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• The dynamics of dryland vegetation under
two extreme wet events in 2010–2011
and 2016–2017 were investigated.

• SIF and EVI showed a strong correlation,
and they substantially responded to the
extreme wet pulses.

• C3-dominatedMulga woodland was more
responsive than C4-dominated Hummock
grassland.

• Satellite-based observations can more
accurately estimate the productivity of
dryland vegetation in wet years.
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 Extreme wet events in central Australia triggered large vegetation responses that contributed greatly to large global
land carbon sink anomalies. There remain significant uncertainties on the extent to which these events over dryland
vegetation can be monitored and assessed with satellite data. In this study, we investigated the vegetation responses
of the major Australian semiarid biomes to two extreme wet events utilizing multi-satellite observations of (1) solar-
induced chlorophyll fluorescence (SIF), as a proxy for photosynthetic activity and (2) the enhanced vegetation index
(EVI), as a measure of canopy chlorophyll or greenness.We related these satellite observations with gross primary pro-
ductivity (GPP) estimated from eddy covariance tower sites, as a performance benchmark.
The C3-dominated Mulga woodland was the most responsive biome to both wet pulses and exhibited the highest sen-
sitivity to soil moisture. The C4-dominated Hummock grassland was more responsive to the 2011 “big wet” event, rel-
ative to the later 2016–2017 wet pulse. EVI swiftly responded to the extreme wet events and showed markedly
amplified seasonal amplitude, however, therewas a time lag as comparedwith SIF during the post-wet period, presum-
ably due to the relatively slower chlorophyll degradation in contrast with declines in photosynthetic activity. Despite a
robust linear SIF-GPP relationship (r2 ranging from 0.59 to 0.85), the spatially coarse SIF derived from the Global
Ozone Monitoring Experiment-2 (GOME-2) yielded high retrieval noise over the xeric biomes, hindering its capacity
to capture thoroughly the dryland vegetation dynamics in central Australia. Our study highlights that synchronous sat-
ellite observations of greenness and fluorescence can potentially offer an improved understanding of dryland vegeta-
tion dynamics and can advance our ability to detect ecosystem alterations under future changing climates.
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1. Introduction
Drylands (arid, semiarid, and subhumid), covering approximately 41%
of global land surface (Reynolds et al., 2007), play a critical role in regulat-
ing the climate system and predominantly drive the trend and variability of
the land CO2 sink (Ahlström et al., 2015; Haverd et al., 2016; Poulter et al.,
2014). Studies report a massive global land carbon sink anomaly in
2010–2011 was driven by unusual growth in semiarid vegetation in the
southern hemisphere, with almost 60 % of the anomaly occurring in
Australia as a consequence of the record-breaking rains (Detmers et al.,
2015; Ma et al., 2016; Rammig and Mahecha, 2015). Prolonged droughts
and severewet events are projected to increase in both frequency and inten-
sity (Huang et al., 2016; Min et al., 2011) which will exacerbate impacts on
water resources, ecosystems, economy, and society (Evans et al., 2017).
Therefore, it is essential to enhance our understanding of dryland ecosys-
tem functioning under future changing climate.

Australia is the driest inhabited continent worldwide, of which 70% are
encompassed with arid or semiarid ecosystems across the vast interior and
dominated by three major biomes along a woodland-savanna-grassland
continuum (Bowman et al., 2008; Cleverly et al., 2013a, 2013b; Cleverly
et al., 2016a, 2016b; Xie et al., 2016). Among them, Hummock grasslands
(Triodia spp.), Mulga woodlands (Acacia aneura), and Mulga shrublands
varying in photosynthetic pathways (C4 grass, C3 tree, and C3 shrub respec-
tively), are widely distributed and juxtaposed in the xeric zone of central
Australia (Cleverly et al., 2016a; Eamus et al., 2013). Relative tomesic veg-
etation, these semiarid biomes in the interior of Australia show the largest
temporal variability in phenology and exhibit much greater overall respon-
siveness to hydro-climatic variability (Ma et al., 2013).

Quantifying the response of vegetation to extreme hydro-climatic
events is crucial for effectively managing the environment and global
change research (Broich et al., 2018), with observation-based methods,
such as field measurement, airborne and spaceborne observation most
often utilized (Yang et al., 2018). Measurements of eddy covariance data
of CO2 landscape fluxes, Eamus et al. (2016) demonstrated that Mulga
woodland vegetation contributed markedly to the large 2011 anomaly in
terrestrial carbon uptake. In the subsequent drought from 2011 to 2012,
the massive net carbon uptake over central Australia was promptly dimin-
ished (Ma et al., 2016), of which the Corymbia savanna dominated by
Hummock grass understory was a very large net carbon source in contrast
to the extreme drought tolerance of Mulga which was approximately car-
bon neutral (Cleverly et al., 2016c).

Satellite remote sensing offers an approach for monitoring vegetation
growth at regional, continental, or global scale (Huete et al., 2008),
which is especially valuable for remote areas over most inland Australia
with very sparse monitoring sites. Through normalized difference vegeta-
tion index (NDVI) as a vegetation productivity proxy derived from satellite
time series data, Ratzmann et al. (2016) investigated the functional
response of dryland vegetation to altered rainfall patterns over semiarid re-
gions in Africa and indicated that higher interannual rainfall variability
might force a more dynamic vegetation response. Likewise, Broich et al.
(2018) found substantial differences in timing, magnitude and duration of
vegetation responses and its dependence on rainfall and flooding during a
period of extreme hydro-climatic variability over semiarid areas across
Australia's Murray Darling Basin. Dramatic impacts of climate extremes
on vegetation dynamics (as measured by EVI) with abrupt changes in phe-
nology and productivity over southeast Australia also demonstrates that
semiarid ecosystems exhibit the largest sensitivity to hydro-climatic varia-
tions (Ma et al., 2015).

In contrast to traditional vegetation indices, satellite retrievals of SIF
based on energy reemitted by plants rather than reflected present a fresh
manner to observe vegetation growth and response (Frankenberg et al.,
2011; Guan et al., 2015; Sun et al., 2017). SIF appears to better capture
interannual and seasonal variations in GPP across dryland ecosystems of
southwestern North America, however SIF also exhibits limitations for esti-
mating GPP over low productivity areas that have significant portions of
bare soil (Smith et al., 2018; Wang et al., 2022). SIF can more accurately
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estimate GPP and further contribute to an enhanced understanding of the
role of drylands in driving interannual variability of the global carbon
cycle (Biederman et al., 2017). Moreover, previous studies reveal that
spaceborne SIF has excellent potential to early detect drought-related and
heat stress conditions across a variety of ecosystems, such as cropland,
grassland, and forest (Song et al., 2018; Sun et al., 2015; Yang et al.,
2018; Yoshida et al., 2015). Nevertheless, considering spatially coarse
satellite-based SIF products, studies with reference to the application of
SIF over heterogeneous dryland or savanna under extreme wet events
thus far remain unexplored.

Numerous studies have shown that vegetation phenology and produc-
tivity in arid ecosystems are largely controlled by soil water content
(Cleverly et al., 2016b; Madani et al., 2017), accordingly it can be used as
an excellent predictor for plants growth under changing climates. Chen
et al. (2014b) illustrated that a strong positive correlation between
satellite-derived soil moisture and NDVI was found in most areas of
Australia's continent, with NDVI typically lagging behind soil moisture by
one month, implying the influence of soil water availability on vegetation
has a temporal scale dependence. More importantly, the integration of syn-
chronous large-scale satellite-based observations of soil moisture and SIF
contributes significantly to advances in the predictive understanding of
global terrestrial coupled carbon-water cycles (Qiu et al., 2018).

The aims of this study were to evaluate varying responses of major dry-
land biomes to extreme wet events in terms of greenness (as measured by
EVI) and photosynthesis (using SIF as a surrogate), incorporating in-situ
eddy covariance flux data as a performance benchmark. In this way we
aimed to attain new insights into the potential and limitations of
spaceborne SIF over the xeric interior of Australia. Specifically, we address
three scientific questions: (1) how are the temporal and spatial variations of
SIF and EVI related to those of meteor-hydrological drivers under extreme
wet pulses, (2) how do C3-dominated woodland (Mulga) and C4-
dominated grassland (Hummock) differ inmagnitude and rate of responses,
(3) can SIF accurately track the dynamics of wet-induced dryland vegeta-
tion productivity (as measured by tower-based GPP).

2. Materials and methods

2.1. Study region

This study was conducted at a sub-continental scale over central
Australia, encompassing an area of nearly 2.7 million km2 between 18°S
to 30°S and 120°E to 140°E (Fig. 1). This vast region receives mean annual
precipitation ranging from 200 mm to 600 mm (Bureau of Meteorology,
https://www.bom.gov.au) and is comprised with dominant vegetation
types such as Hummock grassland, Mulga woodland, Mulga shrubland,
Eucalypt woodland and Tussock grassland, covering 43.5 %, 11.6 %,
16.2 %, 7.7 %, and 6.6 % respectively. In this study, we note that categories
of Acacia open woodlands and Acacia Forests and woodlands were
reclassified as Mulga woodlands. The remaining woody (Casuarina,
Melaleuca forests and woodlands, Mallee woodlands), shrub (Heathlands,
Chenopod, Samphire shrublands, Forblands) and grass groups were sorted
as Other Woodlands, Other Shrublands, and Other Grasslands separately
(Fig. 1, Data source: National Vegetation Information System (NVIS),
Major Vegetation Groups (MVGs), Version 5.1, https://www.environment.
gov.au/).

Two eddy covariance tower sites within this extent, respectively are
Alice Spring Mulga (AU-ASM, [22.28°S, 133.25°E]) and Ti Tree East (AU-
TTE, [22.28°S, 133.64°E]) separated by approximately 40 km (http://
www.ozflux.org.au/). The AU-ASM site is located in a Mulga woodland
with a sparse canopy, while the AU-TTE site is in a Corymbia savanna con-
taining scattered trees above a matrix of Hummock grass (Cleverly et al.,
2016b). A detailed description of two sites concerning floristics, soil and
landscape can be found in Eamus et al. (2016) and Cleverly et al. (2016b).

To examine variation in response to extreme wet events across vegeta-
tion types along with biome-specific vegetation-moisture relationships,
we selected three relatively “pure” test-pixels at a 0.5° spatial resolution

https://www.bom.gov.au
https://www.environment.gov.au/
https://www.environment.gov.au/
http://www.ozflux.org.au/
http://www.ozflux.org.au/


Fig. 1. (a) Map of reclassified major vegetation groups over central Australia (map source: NVIS Version 5.0). Black dot and triangle represent AU-ASM, AU-TTE flux tower
sites respectively; Black pentagrams with the extent of the blue dashed square refer to the three selected test-points; Overlapped fishnet refers to a net of rectangular cells at
0.5° spatial resolution, consistent with the pixel size of GOME-2 SIF. The top-left figure displays the locations of the study area over the Australian continent (image source:
Google Earth). (b, c, d) spatial distributions of relatively homogenous pixels of threemajor biomes at a 0.5° resolution. (g. refers to grassland,w. refers towoodland, s. refers to
shrubland; the thresholds of selection percentages are listed in parentheses).
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representing three major vegetation types (Hummock grassland, Mulga
woodland, and Mulga shrubland). Pixel selection criteria: (1) given there
was more Hummock grassland, pixels with coverage percent of Hummock
grassland above 95 %, Mulga woodland & Mulga shrubland above 70 %
based on NVIS MVGs were chosen; (2) As satellite variables were extracted
within 3 × 3 window centered at test-points, pixels within the extent of
1.5° × 1.5° need to be covered by coherent vegetation type. The selected
test-points are respectively TP-Hummock grassland [21.25°S, 126.75°E],
TP-Mulga woodland [29.25°S, 132.75°E], and TP-Mulga shrubland
[24.25°S, 125.25°E] (Fig. 1a).

2.2. Satellite data

EVI is an optimized version of vegetation index that effectively reduces
soil background influences and is widely used as a proxy of canopy green-
ness (Huete et al., 2008). We used 11-years (2007–2017) of the Moderate
Resolution Imaging Spectroradiometer (MODIS, Collection 6) MYD13Q1
(250 m, 16-day, tile: H30V11) and MYD13C2 EVI data set with climate
modelling grid (0.05°, monthly) downloaded fromNASAEarthObservation
data (https://search.earthdata.nasa.gov/search). The equation of EVI is:

EVI ¼ 2:5
ρNIR−ρred

ρNIR þ 6ρred−7:5ρblue þ 1
ð1Þ

where ρblue, ρred, ρNIR are reflectance in the blue, red and near infrared bands
respectively. To reduce noise and uncertainties, only the best quality data
was selected in this study through removing pixels of which quality control
flag of the first 2 bits neither 00 nor 01. Themonthly EVI at 0.05° resolution
was spatially aggregated into 0.5° resolution for further comparison with
GOME-2 SIF.
3

Spaceborne SIF data in this study were retrieved fromGOME-2 onboard
the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Meteorological Operational A and B platforms (MetOp-A,
and MetOp-B) launched on 19 October 2006 and 17 September 2012,
respectively (Joiner et al., 2014). The GOME-2 instrument is a nadir-
scanning spectrometer, which measures at around 9:30 local equator
crossing time, and it has a relatively large footprint (approximately
40 km × 80 km at nadir, before 15 July 2013, and 40 km× 40 km since
15 July 2013) (Joiner et al., 2013, 2014; Köhler et al., 2015). GOME-2 com-
prises four main optical channels with the spectral range from 240 to 790
nm, and the fourth channel ranges between 590 and 790 nmwith a spectral
resolution of approximately 0.5 nm and a relatively high signal-to-noise
ratio (Joiner et al., 2013; Song et al., 2018). This dataset is primarily re-
trieved from the filling-in of solar Fraunhofer lines in the vicinity of the
740 nm far-red fluorescence emission peak, based on a simplified radiative
transfermodel in the company of a principal component analysis in order to
disentangle the fluorescence signals from atmospheric absorption and sur-
face reflectance (Joiner et al., 2013; Köhler et al., 2015). This dataset is a
retrieval of the far-red chlorophyll fluorescence peaking at 740 nm, based
on a simplified radiative transfer model in the company of a principal com-
ponent analysis (Joiner et al., 2013; Köhler et al., 2015). Two sets of SIF re-
cords were used in this study: (1) more than twelve years (from February
2007 to March 2019) of monthly SIF data at a spatial resolution of 0.5°
(Level 3, version 28, based on GOME-2 from MetOp-A, denoted as
GOME-2A); (2) six years (from March 2013 to March 2019) of monthly
SIF (Level 3, version 28, based on GOME-2 from MetOp-B, denoted as
GOME-2B). Both GOME-2 SIF datasets were obtained from the National
Aeronautics and Space Administration (NASA) Goddard Space Flight
Centre (https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
v28/). Although various filtering is applied, there still exists negative
value due to imperfect bias correction and noise (Joiner et al., 2013).

https://search.earthdata.nasa.gov/search
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v28/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v28/
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Monthly soil moisture (SM) at 0.25° spatial resolution was downloaded
from the European SpaceAgency (ESA) Climate Change Initiative (CCI, ver-
sion 4.4) data portal (http://www.esa-soilmoisturecci.org). This dataset
merges active microwave with passive microwave soil moisture products
through a harmonization approach to represent surface soil moisture
(Chen et al., 2014b). Satellite-based precipitation dataset from Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
mission was utilized with monthly 0.25° resolution (3B43, Level 3, version
7) downloaded from NASA Precipitation Processing System (https://pps.
gsfc.nasa.gov/). Moisture-related variables were spatially aggregated into
0.5° resolution, consistent with the GOME-2 SIF record for further analysis.

2.3. Eddy covariance data

The original Level 5 (AU-TTE, Net Ecosystem Exchange - NEE, ranging
from 2012 to 2017) and Level 6 data (AU-ASM, hourly GPP, ranging from
2010 to 2017) provided by the OzFlux network (http://www.ozflux.org.
au/) were used to pre-process, including quality control assessment, re-
moval of outliers, and gap-filling (Cleverly et al., 2013a, 2013b). The R
package, REddyProc (Wutzler et al., 2018), was implemented for Level 5
data to estimate dailymean GPPwith hourly eddy covariance andmeteoro-
logical data. This tool used the gap-filling and flux partitioning algorithms
to partition Level 5 data (NEE) into GPP and field ecosystem respiration
(Reichstein et al., 2005), conducted in open-source R scientific computa-
tion environment (Version 3.5.1). The estimated daily GPP were aggre-
gated into monthly GPP to match with satellite-based observations.

2.4. Wet intensity classification

Owing to the strong seasonality of rainfall (wet season: November–
April), monthly anomalies of precipitation were calculated as a deviation
from their corresponding multiyear (2007–2017) mean for each month.
We used the hydrological year from July to next June to account for the
location of the study region in the South Hemisphere. Two extreme wet pe-
riods were analyzed: (a) from February 2010 to March 2011, and (b) from
December 2016 to January 2017. Cumulative precipitation anomalies
(CPA) representing the accumulated amount of precipitation increment
during the periods of wet pulsewere computed for each grid cell.Wet inten-
sity defined by CPA was classified into five categories including Extreme
wet, Severe wet, Intense wet, Moderate wet, and Dry (Table 1).

2.5. Statistics

With the purpose of wet-related signal detection, monthly anomalies
of each vegetation variable (XAnomaly) were calculated as a deviation
from their corresponding multiyear (2007–2017) mean for each month.
To further account for spatiotemporal variability leading to diverse influ-
ences on vegetation response (Vicente-Serrano et al., 2013), we applied
standardized anomalies (SA) of all variables over each grid cell for further
examination of moisture-vegetation relationships across space and
time. Standardized anomalies, calculated by dividing anomalies by the
Table 1
Summary of wet pulse intensity classification.

CPA (mm) Wet level

(>300) Extreme wet
(200,300] Severe wet
(100,200] Intense wet
(0,100] Moderate wet
(<0] Dry

CPA = Cumulative Precipitation Anomaly, calculated
using TRMM rainfall data for every pixel during the
wet pulse periods (2010–2011: February~March;
2016–2017: December~January), and representing
the accumulated amount of precipitation increment
during the periods of wet pulse.

4

climatological standard deviation, generally provide more information
about the magnitude of the anomalies because influences of dispersion
have been removed (Dabernig et al., 2017). The equation is:

SAij ¼ Xij � Xj

σ j
(2)

where i is the yearly temporal coverage from 2007 to 2017, Xij is the
monthly ranging fromJuly to next June,Xj and σj are themean and standard
deviation of time series x atmonth j. In order to contrast the performance be-
tween GOME-2A and GOME-2B, relative anomalies (RA) calculated as a de-
parture from the multiyear mean and divided by the multiyear mean were
also implemented for two SIF datasets. The equation is:

RAij ¼ Xij � Xj

XJ
(3)

where i is the yearly temporal coverage from 2014 to 2019, Xij is the
monthly ranging from July to next June, Xj is the mean of time series X at
month j.

We assessed the relationship betweenhydro-meteorological and vegeta-
tion variables over three test sites at monthly scale by calculating the coef-
ficient of determination (r2). A t-testwas utilized to examine the statistically
significant level of the relationships (p-value). To quantify the temporal re-
sponse of vegetation to water availability along with comparison of SIF-EVI
per each biome, pixel-wise Pearson's correlation coefficient (R) between SM
and SIF, as well as SM and EVI within finite time lags analysis (0–6months)
was examined by shifting vegetation variables onemonth forward at a time
across a domain.

From a perspective of validation of satellite observations, SIF, EVI, GPP
series were respectively scaled into a decimal between 0 and 1 by min-max
normalization. Subsequently, the correlations of tower-based GPP and
satellite-based SIF, EVI were evaluated using the coefficient of determina-
tion (r2) and linear regression slope (k) separately during wet years
(2010–2011, 2016–2017) and normal year mean (2012–2016). The
purpose of the min-max normalization, which does not alter the strength
of correlations, is to inter-contrast the regression slopes between GPP-SIF
and GPP-EVI. Given a huge mismatch between the footprint of flux tower
and satellite observation, especially for spatially coarse SIF, we reviewed
the coefficient of determination between multi-year series (2010–2017)
of GPP and EVI at a variety of satellite-observed footprints increasing
from 0.25 km to ~450 km, along with the relationship between multi-
year series of EVI and SIF, GPP and SIF.

3. Results

3.1. Wet pulse characteristics in 2010–2011 and 2016–2017

Spatially averaged seasonal variations in precipitation, SM, EVI, and SIF
duringwet pulse years (2010–2011, 2016–2017) and climatology (non-wet
years mean) are shown in Fig. 2. It was found that precipitation was sus-
tained during both wet pulses for two months, occurring in late summer/
early autumn of 2011 (Feb-Mar) and the hot summer of 2016–2017 (Dec-
Jan), in which rainfall was over 3 standard deviations (SD) larger than
the non-wet year mean (Fig. 2a). Soil moisture exhibited similar temporal
trajectories, reaching the peak almost simultaneously with precipitation,
although high soil water content was maintained above the climatology
(>1 SD larger) after extreme wet periods, especially in 2010–2011
(Fig. 2b). The seasonal amplitude of EVI in both wet years was pro-
nouncedly enhanced relative to the multi-year mean, particularly during
the extremewet and post-wet periods (Fig. 2c). Correspondingly, SIF exhib-
ited markedly enlarged seasonal patterns in both wet years compared with
climatology, especially the maximum in 2010–2011 which exceeded 2 SD
larger than the peak of 2016–2017 (Fig. 2d). Throughout the post-wet
period of both wet years, SIF declined sharply after climaxing, similar to

http://www.esa-soilmoisturecci.org
https://pps.gsfc.nasa.gov/
https://pps.gsfc.nasa.gov/
http://www.ozflux.org.au/
http://www.ozflux.org.au/


Fig. 2. The region-wide mean seasonal cycle of monthly (a) precipitation, (b) soil moisture, (c) EVI, and (d) SIF over study area during 2010–2011, 2016–2017 and non-wet
years. The shaded area represents±1 standard deviation (σ). The vertical rectangles refer to extremewet periods of 2010–2011 (yellow) and 2016–2017 (blue) respectively.

S. Leng et al. Science of the Total Environment 842 (2022) 156860
the temporal trajectory of rainfall. By contrast, EVI displayed a more grad-
ual decrease, corresponding with soil moisture.

Spatiotemporal distributions of standardized anomalies of precipita-
tion, soil moisture, SIF, and EVI during wet pulses and the subsequent
three months of 2010–2011 and 2016–2017 are presented in Figs. 3 and
4, respectively. Across roughly the whole study region (over 95 %), precip-
itation and SM showed predominantly positive anomalies (SA > 0) and ex-
hibited congruent spatial patterns during the extreme wet period from
February to March of 2010–2011 (Fig. 3a, b). Afterwards, two hydro-
meteorological variables varied at the post-wet stage in which SM within
the majority of area (over 93 %) remained positive anomalies in contrast
to over half region of precipitation dropping below average (SA < 0). Over-
all, SIFSA and EVISA tended to be spatially consistent with SMSA, where
both vegetation variables within the majority of domain (82 % for SIFSA
and 96 % for EVISA) were larger than average (Fig. 3c, d). In particular,
EVI within 75.3 % of the study area maintained considerably positive
anomalies (SA > 1) since March 2011; however, the percentages of SIFSA
above 1 reduced from 48.5 % to 29.4 %.

By contrast, precipitation and SM in the 2016–2017wet pulse (Dec-Jan)
were also larger than average (SA > 0) across the most region (~90 % for
PrecipSA and ~ 98 % for SMSA, shown in Fig. 4a, b); however, these
anomalies were not as large as those in 2010–2011. The percentages of
SA > 2 in 2010–2011 were over 40 % for both hydro-meteorological vari-
ables relative to 32.3 % for PrecipSA and 18.1 % for SMSA in 2016–2017
wet pulse. EVI displayed positive anomalies over most regions (95.8 %)
since January 2017 (Fig. 4d), whereas SIFSA exhibited a spatial pattern
of which over nearly half region (44.7 %) was below than average
(SA < 0) throughout 2016–2017 wet pulse as well as following three
months (Fig. 4c). Additionally, SIF was significantly positive (SIFSA >
1) over <23 % of the region, as contrasted to 73.9 % of EVI (EVISA > 1).

Region-wide maps of wet intensity as measured by cumulative precipi-
tation anomalies during the 2010–2011 and 2016–2017 wet pulses were
generated (Fig. 5a, b). The wet pulse of 2010–2011 wherein the majority
5

of the region experienced intense rainfall anomalies (Wet level ≥ 2) was
a more intense event relative to that of 2016–2017. Additionally, extreme
rainfall anomalies (Wet level ≥ 3) mainly occurred in the northeast as
well as a patch of the southwest in the first wet pulse (2010−2011), rela-
tive to the northwest between 121°E-127°E and 19°S-23°S in the later wet
event (2016–2017). The percentages of each wet level in both wet pulses
are illustrated along with three dominant vegetation types (Fig. 5c, d).
Only 17.1 % of major biomes in 2016–2017 underwent severe or extreme
wet situation (Wet level≥ 3), mainly occurring over Hummock grasslands,
in comparison to 36% of those in 2010–2011, comprising 11.3% of Mulga
woodlands and Mulga shrublands.

3.2. Response of vegetation per biome type

Seasonal profiles of anomalies of EVI and SIF in 2010–2011 and
2016–2017 for three major biomes are depicted in Fig. 6. The magnitude
of EVIAnomaly and SIFAnomaly for Mulgawoodlands increased remarkably
with increasingwet intensity (Fig. 6c, d, i, j), and both vegetation indicators
of that in 2010–2011 showed the largest positive anomalies in severe wet
(Wet level = 3) among all categories (Fig. 6c, d). Contrarily, the enhance-
ment of SIFAnomaly and EVIAnomaly for Hummock grasslands and Mulga
shrublands was apparently not as large as those for Mulga woodlands and
generally constant when the amount of cumulative rainfall anomalies
exceeded 100 mm (Wet level ≥ 2) in both wet years. During the
2016–2017 wet pulse, SIF of Hummock grasslands was continuously close
to the average (SIFAnomaly ~ 0), even under the extremely wet situation
(Wet level≥ 3, Fig. 6h). Likewise, the laterwet event (2016–2017)margin-
ally raised the amplitude of EVIAnomaly of Hummock grasslands (Fig. 6g). In
addition, EVIAnomaly of all major biomes sustained positive and decreased
gradually after extreme wet periods of both wet events, in contrast to the
rapid decline of SIFAnomaly.

To further investigate the relationship between moisture condition
and vegetation function, temporal dynamics of precipitation, soil



Fig. 3. Spatial patterns of standard anomalies of (a) precipitation, (b) soil moisture, (c) SIF, and (d) EVI during 2010–2011 wet pulse as well as following three months. The
bottom panel shows the frequency map of each SA (standard anomaly) category of the corresponding variable during the six months (J: January; F: February, M: March; A:
April; M: May; J: June).
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moisture, SIF, EVI over three selected pixels in 2010–2011 and
2016–2017 are depicted in Fig. 7. In general, both vegetation variables
of all three test-points were more tightly correlated with soil moisture
(r2 ranging from 0.44 to 0.66, p < 0.05) than precipitation (r2 ranging
from 0.01 to 0.68). According to seasonal trajectories of SIF in two
wet years, the peak of the growing season of all three test-points is al-
most simultaneous or up to one-month lag behind the timing of maxi-
mum precipitation and soil moisture. For TP-Mulga woodland, the
peaks of growing season based on EVI also coincided with the peaks of
precipitation and soil moisture during the periods of wet pulses in
both years (Fig. 7b, e). By contrast, the peak of EVI at TP-Hummock
grassland and TP-Mulga shrubland exhibited more than one-month lag-
ging (1–4 months) relative to the peak of water-related drivers (Fig. 7a,
c, d, f). Although rainfall declined rapidly since February 2017, both SIF
6

and EVI at TP-Hummock grassland remained increasing in the following
four months (Feb-May) on a basis of a gradual decrease in soil moisture
(Fig. 7d).

Fig. 8a presents the boxplots of pixel-wise Pearson's correlation coeffi-
cients between 11-year series of monthly SM and EVI or SIF among three
major biomes. Satellite-based soil moisture can satisfactorily (p < 0.01) ex-
plain seasonal and inter-annual variation in EVI for all major biomes (R
ranging from 0.4 to 0.8), relative to less pronounced relevance with SIF
(R ranging from 0 to 0.5). Apart from this, relationships between SIF and
SM in biomes with larger SD, especially among Hummock grassland and
Mulga shrubland, tended to be more spatially variable (Fig. 8a). In contrast
toHummock grassland andMulga shrublands, EVI inMulgawoodlandwith
minimum time lags (Lags≤1) wasmost sensitive to soil moisture availabil-
ity, whereas SIF exhibited proportional percentages of time lags (Lag: 0–3)



Fig. 4. Spatial patterns of standard anomalies of (a) precipitation, (b) soil moisture, (c) SIF, and (d) EVI during 2016–2017 wet pulse as well as following three months (N:
November; D: December; J: January; F: February, M: March; A: April).
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for three major biomes (Fig. 8b), representing there are smaller biome-
specific differences in the relationships between SM-SIF relative to those
between SM-EVI. Regarding SIF within 17.8 % of Hummock grasslands
showing simultaneous response (Lag = 0), roughly all EVI of Hummock
grassland (~99 %) were lagging one month or more behind soil moisture.
For the majority of pixels with larger time lags (Lag≥3), there were gener-
ally weak and insignificant correlations between soil moisture and SIF (R <
0.2, p > 0.01).

3.3. SIF-EVI-GPP relationship

Multi-year time series of normalized tower-based GPP, satellited-
observed SIF and EVI over AU-ASMandAU-TTE are shown in Fig. 9a,b. Rel-
ative to seasonal trajectories in non-wet years, both extremewet events sub-
stantially raised the seasonal amplitude of GPP, EVI and SIF at the two flux
7

tower sites. The peak of productivity of AU-ASM in 2016–2017 (GPPnorm=
1; GPPmax = 129.4 gC m−2 mo−1) slightly exceeded that in 2010–2011
(GPPnorm = 0.89; GPPmax = 114.9 gC m−2 mo−1) as well as that of AU-
TTE in 2016–2017 (GPPmax = 116.3 gC m−2 mo−1). As compared with
highly fluctuated time series of SIF signals over both sites, reflectance-
based vegetation index (EVI) exhibited likewise interannual and seasonal
variation in tower-based GPP on the whole.

We found enhanced correspondence between GPP and SIF (r2: 0.76,
0.62, and 0.85), GPP and EVI (r2: 0.74, 0.91, and 0.6) in wet years relative
to non-wet years (r2: 0.44, 0.43, 0.59, and 0.71) for both AU-ASM and AU-
TTE (Fig. 9c-f). Furthermore, the linear regression between GPP and two
satellite-based variables in 2010–2011 and 2016–2017 (k ranging from
0.85 to 1.03) were closer to 1:1 diagonal, compared with those in the
non-wet year (k ranging from 0.63 to 0.82), representing that satellite ob-
servations can more accurately capture dryland vegetation production in



Fig. 5. (a, b) Spatial pattern ofwet intensity asmeasured byCumulative Precipitation Anomalies during 2010–2011 and 2016–2017wet pulses; (c, d) percentages of eachwet
level over three major vegetation types.
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wet years (k≅ 1), however, tend to be an underestimation under non-wet
climatic scenarios (k < 1).

To examine the impact of mismatch footprint between flux tower mea-
surement and satellite observation, relationships between multi-year series
of GPP and vegetation variables are summarized with respect to a range of
spatial resolution from 0.25 km to ~450 km (Fig. 10). The correlations be-
tween GPP and EVI at AU-ASM were generally constant with increasing
footprints of satellite observations from 0.25 km to 35 km (r2 ranging
from 0.6 to 0.62) as a result of the tower site located in an extensive homo-
geneous Mulga woodland. Those were consistently stronger than correla-
tions between GPP and EVI at AU-TTE (r2 ranging from 0.38 to 0.53),
which is located in a heterogeneous landscape. Subsequently, relationships
at both sites decreased along with the footprints arising from 5 km to
45 km, especially for AU-TTE (r2 declined from0.53 to 0.4). At a 0.5° spatial
resolution of SIF data, correlations of SIF and EVI, SIF and GPP at two sites
analogously increased and then decreased in conjunction with the extend-
ing size from50 km to 450 km. The synchronous trajectories of correlations
along with increasing footprints of SIF observations across both sites are
owing to the fact that there are increasing overlapped footprints (percent-
age of overlapped area > 66 %) since spatial coverage of ~150 km on the
8

basis of AU-ASM and AU-TTE located in two adjacent pixels (GOME-2 SIF
grid).

4. Discussion

4.1. Spatiotemporal response to extreme wet pulse

Both extremewet pulses greatly promoted the seasonal amplitude of SIF
and EVI in comparison with non-wet years mean (Fig. 2). Resembling sea-
sonal profiles between hydro-meteorological and vegetation variables in
both wet years implies that hydro-climatic variation exerts an impressive
influence on vegetation dynamic across the xeric interior of Australia, con-
gruent with previous studies (Andrew et al., 2017; Chen et al., 2014a;
Cleverly et al., 2016b; Yang et al., 2014). In particular, EVI and SIF almost
synchronously and rapidly reacted to increasing moisture, although they
varied in their response during the post-wet period (Figs. 2, 3). Our findings
that EVI followed a gradual decline following the wet period relative to the
swift decline of SIF were also consistent with other studies, illustrating
much slower chlorophyll degradation than the reduction in photosynthesis
(Jenkins et al., 2007; Ma et al., 2013).



Fig. 6. Seasonal variation in spatial averaged anomalies of EVI and SIF ofmajor biomes by eachwet level in 2010–2011 (a-f) and 2016–2017 (g-l); Colorful areas represent±
1 standard deviation of the corresponding wet level. The shaded rectangles refer to extreme wet periods.
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Unlike the corresponding spatiotemporal evolution of EVI and SIF in the
first wet event (Fig. 3), two vegetation variables in the 2016–2017 wet
pulse exhibited inconsistent trends, of which EVI showed considerably pos-
itive anomalies across almost the entire domain, by contrast to the patchy
Fig. 7. Temporal dynamics of precipitation, soil moisture, SIF, EVI over three selecte
coefficient of determination (r2) between climatic drivers and vegetation variables. (*: p
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spatial pattern of SIFSA (Fig. 4). This result reveals that water availability
may not be the only limiting factor for vegetation photosynthesis in semi-
arid ecosystems under the extreme wet scenario, in addition to the occur-
rence of later wet pulse in hot summer (Dec-Jan-Feb). There is evidence
d pixels in (a, b, c) 2010–2011 and (d, e, f) 2016–2017. Inserted charts show the
-value >0.05).



Fig. 8. Relationship between soil moisture and EVI, SIF (a) Boxplot of correlation coefficients between monthly Soil Moisture and EVI, SIF during 2007–2017 along with
(b) the corresponding time lags (months). Above the dashed line represents p-value below 0.01 and vice versa. (g. refers to grassland, w. refers to woodland, s. refers to
shrubland).
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that, on a seasonal basis, the primary drivers of vegetation productivity in
an Australian tropical savanna were soil moisture in the dry season and
solar radiation in the wet season, respectively (Moore et al., 2018).

Apart from the above-average photosynthetically active radiation in
2016–2017 wet pulse, another feasible reason causing divergent responses
between SIF and EVI is the degradation of GOME-2A instrument after oper-
ating over 11 years giving rise to the loss of signal-to-noise ratio, especially
over low-productivity region (Dikty et al., 2011; Geruo et al., 2017; Zhang
et al., 2018). Through evaluating the performance of SIF derived from
GOME-2A as compared with much less degraded instrument GOME-2B,
both SIF records exceeded 1 SD larger in 2016–2017 wet pulse relative to
themulti-yearmean (2014–2019) (Fig. S1). Further, the strength of the cor-
relations of the two SIF datasets compared with tower-based GPP was sig-
nificantly strong (GOME-2A: R = 0.68–0.72; GOME-2B: R = 0.68–0.7;
10
p< 0.001), demonstrating that both instruments have the comparable capa-
bility for monitoring the seasonal and interannual dynamic of dryland veg-
etation in recent years (Fig. S2). This result implies that any degradation
issue of GOME-2Awould play a secondary role on the lower responsiveness
in SIF signals, relative to EVI, in the 2016–2017 wet pulse.

There is a notable difference in the temporal response between SIF and
EVI in both wet years (Fig. 7). Following the precipitation pulse triggering
rapidly increasing soil water content, SIF swiftly responded and reached the
climax ahead of EVI among different vegetation types (Fig. 7). It is also ev-
ident that another small peak of soil moisture in April 2017 over TP-
Hummock resulted in a rapid response of SIF prior to that of EVI (Fig. 7f).
Results suggest that SIF tended to be a more prompt indicator of dryland
vegetation response to changes in hydro-climatic conditions, although SIF
exhibited an insignificant relationship with soil moisture due in part to



Fig. 9. Comparison of satellite observations and tower-based measurements. (a, b) Multi-year time series of normalized GPP, SIF, and EVI over AU-ASM and AU-TTE at
monthly scale; (c-g) relationship between normalized GPP and SIF, EVI over flux tower sites during wet pulse years (2010–2011, 2016–2017) and non-wet year mean
(2012–2015). Points followed by seasonal time series are connected with dashed line. Black dashed circle refers to the value at the end of hydrological year (in June).
Coefficient of determination (r2) and the slope of linear regression (k) between normalized GPP and normalized SIF, EVI are shown at the bottom-right of each panel.
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the high fluctuations in the SIF time series retrieved from satellite observa-
tions (Fig. 8).

4.2. Sensitivity of Mulga and Hummock grass to water availability

Responses of dryland vegetation to rainfall pulses depend on receipt of
sufficient water to trigger a response (Cleverly et al., 2013a). In addition,
discrepancies in photosynthetic capacity between C3-dominated Mulga
11
and C4-dominated Hummock grasses dictate the timing and strength of
an ecosystem photosynthetic response (Barron-Gafford et al., 2012). Re-
gardless of the duration of both wet events persisting for two months,
they differed in timing, magnitude and extent, in which extreme rainfall
anomalies of 2016–2017 mainly occurred over Hummock grasslands, in
contrast to that of 2010–2011 involving most vegetation types with
extended coverage (Fig. 5). At a given wet intensity, Mulga woodland
with an invariably larger amplified magnitude of both EVIAnomaly and



Fig. 10. Coefficients of determination between multi-year series of tower-based GPP and EVI, EVI and SIF, GPP and SIF at a range of spatial resolution from 0.25 km
to ~500 km.
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SIFAnomalywas most responsive among major biomes (Fig. 6). The green-
ness of Mulga woodlands tended to be consistently more sensitive to soil
moisture availability, with larger slopes (k) and smaller time delays
(Figs. 7, 8) than for other biomes, indicating that the rate of chlorophyll ac-
cumulation ofMulga is faster than that of Hummock grasslands. SIF of three
major biomes exhibited comparable sensitivity, with almost equal slopes
and analogously proportional time lags, despite weaker correlations. Com-
pared with EVI, the majority of the SIF signal also lagged behind soil mois-
ture, congruent with previous findings in central Australia (Detmers et al.,
2015). Through inter-comparing between two SIF records derived from
GOME-2A and GOME-2B among three major biomes (Fig. S3), we found
that both SIF in Mulga woodlands exhibited the largest positive anomalies
(RA: 1–2) in 2016–2017 wet pulse relative to an alternative baseline
(2014–2019) as compared with those in Hummock grasslands (RA < 1),
although extreme and severe rainfall anomalies in 2016–2017 mainly
12
occurred over Hummock grasslands. The results again demonstrate that
less responsiveness of SIF in 2016–2017 (relative to that in 2010–2011) is
mainly owing to the less sensitivity of Hummock grasslands (relative to
Mulga woodlands) to surplus water availability, instead of decreasing
trend in SIF signals derived from GOME-2A.

Soil moisture, rather than precipitation, could explain most vegetation
variations both seasonally and interannually (Figs. 7, 8), reflecting that
satellite-observed soil moisture can be an effective indicator of dryland veg-
etation growth (Nicolai-Shaw et al., 2017; Qiu et al., 2018). Chen et al.
(2014b) reported that satellite-derived soil moisture was significantly and
positively related with NDVI across mainland Australia, with a typical
time scale of soil moisture preceding NDVI by one month. Yang et al.
(2014) demonstrate total water storage anomaly (TWSA) derived from
the Gravity Recovery and Climate Experiment (GRACE) is a better sign of
surface greenness over mainland Australia relative to precipitation, and
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they argued spaceborne soil moisture wasmeasuredwithin top several cen-
timeters, rather than root-zone moisture. Nevertheless, Mulga has a dimor-
phic root distributionwith themajority of the root biomass in the top 10 cm
of the soil (Cleverly et al., 2016b) and is highly susceptible to minor varia-
tion in the upper moisture content (Eamus et al., 2013). Along with the
follow-on GRACE mission launched in 2018 (Flechtner et al., 2018), it of-
fers a chance to comprehensively evaluate interactions between vegetation
dynamics andmultiple hydro-meteorological drivers (soil moisture, precip-
itation, and TWSA) in future research.

4.3. Assessment with tower-based GPP

We foundmoderate correspondence between satellite-observed SIF, EVI
and tower-based GPP monthly climatologies in non-wet years (Fig. 9c, d),
consistent with findings of Madani et al. (2017), in which they suggested
that the weaker relationship in central Australia reflect greater SIF uncer-
tainty over sparsely vegetated region relative to mesic ecosystem. By con-
trast, remarkably enhanced correlations between GPP and SIF or EVI in
both wet years of 2010–2011 and 2016–2017 (Fig. 9e-g), along with closer
slopes (k≅ 1), suggests that satellite-based variables can provide very good
estimate of productivity of dryland vegetation under wet conditions.

Considering a notable mismatch between footprints of flux tower mea-
surement and satellite observation, we investigated these relationships at a
range of spatial resolutions (Fig. 10). Due to being located in an extensive
high-density Mulga woodland, the coefficient of determination at AU-
ASM was constantly around 0.6, regardless of increasing footprints from
0.25 km to 45 km, and this was consistently larger than those at AU-TTE
as a consequence of its more heterogeneous landscape (Cleverly et al.,
2016c). At a coarse spatial resolution (~50 km), the relationship between
GPP and EVI at AU-TTE was weaker than that for 5 km footprints, and
the strength of correspondence of both sites was closer owing to overlapped
footprints. Conversely, widely fluctuated relationships concerning SIF re-
veal that this product perhaps remains with much uncertainty and its
high retrieval noise in low productivity region induces notable speckling
relative to EVI and GPP (Gentine and Alemohammad, 2018; Geruo et al.,
2017). On a basis of spatially coarse resolution and degradation of
GOME-2 instrument, heterogeneity remains in the biome-level analysis
though we set stringent criteria for “pure” pixels selection. In addition,
the scarcity offlux tower sites in the interior of Australia impedes broad val-
idation of satellite observations over most vegetation types.

4.4. Limitations and future work

Re-emitted chlorophyll fluorescence, in vivo to reflect photosynthetic
dynamics in real time, is theoretically assumed to be a more rapid indicator
relative to changes in canopy chlorophyll content as measured by
reflectance-based vegetation index. Existing spaceborne SIF retrievals
with multiyear records, such as GOME-2, the Greenhouse Gases Observing
Satellite (GOSAT), and the SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY), are generally provided with
coarse spatial and temporal resolutions. There is a wide disparity in grid
size between satellite-based SIF and EVI, and the monthly temporal
resolution of satellite observations in this study may dampen the actual
differences in the responses of SIF and EVI. Given that dryland vegetation
is dynamic and responds within days to a precipitation pulse, we further
examined the performance of EVI and SIF responses to both wet pulses
at a finer temporal interval. Daily orbital SIF products (Level-2) were
gridded and aggregated into 16-day records, consistent with MODIS EVI
(MYD13C1). Relative to monthly SIF products (Level-3), the processed
SIF time series with higher temporal resolution exhibited more erratic be-
havior with high variability, giving rise to more uncertainty and bias over
water-limited ecosystems. Restricted by low signal levels and inherent
noise, there is a trade-off in providing data quality and reliability of
spaceborne SIF products and spatial/temporal resolution.

For a more in-depth study, improved SIF datasets with higher
spatiotemporal resolution comparable with the footprint of flux tower
13
measurement would be highly needed. Newly available physiologically-
based proxy SIF from the TROPOspheric Monitoring Instrument
(TROPOMI) with substantially enhanced spatial resolution has great poten-
tial for tracking and characterizing large-scale vegetation dynamics under
changing climate (Doughty et al., 2019; Köhler et al., 2018; Leng et al.,
2022). Among multiple surface reflectance-based proxies, Wang et al.
(2022) found that SIF retrieved from TROPOMI and near-infrared
reflectance index were the best performing GPP proxies and captured
complementary aspects of seasonal GPP dynamics across dryland vegeta-
tion over the western United States. The Orbiting Carbon Observatory-2
(OCO-2) SIF product, with spatial resolution of approximately 1.3 ×
2.25 km2, offers promising opportunities for studying the SIF-GPP relation-
ship and vegetation functional gradients at different spatiotemporal scales
(Sun et al., 2017; Wang et al., 2020). These state-of-the-art spaceborne
instruments along with upcoming missions will significantly contribute
to revolutionizing our ability to accurately trace vegetation dynamics
(Smith et al., 2019).

5. Conclusions

We have examined the response of satellite-observed SIF and EVI to the
2010–2011 big wet as well as a recent extreme wet pulse in 2016–2017
over arid central Australia, which is mainly covered by Hummock grass-
lands, Mulga woodlands, and Mulga shrublands. We found EVI was signif-
icantly responsive to both extreme wet events, with a markedly amplified
seasonal amplitude. In contrast to predominantly positive anomalies of
SIF in 2010–2011, SIF over nearly half of the region showed negative
anomalies in 2016–2017 wet pulse. Although C4-dominated Hummock
grasslands experienced larger amount of rainfall in 2016–2017, C3-
dominated Mulga woodland was invariably the most responsive biome, at-
tributed to its strong sensitivity to moisture availability. In spite of a robust
linear SIF-GPP relationship at site level, SIF derived from GOME-2 has im-
perfect capacity for capturing spatial dynamics over xeric central
Australia. This research provides a case study to reveal the process regard-
ing interactions between climate anomalies and vegetation anomalies,
which could be beneficial to other precipitation-driven ecosystems. With
a projection of increasing extreme events in the future, identifying ecolog-
ical responses to climate disturbances contributes to our understandings
for sustainable managing of ecosystem services.
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