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Many models were established to estimate gross primary production (GPP) of terrestrial ecosystems based on vegeta-
tion light use efficiency (LUE). Analysing the spatial-temporal variations of global terrestrial GPP became capable with
the increasing length of satellite data. Previous studies mainly focused on evaluating the model performance or inves-
tigating the mean, the temporal trend or the interannual variability (IAV) of global terrestrial GPP based on one single
ormultiplemodels, which is difficult to identify commonmerits of a same cluster of GPPmodels. This study compared
eight satellite-based LEU-type GPPmodels in capturing the mean, temporal trend and IAV of global GPP concurrently.
Our results showed that current common-usedmodels based on LUEmethodology estimated globalmeanGPP ranging
from 128.5 to 158.3 Pg C year−1, and global mean IAV ranging from 0.1 to 0.35, but the trends ranging from−0.22 to
0.51 Pg C year−1. In the context of plant functional types (PFTs) and climate classifications, no consistent feature for
either of the mean, trend or IAV of GPP are identified among eight models. Future studies should integrate the latest
advances on the mechanisms and associated environmental factors into models and consolidate performance of
models to better understand the evolutions of terrestrial ecosystem functioning.
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1. Introduction

Terrestrial gross primary production (GPP) is the major driver of
global carbon cycle and it plays a vital role in regulating the atmo-
spheric CO2 concentration by partly offsetting anthropogenic CO2 emis-
sions (Canadell et al., 2007; Cox and Jones, 2008). Ecosystem GPP
cannot be measured directly, and is commonly estimated using models,
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including physically process-based and semi-empirically satellite-based
approaches (Krinner et al., 2005; Sims et al., 2008; Wang et al., 2010;
Yuan et al., 2007).

Physically process-based models, commonly termed as land surface
models (LSMs), are generally designed to describe the vegetation photosyn-
thesis indicated by soil and atmospheric variables (Bonan et al., 2011). The
most significant advantage of using LSMs lies in the continuousness of
modeled GPP in both space and times, as the input data of LSMs can be gen-
erated at various spatiotemporal resolutions. LSMs also have advantages in
implementing independently (offline) (Bonan et al., 2011; Dai et al., 2003;
Krinner et al., 2005) or coupling with climate model (online, also termed
Earth System Model) (Law et al., 2015; Zeng et al., 2002). Therefore,
LSMs have been intensively used to investigate the trend of GPP in long
term period and at larger scales (Anav et al., 2015; Sitch et al., 2015).
The disadvantage of LSMs is that a model has many parameters and most
of them are difficult to determine from observations (Williams et al.,
2009). LSMs also require multiple inputs including meteorological vari-
ables, vegetation, and soil maps, often with high spatial heterogeneities
and large uncertainties.

The ecophysiological process of vegetation photosynthesis, i.e. GPP, is
the conversion of solar energy absorbed by leaves into chemical energy in
the presence of water and nutrition. At ecosystem scales, vegetation GPP
is found to be directly or indirectly related to lots of parameters, including
fluorescence (Rascher et al., 2015), Near Infrared Reflectance (NIRv)
(Badgley et al., 2019; Badgley et al., 2017), Photosynthetically Active Radi-
ation (PAR) (Xiao et al., 2004), Normalized Difference Vegetation Index
(NDVI) (Yuan et al., 2007) or Enhanced Vegetation Index (EVI) (Sims
et al., 2008; Sims et al., 2006), and Leaf Area Index (LAI) (Schaefer et al.,
2008). All these parameters can be retrieved from satellite imagery,
which provides basis and potential for estimating terrestrial GPP at global
scale. As vegetation GPP is primarily limited by one or multiple factors,
such as light, water, and nutrition, various GPPmodels are developed by in-
tegrating one or more of above-mentioned parameters. Among existing
models, a cluster of light use efficiency (LUE)models has receivedmany at-
tentions. These LUE-type models described GPP as a product of multiple
variables including PAR, fraction of PAR absorbed by the vegetation
(fPAR), maximum LUE (LUEmax) and environmental constraints on LUEmax,
such as water and nutrition (Landsberg and Waring, 1997; Potter et al.,
1993; Yuan et al., 2014; Yuan et al., 2007). Some LUE GPP models also re-
quire ancillary environmental variables, such as air temperature, vapor
pressure deficit, soil moisture, canopywater content, or canopy chlorophyll
content, to constrain LUEmax (Yuan et al., 2014; Yuan et al., 2007). In LUE
models, fPAR is generally formulated as a function of NDVI or EVI (Myneni
andWilliams, 1994; Zhang et al., 2017). Due to their simple framework and
relatively fewer driving variables, LUE-type GPP models are frequently
used to estimate terrestrial GPP, particularly at global scale and over long
term periods.

Using LSMs or LUEmodels, current estimates ofmean annual GPP of the
global terrestrial ecosystems has a wide range from 90 to 175 Pg C year−1

(Wang et al., 2012; Wang et al., 2021b; Zheng et al., 2020). The wide range
Table 1
Temporal coverage, tempo-spatial resolutions and key algorithms of eight GPP products

GPP
product

Start
year

End
year

Total
years

Spatial
resolution

Temporal
resolution

Product algo

GLASS 2000 2018 19 0.05°×0.05° 8 days (εsu × APAR
MODIS 2000 2015 16 0.05°×0.05° Monthly ε × PAR ×
NDWI 2000 2018 19 0.08°×0.08° Monthly εmax × PAR
NIRv 2000 2018 19 0.05°×0.05° Monthly f(NIRv)a

PML 2003 2018 16 500 m×500 m 8 days f(VPD)Ac, g
b

TG 2000 2020 21 0.05°×0.05° Monthly m × EVIscal
VER 2000 2019 20 0.10°×0.10° 10 days f(LAI, fPAR,
VPM 2000 2016 17 500 m×500 m 8 days εmax × FPAR

a Vegetation-specific linear regressions with NIRv was used to estimate GPP.
b GPP was estimated from a coupled photosynthesis and transpiration model based o
c A random forest algorithm was used to estimate GPP.
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of estimates aremainly resulted frommodel structure or process, i.e., which
variables are considered to impact GPP and how their relationships are for-
mulated in responding to a specific variable, and the variations inmodel pa-
rameters and input data (Li et al., 2020; Williams et al., 2009; Zhao et al.,
2012). For a long term period, the trend in terrestrial GPP and its drivers
are particularly important (Sitch et al., 2013), as this reflects the ability of
terrestrial ecosystem in sequestrating CO2 from the atmosphere. Recent
studies suggested that atmospheric CO2 concentration, nitrogen deposition,
and related human land-use management have caused the increase in
global LAI (Chen et al., 2019a; Zhu et al., 2016) and thus the global GPP
(Chen et al., 2019b). However, it is also reported that global terrestrial
GPP tends to decline due to the negative effect of atmospheric vapor pres-
sure deficit (Yuan et al., 2019) or increase with a slower rate due to the
weakening of CO2 fertilization effect (Wang et al., 2020). Such wide
range of estimates and inconsistent trends in global GPP requires us to fur-
ther investigate how global GPP changed during the past few decades. Lots
of studies have compared the global terrestrial GPP based on estimates from
LSMs and LUE-type models, but mainly focused on the trends or the means
of GPP (Zhang et al., 2019b; Zhang et al., 2017; Zheng et al., 2020). Except
for the trend andmean, the IAV of global GPP is also important for us to un-
derstand the dynamics and evolutions of terrestrial ecosystems (Ahlström
et al., 2015; Poulter et al., 2014). Therefore, investigating the mean, trend
and IAV of global terrestrial GPP concurrently is urgently required.

Themain objective of this research is to conduct a comprehensive inter-
comparison of mean, trend and IAV of global GPP estimated from several
LUE-type models which are mainly driven by satellite data. The analysis
is further categorized into different plant functional types (PFTs) and cli-
mate zones, the ultimate purpose is to provide an advanced understanding
on how global terrestrial GPP evolved during the past 20 years and to guide
the improvement of LUE-type models for estimating GPP. We hypothesize
that currently satellite-based GPP models can consistently reproduce the
mean and IAV of global GPP, but may show large discrepancy in the esti-
mated trends. In addition, we also hypothesize that inter-model differences
in the mean, IAV or trend are significant for a same PFT or climate zone but
differences among PFTs or climate zones can be well captured by models.

2. Materials and methods

2.1. Global GPP products

Eight LUE-type GPP products (GLASS, MODIS, NDWI, NIRv, PML, TG,
VER and VPM) are adopted for analysis in this research. The lengths of
these GPP products ranged from 16 to 21 years. Descriptions on the product
algorithm listed in Table 1 indicated that the GLASS GPP is constructed
based on a “two-leaf” concept and other GPP products are established
based on a “big-leaf” concept.

The GLASS GPP is developed by Zheng et al. (2020), inwhich a two-leaf
(sunlit leaves and shaded leaves) LUE model is driven by absorbed PAR
(APAR), atmospheric CO2 concentration (Cs), air temperature (Ta) and
vapor pressure deficit (VPD). The joint effects of Cs, Ta and VPD are used
.

rithm References

su + εsh × APARsh) × Cs × min (Ts,Ws) Zheng et al. (2020)
fPAR × f(Tmin,VPD) Running et al. (2004)
× fPAR× fCI × fCO2 × min (Ts,Ws_NDWI) Wang et al. (2021)

Wang et al. (2021)
Zhang et al. (2019a, 2019b)

ed × LSTscaled Sims et al. (2008)and Dong et al. (2017)
Rs,Ta,RH,PFT,LAImin,LAImax)c Zeng et al. (2020)
× PAR × WS × TS Zhang et al. (2017)

n the Penman-Monteith equation.
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to constrain themaximumLUE for both sunlit and shaded leaves, andAPAR
for sunlit and shaded leaves are scaled by LAI. Ta, VPD, PAR data are from
MERRA-2 datasets (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2), and
the LAI is obtained from the GLASS datasets (http://www.glass.umd.edu/
Download.html). The GLASS GPP has a spatial resolution of 0.05°×0.05°
and temporal resolution of 8 days.

The MODIS GPP with an early version (MOD17A2) is derived from
NASAMODIS website. In the MODIS GPP, LUE is calculated as the product
of the maximum LUE with the scalars of air temperature and VPD. And
APAR is calculated as a function of MODIS NDVI. The detailed procedures
of estimating GPP is referred to Running et al. (2004). The MODIS GPP
has a spatial resolution of 0.05°×0.05° and a temporal resolution of a
month.

The NDWI GPP is derived fromWang et al. (2021b). NDWI GPP consid-
ered multiple variables including water, temperature, cloudiness, and
Fig. 1. Spatial distributions ofmean annual GPP of eight global GPP products. For better v
are set as the 99% quantile (1% quantile).
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atmospheric CO2 centration as constraints on GPP. A unique feature of
theNDWImodel is that the normalized differencewater index (NDWI) is in-
troduced as awater stress factor for GPP andNDWI canbe directly retrieved
from satellite observations. The NDWI GPP product has a spatial resolution
of 0.08°×0.08° and a temporal resolution of a month.

The NIRv GPP used the satellite-based near infrared reflectance (NIRv)
to estimate GPP (Wang et al., 2021a). The NIRvGPP ismainly driven by the
long-term observations of AVHRR reflectance data and calibrated with 104
eddy covariance (EC) sites from the global FLUXNET. The NIRv GPP was
proven to have better abilities to capture the seasonal and inter-annual var-
iations of terrestrial GPP at the global scale. The NIRv GPP has a spatial res-
olution of 0.05°×0.05° and a temporal resolution of a month.

The PML GPP is generated by integrating a surface conductance model
to the Penman-Monteith equation, and its original objective is to estimate
ecosystem evapotranspiration (ET) using MODIS datasets (Zhang et al.,
isualization, values larger than 99% (smaller than 1%) quantile of mean annual GPP

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
http://www.glass.umd.edu/Download.html
http://www.glass.umd.edu/Download.html
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2016). Later, the model used a water‑carbon coupled canopy conductance
model to estimate ET and GPP simultaneously (Zhang et al., 2019b). VPD
is also included to constrain GPP in the PML dataset. Multiple MODIS
datasets including LAI, albedo and emissivity are used to drive the PML
model. The PML GPP has a spatial resolution of 0.05°×0.05° and a tempo-
ral resolution of 8 days.

The TG GPP is generated in this research. Its algorithm is based on
the “Temperature-Greenness” (TG) model original developed by Sims
et al. (2008), but model's parameters were optimized by a Bayesian
technique using 624 site-years of EC data from the global FLUXNET
(Dong et al., 2017). Spatial parameters of the TG model are up-scaled
based on MODIS land cover map (MCD12C1) in 2010. Required input
data for the TG model consists of land surface temperature (LST) and
EVI, which are from MOD11C3 and MOD13C2, respectively. The global
TG model is run for each of the 0.05°×0.05° grid for each month. A
unique feature of the TG model is that it is a purely remote sensing driv-
ing model and does not require any ancillary climatic, soil or vegetation
data.

The VER GPP is a product generated by upscaling global FLUXNET
data based on a random forest approach (Zeng et al., 2020). Satellite im-
ages including LAI and fAPAR, and ancillary climate data including Ta,
relative humidity, and downward shortwave solar radiation from
ERA5 were jointly used to train the random forest to upscale GPP from
FLUXNET site to the globe and make long-term predictions. A unique
feature of the VER GPP is that three variants of LAI were used to repre-
sent PFTs so that measurements from different PFTs can be mixed better
by the model and the GPP estimates are expected to have higher accu-
racy. The spatial and temporal resolutions are 0.1° × 0.1° and 10
days, respectively.

The VPM model calculates GPP as the product of light absorption by
chlorophyll of the vegetation (APARchl) and the efficiency (LUE) that con-
verts the absorbed energy to carbon fixed by plants, in which APARchl is fur-
ther calculated as a product of PAR and the fraction of PAR absorbed by
chlorophyll (fPARchl) and fPARchl is calculated as a linear function of EVI.
Actual LUE is down-regulated by temperature andwater stress from itsmax-
imum value (LUEmax) (Zhang et al., 2017). LUEmax is defined from a biome
specific lookup table. The VPMGPP dataset is available at 0.05°×0.05° spa-
tial resolution and 8-day temporal resolution.

Meteorological variables are required to drive the GPP models for six
out of eight products (except NIRv and TG) according to literature listed
in Table 1. The default temporal and spatial resolutions of each GPP prod-
uct is resampled at 0. 5°×0.5° grid pixel for each monthly for fair compar-
ison based on the bilinear approach.
Fig. 2. Zonal profiles of mean annua
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2.2. PFTs and Köppen-Geiger climate classifications

The MODIS land covermap (MCD12C1) in 2010 is used to drive the TG
model, and to compare the mean, trend and IAV of GPP for different land
cover classifications. The IGBP land cover scheme of MCD12C1 includes 17
land cover classes and 12 vegetation-related classes are used in this study.
The 12 land cover maps consist of evergreen needle-leaf forest (ENF), ever-
green broadleaf forest (EBF), deciduous needle-leaf forest (DNF), deciduous
broadleaf forest (DBF), mixed forest (MF), closed shrublands (CSH), open
shrublands (OSH), woody savannas (WSA), savannas (SAV), grasslands
(GRA), permanent wetlands (WET) and croplands (CRO). The remaining 5
classes are considered as very low GPP and ignored. The original product of
MCD12C1has a spatial resolution of 500mand this original spatial resolution
of data is used to drive the TG model but is resampled into 0.5°×0.05° reso-
lution to compare with other GPP products.

The Köppen-Geiger climate classification (Peel et al., 2007) was used to
compare GPP in different climate zones. In the Köppen-Geiger climate clas-
sification, there are five major climate zones, named Tropical (A), Arid (B),
Temperate (C), boreal (D), and Polar (E). Each major climate zone is di-
vided into 2 to 12 sub-zones with different humidity conditions.

2.3. Calculation of mean, trend and interannual variability

Mean annual GPP was computed as the averaged value of annual GPP
for each pixel during each estimation periods (16–21 years). Linear trend
of mean annual GPP over quasi-two decades are computed for each grid
using linear regression analysis, and the slope of the linear regression is de-
fined as the trend of GPP. The interannual variability (IAV) was identified
by the coefficient of variation (CV). As temporal coverages for different
GPP products varied from each other, the mean, trend and IAV were calcu-
lated for each product over their own temporal coverage (see Table 1).

3. Results

3.1. Mean annual GPP

Fig. 1 shows the spatial distributions of mean annual GPP from eight GPP
products (GLASS, MODIS, NDWI, NIRv, PML, TG, VER and VPM). It is clear
that all eight products show quite similar spatial patterns of GPP at the global.
High values of GPP are distributed at tropical rainforests (Amazon, Central
Africa and South Asia) with annual GPP larger than 2000 gC m−2 year−1.
LowGPP values are distributed at arid or semiarid regions (North Africa, Cen-
tral Asia and Central Australia) and high latitudes with annual GPP smaller
l GPP from eight GPP products.
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than 200 gC m−2 year−1. However, markable differences exist among eight
products. For example, TG shows significant higher GPP than other seven
products in Amazon regions and part of Central Africa. In contrast, VPM
shows relatively low GPP in tropical rainforest regions.

Per-pixel comparisons among eight GPP products demonstrate high
consistency of simulated mean annual GPP (R varying from 0.9 to 0.96,
all significant at 0.001 level), though inconsistency can be seen from
some pair of products. For example, pixel-by-pixel comparisons between
TG and VPM show relatively large differences when mean annual GPP ex-
ceed 2500 gC m−2 year−1. This inconsistency mainly occurs at tropical
rainforest as showed in Fig. 1. majority inconsistencies among eight GPP
products are sourced from either low (<200 gC m−2 year−1) or high
(2500 gC m−2 year−1) GPP according to the histogram of mean annual
GPP for each product (shown in diagonal panels in Fig. S1).

In order to perceive the main discrepancy among eight GPP prod-
ucts, we compared the zonal means annual GPP in Fig. 2. The latitudinal
values of mean annual GPP are all peaked around the equator (10°S–
Fig. 3. Spatial distributions of GPP trends of eight products. For better visualization, value
quantile (1% quantile).
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10°N) and a second peak at 20°N expect GLASS and VPM. of the disap-
pearance of second peak in zonal GPP of GLASS and VPM are largely
caused by the fact that both GLASS and VPM estimated valid GPP al-
though very small or zero in Sahara desert (Fig. 1), which causes low
zonal mean GPP for these two products. Particularly, TG product
shows a considerably higher double-peaks in GPP, comparing to other
seven products. The large peak in GPP for all products reflects the
wealth of climatic and nutrition resources in the equatorial regions,
while the secondary peak in GPP for five out of eight products reflects
high terrestrial ecosystem production in Mexico, India and south Asia.
In contrast, all eight products show relatively low zonal mean GPP in
the temperate regions of the two hemispheres and lowest in dry tropics
(10°S–25°S and 10°N–25°N), due to the stress from water deficit. The
GPP peak of TG is 1.5 times larger than that of MODIS. This large dis-
crepancy of GPP among eight products is also found in the secondary
peak intervals. However, GPP differences among the eight products in
the temperate and dry regions are much smaller.
s larger than 99% (smaller than 1%) quantile ofmean annual GPP are set as the 99%
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3.2. Trend of GPP

The trend of GPP for eight products is shown in Figure 3. Generally, all
products predict an increased trend of GPP atmost global terrestrial ecosys-
tems, particularly in the northern hemisphere. However, few products
show decreased trend of GPP in some regions. In detail, GLASS, MODIS,
NDWI and VPM predict decreased GPP in part of Amazon rainforest,
while GLASS, NDWI and PML estimate decreased GPP in central Africa,
but MODIS gives increased trend. Deforestations and stress from atmo-
spheric vapor pressure deficit (Yuan et al., 2019) may be the main reasons
caused the GPP decreases during the past two decades. All GPP products
show significant increased GPP in India and southeast China where vegeta-
tion greening is recently reported (Chen et al., 2019a; Zhu et al., 2016), al-
though the magnitude of increasing trend varies among eight products.

At the global scale, per-pixel comparisons of the GPP trend are
shown in Fig. S2. There are large discrepancy among eight GPP prod-
ucts. The correlation coefficient (R) among eight products ranges from
0.12 (GLASS vs MODIS) to 0.52 (VER vs VPM). The difference are also
obvious from the shapes of histograms of GPP trend for each product.
Particularly, GLASS product estimates large regions with decreased
GPP in Amazon and central Africa during the past two decades, which
makes the predicted GPP trend in GLASS largely differ from any other
ones (R < 0.26). Similarly, PML also predicts decreased GPP in part of
the equatorial zones, and the correlation coefficient (R) between the
PML and other products is also lower than 0.36. Predicted trends of
GPP from TG agree relatively well with those from NIRv, VER and
VPM, with R values of 0.43, 0.48 and 0.46, respectively. All these facts
indicate that representation of the trends of GPP is full of large chal-
lenge based on remote sensing approaches, although it is appreciated
that same remote sensing variable is used or similar model construction
strategy for GPP is adopt.

When summing up all grids GPP to calculate global annual GPP, all
products except GLASS show decreased trend of annual global GPP
(Figure 4). Three products, TG, VER and VPM, exhibit significant increasing
trends of GPP with 0.49, 0.49, 0.41 Pg C year−1 (p < 0.001), respectively.
NIRv also predicts significant increasing GPP trend with 0.19 Pg C year−1

(p< 0.05), but the other three GPP products, MODIS, NDWI and PML repro-
duce slightly positive but insignificant trends with 0.03, 0.14 and 0.29 Pg C
Fig. 4. The global average annual total GPP (Pg C year−1) trends
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year−1 (p> 0.1). The GLASS product generated a significant negative trend
of GPP (−0.22 Pg C year−1, p < 0.001).

3.3. IAV of GPP

IAV is another important indicator to describe the feature of the long-
term variations in terrestrial GPP in addition to the mean and trend of
GPP. Generally, larger IAV of GPP are mainly located in arid and semiarid
regions, such as in Australia, central Asia, western of US and south of
Africa, which agreed well with previous report (Poulter et al., 2014). How-
ever, significant discrepancy of GPP IAV existed among eight GPP products.
For example, GLASS and NDWI products showed more areas of high GPP
IAV (Fig. 5a,c), compared to other products. In contrast, MODIS showed
much lower GPP IAV (Fig. 5b).

Inter-comparisons of GPP IAV between eight products showed quite
large differences. The correlation coefficient (upright of Fig. S3) ranges
from 0.26 between VER and GLASS to 0.7 between VPM and TG
(Fig. S3). Relatively high correlation coefficient values (>0.6) are found be-
tween TG and VPM (0.66), MODIS and VER (0.62), MODIS and PML (0.6).
Relatively low correlation coefficient values (<0.3) are found between VER
and GLASS (0.18), VPM and GLASS (0.22), NDWI and MODIS (0.24), NIRv
and MODIS (0.27), VER and NDWI (0.25) and VER and NIRv (0.24)
(Fig. S3).

3.4. GPP variations in different biome types and climate zones

Although the trend and IAV of GPP show similar spatial patterns at the
global scale, substantial differences in GPP exist among models at 0.5×0.5
degree pixel level. To testify if there are significant GPP discrepancies
among PFT and oror climatic zones, we calculated the mean, trend and
IAV of GPP from all products for each IGBP PFT and Köppen-Geiger climate
zones.

For 12 PFTs, EBF has the largest gross primary production with a mean
annual GPP of multiple products with 2860±346 gCm−2 year−1 and OSH
has the smallest GPPwith 327±75 gCm−2 year−1 (Fig. 6a). The otherfive
PFTs, i.e. DBF, SAV, WSA, MF and CRO have mean annual GPP larger than
1000 gCm−2 year−1, and GRA and OSH showedmean annual GPP smaller
than 500 gC m−2 year−1. Overall, all GPP products well captured such
of the eight products calculated by linear regression analysis.



Fig. 5. Spatial distributions of GPP interannual variability (IAV) of eight products. For better visualization, values larger than 99% (smaller than 1%) quantile of GPP
interannual variability are set as the 99% quantile (1% quantile).
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differences among PFTs and the difference among products is moderate
(Fig. 6a).

Simulated GPP trends for 12 PFTs from eight products ranged from
−10 gC m−2 year−1 to 9.33 gC m−2 year−1 (Fig. 6b). For CRO, ENF and
MF, all eight products predicted increased trends in GPP. For the remaining
PFTs, some products predicted increased GPP trends, but others predicted
decreased trends (Fig. 6b). Among the 12 PFTs, the differences in simulated
GPP trends are quite large, particularly for EBF and SAV. Such differences in
GPP trends among products for different PFT further confirms the high un-
certainties of predicted trends of GPP from different products as shown in
Figs. 3-4.

GPP IAV for 12 PFTs represented by eight products varied from 0.03 for
EBF byVER to 0.38 forOSHby TG (Fig. 6c).MeanGPP IAVofmultiple prod-
ucts showed large in OSH (0.24) and GRA (0.22) but small in EBF (0.05).
Comparing Fig. 9c with 9a, it seems that those high mean annual GPP
corresponds to low GPP IAV and vice versa. It is also worth noting that re-
markable differences among products existed for each PFT, particularly
7

for those PFTs with high mean GPP IAV from multiple products, such as
OSH and GRA (Fig. 6c).

Among five major climate zones (A-E) defined by Köppen-Geiger,
mean annual GPP of multiple products show largest values of 2461 gC
m−2 year−1 in the equatorial zone (A) and the smallest values of
149 gC m−2 year−1 in the polar zone (E) (Fig. 7a). The second large
mean annual GPP is mainly located in warm temperate zone (C) with
1156 gC m−2 year−1, and the followed by boreal, D and arid, B climate
zones (have roughly equivalent mean annual GPP values with 518 gC
m−2 year−1 and 578 gCm−2 year−1, respectively. Although differences
among products and subzones existed, the differences in mean annual
GPP between five major climate zones are more significant and domi-
nate.

Fig. 7b showed the GPP trends for eight products in Köppen-Geiger
climate zones and subzones. It is found that both climate zones C and
D have relatively large trends in mean annual GPP of 3.61 and 3.04 gC
m−2 year−1, respectively. The remaining three climate zones have



Fig. 6. Annual mean, trend and interannual variability (IAV) of GPP in 12 PFTs from eight products. The error bars represent the standard deviations.
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quite smaller GPP trends of−0.82, 0.46 and 0.8 gC m−2 year−1 for A,
B and E, respectively. Large difference among eight GPP products
existed for each climate zone. Particularly, the GPP trends simulated
from GLASS and MODIS are quite different from the other five prod-
ucts for climate zones C and D, while for climate zones A, B and E, dif-
ferences in the calculated GPP trends among products and subzones
are significant.

When GPP IAV were plotted against Köppen-Geiger climate zones, it
is obvious that GPP IAV in different climate subzones varied from the
smallest 0.03 in subzone Af from VER product to the largest 0. 6 in sub-
zone BWh from NDWI product. Climate zones B and E with low mean
annual GPP (Fig. 7a) have relatively large mean GPP IAV of 0.28 and
0.29, respectively. While climate zones C and D have moderate mean
GPP IAV of 0.12 and 0.15, respectively, and the equatorial zone
(A) has the smallest mean IAV of 0.07. Similar to the variations of GPP
IAV with respect to PFTs, GPP IAV for different climate subzones and
among products show large difference except for the equatorial zone
(A).
8

4. Discussion

The nature of terrestrial ecosystem primary production is the conver-
sion of solar energy into chemical energy involving a complicated eco-
physiological process driving by multiple factors from atmosphere, soil
and vegetation (Beer et al., 2010). At different temporal and spatial scales,
responses of GPP to these environmental variables also exhibited strong di-
vergencies (Shi et al., 2014). Temporal divergencies are subject to the var-
iations and trends of influencing variables, and spatial ones are subject to
distribution of vegetation types, distributions and associated indicators re-
lating to GPP (Lin et al., 2021). Both temporal and spatial issues can be
reflected in the structure of a model. For example, the TGmodel used satel-
lite images derived LST and EVI as driving factors (Sims et al., 2008). Al-
though LST could represent some climatic variations, such as those in air
temperature, solar radiation, vapor pressure deficit (Dong et al., 2017;
Sims et al., 2008), most of their relationships with LST are non-linear and
scaling them into a factorial LUE-based GPP model may lost the original
correspondences of LST with other climatic variables. From this aspect, of



Fig. 7. Annual mean, trend and interannual variability (IAV) of GPP based on the Köppen-Geiger climate zoning map from eight products. The error bars represent the
standard deviations.
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the modeled GPP is largely simplified by linearly multiplying different var-
iables that could be nolinearly related to actual GPP. Essentially, the model
structure could be the most important source of uncertainties in GPP esti-
mation (Lin et al., 2021; Zheng et al., 2020; Zheng et al., 2018). Such over-
simplification also exists in other GPP models, excepted that GLASS and
PML integratedmore variables as inputs. Themaximum LUE (εmax) is a fun-
damental variable to construct a LUE-type GPP model. Because the eight
GPPmodels compared in this research differ largely in theirmathematic ex-
pressions (see Table 1), it is not easy to identify environmental stress on
εmax, which should be addressed in future efforts.

One of the advantages for remote sensing based GPP models is that
a relatively consistent specific indicator can be retrieved at the global
scale, and the problem of temporal divergency can be largely over-
came given that sensor drifting is well corrected. The bias from remote
9

sensing interpretation, such as the global vegetation map, can also add
to the uncertainties in GPP modeling. This is particularly true for the
TG model. When replacing PFT from different years, simulated mean
annual GPP have significant spatial differences but does not cause sig-
nificant changes in global total annual GPP. For those models which re-
quire ancillary meteorological variables, such as air temperature and vapor
pressure deficit for GLASS and MODIS GPP models (Running et al., 2004).
These ancillary variablesmay cause uncertainties in estimating GPP as well
(Zhao et al., 2012; Zheng et al., 2018).

Presently, most current GPP models validated against GPP measure-
ments from the global FLUXNET, and therefore it is relatively easy to
have the estimated mean GPP values comparable. By means of some math-
ematic approaches such as parameter optimization (Dong et al., 2017) or
machine learning (Zeng et al., 2020), consolidating the model estimate
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and measurement well consistent in mean GPP became more feasible. A
vast number of research has reported that rising atmospheric CO2 concen-
tration served as fertilizer and stimulate the increase in terrestrial ecosys-
tem GPP (Cernusak et al., 2019) but such fertilization effect of CO2 are
species-, level- and climate-dependent (Wang et al., 2020; Xie et al., 2020;
Zhu et al., 2016). Further, CO2-induced climate change can stress terrestrial
GPP via the changes in temperature and precipitation (Cernusak et al.,
2019). Such contrasting effects of rising atmospheric CO2 concentration
make it difficult to accurately estimate the trend of terrestrial GPP. How-
ever, the IAV of terrestrial GPP remains unclear (Piao et al., 2020) and con-
troversial. Poulter et al. (2014) proposed that semi-arid ecosystems
dominated the IAV of terrestrial carbon cycle, and Ahlström et al. (2015)
further argued that semi-arid ecosystems dominated the trend of land car-
bon sink as well. However, based on a more comprehensive analysis, Piao
et al. (2020)) insisted that it is tropical land ecosystems, rather than semi-
arid ecosystems, play dominant role in regulating the IAVof global land car-
bon cycle. As for the driving variables of IAV of GPP, each individual vari-
ables of temperature or moisture variability or there interactions seem not
to be a worldwide dominant factor (Piao et al., 2020). In a specific region,
for example in Amazons, a modeling study demonstrated solar radiation
was the dominant factor in regulating the IAV of tropical ecosystem GPP
and temperature and precipitation also contributed but at a less extent
(Ichii et al., 2005). In China, temperate monsoon precipitation was consid-
ered as the largest contributor to the IAV of land carbon cycle (Zhang et al.,
2019a). However, two recent studies proposed that atmospheric vapor
pressure deficit dominated the trend of terrestrial GPP (Yuan et al., 2019)
and IAV of terrestrial carbon sink (He et al., 2022).

Capturing the mean, trend and IAV features of terrestrial GPP concur-
rently are essential standards in evaluating a model's performance. This
study compared eight models in terms of the mean, trend and IAV simulta-
neously and found that agreement of the trend and IAV across models re-
quired large potential to make. One of possible and practical strategies is
to integrate the latest advances on the mechanisms and associated environ-
mental factors into models and to design the model's structure in terms of
the diversity of biome types and climate classifications.

5. Conclusions

In this study, we made a comprehensive inter-comparison of the mean,
trend and IAV of terrestrial Gross Primary Production (GPP) using eight
LUE-type models which are mainly driven by remote sensing data. We
found that the eight models estimated highly similar spatial patterns of
mean GPP (R > 0.9) during the past two decades, although global total
GPP still has a relatively wide range from 125 to 165 Pg year−1. For the
trend of GPP across the global, eight models exhibited low agreements (R
ranging from 0.12 to 0.52), and seven models produced increased trends
and one indicated a decreased trend. Overall, the consistencies of IAV esti-
mated bymodels are larger than the trend but smaller than themean of GPP
(R ranging from 0.26 to 0.85). Both mean and IAV of GPP showed signifi-
cant difference among plant functional types and climate zones. No obvious
differences in GPP trends can be identified from the perspective of plant
functional types. Increased trends of GPP are mainly located in warm
temperate and boreal climate zones, and inter-model discrepancies are
markable. We conclude that abilities of most widely used light-use-
efficiency based models in estimating global terrestrial ecosystem GPP are
highly consistent for the mean values, moderate consistent for IAV but
quite divergent in estimating the trend. However, the GPP trend may be
the mostly important concern for climate-vegetation-interaction research,
particularly in the context of carbon neutrality commitment worldwide.
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