h) 
indicate the cold spell that occurred on 25 
February 2021. Tair and PAR represent air 
temperature and photosynthetically active 
radiation, respectively. NDVI is the normal
ized difference vegetation index. fAPAR is the 
photosynthetically active radiation absorp
tion efficiency. R680 and R755 are directional 
reflectances at 680 nm and 755 nm, 
respectively. NIRv is the product of NDVI 
and R755. SIFTOC_760 is top of canopy SIF 
radiance at 760 nm. GPPEC is gross primary 
production estimated from flux data at the 
study site. (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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performance of the proposed model (Eq.(8)), we performed a sensitivity 
analysis of GPPSIF to KDF as shown in Fig. S6. R2 between GPPSIF and 
GPPEC remained a constant value at 0.849 as KDF varied from 9 to 19. In 
contrast, the RMSE between GPPSIF and GPPEC increased from 5.62 to 
23.46 μmol m− 2 s− 1 (Fig. S6). It confirmed that KDF had a significant 
impact on the accuracy of GPP estimation. 

The derivation of fesc_L-C (Eq. (17)) requires a black-soil simplification 
(Yang et al., 2020) which is only valid for either dense canopy or black 
soil conditions. NDVI was introduced to reduce soil background 
contamination (Zeng et al., 2019). To examine how this soil background 
effect and the inclusion of NDVI may affect the performance in esti
mating GPP, it was desirable to assess variations in SIF-GPP correlations 
under different LAI values. Because LAI was not measured at the study 
site, we used NDVI as a surrogate for plant canopy structure. All the 
required inputs and GPPEC were separated into two groups according to 
NDVI values: (1) low: NDVI ≤0.60, and (2) high: NDVI >0.60 (Fig. 4d). 
Incoming PAR and Tair also play the important roles in the proposed 
model, so we assessed the performance of the model in response to 
variations in these two meteorological variables. We set thresholds of 
600 μmol m− 2 s− 1 in PAR and 20 ◦C in Tair. Because both PAR and Tair 
were closely correlated with plant canopy growth, we only analyzed 
data with NDVI >0.60 to reduce any possible influence of the canopy 
structure (Table 2). 

We found that the performance of the proposed model decreased for 
sparse canopies. The results are shown in Table 2. GPPSIF accounted for 
58% of the variance in GPPEC (RMSE = 3.23 μmol m− 2 s− 1 and rRMSE =
11.56%) when NDVI was lower than 0.60. The dense plant canopy 
tended to improve the performance of the proposed model in estimating 
GPP: GPPSIF determined more than 80% of the variance in half-hourly 

GPP (RMSE = 6.36 μmol m− 2 s− 1 and rRMSE = 10.30%) when NDVI 
was higher than 0.60. High PAR exerted a negative impact on the cor
relation between GPPEC and GPPSIF, GPPSIF explained nearly 70% of the 
variance in GPPEC (RMSE = 5.06 μmol m− 2 s− 1 and rRMSE = 14.08%) in 
the low PAR group. But their correlation was weakened under high PAR: 
R2 decreased to 0.58 (RMSE = 7.76 μmol m− 2 s− 1 and rRMSE =
14.76%). Compared with PAR, Tair had a limited negative influence on 
the predictive power of the model: the simulated GPP determined 84% 
of the observed GPP variability (RMSE = 5.56 μmol m− 2 s− 1 and rRMSE 
= 9.13%) in the low Tair group; R2 fell to 76% (RMSE = 7.97 μmol m− 2 

s− 1 and rRMSE = 12.95%) in the high Tair group. 

4.3. The variations in fPSII and fesc_P-C 

The conversion from SIFTOC_760 to SIFTOT_FULL_PSII is dependent on 
three important variables: fPSII, fesc_P-C, and fC(λ). In this section, we 
examine the seasonal patterns of fPSII and fesc_P-C. fC(λ) is constant over 
time and so not included in this analysis. fPSII showed an increasing 
seasonal pattern before March, rising from 0.4 in the winter to greater 
than 0.5 in early spring, but it appeared to remain at around 0.5 for the 
rest of the growing season (Fig. 6a). We found that fPSII was positively 
associated with Tair when Tair < 15 ◦C (Fig. 6b), which led to the 
generally increasing trend in fPSII from winter to summer. However, fPSII 
exhibited a saturation behavior at higher values of Tair (Fig. 6b), 
explaining the fact that daily mean fPSII remained stable in May and June 
while Tair still had an increasing trend (Fig. 6a). The relationship be
tween fPSII and PAR was more nonlinear: fPSII was negatively correlated 
with PAR when PAR was less than 300 μmol m− 2 s− 1, but became less 
responsive as PAR continued to increase (Fig. 6c). We observed that the 
timing and magnitude of the rapid increases in fPSII closely corresponded 
with abrupt drops in PAR, confirming the important role of PAR in 
regulating short-term variations in fPSII (Fig. 6a). 

We also examined seasonal changes in fesc_P-C: fesc_P-C had modest 
fluctuations in the range between 0.2 and 0.4 before mid-February, 
thereafter remaining relatively constant until harvesting, with an 
average value of around 0.4 (Fig. 6d). fesc_P-C is determined by the ratio 
of NIRV and fPAR (Eq. (16)), both of which exhibited similar seasonal 
trajectories, with a rapid increase in early spring followed by a rough 
plateau before harvest (Fig. 4e–f). A consequence of the offset between 
their seasonal variations was the relatively stable trend of fesc_P-C after 
March. We found that fesc_P-C increased linearly with NDVI when NDVI 
<0.6 (Fig. S3), but tended to saturate when the plant vegetation canopy 
was dense (NDVI >0.6) (Fig. S3), highlighting the need to account for 
the interaction between understory and overstory for relatively sparse 

Fig. 5. Comparison of observed and simulated GPP (GPPEC versus GPPSIF, μmol m− 2 s− 1) at half-hourly (a) and daily (b) scales. The colors of the points in (a) 
represent the different values of PAR. R2 is the coefficient of determination, RMSE is the root-mean-square error (μmol m− 2 s− 1), and rRMSE is the relative root-mean- 
square error (%). All the datasets have a half-hourly time step. Data with low PAR (< 20 μmol m− 2 s− 1) were excluded from the analysis. 

Table 2 
The effects of NDVI (a surrogate for plant canopy structure), air temperature 
(Tair, ◦C), and PAR (μmol m− 2 s− 1) on the performance of the model in predicting 
GPP (μmol m− 2 s− 1). R2 is the coefficient of determination, RMSE is the root- 
mean-square error, and rRMSE is the relative root-mean-square error. N is the 
number of available half-hourly observations. All the datasets have a half-hourly 
time step. Data with low PAR (< 20 μmol m− 2 s− 1) were excluded from the 
analysis.   

NDVI ≤0.60 NDVI >0.60 PAR (NDVI >0.60) Tair (NDVI >0.60) 

≤ 600 > 600 ≤ 20 > 20 

R2 0.58 0.80 0.65 0.58 0.84 0.76 
RMSE 3.23 6.36 5.06 7.76 5.56 7.97 
rRMSE 16.56 10.30 14.08 14.76 9.13 12.95 
N 988 2261 1293 968 1602 659  
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Fig. 6. Seasonal dynamics of the contribution of PSII fluorescence to TOC SIF (fPSII) for the 2021 growing season (a), fPSII for Tair (b), fPSII for PAR (c), and the SIF 
escape probability from the photosystem level to the canopy at 760 nm (fesc_P-C, d) at half-hourly (light-blue dots) and daily scales (blue triangles). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Seasonal variations in the simulated quantum yields (Ф) for the different pathways: fluorescence (ФF, red), nonradiative decay (ФD, grey), nonphotochemical 
quenching (ФN, blue), and photosynthesis (ФP, green). The inset panel illustrates the seasonal pattern of ФF. These results were derived from Eq. (S7) in Text S3. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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canopies. 

4.4. Variations in the quantum yields 

In addition to ΦP (Eq. (14)), we were able to simulate the other three 
quantum yields: the fluorescence yield (ΦF), the non-photochemical 
quenching yield (ΦN), and the constitutive heat dissipation (ΦD), from 
the rate constants (KP, KF, KN, and KD; Text. S3). Note that we should 
have: ΦP + ΦF + ΦN + ΦD = 1. Because KF and KD remained constant, the 
dynamics of these four quantum yields are mostly related to the inter
action between KP and KN. KP showed a slight decrease with increasing 
Tair, from 2.4 in the winter to 2.2 in the summer (Fig. S4). In contrast, the 
same increase in Tair caused a much greater reduction in KN, from 
approximately 11.9 to 3.8 (Fig. S4). The different sensitivity of KP and 
KN to variations in Tair explains the seasonal increase in ΦP, especially 
from March to April, when Tair was increasing (Fig. 7). Also, because 
both KP and KN were negatively correlated with Tair, ΦF and ΦD both 
increased from winter towards early summer (Fig. 7). KP was negatively 
correlated to PAR while KN was positively correlated (Text S3 & Fig. S4), 
which led to a decrease in ΦP from early summer onwards as PAR 
continually increased (Fig. 7). We observed steep increases in ΦP in 
response to the sudden drops in PAR which occur from February 2021 
onwards (Figs. 3b & 6). 

Being negatively correlated with ΦP, ΦN had an opposite seasonal 
pattern to ΦP: decreasing from late winter to spring and increasing from 
late-May through harvesting (Fig. 7). Due to the canceling effect of ΦP 
and ΦN, we also observed that the sum of ΦP and ΦN remained, on the 
whole, stable, and that seasonal variations in ΦF and ΦD were also 
limited (Fig. 7), only ranging from 0.010 to 0.024, and 0.090 to 0.212, 
respectively (Fig. 7). 

5. Discussion 

Three steps were involved in obtaining SIFTOT_FULL_PSII: (1) extracting 
the PSII contribution of TOC SIF observations (fPSII), (2) downscaling 
from canopy level to photosystem level (fesc_P-C), and (3) converting from 
narrowband to broadband SIF emissions at the photosystem level (fC(λ)). 
Although nonlinear functions were introduced to parameterize fPSII (Eq. 
(9b)) and fesc_P-C (Eq. (17)), we found that SIFTOC_760 was strongly related 
with SIFTOT_FULL_PSII with R2 > 0.95, suggesting that it may be possible to 
convert SIFTOC_760 into SIFTOT_FULL_PSII with a simple function. Their 
strong correlation observed here resulted from: (1) fPSII saturated with 
increasing Tair and PAR and the thresholds for winter wheat were rela
tively low (approximately 15 ◦C for Tair and 300 μmol m− 2 s− 1 for PAR), 
and (2) fesc_P-C also saturated at a relatively low NDVI value (≈ 0.6). 
Taken together, both fPSII and fesc_P-C were rather stable (approximately 
0.5 and 0.4, Fig. 6a & d) during the period when winter wheat had its 
highest carbon sequestration rate (March–June, Fig. 4h). However, a 
variety of physiological and structural factors may also affect not only 
these thresholds but also the saturation levels of fPSII and fesc_P-C. More 
experimental and theoretical work is required to investigate this possi
bility. For example, as our study site was irrigated, we were unable to 
fully examine any potential variations in fPSII under conditions of high 
water stress. Also, fesc_P-C may exhibit more nonlinear behavior for het
erogeneous canopies (Yang et al., 2020), such as forests. 

The contribution of PSII fluorescence to TOC SIF observations relies 
on the accuracy of ε. In the present approach, ε was modeled as a 
function of ФP and KN (Eqs. (10) and (11), and KF and KD were con
stants), and their parameterization only took Tair and PAR into account, 
potentially leading to poor performance in representing the impacts of 
other factors including chlorophyll concentration (Gitelson et al., 1998), 
drought stresses (van der Tol et al., 2014), and seasonal changes in both 
photosystems (Porcar-Castell et al., 2014). More importantly, the 
contribution of PSII fluorescence in the red bands (up to 100%) was 
significantly different from that in the near-infrared bands (down to 
50%) (Franck et al., 2002; Palombi et al., 2011; Pfündel et al., 2013). For 

example, Pfündel (2021) proposed a practical approach to separately 
estimate fPSII at the red (<700 nm) and near-infrared bands (>700 nm), 
and showed that the contribution of PSII fluorescence was 86% and 55% 
for these two spectral regions, respectively. Considering that the pro
portion of PSII fluorescence in the red region was typically larger than 
that in the NIR (Franck et al., 2002; Palombi et al., 2011), fPSII estimated 
from broadband fluorescence from PSII (33.6–68.6%, Eq. (9b)) may 
overestimate the contribution of PSII in SIF760. Ideally, fPSII specifically 
measured or estimated for the near-infrared region should be used to 
extract PSII fluorescence from SIF760. More measurements will be 
needed to enable the characterization of fPSII and fluorescence-derived 
parameters across various vegetation types and environmental condi
tions in future studies (Porcar-Castell et al., 2021). 

We showed that the role of qL and ΦPmax in the MLR model could be 
replaced by ΦP and NPQ (Eq. (7)). These two expressions were identical 
under the framework of the lake model (Kramer et al., 2004). The 
minimum fluorescence yield in light-adapted conditions (Fo

′) was a vital 
parameter in determining qL which should be measured in a dark in
terval with a short pulse of far-red light (Kramer et al., 2004). Thus, 
measurements of qL can only be obtained in a dark leaf chamber under 
artificial light conditions. The complicated measurement procedures 
may limit the development of a predictive model for qL (Gu et al., 
2019a). In contrast, the estimation of ΦP and NPQ require Fm', Fs, and 
Fm, which can be measured by a PAM fluorometer in field conditions 
(Porcar-Castell, 2011). Various models have been developed to predict 
canopy ΦP and NPQ as functions of environmental factors (Bacour et al., 
2019; Lee et al., 2015; Rosema et al., 1998; van der Tol et al., 2014). 
However, it should be noted that predicting ΦP may be as hard as pre
dicting carbon assimilation itself because both are affected by the same 
environmental factors and the same biological processes. Theoretically, 
expressing the relationship between SIF and GPP in terms of qL rather 
than NPQ may be advantageous because NPQ contains many mecha
nisms which are not well understood (Gu et al., 2019a). Considering the 
importance of qL in correlating SIF and GPP, and it being less compli
cated than ΦP and NPQ in terms of mechanisms, qL should be further 
investigated under various environmental conditions and for different 
species to develop a predictive model of qL in future research. 

The current parametric model of KN (Eq. (12)) accounts for the im
pacts of PAR, Tair, and ФP; ФP was estimated by the photosynthesis 
model using PAR, Tair, and Vcmax25 as the inputs (Eq. (14)) (Bacour et al., 
2019; van der Tol et al., 2014; Yin and Struik, 2009). However, the 
models for KN and ФP may not respond reasonably to stresses caused by 
factors other than light and heat, such as droughts or the photoinhibition 
of reaction centers. Moreover, the parameters in the KN model (i.e., the 
parameters a-f in Eq. (12)) were calibrated using leaf-scale fluorescence 
measurements for eggplant (Solanum melongena), needleleaf forest 
(Pinus sylvestris), and several broadleaf plants (Quercus ilex L., Celtis 
australis L., Pistacia terebinthus L.) (Flexas et al., 2002; Porcar-Castell, 
2011). These parameters may result in uncertainties in estimating NPQ 
and the contribution of PSII fluorescence for winter wheat. Although the 
good performance of the optimized parametric KN model was demon
strated in Bacour et al. (2019), more measurements would be required to 
improve the performance of KN model for different species. With the 
exception of the environmental factors, Vcmax25 is the most crucial 
parameter that could indirectly impact ФP (Kattge and Knorr, 2007; Yin 
and Struik, 2009). The constant value of Vcmax25 used in this study (60 
μmol m− 2 s− 1) may also lead to uncertainties in the estimation of GPP. 

Last, but not least, we were not able to explicitly consider the vertical 
variability of ФP, NPQ, and thus the photosynthetic CO2 rate within 
different layers of the canopy. For example, ФP (Eq. (14)) in sunlit leaves 
(high light and high leaf temperature) is lower than in shaded leaves 
(low light and low leaf temperature), but NPQ (Eq. (12)) is higher in 
sunlit leaves (high light and high leaf temperature) than in shaded leaves 
(low light and low leaf temperature). Therefore, it is important that in 
future research the canopy should be divided into shaded and sunlit 
components (Qiu et al., 2019) and the photosynthetic parameters (e.g., 
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ФP and NPQ) quantified for each component. 

6. Conclusion 

Our study provides a mechanistic framework that can be used to 
directly estimate not only photosynthetic CO2 assimilation but also the 
key information relevant to heat dissipation, PSII contribution, PSII 
photochemical efficiency, conversion from narrowband into broadband 
SIF, and the escape ratio of SIF photons. Our model was developed from 
the MLR model by replacing qL and ΦPmax in the original formulation 
with ΦP and NPQ, modeled as functions of environmental conditions at 
the canopy scale. Without relying on statistical regression, the estimated 
GPP from our model compared well with measurements of flux at a 
winter-wheat study site, with high R2 and low RMSE/rRMSE. We also 
showed that a simple function may be used to represent the overall 
impact of PSII contribution, conversion to broadband SIF, and escape 
ratio on predicting GPP during the period of peak photosynthetic ac
tivity. This approach may significantly simplify the application of the 
proposed model at regional or global scales. More experiments are 
required to fully assess the current parameterizations over a wide range 
of vegetation species under a variety of environmental conditions. Our 
findings will allow the community to move on from using statistical 
models with tuned parameters to using a theory-derived model with 
more meaningful parameters, providing a step forward in the modeling 
of the carbon cycle. 
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Appendix A. Definitions and methods for the nomenclature used in this study  

Symbols Definition Method 

GPPEC Gross primary productivity based on EC observations Observed 
SIFTOC_760 Top-of-canopy (TOC) SIF at 760 nm Observed 
SIFTOC_760_PSII Contribution of PSII to TOC SIF at 760 nm Eq. (9a) 
SIFTOT_760_PSII Total SIF emitted from all leaves in the canopy at photosystem level at 760 nm Eq. (15) 
SIFTOT_λ_PSII Total SIF emitted from all leaves in the canopy at photosystem level at a given wavelength λ (640 ≤ λ ≤ 850 nm). Eq. (S5) 

fC(λ) The conversion ratio of SIFTOT_760_PSII to SIFTOT_λ_PSII at a given wavelength λ (640 ≤ λ ≤ 850 nm). 
Eq. (S5), 
Eq. (20) 

SIFTOT_FULL_PSII Broadband total (all leaves in the canopy) SIF flux density emitted by PSII Eq. (20) 
fPSII PSII contribution to SIFTOC_760 Eq. (9b) 
ε A factor representing the contribution from PSII fluorescence Eq. (10) 
fesc_L-C The probability of a fluorescence photon escaping from leaf level to canopy level Eq. (16) 
fesc_P-C The probability that a SIF photon escapes from the PSII light reactions to the top of the canopy Eq. (17) 
fAPAR Photosynthetically active radiation absorption efficiency Eq. (18) 
KD The rate constant for constitutive heat loss 0.9 
KF The rate constant for fluorescence emission 0.1 
KDF The ratio between KD and KF 9 
KP The rate constant for photochemical quenching Eq. (5) 
KN The rate constant for regulated energy-dependent heat dissipation Eq. (12) 
ΦP The quantum yield of photochemical quenching in PSII Eq. (14) 
ΦD The quantum yield of constitutive heat dissipation Eq. (S7b) 
ΦN The quantum yield of regulated heat dissipation Eq. (S7c) 
ΦF The quantum yield of fluorescence emission Eq. (S7d) 
ФFmax The maximum fluorescence quantum yield of PSII obtained with fully dark-adapted leaves. Eq. (21c) 

ChlFPSIImax 
Broadband chlorophyll fluorescence emission from PSII presented Corresponding to the maximum fluorescence yield obtained with fully dark- 
adapted leaves. 

Observed 

NPQ Nonphotochemical quenching, equating to KN/(KF + KD) Eq. (20) 
J Linear electron transport Eq. (7) 
Γ* Chloroplastic compensation point of CO2 Eq. (22) 

Cc Chloroplastic CO2 partial pressure 
Eqs. (24)– 
(28) 

Tair Air temperature Observed 
SWC Soil volumetric water content Observed 
PAR Incoming photosynthetically active radiation Observed  
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2022.112893. 
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