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A B S T R A C T   

Pumping wells (PWs) lie at the core of agricultural irrigation infrastructure, and their spatial configuration is of 
great significance for the scientific management of regional agriculture and rational use of water resources. To 
solve the problems of unreasonable and unscientific spatial allocation of regional agricultural irrigation PWs, this 
paper proposes a new strategy for updating agricultural irrigation PWs based on a spatial decision model, using 
Songzhuang Town, Tongzhou District, Beijing as a case study. The model utilizes constraints based on local 
factors such as actual land use, and proposes a novel feasible solution strategy that combines random local search 
and abrupt jumps to increase the probability that feasible solutions will be found, addressing the performance 
issues of simulated annealing algorithms, influence of initial values, and parameter sensitivity. Finally, we used 
the proposed method to perform updated decision analysis on the spatial configuration of PWs in the study area. 
The results showed that most of the crops in the study area lack irrigation, and the currently available PWs 
cannot meet the needs for irrigation. The new PWs added based on this decision method can be more evenly 
distributed within the predefined optimization unit. The proposed number of PWs to be added is 166, the density 
of PWs is 0.04/ha, and the crop area covered by the PWs is 3350.43 ha. In contrast to the previous PW layout, the 
optimized PW configuration can meet the irrigation needs of residents, indicating that the new method proposed 
in this paper has good potential for extension and application.   

1. Introduction 

Food security is a critical issue that demands increasing attention in 
the present times (Pickson et al., 2023; Skaf et al., 2020). It is projected 
that the global population will reach 9.7 billion by 2050, necessitating a 
60% increase in food production (De Wrachien et al., 2021; Droppers 
et al., 2022). Currently, approximately 40% of agricultural production 
worldwide has access to irrigation, accounting for approximately 20% of 
the total cultivated area. By contrast, rainfed agriculture accounts for 
80% of the cultivated area, but contributes only 60% of the total food 
production (Darzi-Naftchali et al., 2020). Moreover, arable land for crop 
cultivation is limited, and future expansion of the cultivated area faces 
constraints (Bwambale et al., 2022). Under such circumstances, the 
growth potential for food production in already irrigated regions is 
modest. Conversely, dryland areas with water scarcity hold significant 

potential for boosting food production. Therefore, addressing the 
imbalance between water resources and food production, particularly 
through precise irrigation practices in dryland regions, has emerged as a 
crucial means of augmenting food production and ensuring food secu-
rity. This has profound implications for the advancement of intelligent 
agriculture and precision farming techniques. 

China's vast territory and diverse climate result in an uneven distri-
bution of surface water resources, making groundwater a crucial source 
of water supply in many regions. In China, groundwater is extensively 
used for agricultural irrigation, residential water supply, and industrial 
purposes. In the agricultural sector, groundwater plays a vital role in 
China's food production. As one of the world's largest agricultural 
countries, a significant portion of China's farmland in the northern re-
gions relies on groundwater for irrigation (McDermid et al., 2023). 
Groundwater helps compensate for the inadequacy of surface water 
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resources to ensure the growth of crops and high agricultural yields (Y. 
Li et al., 2022; Zhang et al., 2022). However, excessive extraction of 
groundwater can lead to declining groundwater levels and depletion of 
groundwater resources, posing challenges to the sustainable develop-
ment of agriculture (Awais et al., 2020; Mpakairi et al., 2022; Priyan, 
2021; Trivedi et al., 2023). To more effectively manage groundwater 
resources, China has implemented various measures, including the 
establishment of groundwater management systems, strengthened 
monitoring and regulation, as well as the promotion of water-saving 
irrigation techniques and sustainable utilization of water resources. To 
efficiently utilize irrigation wells, it is necessary not only to restrict 
water extraction areas but also to enforce strict approval management. 
Well construction is an effective approach for expanding the irrigated 
area to address the mismatch between water and soil resources in arid 
regions. However, in practical construction, there is a lack of layout 
planning and insufficient consideration of the suitability of existing and 
new wells, resulting in either excessively high or low well densities (Liu 
and Wang, 2012; Yang et al., 2008). Given these circumstances, it is 
imperative to focus on and improve the layout of agricultural irrigation 
wells to ensure their rational distribution and efficient utilization of 
groundwater, further promoting sustainable agricultural production. 

Agricultural PWs are fixed in space and have a spatial correlation 
among them. Spatial sampling theory models the layout of spatially 
correlated objects by essentially using intelligent algorithms (IA) to 
extract a subset from a limited set of sample points and optimize them 
according to set criteria (Jiang et al., 2009). With the development of 
geographic spatial sampling theory and “3S” technology (RS, GIS and 
GNSS), PWs can be considered as fixed points, and the PW layout opti-
mization problem can be transformed into a layout optimization crite-
rion with constraints that need to be satisfied from certain points. 

China is characterized by spatial and temporal differences in water 
resources among different regions, especially in the northern regions, 
where a combination of PWs and canal irrigation systems is present. A 
significant part of agricultural research in China and other countries is 
focused on PW layout methods. The early methods of PW layout mainly 
focused on how to determine the spacing and number of PWs in an area 
based on hydrogeological conditions and the current status of ground-
water utilization through PW tests and other means, combined with the 
traditional experience of PW layout (Li et al., 2007). With the contin-
uous improvement of PW construction in irrigated areas, studies on PW 
layout methods mainly tended to analyze and optimize the number and 
layout of PWs in irrigated areas by adopting deterministic algorithms 
from a global perspective, such as constructing a multi-stage optimiza-
tion model to minimize PW operation costs (Wang, 1998). These 
methods aim to establish a linear programming model with the objective 
of minimizing groundwater drop depth (Zhang et al., 2002), using 
groundwater extraction and a linear programming model with ground-
water extraction as the objective function, with the groundwater level as 
the constraint (Zhou et al., 2007). However, because the first two 
methods are too empirical in their consideration of PW layout and too 
rigorous in their deterministic algorithms, they were gradually replaced 
by IAs due to recent scientific and technological developments. 

IAs are generally based on stochastic search strategies, using objec-
tive functions and constraints that are generally not bound to a fixed 
form. Currently, IAs are widely used in agricultural fields such as agro- 
meteorology (Shiri et al., 2014), crop yield prediction (Ali et al., 2018), 
crop pest and disease monitoring (Yang et al., 2021), field weed iden-
tification (Xu et al., 2018), etc. In addition, IAs can be used to optimize 
agricultural irrigation systems. Among IAs, the simulated annealing al-
gorithm (SAA) is distinguished by asymptotic convergence and has been 
theoretically proven to be a global optimization algorithm that con-
verges to the global optimal solution with high probability. Moreover, 
its efficiency and effectiveness have been demonstrated in many prob-
lems, such as finding the optimal route (Oudani, 2021; Zhai and Feng, 
2022), finding the optimal location (Yu et al., 2021), determining model 
parameter weights (Davari et al., 2021), and determining the optimal 

layout (Huang et al., 2020). However, the SAA is prone to specific 
problems when dealing with the layout of regional irrigation PWs. 
Firstly, the initial value has a large impact on the results of local per-
turbations when the number of iterations is small, resulting in the ten-
dency to enter a dead loop when the local perturbations cannot satisfy 
the conditions, as well as a slow cooling rate at the later stage. Based on 
this, we propose a backward simulated annealing algorithm (BSAA), 
which can effectively utilize constraints as well as combine local search 
steps with temperature, random local search capability and abrupt jump 
capability to ensure that feasible solutions are always found. Thus, the 
improved algorithm can be used for updating the optimized layout of 
agricultural irrigation PWs. 

Given the prevailing circumstances in the realm of climate change 
and the advent of smart agriculture, the scarcity of water resources and 
the heavy reliance on surface irrigation pose significant challenges in 
arid regions. In response, this study proposes a decision strategy for the 
updating of agricultural irrigation PWs by providing a rational layout. In 
contrast to the traditional approach, our method can solve the multi- 
objective problem and reflect the actual local agricultural irrigation 
situation. The main innovations of this study include: 1) A new method 
for planning and managing the spatial layout of agricultural irrigation 
wells. 2) The quantitative evaluation and spatial update decision anal-
ysis of regional irrigation wells are realized. 3) The global optimal so-
lution for the spatial pattern of irrigation wells was found to constitute a 
well spacing of no less than 332 m. 4) The method has good potential for 
application and promotion in regional agricultural water management. 
Our research findings provide strong support for achieving precision 
management, improving smart irrigation systems, and increasing farm 
productivity. 

2. Materials and methods 

2.1. Study area 

This study was carried out in Songzhuang town in the north of 
Tongzhou district, Beijing, China (Fig. 1), at a longitude of 116◦35′23“- 
116◦46′53 “E and latitude of 39◦54′05“- 40◦01′50 “N. The town is spread 
over an area of 115.2km2, with 47 administrative villages. The terrain of 
the study area is flat, with a continental monsoon climate. The average 
annual temperature is 12.5–13.7 ◦C, the average temperature in July is 
25–26 ◦C, and the average temperature in January is − 4 ~ − 5 ◦C. The 
average annual precipitation is 626 mm, and is characterized by sea-
sonal as well as annual variation, with an uneven distribution of pre-
cipitation during the year. The area receives more than 80% of the 
annual precipitation from June to August, while only 2% of total pre-
cipitation occurs during winter (December to February). 

There were 46 PWs in our study area, one of which was not intact. As 
shown in Appendix a, the agricultural PWs were distributed in clusters 
and roughly divided into two major blocks. After several years of 
operation, the agricultural PWs encountered problems such as sand 
infiltration, deformation of pipes, and low water output. According to 
the survey, the number of damaged PWs was 4, 10 PWs were abandoned, 
and 13 PWs were renewed according to the corresponding conditions in 
the vicinity of the original PW location (Appendix b). 

2.2. Data sources 

The new agricultural irrigation PW update decision method pro-
posed in this study is an optimal decision scheme for agricultural irri-
gation PWs that was established through the integrated analysis of 
multiple source data sets. The data used in this paper is mainly derived 
from the following sources:  

(1) Acquisition of field PW information. In January 2019, the spatial 
distribution, current use status (intact, damaged, or abandoned), 
and other attributes (PW depth, static and dynamic water level, 
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water output, types of current and planned planting, planned 
irrigation methods, the extent of PW irrigation, damage, whether 
to renew, location of renewed PWs, reasons for PW renewal, 
whether there is a PW house, description of the PW house, 
damage to PW house). The field collection photos of the study 
area are shown in Fig. 2.  

(2) Based on local meteorological data (July 2019–July 2021) 
downloaded from China Meteorological Network and Beijing 
Municipal Water Bureau: precipitation, number of days of rain-
fall, depth of groundwater level (http://www.cma.gov.cn/, 
http://swj.beijing.gov.cn/). 

(3) Land use data for 2020 based on Esri 2020 Land Cover Down-
loader, downloaded at 10 m resolution, which was obtained by 
(Karra et al., 2021) using ESA Sentinel-2 imagery for deep 

learning (https://www.arcgis.com/home/item.htmlid=d3da5dd 
386d140cf93fc9ecbf8da5e31).  

(4) National urban road dataset for 2020 based on Gaode Map 
download. 

To obtain accurate point coordinates of the PWs, the relevant data 
such as the location of the PWs were matched with the corresponding 
meteorological data to realize data pre-processing and prepare for later 
data analysis. 

For various data, the projection coordinates were transformed into 
CGCS 2000 3◦ GK Zone 39, and the geographic coordinates were 
transformed into GCS China Geodetic Coordinate System 2000. 

2.3. Basic database construction 

The decision framework structure relies on the underlying database, 
and the decision analysis based on it is meaningless if the underlying 
data is incomplete or inaccurate. In this study, we used actual PW 
research data and ESA Sentinel-2 satellite images for deep learning as 
the basis. Accordingly, the research data includes the location of the 
PWs, PW depth, dynamic and static water levels, water output, and 
irrigation range. The optimization units were divided based on road 
traffic data, crop area size, and meteorological data, to reasonably 
analyze and determine the location of new PWs. 

2.4. Spatial decision model 

Temperature is one of the key parameters of the algorithm used in 
this study, mainly including the initial temperature setting, temperature 
drop strategy and stopping temperature. The cooling function is used to 
control the temperature drop. The temperature reflects the searchability 
of the algorithm, so that the algorithm performs a wide-area search 
when the temperature is high, and a local area search when the tem-
perature is low. A faster temperature drop will cause the algorithm to 
move directly from a wide-area search to a local area search, which will 
make it impossible to verify the solution for the current state and thus 
find the globally optimal solution. When the temperature drops too 

Fig. 1. Study area.  

Fig. 2. Comparison diagram of temperature attenuation coefficients.  
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slowly, the algorithm's local search capability is weak and many feasible 
solutions will be missed. To address the problem of local search radius, 
we propose a backward simulated annealing algorithm (BSAA) that 
improves the cooling function of the SA algorithm. The BSAA is able to 
combine local search steps with temperature, stochastic local search 
capability and sudden jump-hop capability to improve the ability to 
search for feasible solutions and ensure that feasible solutions are always 
found. In addition, equal-interval cooling and standard cooling were 
used as two common temperature cooling methods. 

T = T0 − ΔT (1)  

where T is the current temperature in the current cycle, T0 is the initially 
set temperature, ΔT is the temperature drop in each cycle. 

T = a× T0 (2)  

where T is the current temperature in the current cycle, a is the tem-
perature attenuation coefficient, a is the temperature decay coefficient, 
and the size of a determines the rate of temperature drop. T0 is the initial 
set temperature. 

The algorithm used in this study sets the temperature decay coeffi-
cient as dynamic to speed up the late temperature drop, and the 
improved cooling function allows the algorithm to jump out of a local 
optimal solution to accelerate convergence. The cooling function used in 
this study is: 

T1 = a×T0 (3)  

T = T1×
(

1+ sin
(

(L + 10)*pi /20

))

(4)  

where T1 is the current temperature in the current cycle, a is the tem-
perature attenuation coefficient, and T0 is the initial set temperature. 

where T is the corrected temperature in the current cycle, T1 is the 
current temperature in the current cycle, and L is the number of 
iterations. 

The initial conditions for the three cooling functions tested in this 
study are shown in Table 1, and the temperature decay curves are shown 
in Fig. 2. Equal-interval cooling can be performed at a uniform rate, and 
the step length of its search for feasible solutions decreases uniformly 
with the temperature, so that the local perturbation ability is weak. 
Standard cooling still cannot reach the low-temperature state in several 
iterations, and the number of iterations required to reach the low- 
temperature state is too high. In this study, the cooling curve un-
dergoes a tempering and warming process during the entire annealing 
period, and its algorithm can jump out of the local optimum when 
perturbed so that it has a better chance to find the globally optimal 
solution. 

The objective function used in this study was the distance from any 
new PWs in the study area to the new PWs closest to it or the currently 
available PWs (see formula 5). For the PW layout optimization problem, 
the feasible solution is not always found when the current solution is 

locally perturbed due to constraints such as optimization unit and PW 
spacing. Accordingly, the search step becomes small when the temper-
ature is low. Therefore, when no feasible solution is found after a certain 
number of iterations, the algorithm randomly generates an initial solu-
tion, performs a reassignment, and restarts the search for a feasible 
solution. 

minF(L) =
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x0)
2
+ (yi − y0)

2
√ /

n (5)  

where 
(
xi, yi

)
are the coordinates of the new PWs in the optimization 

unit, 
(
x0, y0

)
are the coordinates of the PWs in the study area, N is the 

number of PWs in the current area (including the new PWs), F (L) is the 
distance between the current PW point and its nearest new PW point or 
the currently available PWs. 

The main steps of this algorithm are as follows:  

1) Setting the initial temperature T, whose value is 1000; the cooling 
coefficient a, whose value is 0.99; the number of iterations L.  

2) Randomly selecting a sample S0 that satisfies the conditions and 
calculating the objective function φ(S0). After a certain local random 
perturbation, a new sample S1 satisfying the conditions is generated 
and if the points in the current region still do not satisfy the condi-
tions, when the number of iterations L reaches 5000, alternative 
points satisfying the current conditions are found again in the whole 
optimization region, the objective function φ(S1) is calculated, and 
the new sample is accepted or rejected according to the Metropolis 
criterion.: 

Pc(S0 − S1) =

⎧
⎨

⎩

1, φ(S0) ≥ φ(S1)

e
φ(S0)− φ(S1)

t , φ(S0)〈φ(S1)
(6)  

where Pc(S0 − S1) is the probability of replacing S1 to S0, generating a 
random number Rand between 0– 1, if Pc(S0 − S1)〉Rand, S0 is replaced 
with S1, otherwise S0 is discarded.  

3) Performing the cooling process: T1 = a× T0，T = T1×
(

1 + sin
(
(L + 10)*pi /20.

))

4) Repeating the first 3 steps and the algorithm terminates when 
T1 > Tmin, where the value of Tmin is 1. Then, the final sample S0 is 
generated as the output. 

3. Results 

3.1. Evaluation of the current situation of agricultural irrigation PWs 

This study quantitatively evaluated the environment of agricultural 
irrigation PWs in the study area based on actual research data on PWs 
and land cover data from ESA Sentinel-2 satellite images for deep 
learning. There were 47 administrative villages in the study area, and 
PWs were available in 12. The crop area of the administrative villages 
with PWs ranged from 14.59 to 345.97 ha, with a total of 989.96 ha 
(Table 2). A total of 46 PWs were available in the district, and the 
average density of PWs was 0.05 ha− 1, with 8 administrative villages 
having an above-average density of PWs. The density of PWs in the 
administrative villages ranged from 0.02 to 0.09, with the highest value 
recorded in Zhaili village and the lowest value in Fuhao village. The 
irrigation range of PWs in the study area was between 2.67 and 56.00 
ha, with a total of 275.07 ha. The average irrigation rate of PWs in the 
study area was 27.79%, and was higher than average in six adminis-
trative villages. The irrigation rate of PWs in the study area ranged from 
11.81 to 85.50%, with the highest value in Yingezhuang village and the 
lowest value in Gangzi village. 

The study area covered a total of 115.2 km2, among which 45.06 km2 

was the main agricultural area. There were 46 PWs as of 2019. The 

Table 1 
Initialization parameters of the temperature decay function.  

Cooling method Cooling function Initialization 
parameters 

Equal interval 
cooling T = T0 − ΔT T0=1000；ΔT=20 

Standard cooling T = a× T0 T0=1000；a=0.99 

This study 

T1 = a× T0 

T=T1×
(

1 + sin 
(
(L + 10)*pi /20

))
T0=500；a=0.99  
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estimated density of PWs in the study area in 2019 was approximately 
0.01 ha − 1, and the average density of PWs in administrative villages 
with PW distribution was 0.05 ha − 1. The PW density calculated in this 
study is based on the crop area only, rather than the whole area. This 
value is larger than what would be calculated using traditional methods, 
but it is also more accurate. After comparing the PW density of the study 
area with the average PW density of the whole country or the five 
provinces of the North China Plain, it is easy to conclude that the PW 
density of the study area is the lowest. 

3.2. Coverage of agricultural irrigation PWs for different land use types 

Karra and Kontgis used ESA sentinel-2 images to divide the land type 
coverage data obtained by in-depth learning into 10 categories, 
including water, trees, grass, flooded vegetation, crops, scrub, built area, 
bare ground, snow, and clouds. There were eight land use types in the 
study area, including water, trees, grass, flowing vegetation, crops, 
scrub, built area, and bare ground, respectively accounting for 489.84 
ha, 226.47 ha, 77.23 ha, 1.72 ha, 4506.02 ha, 607.38 ha, 5523.46 ha, 
and 0.62 ha. The study area is mainly dominated by 10,029.48 ha of 
crops and buildings, accounting for 87.73% of the total. 

In general, when the density of PWs in an area is high, there is a 
greater incentive for farmers to compete with each other for water when 
using groundwater for irrigation (Gong et al., 2019). Therefore, 
choosing the right PW density is an essential part of PW layout opti-
mization for the sustainability of groundwater-based irrigation. The 
main consideration in selecting different radii is the possible radius of 
the impact of the PWs. For this purpose, we set the radius of the PW 
buffer zone to 50 m, 100 m, 150 m, 200 m, 250 m, and 300 m, thus 
comparing the area of land use types within the buffer zone per 50 m 
unit and calculating the actual PW irrigation range, as shown in Table 3. 

As can be seen in Table 3, the crop area increases and then decreases 
between 1 and 300 m within the PW buffer zone. To maximize the crop 
area covered by the PW distribution, the concept of marginal effect was 
introduced in a recent study (Cao et al., 2021). In the study area, for 

every 1 m increase in the radius of the PW buffer zone, the crop area that 
can be covered within this 1 m range was calculated, so that the relative 
efficiency of PW utilization can be maximized when the crop area per 
unit margin is maximized. 

The multi-loop buffer analysis tool in ArcGIS was used to calculate 
the crop area within the PW buffer in 1 m units. It was found that the 
crop area per unit covered by the buffer zone reached the maximum 
when the radius of the PW buffer was 166 m, and its value was 
approximately 1.66 ha (Fig. 3). Therefore, the crop area per unit covered 
by the PWs reached the maximum when the PW spacing was 332 m. 
Using this configuration, the PW efficiency was relatively high and the 
PW density was appropriate. 

3.3. Decision analysis for the renewal of agricultural irrigation PWs 

To better meet the irrigation needs of local farmers that rely on 
regional agricultural PWs and maintain the sustainable use of ground-
water resources, an effective decision analysis of the future spatial dis-
tribution of agricultural irrigation PWs was conducted based on the 
decision model developed in this study, after which a targeted and 
feasible renewal plan was developed. 

The crop area of the administrative villages with PWs in the study 
area was 989.96 ha, and there were 46 PWs with an average irrigated 
area of 21.52 ha per unit. Using this irrigation range as the standard, we 
calculated the need for 120 new PWs in the future. According to Fig. 4, 
when the buffer radius of the PWs is 166 m, the crop area per unit 
covered by the buffer zone reaches the maximum, so the optimal spacing 
between PWs is 332 m. According to ArcGIS, the crop area in the study 
area was calculated to be 4092.40 ha after subtracting the crop area 
covered by the PWs with a radius of 332 m. This was done to better meet 
the local irrigation level based on the current situation. The optimized 
area was 2579.41 ha, and was divided into blocks based on adminis-
trative boundaries, road traffic, and other data. The blocks were 
numbered from top to bottom and left to right, finally forming 51 
optimization units. 

The original PW data were exported to text coordinate form in Arc-
GIS, and the PW optimization units were exported in .SHP format. In 
MATLAB, the PW optimization unit, the number of new PWs, and the 
spacing between PWs were set as constraints, and the different stages of 
PW layout optimization were obtained using the proposed algorithm 
(Fig. 4). 

The optimized distance of the initial layout in Fig. 5 was 337.09 m. 
As the number of iterations of the proposed algorithm increased, the 
optimization degree also increased and the target optimization distance 
decreased. After several rounds of optimization, the optimized distance 
of the intermediate layout was 322.39 m. When the final convergence 
state was reached, the optimized distance was 294.17 m. 

The data of the final layout points of the PWs generated by the al-
gorithm developed in this study were imported into ArcGIS (Fig. 5), and 
the PWs were more evenly distributed within the optimization unit we 
set. The number of new PWs in the study area was 166, and the density 
of PWs was 0.04/ha. The crop area covered by this range was 3350.43 
ha, accounting for 74% of the crop area in the whole study area. 
Crucially, the optimization results met the irrigation demand of local 

Table 2 
PW density and PW irrigation rate of available PWs in the study area.  

Administrative 
village 

Crop 
Area 

Number 
of 

PW 
Density 

Scope of 
PW 
Irrigation 

Irrigation 
Ratio 

(ha) PWs (ha − 1) (ha) (%) 

Dinggezhuang 14.59 1 0.07 2.67 18.28% 
Renzhuang 19.67 1 0.05 3.33 16.95% 
Caiyuan 32 3 0.09 6.00 18.75% 
Gangzi 52.49 2 0.04 6.20 11.81% 
Gaoxinzhuang 34.2 2 0.06 13.33 38.99% 
Guanxinzhuang 42.55 4 0.09 17.33 40.74% 
Xiaodenggezhuang 28.87 2 0.07 18.00 62.35% 
Dadengezhuang 35.67 4 0.11 21.33 59.81% 
Fuhao 236.04 4 0.02 29.53 12.51% 
Zhaili 345.97 12 0.03 48.00 13.87% 
Xinggezhuang 62.38 4 0.06 53.33 85.50% 
Baimiao 85.53 7 0.08 56.00 65.47% 
Total 989.96 46 0.05 275.07 27.79%  

Table 3 
Land use types in different buffer zones of available PWs in the study area.  

Land use type 0–50 m 50 m ~ 100 m 100 m ~ 150 m 150 m ~ 200 m 200 m ~ 250 m 250 m ~ 300 m 

Water 0 0.16 0.98 1.55 2.84 3.24 
Trees 0 0.21 0.02 0.17 1.6 2.18 
Grass 0.28 0.66 0.4 0.46 0.44 0.18 
Crops 18.32 53.03 73.27 79.46 71.63 71.16 
Scrub 2.66 4.78 4.92 7.58 7.41 8.85 
Built Area 12.96 34.07 51.74 66.19 84.98 97.27 
Bare ground 34.22 92.91 131.32 155.41 168.89 182.89 
Total 0 0.16 0.98 1.55 2.84 3.24  
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residents, which indicates that the layout optimization method used in 
this study is practical. 

4. Discussion 

Agricultural irrigation wells are common facilities in the farming 
regions of northern China, particularly in high-standard farmland con-
struction. Well irrigation is the most stable irrigation method, capable of 
maintaining stable and increased crop yields even under water scarcity 
conditions (Cai and Zeng, 2019; Zhuo, 2021), and as such holds signif-
icant importance for the overall agricultural development of the region. 

There were 46 existing agricultural irrigation wells within the study 
area, but most of them were farmer-built and lacked unified planning, 
resulting in limited well numbers with an uneven distribution. Conse-
quently, the existing irrigation wells were unable to meet the local 
agricultural irrigation needs. In light of this, we conducted preliminary 
survey work and proposed a novel decision approach based on a spatial 
decision model for updating agricultural irrigation wells. Our research 
findings indicated that the well density in the study area was low 
compared to the five provinces in the North China Plain. Setting the unit 
buffer radius for agricultural irrigation wells at 166 m maximizes the 
coverage of agricultural land. After optimizing the well layout using the 

Fig. 3. Area of crops in different buffer zones of available PWs in the study area.  

Fig. 4. Distribution of the initial layout (a), intermediate layout (b), and final layout (c) of new PWs in the study area. OriginalPoint is the original point of the PWs, 
InitalPoint is the initial layout point of the PWs, IntermediatePoint is the intermediate layout formed after a certain degree of optimization, and FinalPoint is the final 
layout formed after the PWs were optimized. 
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proposed method, new wells were distributed more evenly within our 
designated optimization units. Specifically, the addition of 166 new 
wells within the study area was predicted to result in a density of 0.04 
wells/ha, covering an area of 3350.43 ha. Compared to the previous 
scenario, there is an increase of 120 wells, leading to an expanded 
irrigation coverage of 3075.36 ha. 

Groundwater irrigation is a complex process that requires the 
comprehensive consideration of multiple factors. Firstly, the sustain-
ability of water resources is of paramount importance. As groundwater 
is a finite resource, water resource assessment and monitoring are 
necessary to ensure its sustainable utilization (Kumar et al., 2023; Pham 
et al., 2021). Secondly, groundwater levels and recharge conditions are 
crucial for the design and operation of irrigation systems. Monitoring 
groundwater levels (Mirzavand and Ghazavi, 2015; Zhang et al., 2015) 
and understanding the sources of groundwater recharge (Khan et al., 
2020) help determine appropriate irrigation quantities and frequencies. 
Additionally, soil characteristics and crop water requirements should 
also be considered. Different soil types exhibit varying water-holding 
capacities and permeabilities, while crop water demands vary depend-
ing on crop types, growth stages, and climatic conditions. Finally, 
environmental impacts and water quality protection must be taken into 
account. Groundwater irrigation can potentially impact the surrounding 
environment and water quality (Gurbuz, 2019; Sutradhar and Mondal, 
2021), necessitating measures to reduce pesticide and fertilizer use, 
prevent soil erosion, and minimize pollution by agricultural runoff. In 
this study, we prioritized the effective range of well irrigation and did 
not extensively consider groundwater factors. This choice is based on 
two factors. Firstly, our study area is relatively small and located in a 
plain with relatively stable and consistent hydrogeological conditions. 
Within the study area, the average groundwater depth is 8.06 m, and 
over the past two years, the groundwater level has remained relatively 
stable with a slight upward trend. Therefore, we consider the influence 
of groundwater factors on well irrigation to be minimal under these 
circumstances. Secondly, China's current agricultural production is still 

characterized by small-scale farming, with relatively dispersed produc-
tion factors (Chen et al., 2021). This means that land cannot be 
consolidated for large-scale operations but exists in small scattered 
plots. The characteristics of this land use type have an impact on agri-
cultural production in China. Hence, we focused on the effective range 
of well irrigation to meet the practical needs of agricultural production. 

The method proposed in this study employs the distance from any 
newly added irrigation well in the study area to the nearest newly 
constructed well or an available existing well as the objective function. It 
is based on the criterion of minimizing the average minimum spatial 
distance (Dong, 2018; Jiang et al., 2009; Wu et al., 2015; Zhang et al., 
2012), which aims to achieve the most uniform feasible distribution of 
sampling points throughout the sampling area. Therefore, the setting of 
the objective function is reasonable. There are multiple ways to set the 
objective function. The method proposed in this study utilizes the con-
straints of the spacing between newly added irrigation wells, the number 
of new wells, and the optimization unit for new wells. The parameter for 
the spacing between new wells is derived from the concept of marginal 
land use efficiency. When the spacing between new wells reaches a 
certain threshold, further increasing the well spacing would result in a 
decrease of the irrigated area per well, leading to resource waste. In our 
research, we found that the spacing between new wells should not be 
less than 332 m. Existing methods for determining well spacing mainly 
include empirical methods, pumping test methods, single-well irrigation 
area methods, and allowable exploitation modulus methods (Liu and 
Wang, 2012; Zhang et al., 2016). Among them, the calculation of well 
spacing based on the single-well control irrigation area method and the 
allowable exploitation modulus method are two commonly used ap-
proaches. Both methods consider the water resource carrying capacity 
and are relatively simple to calculate. However, they require data on 
local irrigation systems and relevant hydrogeological parameters, and 
do not take into account the socioeconomic benefits. For example, Wu 
et al., 2015) determined a minimum well spacing of 275.02 m using the 
single-well control irrigation area method. Zhao (2022) recently used 

Fig. 5. Decision analysis of PW renewal in the study area.  
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this method to calculate well spacing based on different layout config-
urations, resulting in a spacing of 188 m for grid-shaped well configu-
rations and 202 m for clover-shaped well configurations. These 
variations in well spacing were attributed to differences in water re-
sources between the two regions. However, our primary consideration is 
the fragmented nature of agricultural land. Therefore, the well spacing 
method proposed in this study is more in line with the actual situation of 
small-scale farming in China. Additionally, this spacing parameter is 
consistent with the findings of Yang et al. as well as Zhao et al., who 
observed that the typical well spacing is approximately 300 m (Yang 
et al., 2008; Zhao, 2022). Thus, this parameter is reasonable. Further-
more, the parameter for the irrigation range of a single well was 
calculated based on the actual local land use conditions and amounted to 
21.52 ha. With the addition of 120 new wells, this parameter is also 
deemed reasonable. 

The accuracy of the algorithm largely depends on the rationality of 
parameter values (Dymond et al., 2011; Strąk et al., 2019). In this paper, 
the algorithm sets the temperature decay coefficient dynamically and 
associates the search step size with the temperature. Compared to 
traditional simulated annealing algorithms, the improved cooling 
function developed in this study enables the algorithm to effectively 
escape from local optima, which enhances its ability to locally search for 
feasible solutions. The algorithm introduced in this paper incorporates 
optimization units as constraint conditions. In contrast to traditional 
simulated annealing algorithms, if the relevant conditions cannot be 
satisfied during the local perturbation process, the algorithm will enter 
into a deadlock. To address this, our algorithm generates a random 
initial solution, performs a reassignment, and restarts the search for 
feasible solutions. In this study, the values of the algorithm-specific 
parameters such as initial temperature, termination temperature, and 
number of iterations were strictly determined based on general 
convergence conditions. Accordingly, the initial temperature was set 
sufficiently high, the thermal equilibrium time was sufficiently long, the 
termination temperature was sufficiently low, and the cooling process 
was adequately slow, which was in agreement with the literature 
(Amine, 2019; Wu et al., 2015). Therefore, the parameters used in our 
algorithm are reasonable, resulting in good convergence and practical 
optimization results for well layout. The setting of algorithm-specific 
parameters requires a specific analysis based on the problem at hand. 
In this study, the determination of parameters is based on empirical 
methods. However, there are various other methods for parameter se-
lection. For example, researchers can experiment with different 
parameter combinations to determine the optimal set (Kucukkoc et al., 
2013; Myers and Hancock, 2001), employ orthogonal experimental 
design to identify the best algorithmic parameters (Jiao et al., 2020; Xu 
et al., 2022), or utilize multiple algorithms and integration strategies to 
determine the best parameters (Li et al., 2022). 

Finally, there are also some limitations of this study that need to be 
addressed. Firstly, the proposed method has only been validated on a 
small scale, and further verification at a larger scale is necessary to meet 
the requirements of smart agricultural development. Secondly, the 
complexity of the groundwater system was not fully considered in the 
proposed method. To ensure the scientific and rational application of 
this method, future research should comprehensively consider the 
various factors that influence groundwater irrigation. Thirdly, the 
impact of damaged wells on irrigation has not been taken into account in 
this study. To address this, IoT sensor technology will be incorporated to 
integrate information on damaged wells into the smart irrigation system, 
enabling timely repairs. 

5. Conclusions 

In the context of climate change and smart agriculture, our objective 
was to develop an intelligent and precise system for accurate irrigation, 
particularly in the arid and semi-arid regions of northern China. How-
ever, due to water scarcity and heavy reliance on surface irrigation, 

efficient utilization becomes challenging, hampering the maximization 
of agricultural production. To address this issue, we have conducted a 
preliminary survey and proposed a novel decision approach for updating 
agricultural irrigation well systems based on spatial decision models. 
This method is based on spatial sampling theory, where the minimum 
distance from any newly added well to the nearest newly constructed or 
available existing well within the study area serves as the decision 
variable. It incorporates constraints such as the optimization unit for 
new well additions, well spacing, and the number of new wells. By 
leveraging GIS and MATLAB platforms, we employed geospatial analysis 
techniques and spatial optimization methods to achieve an optimal well 
layout. Our research findings reveal the following: 1) The well density in 
the study area was relatively low compared to the average of the five 
provinces in the North China Plain; 2) The spacing of agricultural irri-
gation wells should not be less than 332 m; 3) After applying this 
method, new wells were distributed relatively evenly within our desig-
nated optimization units. Specifically, the addition of 166 new wells was 
predicted to result in a well density of 0.04 wells/ha, covering an area of 
3350.43 ha, which accounts for 74% of the total agricultural land in the 
study area. Our research outcomes can greatly enhance the intelligent 
management of precision agriculture at a large regional scale, which will 
have a significant impact on grain production and food security. 
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