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A B S T R A C T   

China has achieved food security in the last three decades through massive use of fertilizers, pesticides, and 
irrigation water, resulting in negative environmental impacts to the cultivated land use system (CLUS). Hence, it 
is urgent to assess the green development level of cultivated land (GDL-CL). The objective of this study was to 
develop a new multi-dimensional framework considering environmental impacts to assess GDL-CL based on 
“elements – processes – dimensions – goals – drivers” according to the interaction between the soil-water-plant- 
atmosphere system (SWPAS) and CLUS. The entropy weight method, spatial autocorrelation analysis, and the 
Geodetector method were applied to provincial data in China from 1990 to 2018 to determine the spatiotemporal 
evolution, correlation, and quantitative attributes, respectively, of GDL-CL. The results indicated that the 
changing agricultural input-output farming patterns in China during 1990–2018 followed U-shaped trend in 
GDL-CL that reached an inflection point in 1998. In addition, GDL-CL differed significantly between the eastern 
and western regions in China, with the eastern areas showing an obviously high-high agglomeration and the 
western areas showing an apparently low-low agglomeration. The reason behind this phenomenon is that climate 
and socio-economic factors such as temperature, precipitation, sunshine, assets, markets, education, employ-
ment, and policies profoundly and extensively influenced GDL-CL in different regions during 1990–2018. 
However, the contribution of climate factors to GDL-CL overtook the socio-economic factors in 2010–2018. 
Therefore, this study suggests that priority should be given to optimizing production modes of cultivation, 
coordinating regional GDL-CL contradictions, and warning of climate change to sustainably manage cultivated 
land.   

1. Introduction 

As one of the most critical elements of the land ecosystem, cultivated 
land supports the food, fodder, fuel, nutrition, and fiber needs of nearly 
eight billion human beings around the world (Cassman, 1999; Foley 
et al., 2011; Li and Liu, 2021). However, increasing demand for grains 
has led to excessive production inputs that have resulted in a series of 
serious negative environmental impacts occurring concurrently in 
cultivated land (Zambon et al., 2017). From 1990 to 2018, the per 
hectare input of irrigation water, chemical fertilizers, and pesticides has 

increased by 44.6%, 41.4%, and 71.6%, respectively, in the world’s 
cultivated land (FAO, 2011; FAO, 2018), resulting in soil pollution, 
biodiversity loss, land degradation, and freshwater pollution (Rasmus-
sen et al., 2018). With the introduction of the UN Sustainable Devel-
opment Goals (SDG) (specifically goals 12 and 13) and the “green” 
transformation of the food system (Yue et al., 2022), there is no time to 
delay green development as it relates to the world’s cultivated land. 

Over the past three decades, China has achieved food security by 
making large investments in labor and technology as applied to the use 
of cultivated land. However, massive element inputs have resulted in 
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increasingly serious negative environmental impacts to cultivated land 
(Zhou et al., 2021). For example, from 1990 to 2018, the growth rate of 
fertilizer and pesticide use in China was 5.4 and 1.7 times that of the 
world, respectively (FAO, 2018). This growth in fertilizer and pesticide 
applications has caused soil erosion, soil pollution, agricultural non- 
point source pollution, and other negative environmental impacts (Ye 
et al., 2022). Cultivated land production systems in China face 
increasingly severe environmental risks in situations where production 
inputs of various elements are constrained to a point where their ca-
pacity to meet current and future needs is immeasurably jeopardized. 
Therefore, there is an urgent need to comprehensively evaluate and 
promote the green development level of China’s cultivated land (Bryan 
et al., 2018). 

The research on green development of cultivated land (GD-CL) is 
mainly aimed at increasing grain yield while reducing negative envi-
ronmental impacts (Note: In this paper we use GD-CL when referring to 
green development of cultivated land, and GDL-CL when referring to the 
level of green development of cultivated land as we quantify changes in 
GD-CL). At present, a great deal of previous research on framework 
construction has focused on the soil-plant-atmosphere continuum 
(SPAC) (Philip, 1966; Shen et al., 2011) and the soil-water-plant- 
atmosphere system (SWPAS) (Aftab and Roychoudhury, 2022), among 
which SWPAS was the continuation and extension of SPAC. In green 
agricultural systems, whether they have been SPAC or SWPAS, studies 
on the correlation between the internal components have mainly 
focused on environmental alteration, greenhouse gas releases, and car-
bon sequestration (Aftab and Roychoudhury, 2022). However, there is 
no consensus on how SPAC and SWPAS relate to external environmental 
systems, such as land use systems, to affect environmental sustainability. 
On the other hand, many studies related to the concept of GD-CL have 
assessed and investigated soil health, cultivated land health (CLH), 
sustainable intensification of cultivated land (SICL), and ecological 
intensification of cultivated land (EICL). Due to differences in research 
priorities and purposes, the evaluation of related research on GD-CL has 
had different emphases. However, the focus has been on the selection of 
relevant indicators by measuring the conceptual relationship between 
environmental threat, function, or ecosystem services of cultivated land 
(Rinot et al., 2019; Ye et al., 2022). Generally speaking, there have been 
three main indicators: (1) The static indexes of inherent physical, 
chemical, and biological soil properties of cultivated land have been 
selected and associated with the cultivated land Ecosystem Service 
Value (ESV), mainly including physical aspects of soil permeability 
resistance, soil texture, and soil volume density (Askari and Holden, 
2015; Bünemann et al., 2018); chemical available nutrients nitrogen 
(N), phosphate (P2O5), potash (K2O), and soil pH value (Lu et al., 2021 
Ahmad et al., 2021); and biological aspects of microbial content and soil 
respiration intensity (Zambon et al., 2017). (2) The health status of 
cultivated land systems was determined by selecting the level of social 
environmental governance and technical control attached to the culti-
vated land system. This mainly included irrigation and drainage con-
ditions, field road accessibility, disaster prevention and control level, 
agricultural mechanization level, and land fragmentation degree (Liu 
et al., 2020a; Zhang et al., 2022; Ye et al., 2022). (3) The cultivated land 
input and output relationship was used to reflect the human land use or 
intensive sustainable degree or efficiency by screening the flow elements 
in cultivated land systems (labor, technology, capital, etc.). These ele-
ments mainly included the intensity of chemical fertilizer or pesticide 
use, effective irrigation area, multiple crop indexes, grain yield, agri-
cultural output, and carbon emissions (Kumar et al., 2020; Liu et al., 
2020b; Wu et al., 2021). 

As reflected in the above indicators, the dimensions of edaphic 
conditions, resource utilization, and green production have been 
extensively considered. However, cultivated land is an artificial utili-
zation system with multiple attributes such as natural, social, and eco-
nomic environments (Li and Liu, 2021). The flow of elements between 
cultivated land systems is accelerating along with human activities. To a 

large extent, cultivated land environmental governance and output 
productivity should also be considered in the indicator system (Chen 
et al., 2015; Zambon et al., 2017; Cunha-Zeri et al., 2022), such as the 
control area of waterlogging disaster or soil erosion (Chen et al., 2018; 
Pretty et al., 2018; Ma et al., 2021), grain output per capita/land, and 
labor/land productivity (Uisso and Tanrıvermiş, 2021; Yue et al., 2022). 
In order to understand GDL-CL at the macro scale over a long time 
period, the inherent static attributes of cultivated land can no longer be a 
scientific evaluation index. Instead, there should be more comprehen-
sive indicators of environmental factor flow and human utilization ef-
ficiency (Li and Liu, 2021). 

In summary, there is no reasonable theoretical framework and index 
system considering environmental impacts to comprehensively evaluate 
GDL-CL over a long timescale. Contributing substantially to global food 
availability and sustainability, GD-CL plays a key role in meeting the UN 
SDG and Food System Transformation. China has nearly 9% of the 
world’s cultivated land, but feeds nearly 20% of the world’s population 
(Zhou et al., 2021). Therefore, China provides a good example for the 
UN SDG. However, the use of large amounts of element inputs has 
produced immeasurable negative environmental impacts on the culti-
vated land system (Hussainzada and Lee, 2022). Over time, China has 
also carried out many different cultivated land protection practices, such 
as the policy referred to as the“14th Five-Year Plan for National Agri-
cultural Green Development”, the “strategy of storing grain in land and 
technology” in the 13th Five-Year Plan, and the three aspects of pro-
tection related to cultivated land quantity, quality, and ecology (Zhou 
et al., 2021). Nevertheless, GDL-CL in China has been unclear over the 
past three decades. In order to explore various aspects of how and why 
GDL-CL in China has changed over time, this study had three main ob-
jectives: (1) According to the comparison of concepts related to GD-CL 
and the existing theoretical foundation, propose a new multi- 
dimensional theoretical framework considering environmental impacts 
based on the interaction between SWPAS and CLUS, and construct a 
comprehensive evaluation index system based on the framework. (2) 
Applying the entropy weight method, the polynomial fitting method, 
and the spatial autocorrelation analysis method, determine the spatio-
temporal evolution patterns and spatial differentiation characteristics 
using data based on 31 provinces/autonomous regions/municipalities in 
China (hereafter referred to as provinces) from 1990 to 2018, respec-
tively. (3) Using the Geodetector method, determine the driving factors 
behind GDL-CL from the three dimensions of climatic, economic, and 
social environments. 

Section 2 compares the meanings of GD-CL, and describes framework 
development, methodologies, and data sources. Section 3 provides the 
results associated with spatiotemporal evolution patterns, differentia-
tion characteristics, and driving factors. Section 4 provides the possible 
innovations, policy implications and suggestions, shortcomings, and 
future prospects. Section 5 presents the main conclusions. 

2. Materials and methods 

2.1. Comparison of studies related to GD-CL 

As mentioned in the introduction, correlational studies regarding the 
meaning and evaluation of GD-CL have mainly focused on soil health, 
CLH, SICL, and EICL (Fig. 1). Specifically, (1) based on the balance of 
physical, chemical, and biological processes, soil health focuses on the 
dynamic change process of soil elements from the perspective of macro 
elements such as nitrogen, phosphorus, and potash. However, soil health 
rarely considers the interaction between soil and cultivated land systems 
(Cassman, 1999; Bünemann et al., 2018; Rinot et al., 2019). (2) Culti-
vated land health has been extensively studied by Chinese scholars over 
the last ten years, generally on the strength of cultivated land to resist 
invasion with human assistance (Han and Zhang, 2020). The ability of 
cultivated land to prevent soil erosion, resist natural disasters, and 
maintain stable quality under external environmental threats has been 
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Fig. 1. Comparison of the meanings of soil health, cultivated land health, sustainable intensification, ecological intensification, and green development of cultivated land (GD-CL) based on stage, attribute, focus, feature, 
and objective. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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considered Liu et al. (2020a). (3) Studies on both sustainable intensifi-
cation or ecological intensification of cultivated land have emphasized 
effects rather than means (Cassman and Grassini, 2020). SICL is defined 
as a process or system where increases in food production occur without 
expansion of cultivated land and without adverse environmental im-
pacts (Tilman et al., 2011; Pretty and Bharucha, 2014). The optimal 
management of inputs and outputs of cultivated land production, 
including yield effects, environmental impacts, and ecological benefits 
of element inputs such as herbicides, pesticides, fertilizers, and mecha-
nization is considered (Liao and Brown, 2018; Jayne et al., 2019). (4) In 
contrast, EICL focuses on the ecological process of resource utilization 
efficiency (Matson et al., 1997; Kassam et al., 2011), including soil 
quality management, conservation tillage, biodiversity maintenance, 
ecosystem function regulation, and other cultivated land use processes 
(Cassman, 1999; Bommarco et al., 2013; Gurr et al., 2016). 

In summary, research on GD-CL has gone through different devel-
opmental stages with different areas of emphasis (Fig. 1): (1) Single 
limiting elements (such as nitrogen and carbon); (2) Overall cultivated 
land condition; (3) Comprehensive input-output relationship (emphasis 
on production); (4) Integration of ecosystem service processes with the 
input-output process (emphasis on ecological investigations). However, 
the perspective of cultivated land system theory has been sorely 
neglected. It is critical and essential to comprehensively and multi- 
dimensionally consider production input, resource protection, environ-
mental governance, and output benefits with regard to GD-CL. 

2.2. Developing a new multi-dimensional framework considering 
environmental impacts to assess GDL-CL 

2.2.1. Theoretical analysis of the new multi-dimensional framework to 
assess GDL-CL 

SWPAS is made up of four different components (soil, water, atmo-
sphere, and plants) that interact with each other all of the time (Cornelis 
et al., 2009). In SWPAS, plants absorb carbon and release oxygen into 
the atmosphere through photosynthesis, and transport water into the 
atmosphere through transpiration. A variety of nutrient (C, N, P, K, etc.) 
cycles are constantly carried out between the soil and plants. Soil is 
constantly eroded and degraded due to the interaction of various com-
ponents (Aftab and Roychoudhury, 2022). The dynamic distinctions of 
water as rainfall in the atmosphere, infiltration in the soil, runoff on the 
land, and transpiration from plants are triggered and maintained by the 
water cycling (Boyd, 2020). Plants are constantly undergoing physio-
logical metabolism in the nutrient cycle. 

Different from the previous focus on the interaction between com-
ponents or the overall flow process of SWPAS, this study emphasized the 
interaction between SWPAS and CLUS, as well as paid more attention to 
GD-CL caused by unreasonable input and management of cultivated 
land, affecting the normal operation process of SWPAS. Specifically, this 
investigation analyzed the theoretical framework considering environ-
mental impacts to assess GDL-CL based on “elements – processes – di-
mensions – goals – drivers”. This framework focused on the six key 
ecological processes of SWPAS: photosynthesis, nutrient cycling, soil 
erosion and degradation, hydrologic cycling, physiological metabolism, 
and transpiration. Additionally, the framework encompassed the four 
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Fig. 2. The theoretical analysis of the multi-dimensional 
framework considering environmental impacts to assess green 
development level of cultivated land (GDL-CL) based on “ele-
ments – processes – dimensions – goals – drivers” based on the 
interaction between CLUS and SWPAS. CLUS represents the 
cultivated land use system. SWPAS represents the soil-water- 
plant-atmosphere system (Aftab and Roychoudhury, 2022), 
which is a continuation and extension of SPAC (soil-plant-at-
mosphere continuum) (Philip, 1966). (For interpretation of the 
references to colour in this figure legend, the reader is referred 
to the web version of this article.)   
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links of green production, resource conservation, environmental 
governance, and output effect, and also covered the three drivers of 
climate change, economic level, and social development. GD-CL is 
produced by the combined effects of the input of pesticides and fertil-
izers, mechanical power, irrigation efficiency, vegetation coverage, 
waterlogging control, yield, income, production efficiency, and other 
elements. Furthermore, GD-CL has the development ability to meet 
human needs for high yield, high efficiency, and “green” grain pro-
duction. In addition, GD-CL is also readily driven by exogenous factors 
such as climate, production value, investment, markets, education, 
employment, and policy. Meanwhile, the interaction between these 
factors is often greater than the driving effect of individual factors on 
GD-CL (Fig. 2). 

By giving more attention to green attributes while emphasizing the 
lowering of negative environmental impacts, GD-CL focuses on whether 
the production and ecological processes of cultivated land are green and 
healthy. Fig. 2 also shows that GD-CL has the characteristics of high 
coupling, system integrity, dynamic openness, and fragile dependence. 
(1) High coupling means that GD-CL plays an explicit or implicit role in 
the land ecosystem, the production management system, and the envi-
ronmental management system, and that the roles among these systems 
are highly similar. (2) System integrity reflects the importance of green 
production, resource conservation, environmental governance, and 
output effect. (3) Dynamic opening means that the internal elements of 

GD-CL are constantly flowing and reorganizing while being impacted 
and harmed by the external environment. (4) Fragile dependence refers 
to the development and production processes of the GD-CL system that 
depend on environmental changes (such as the driver of climate change) 
and human activities (such as the drivers of economic level and social 
development) to a large extent, and can be vulnerable to damage and 
difficult to reprocess. 

2.2.2. Construction of evaluation index system for GDL-CL 
Based on a theoretical analysis and the indicators of CLH, SICL, EICL, 

green transformation of food systems and UN SDGs, considering the 
greenness and environmental impact of cultivated land production 
processes (Rohr et al., 2021), and combining the theoretical and prac-
tical experiences of various countries, this study identified four first- 
level indicators: green production (Garnett et al., 2013; Bellarby et al., 
2014; Gunton et al., 2016; Han and Zhang, 2020; Rohr et al., 2021; 
MacLaren et al., 2022), resource conservation (Garnett et al., 2013; 
Yuan et al., 2021; Soergel et al., 2021), environmental governance 
(Firbank et al., 2013; Bellarby et al., 2014; Soergel et al., 2021), and 
output effect (Garnett et al., 2013; Firbank et al., 2013; Kumar et al., 
2020; Yuan et al., 2021) (Table 1). The four first-level indicators are 
interlinked, but each has its own focus. GD-CL requires that cultivated 
land has the output effect to meet human needs while maintaining green 
production and balancing resource conservation and environmental 

Table 1 
Evaluation index system and data sources for quantifying the green development level of cultivated land (GDL-CL) in China.  

First-level Second-level Third-level Attribute Computational formula Data source 

Green production 

Production 
Consumption 

Intensity of fertilizer 
use 

−
Chemical fertilizer input amount / 
cultivated land area (kg/ha) 

①China Rural Statistical Yearbook 
1990–2018 
②Statistical Yearbook of 31 provinces 
in China 1990–2018 

Intensity of pesticide 
use −

Pesticide input amount / cultivated land 
area (kg/ha) 

Intensity of agricultural 
film −

Agricultural film input amount / 
cultivated land area (kg/ha) 

Intensity of diesel use −
Diesel input amount / cultivated land area 
(kg/ha) 

Intermediate 
consumption 

−
Intermediate consumption value / total 
value of agricultural output (%) 

Technical 
contribution 

Mechanical power +
Total mechanical power / cultivated land 
area (kW/ha) 

Electricity consumption −
Rural electricity consumption / cultivated 
land (kW/ha) National Bureau of Statistics of China 

(http://www.stats.gov.cn/) 

Resource conservation 

Resource 
condition 

Conversion rate of 
cropland to forest 

+ Original data (%) 

Cultivated land per 
capita 

+
Cultivated land area / number of rural 
residents (ha/person) 

①China Rural Statistical Yearbook 
1990–2018 
②Statistical Yearbook of 31 provinces 
in China 1990–2018 
③China Environmental Statistics 
Yearbook 1990–2018 

Utilization extent 
Multi-cropping index −

Cropping land area / cultivated land area 
(%) 

Irrigation efficiency +
Effective irrigation area / cultivated land 
area (%) 

Environmental governance 

Production 
guarantee 

Waste methane 
utilization 

+
Total gas produced by biogas digester / 
Number of township (10,000 m3) 

Crop disaster rate −
Crop disaster area / cultivated land area 
(%) 

Governing 
efficiency 

Waterlogging area rate +
Waterlogging area / cultivated land area 
(%) 

Soil erosion control rate +
Soil erosion control area / cultivated area 
(%) 

Output effect 
Production level 

Grain output per capita +
Total grain output / number of 
agricultural workers (t/person) 

①China Statistical Yearbook 
1990–2018 
② National Bureau of Statistics of 
China (http://www.stats.gov.cn/) 

Grain output per land +
Total grain output / total cultivated land 
area (t/ha) 

Labor productivity +
Agricultural production value / number of 
agricultural workers (yuan/person) 

Land productivity +
Agricultural production value / cultivated 
land area(yuan/ha) 

Income Level Cultivation income per 
capita 

+
Farmer’s household business income from 
crop production (yuan/person) 

China Rural Statistical Yearbook 
1990–2018 

Note: The data for cultivated land area from 2009 to 2018 came from the China Land and Resources Statistical Yearbook and the China Land and Resources Bulletin of 
the Ministry of Land and Resources. The remaining data from 1990 to 2008 were based on the results of China’s second land survey. Missing data were supplemented 
by SPSS.26 software using the methods of sequence mean value, mean value of adjacent points, median value, linear interpolation, or linear trend of adjacent points. 
Due to a lack of data, this study inculudede 31 provinces (autonomous regions/municipalities) in China, Hong Kong, Macao, and Taiwan were not stuided. 
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management. Then eight second-level indexes are classified (Table 1). 
Specifically, high pollution and high emission inputs (e.g., materials 
such as fertilizers and pesticides, and energy such as machinery and 
electricity) (Kumar et al., 2020; Yuan et al., 2021) need to be controlled 
in the production processes used on cultivated land. Therefore, it is 
necessary to promote the greening process by continuously upgrading 
the production technology used on cultivated land (Garnett et al., 2013; 
Kuang et al., 2020) and improving the production efficiency (Soergel 
et al., 2021). Meanwhile, resource conservation in the cultivated land 
production process is essential. Only with a clear understanding of 
resource condition (Pretty et al., 2018; Hussainzada and Lee, 2022) and 
utilization extent (Gunton et al., 2016; Hussainzada and Lee, 2022; 
MacLaren et al., 2022) can production be carried out in a more energy- 
efficient and low-carbon manner (Wu et al., 2021). Indisputably, the 
generation of negative environmental products in the process of culti-
vated land production is inevitable. Negative environmental impacts 
must be compensated for or avoided through reasonable production 
guarantees (Pretty et al., 2018; Hussainzada and Lee, 2022) and gov-
erning efficiencies (Gunton et al., 2016; Rohr et al., 2021). Critically, 
while cultivated land production is green and sustainable, it must meet 
normal human food needs and the productive business income of 
farmers. Therefore, it is particularly important to measure the output 
efficiency of GD-CL in terms of production (Gunton et al., 2016; Yue 
et al., 2022; Uisso and Tanrıvermiş, 2021) and income levels (Chen 
et al., 2018; Kalibata, 2021). 

In consideration of the relations, restrictions, objectivity, rationality, 
and availability of index data and previous interrelated studies, 20 third- 
level indicators are screened (Table 1). In terms of cultivated land input 
production consumption, the intensities of use of high energy con-
sumption inputs including fertilizers, pesticides, agricultural films, 
diesel fuel, and intermediate consumption have been taken into account 
(Han and Zhang, 2020; Kuang et al., 2020; Kumar et al., 2020; Yuan 
et al., 2021; Hussainzada and Lee, 2022). Energy consumption, such as 
mechanical power as well as electricity (Kumar et al., 2020; Yuan et al., 
2021), has been applied to measure the technical contribution to green 
production. For resource conservation, resource conditions have been 
characterized by forest cover (Cunningham et al., 2015; Tasser et al., 
2007; Pretty et al., 2018) and per capita cultivated land (Hussainzada 
and Lee, 2022), and the extent of resource utilization has been probed by 
multiple cropping indexes (MacLaren et al., 2022) and irrigation effi-
ciency (Pretty et al., 2018; Kumar et al., 2020). In terms of environ-
mental governance, the security guarantees of green production and 
yield have been reflected through the utilization of clean energy (such as 
methane) and the crop disaster rate (Hussainzada and Lee, 2022). The 
rates of waterlogging (Pretty et al., 2018) and soil erosion control (Fir-
bank et al., 2013; Chen et al., 2018) have also been applied to measure 
the governing efficiency. In terms of output effect, the production level 
under green production has been viewed through a series of productivity 
calculations (Kumar et al., 2020; Yuan et al., 2021), and the income 
(Kalibata, 2021) from GD-CL has been reflected through the cultivation 
income of farmers. 

2.3. Methodologies 

2.3.1. Entropy weight method to calculate GDL-CL score 
The entropy weight method has been successfully and widely used in 

the fields of environmental impact assessment, sustainable develop-
ment, and resource quality evaluation. Compared with subjective 
weighting methods such as Analytic Hierarchical Process, Additive Ratio 
Assessment, Redundancy Analysis, and Expert Opinion, it can avoid the 
interference of subjective factors and assign more scientific weights from 
an objective perspective (Cunha-Zeri et al., 2022). The entropy weight 
method was used to determine the objective weight according to the 
index variability. Generally speaking, the smaller the information en-
tropy of an indicator is, the greater the difference coefficient of the in-
dicator is. The greater the contribution is in the comprehensive 

evaluation, the greater the weight is. In contrast, the smaller the role, the 
smaller the weight (Zambon et al., 2017). The steps of the entropy 
weight method are as follows. 

2.3.1.1. Range Normalization. For positive indicators, 

Yij =
Xij − min

(
X1j,X2j,…,Xnj

)

max
(
X1j,X2j,…,Xnj

)
− min

(
X1j,X2j,…,Xnj

) (2-1) 

For negative indicators, 

Yij =
max

(
X1j,X2j,…,Xnj

)
− Xij

max
(
X1j,X2j,…,Xnj

)
− min

(
X1j,X2j,…,Xnj

) (2-2)  

where i= 1, 2, …, m；j= 1, 2, …, n. Xij represents indicator j of object i. 
Yij represents the value after data standardization. 

2.3.1.2. Quantification of the same dimension of indicators 

Pij =
Yij

∑n

i=1
Yij

(2-3)  

Ej = − (lnm)
− 1

×
∑n

i=1
Pijln

(
pij
)

(2-4)  

gj = 1 − Ej (2-5)  

where Pij indicates the proportion of the object i in the indicator j, if Pij =

0, we define lim
pij→0

pijln
(

pij

)
= 0. Ej indicates the information entropy 

value of the indicator j. gj indicates the difference coefficient of the term 
j. 

2.3.1.3. Normalization of the difference coefficient and weight calculation 

WE
j =

gj
∑n

j=1
gj

(j = 1, 2,…, n) (2-6)  

WE =
(
WE

1 ,W
E
2 ,W

E
3 ,…,WE

n

)
(2-7)  

Li =
∑n

j=1
YijWE (2-8)  

where Wj
E indicates the weight of the indicator j. WE indicates the en-

tropy weight vector. Li indicates the evaluation score of the object i. 

2.3.2. Polynomial fitting method for analysis of temporal GDL-CL 
In this study, the representative polynomial fitting method was 

selected to fit a curve to China’s total GDL-CL time series from 1990 to 
2018. The polynomial fitting method assumes that the given time 
sample sequence satisfies the form of a polynomial function, and then 
fits a curve to the data. Its expression is as follows: 

Sf = a+ b1St + b2St
2 +⋯+ bnSt

n (2-9)  

where a, b1, b2, ⋯, bn are the parameters to be solved for. Sf is the score of 
China’s GDL-CL after successful curve-fitting. St is the score of China’s 
GDL-CL in different years (1990 ≤ t ≤ 2018, t ∈ Z+). 

2.3.3. Spatial autocorrelation analysis to explore spatial-temporal 
differentiation of GDL-CL 

Spatial autocorrelation analysis is used to determine the spatial 
dependence of adjacent spatial units. Furthermore, it is used for testing 
the similarity between the values of attributes or observations of vari-
ables related to spatial position, i.e., to determine whether there is a 
spatial dependency (Liu et al., 2020b). Compared with traditional cor-
relation analysis, such as correlation analysis, regression analysis, and 
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multivariate analysis (Ma et al., 2021), spatial autocorrelation analysis 
considers the geospatial relationship between observations and their 
neighbors when measuring geospatial similarity (Liao et al., 2021). This 
study used the global Moran index and the local Moran index to analyze 
global and local spatial autocorrelation statistics, respectively. For the 
global spatial autocorrelation analysis, the Moran index ranges from − 1 
to 1. Positive values indicate positive spatial autocorrelation, and 
negative values indicate negative spatial autocorrelation. However, 
there is no significance measurement of agglomeration in the global 
Moran index, and it cannot evaluate spatial autocorrelation in local 
areas. The Local Indicator of Spatial Association (LISA) statistics can 
measure significance of each province, and decompose the global spatial 
autocorrelation Moran’s I statistics to quantify the contribution of each 
spatial unit observation. The specific calculation equations are: 

2.3.3.1. Global Moran Index 

①Moran’s I =
N
S0

∑N

i=1

∑N

j=1
wij(yi − y)

(
yj − y

)

∑N

i
(yi − y)2

,

②S0 =
∑N

i=1

∑N

j=1
wij

(2-10)  

where N represents the number of observed values. yi represents the 
observed value of the variable y in cell i. y represents the mean of the 
variable y. wij represents the element in the spatial weight matrix. S0 
represents the sum of all the elements of the spatial weight matrix. 

2.3.3.2. Local Moran Index 

①Local Moran’s Ii =
yi − y

S2
i

∑N

j=1,j∕=i

wij(yi − y),

②S2
i =

∑N

j=1,j∕=i
wij

N − 1
− (y)2

(2-11)  

where N represents the number of observed values. yi and yj represent 
observations of the variable of interest. y and wij are the same as in Eq. 2- 
10 above. Si

2 is defined as shown above. 

2.3.4. Geodetector method to detect driving factors of spatial-temporal 
differentiation on GDL-CL 

Geodetector is a new spatial statistical method to detect the driving 
factors behind spatial differentiation. Compared with traditional 
regression models such as geo-weighted regression and spatial econo-
metric models, Geodetector is good at detecting not only numerical data 
but also qualitative data. It can also determine the strength and direction 
of linear and non-linear relationships of the interaction between two 
factors. The basic assumption of the model is that the important influ-
ence of an independent variable on the dependent variable is closely 
related to the spatial distribution between them (Wang et al., 2016). The 
factor detector and the interactive detector in this study were chosen to 
explore the driving factors behind the spatial differentiation of China’s 
GDL-CL from 1990 to 2018 (Wang et al., 2018). 

2.3.4.1. Factor detector. Factor detector mainly detect the spatial dif-
ferentiation of the property Y. A factor detector is measured by detecting 
how strongly a factor X interprets the spatial differentiation of an 
attribute Y. Generally, it is measured by the q value (Wang et al., 2016). 
The range of the q value is 0–1. The larger the q value is, the stronger the 
driving force is. 

q = 1 −

∑L

h=1
Nhσ2

h

Nσ2 (2-12)  

where L represents a classification or partition, i.e., a strata of variables 
or factors. h = 1, 2, 3, ⋯，Nh and N are the number of units of layer h 
and the entire region, respectively. σh

2 and σ2 are the variances of layer h 
and the Y value of the entire region, respectively. 

2.3.4.2. Interactive detector. The interactive detector is used to identify 
interactions between different risk factors, i.e., to determine whether the 
forces on Y between different factors of X are independent of each other. 
Furthermore, the interactive detector is used to evaluate whether the 
combination of factors X1 and X2 increases or decreases the explanatory 
power of attribute Y. The evaluation steps are as follows: ①Calculate q 
(X1) and q(X2)；②Calculate the interaction q(X1∩X2); ③Compare q 
(X1), q(X2), and q(X1∩X2). The interaction of different influencing 
factors is shown in Fig. A1. 

2.4. Driving factors of GDL-CL screening and data sources 

GDL-CL is affected by multiple factors. GDL-CL depends on the 
conditions of agricultural resources and the natural environment 
(Kumar et al., 2020). In recent years, climate change has increasingly 
become a key constraint that threatens food security and the green 
transformation of cultivated land (Garnett et al., 2013; Bellarby et al., 
2014; Pugh et al., 2016; Rohr et al., 2021; Soergel et al., 2021). In 
addition, the socio-economic environment, as the “enabler” of GDL-CL, 
also profoundly influences the GD-CL process (Gunton et al., 2016; 
Kumar et al., 2020; Soergel et al., 2021). Therefore, taking into account 
the UN SDGs, data availability, typicality and previous studies, this 
study selected three types of drivers, namely climate change, economic 
level, and social development, to detect the causes of GDL-CL over the 
past three decades (Table 2). In terms of climate change (SDG13), 
temperature (1) (Pugh et al., 2016; Uisso and Tanrıvermiş, 2021), pre-
cipitation (2) (Uisso and Tanrıvermiş, 2021; Soergel et al., 2021), and 
sunshine (3) (Ma et al., 2021; Rohr et al., 2021) are indispensable nat-
ural elements for cultivated land production that are positively corre-
lated with crop growth. However, in recent years, the frequent 
occurrence of extreme weather events such as high temperature or 
excessive precipitation have resulting in frequent droughts or floods 
(Heikkinen et al., 2021) which in turn have caused irreversible losses to 
resources and to the environment with regard to production and output 
of cultivated land (Garnett et al., 2013). (4) According to the United 
Nations’ Food and Agriculture Organization, agricultural output per 
person has increased by 50% since 1960 (Michael, 2020). Meanwhile, 
the value of agricultural output has been rising. From the farmer’s 
perspective, an increase in agricultural output per capita drives farmers 
to use green technologies to improve the productivity of their farmland 
and to focus on greening their farmland in order to achieve higher 
yields, higher efficiency, and greener crops (Michael, 2020; Liu et al., 
2020b). (5) Farmers’ investments in fixed assets reflect the SDG9 
(Nabieva and Davletshina, 2015). The efficient use of fixed assets is a 
major factor in improving agricultural production and agricultural ef-
ficiency, and profoundly affects the process of greening cropland. (6) 
From the government perspective, government agricultural expendi-
tures are a constant driver of GDL-CL that play a role in stabilizing 
agricultural production and efficiency (Soergel et al., 2021). (7) From 
the market perspective, the demand for green food is an effective driving 
force for GDL-CL, constantly stimulating and promoting green produc-
tion and economical use of resources (Bellarby et al., 2014; Gunton 
et al., 2016; Kalibata, 2021; Rohr et al., 2021). (8) Illiteracy rate is an 
important component of SDG4, representing the level of education and 
literacy of farming households (Béné and Obirih-Opareh, 2009; Ras-
mussen et al., 2018; Soergel et al., 2021). The higher the level of 
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knowledge acquired by farmers, the more awareness of using green 
technologies and of producing environmentally friendly products. (9) 
The Engel coefficient combines the SDG1 and 2 (Soergel et al., 2021). 
The lower the Engel coefficient, the higher the income level and quality 
of life of farmers, and the higher the probability of green production on 
farmland (Rasmussen et al., 2018). (10) The employment figure is 
closely related to the SDG8. The stability of rural employment also 

contributes to a healthy investment in cultivated land production to a 
certain extent (Garnett et al., 2013; Soergel et al., 2021). (11) The 
government’s cultivated land protection policy regulates the “ungreen-
ing” of cultivated land, and protects the sustainable intensification of 
cultivated land (Gunton et al., 2016; Rohr et al., 2021). 

Table 2 
Driving factors and data sources for quantifying the green development level of cultivated land (GDL-CL) in China.  

Driving factor Variable definition Computing method Source 

Climate change 

Temperature (Temp) 
(X1) 

Annual mean temperature Interpolation: IDW and Kriging (in ArcGIS 10.7 
software) (◦C) China Meteorological Administration 

station (http://data.cma.cn/) 
Precipitation (Pre) 
(X2) Annual average precipitation Original data (mm) 

Sunshine (Sun) (X3) Annual sunshine hours Original data (hours) 

Economic level 

Agricultural output 
value (AOV) (X4) 

Per capita agricultural output 
value of rural residents 

Agricultural output value/number of rural residents 
(yuan/person) 

National Bureau of Statistics of China (htt 
p://www.stats.gov.cn/) 

Fixed asset 
investments (FAI) 
(X5) 

Fixed asset investments of rural 
households Original data (100 million yuan) 

Government 
expenditures (GE) 
(X6) 

Government expenditures on 
agriculture, forestry, and water 
affairs 

Original data (100 million yuan) 

Green food demand 
(GFD) (X7) Market demand for green food Green Food Sales (100 million yuan) 

China Green Food Development Center 
(http://www.greenfood.agri.cn/ztzl/t 
jnb/lssp/) 

Social 
development 

Illiteracy ratio (IR) 
(X8) 

Illiteracy ratio of labor force in 
rural households 

Illiteracy number/ rural workers (%) 
China Rural Statistical Yearbook 
1990–2018 Engel coefficient (EC) 

(X9) 
Engel coefficient of rural 
households Food/total consumption expenditure (%) 

Employment fig. (EF) 
(X10) 

Number of rural individuals 
employed Original data (1000 persons) 

National Bureau of Statistics of China (htt 
p://www.stats.gov.cn/) 

Protection policy (PP) 
(X11) 

National cultivated land 
protection policy 

The cumulative value of investment from national 
land comprehensive consolidation projects (100 
million yuan) 

China Land & Resources Almanac 
1990–2011 
China Land & Resources Statistical 
Almanac 2012–2018 
Finance Yearbook of China 1991–2018  

Fig. 3. The total score and its polynomial fitting curve for green development level of cultivated land (GDL-CL) in 1990–2018 in all of China. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Results 

3.1. Analysis of the spatial-temporal evolution patterns of GDL-CL in 
China 

3.1.1. Temporal patterns of GDL-CL in China during 1990–2018 
Fig. 3 shows that the polynomial curve-fitting of GDL-CL scores 

resulted in a “U-shaped” pattern in China from 1990 to 2018. The in-
flection point occurred in 1998. The R2 value of the polynomial fitting 
curve was nearly 0.99, indicating a very good degree of fitting. During 
1990 to 2000, the total GDL-CL score decreased steadily from 0.382 to 
0.348. From 2000 to 2010, the total GDL-CL score increased from 0.348 
to 0.475, showing a trend of gradual growth. During 2010 to 2018, the 
total GDL-CL score showed an increasingly positive trend compared with 
the previous two decades, rising from 0.475 to 0.661, and showing a 
trend of rapid growth. To some extent, the curve showed the effective-
ness of the Chinese government’s use of a series of measures to promote 
green development and sustainable intensification of cultivated land. 
Additionally, the issued land policies and institutional provisions have 
also been effectively implemented. 

Fig. 4 shows that: (1) In 1998, when the marginal score was 0, the 
total score reached its inflection point (minimum value). (2) In 2008, the 
marginal score curve exceeded the average score curve, meaning that 
the total score added for each additional year was greater than the total 
score averaged over each year (a total of 29 years). In 2008–2018, the 
total score began to rise faster and faster. Based on the above results and 
the implementation intensity of related policies, GDL-CL in China will 
continue to show a rising trend in the future. Although there may be a 
minor pullback due to the combined impact of COVID-19 and extreme 
climate, the overall trend of GDL-CL in China is positive and moving 
upward. 

3.1.2. Spatial patterns of GDL-CL in China in 1990, 2000, 2010, and 2018 
Table 3 shows the specific scores and comprehensive ranking of GDL- 

CL in different provinces in China. Fig. 5 shows the spatial-temporal 
evolution pattern of GDL-CL from 1990 to 2018. Overall, the values of 
GDL-CL in China showed significant spatial differences among the 
provinces from 1990 to 2018, and these differences had a pattern similar 
to that observed for economic level and technological level of each 
province. Specifically, the high value zones were concentrated in the 

eastern developed regions, such as Beijing, Shanghai, and Guangdong in 
1990, 2000, and 2010. However, as cultivated land was converted to 
construction land, the values of GDL-CL in Beijing, Shanghai, and 
Guangdong plummeted by 54.7%, 34.7%, and 28.4%, respectively, from 
2010 to 2018. The medium value zones were concentrated in the central 
and northeastern regions. In contrast to the declining trend in GDL-CL of 
the eastern developed regions in recent years, most of the central regions 
saw increasing GDL-CL. For example, the values in Hubei, Hunan, and 
Henan increased by 4.5%, 11.1%, and 15.2%, respectively, from 1990 to 
2018. This indicated that the original middle-efficiency provinces 
focused on cultivated land protection and strengthened their compliance 
with national policies to pursue continuous GDL-CL and healthy con-
ditions. Also, it is important to be alert to the fact that GDL-CL in the 
northeast was slowly decreasing due to a combination of shrinking black 
soil quantity and declining quality. Low-value zones were concentrated 
in the western regions. Unfortunately, except for a few regions (Sichuan, 
Guangxi, and Chongqing) where GDL-CL was rising, most western re-
gions were declining, which may be due to the low-level trap brought 
about by the combination of resource shortages, harsh climate, and lack 
of good socio-economic conditions. 

Of the four years analyzed, the spatial differences of GDL-CL in 2000 
were the largest (C.V. = 0.303, maximum = 0.680, minimum = 0.206), 
and in 2018 were the smallest (C.V. = 0.216, maximum = 0.588, min-
imum = 0.243). Although the regional differences showed a weakening 
tendency, the annual regional average value was going down. Addi-
tionally, the maximum value was decreasing rapidly and the minimum 
value was increasing slowly. This showed that the leading factors 
affecting GDL-CL are increasingly uncontrollable. Overall, during 
1990–2018, GDL-CL presented the following patterns and tendencies in 
China: (1) High-level regions have moved from the Bohai Rim (Beijing, 
Tianjin, Hebei, and Shandong) to the middle and lower reaches of the 
Yangtze river (Jiangsu, Zhejiang, Fujian, Hubei, and Hunan). (2) 
Middle-level regions have shifted from the central provinces (Shaanxi, 
Shanxi, Hebei, and Henan) to the southwest provinces (Chongqing, 
Sichuan, Guizhou, Yunnan, and Guangxi). (3) Low-level regions have 
remained relatively unchanged, and were mainly concentrated in the 
western provinces (Xinjiang, Tibet, Qinghai, Gansu, Ningxia, and Inner 
Mongolia). The central provinces of Shaanxi and Shanxi tended to shift 
to the low-level classification over time. 
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Fig. 4. The total, marginal, and average scores of 
green development level of cultivated land (GDL-CL) 
during 1990 to 2018 in China. The total score is the 
sum of scores of green development level of cultivated 
land in every year during 1990 to 2018. The marginal 
score is defined as how much the total score increased 
for each additional year. The average score represents 
the score based on the average annual score of GDL-CL 
(29 years in total). (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the web version of this article.)   
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3.2. Spatial correlation analysis of GDL-CL in China in 1990–2018 

3.2.1. Analysis of spatial global autocorrelation of GDL-CL in China in 
1990, 2000, 2010, and 2018 

Due to the adjacency characteristics of the 31 provinces in China, we 
used the “Queen” 0–1 adjacency matrix that defined two provinces as 
neighbors when their boundaries or nodes were adjacent to each other. 
Based on the “Queen” 0–1 adjacency matrix, we used Stata software to 
calculate the spatial autocorrelation Moran index and to draw the 
Moran’s I scatter plots for 31 provinces in 1990, 2000, 2010, and 2018 
(Fig. 6). The results showed that the global Moran index of GDL-CL from 
1990 to 2018 fluctuated up and down between 0.30 and 0.65, and the p- 
value was <0.01, indicating that the Global Moran indexes all passed the 
P = 0.01 significance test. Thus, the spatial correlation of GDL-CL from 
1990 to 2018 showed a regular distribution, having a strong positive 
correlation and obvious spatial dependence in China’s 31 provinces. 
Additionally, the value of Moran’s I showed an inverted V-shape fluc-
tuation trend during the study period. Specifically, spatial agglomera-
tion increased gradually during the first three periods, but decreased 
significantly in 2018. This indicated that the mutual influence of GDL-CL 
among provinces was weakening, and that the level of green factor 
mobility of cultivated land within provinces was greater than that inter- 
provincial mobility. 

3.2.2. Analysis of LISA spatial agglomeration of GDL-CL in China in 1990, 
2000, 2010, and 2018 

Fig. 7 shows the strong spatial stability and clear polarization of GDL- 
CL for provinces in China over the past 30 years (mostly low-low and 
high-high agglomeration). The P-values (significance) of spatial 
agglomeration results are shown in Table B1. Specifically, during 
1990–2018, the core low-low agglomeration area of Sichuan radiated its 

influence to western provinces. This was mainly due to an increase in the 
concentration of food demand due to population growth, and to rela-
tively barren and harsh arable land production resources and environ-
ment that led to high inputs to cultivated land while neglecting the 
negative environmental impacts in western regions. The high-high 
agglomeration areas were mainly concentrated in the eastern prov-
inces and moved to the south. This was mainly attributed to the good 
ecological resources and climatic conditions, strict agricultural envi-
ronmental management and protection policies, and the large-scale 
application and promotion of green cultivation technology in eastern 
regions. Additionally, the GDL-CL in China showed a clear spatial 
spillover effect between provinces during 1990–2018. For example, 
Hebei changed from a low-high agglomeration area in 1990 to a high- 
high agglomeration area in 2000. Anhui transformed from a low-high 
agglomeration area in 2000 to a high-high agglomeration area in 
2010. This indicated that Hebei and Anhui were positively influenced by 
the surrounding higher-level areas such as Beijing and Jiangsu, respec-
tively. Overall, from 1990 to 2018, we observed the coexistence of 
spatial correlation and spatial heterogeneity in China’s provinces. Spe-
cifically, spatial correlation was mainly concentrated in the inner 
western regions, such as Xinjiang, Qinghai, and Gansu (low-low cluster) 
in 2000, 2010, and 2018, and in the inner eastern regions such as 
Jiangsu, Shanghai, and Zhejiang (high-high cluster) in 1990, 2000, 
2010, and 2018. Spatial heterogeneity was reflected in the difference 
between eastern and western regions, forming a significant high-high 
clustering and low-low clustering, respectively, from 1990 to 2018. 

Table 3 
The score and comprehensive ranking of green development level of cultivated land (GDL-CL) for individual provinces in China in 1990, 2000, 2010, and 2018.  

Province Area 1990 2000 2010 2018 Average Comprehensive ranking 

Beijing Eastern 0.652 0.680 0.580 0.308 0.555 1 
Tianjin Eastern 0.621 0.595 0.491 0.449 0.539 2 
Jiangsu Eastern 0.468 0.525 0.520 0.588 0.525 3 
Shanghai Eastern 0.532 0.498 0.445 0.325 0.450 5 
Zhejiang Eastern 0.510 0.545 0.455 0.416 0.482 4 
Shandong Eastern 0.399 0.468 0.466 0.455 0.447 6 
Guangdong Eastern 0.488 0.500 0.395 0.358 0.435 8 
Fujian Eastern 0.439 0.494 0.407 0.418 0.440 7 
Hebei Eastern 0.362 0.446 0.453 0.394 0.414 10 
Hainan Eastern 0.333 0.347 0.365 0.430 0.369 17 
Hubei Central 0.426 0.375 0.421 0.445 0.417 9 
Jiangxi Central 0.412 0.400 0.428 0.399 0.410 11 
Hunan Central 0.380 0.414 0.407 0.422 0.406 12 
Henan Central 0.349 0.395 0.437 0.402 0.396 14 
Anhui Central 0.397 0.371 0.384 0.407 0.390 15 
Shaanxi Central 0.363 0.308 0.315 0.288 0.319 21 
Shanxi Central 0.395 0.279 0.259 0.225 0.289 26 
Sichuan Western 0.312 0.314 0.327 0.354 0.327 20 
Guangxi Western 0.317 0.298 0.345 0.368 0.332 19 
Chongqing Western – 0.285 0.323 0.334 0.314 24 
Xinjiang Western 0.343 0.320 0.309 0.300 0.318 22 
Yunnan Western 0.335 0.277 0.289 0.357 0.315 23 
Inner Mongolia Western 0.318 0.298 0.307 0.300 0.306 25 
Tibet Western 0.287 0.262 0.259 0.306 0.279 27 
Ningxia Western 0.304 0.237 0.304 0.265 0.278 28 
Guizhou Western 0.271 0.235 0.241 0.284 0.258 29 
Gansu Western 0.275 0.236 0.237 0.225 0.243 31 
Qinghai Western 0.278 0.206 0.245 0.244 0.243 30 
Heilongjiang Northeast 0.451 0.350 0.378 0.407 0.397 13 
Jilin Northeast 0.460 0.353 0.366 0.346 0.381 16 
Liaoning Northeast 0.411 0.366 0.347 0.313 0.359 18 
Average 0.396 0.377 0.371 0.359 – – 
Coefficient of variation (C.V.) 0.240 0.303 0.230 0.216 – – 

Note: The results of regional division refer to Liao et al. (2021). Chongqing did not have a value in 1990 because it was separated from Sichuan Province to become a 
municipality in 1997. 
Note: “GDL-CL” is “green development level of cultivated land”. 
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3.3. Quantitative attribution of spatial-temporal differentiation of GDL- 
CL in China 

3.3.1. Factor detection results for spatiotemporal differentiation of GDL-CL 
in China 

Table 4 shows that the q value for each variable were significant (p =
0.01). Fig. 8 shows that the driving force of the 11 exogenous variables 
for the spatial differentiation of GDL-CL in China was different in the 
past 30 years. For the dimension of climate change, the q value (q value 

represent driving force affecting spatial differentiation of GDL-CL) of 
Temp and Pre increased from 0.090 to 0.450 and from 0.130 to 0.494, 
respectively, as year increased from 1990 to 2018, showing a strong 
dominant force and climbing range. This result indicated that the un-
certainty, disastrousness, and normalization of climate conditions were 
increasingly hindering the greening of arable land in different regions. 
The driving force of the Sun factor was comparatively stable, always 
remaining above 0.370 during the last three decades. This was mainly 
due to the irreplaceable role of sunshine conditions on crop growth. For 

Fig. 5. The spatial pattern of green development level of cultivated land (GDL-CL) in China in 1990, 2000, 2010, and 2018. The colors red, orange, yellow, 
chartreuse, light green, and dark green represent level 1, 2, 3, 4, 5, and 6, respectively; level 1 and 2 represent low level; level 3 and 4 represent middle levels; level 5 
and 6 represent high level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the dimension of economic level, the driving force of the four variables 
showed an increasing trend in 1990–2010 followed by a decreasing 
trend in 2010–2018, with values hovering mostly around 0.25–0.60. 
This finding was attributed to the high yield, high efficiency, and 
greening of food production brought about by the increase in farmers’ 
financial investment in arable land, stable government financial sup-
port, and high market demand for green products in different areas 
during 1990–2010. Investment in cultivated land production from 2010 
to 2018 was neglected due to the large number of migrant farmers 
moving to urban areas in China. On the other hand, the difficulties in 
regulating and managing the market for green agricultural products 
made the green transformation of cultivated land less driven by eco-
nomic factors. For the dimension of social development, the driving 
force of the IR factor increased from 0.329 to 0.665 in 1990–2000, and 
then decreased to 0.293 in 2018. This may be due to the fact that the 
quality of farming methods used by farmers has increased significantly 
since 1986 when compulsory nine-year education became universal. 
The “education dividends” have faded in different regions since 2010, 
thus reducing the spatial driving force for GDL-CL. In addition, the 
driving force of the EF factor moved upward from 0.220 to 0.582 in 
1990–2010 and then downward to 0.432 in 2018. This may be due to the 
fact that before 2010, most farmers were full-time farmers and had a 
higher investment in arable land production and a sense of social re-
sponsibility. After 2010, most farmers in each region began to gradually 
leave the primary sector for the secondary and tertiary sectors and 
became part-time farmers, resulting in slowly increasing neglect of 
arable land production. Additionally, the driving force of the protection 

policy factor was always >0.200 and had been above 0.300 in the last 
20 years. This indicated that cultivated land protection policies have 
been playing a stable supporting role for GDL-CL in different regions. 

3.3.2. Interaction detection results for spatiotemporal differentiation of 
GDL-CL in China 

Fig. 9 shows that only two types of GDL-CL driving factor interaction 
forces (nonlinear enhancement and bivariate enhancement) were 
observed in China. That is, the combined action of any two factors was 
greater than the action of a single factor. Specifically, the proportion of 
nonlinear enhanced types accounted for 85.5%, 34.5%, 38.2%, and 
67.3% of the two types in 1990, 2000, 2010, and 2018, respectively. 
However, the interaction forces of factors were more intense in 2000 and 
2010. For these years, the interaction intensity of most factors was 
>0.700 (q value≥0.700). In particular, the synergy effects between X3 
and X7 (q value = 0.952) in 2000, between X1 and X4 (q value = 0.989) 
in 2010, between X3 and X4 (q value = 0.920) in 2010, and between X3 
and X9 (q value = 0.965) in 2010 were nearly 1.000. Therefore, inter-
action forces among climate change (especially reasonable temperature, 
precipitation, and sunshine), economic level (especially higher agri-
cultural output, government expenditures, and green food demand), and 
social development (especially lower Engel coefficient, higher employ-
ment, and good protection policies) had a significant positive impact on 
GDL-CL. The results showed that the interaction of various factors on 
GDL-CL is dynamic and complex. Therefore, China must give attention 
to the synergistic effect of various factors affecting spatial differentiation 
of GDL-CL in an integrated manner. (For interpretation of the references 

Fig. 6. Scatter plots of Moran’s I and spatial autocorrelation of Moran index of green development level of cultivated land (GDL-CL) in China in 1990, 2000, 2010, 
and 2018. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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to colour in this figure legend, the reader is referred to the web version of 
this article.) 

4. Discussion 

Previous studies on sustainable management of cultivated land have 
mainly focused on regional quantity protection, use change, quality 
construction, soil health, and sustainable intensification. Unlike these 
previous studies, the current study had a green-development perspective 

comprised of three components: (1) proposal of a new perspective to 
construct a multi-dimensional framework and evaluation index system 
for assessing GDL-CL that considered environmental impacts; (2) 
application of effective mathematical, geographical, and economic 
methods to explore spatial-temporal evolution patterns and differenti-
ation characteristics; and (3) detection of driving factors of GDL-CL from 
climatic, economic, and social environments. Furthermore, unlike the 
previous focus on the circular flow between internal components of 
SWPAS and the unidimensional, short-term, and micro-scale nature of 

Fig. 7. LISA agglomeration map of green development level of cultivated land (GDL-CL) in China in 1990, 2000, 2010, and 2018. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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evaluation indicators, this study focused more on the interaction be-
tween SWPAS and CLUS and on the construction of multidimensional, 
long-term, and macro-scale evaluation indicators. 

4.1. Effect of production mode changes on GDL-CL 

According to the results of spatial-temporal evolution, GDL-CL was 
highly correlated with the input-output relationship of cultivated land in 
China. GDL-CL experienced a difficult period from 1998 to 2003, and 
entered a period of rapid improvement after 2008 (Fig. 3 and Fig. 4), 
indicating that China’s tillage method had shifted from the model of low 
input-low output in 1990–1998 to high input-low output in 1998–2008, 
followed by a period of high input-high output after 2008. Meanwhile, 
serious surpluses occurred in the nutrient content of cultivated land. The 
soil nutrient budget in China increased from 172.9 kg/ha to 244.1 kg/ha 
from 1990 to 2018, which was 5.9 times the global level (FAO, 2018). 
High negative environmental impacts were subsequently generated due 
to agricultural production inputs. For example, soil compaction was 
caused by excessive fertilizer inputs, soil pollution was caused by 
excessive pesticide inputs, soil salinization was caused by basin irriga-
tion, and large amounts of mechanical inputs led to rapid increases in 

agricultural carbon emissions (Bellarby et al., 2014; Wu et al., 2021). 
Therefore, cultivated land must shift to the low input-high output pro-
duction model in China by incorporating biotechnology, digital agri-
culture, and other green technologies (Zhou et al., 2021). Additionally, 
the conflict between population growth and area of cultivated land has 
become seriously obvious in China. The cultivated land area per capita 
decreased from 0.103 to 0.082 ha/person from 1990 to 2018 (FAO, 
2018). Thus, it is also very important to integrate cultivated land re-
sources for moderate scale management and deep integration of agri-
culture, industry, and service industries (Zhang et al., 2022). 

4.2. Coordination of regional differences in GDL-CL 

Although GDL-CL in China has been constantly improving from 1990 
to 2018 and regional differences have narrowed (Fig. 5), spatial het-
erogeneity has been significant, manifesting as high-high agglomeration 
in the east and low-low agglomeration in the west (Fig. 7). Fortunately, 
effective implications can be obtained from spatial autocorrelation and 
clustering results. GDL-CL in eastern China was promoted by the core 
areas (Tianjin, Jiangsu, and Zhejiang), showing a clear positive diffusion 
that resulted in GDL-CL of Shandong, Anhui, and Jiangxi continuing to 

Table 4 
Statistical table of q values and their significance and rank for driving factors of green development level of cultivated land (GDL-CL) in China in 1990, 2000, 2010, and 
2018.  

Driving factors 1990 2000 2010 2018 

q rank q rank q rank q rank 

Climate change 
Temperature (X1) 0.090*** 11 0.296*** 10 0.289*** 9 0.450*** 3 
Precipitation (X2) 0.130*** 9 0.312*** 9 0.460*** 5 0.494*** 1 
Sunshine (X3) 0.411*** 1 0.385*** 6 0.539*** 4 0.381*** 6 

Economic level 

Agricultural output value (X4) 0.124*** 10 0.577*** 3 0.263*** 10 0.339*** 8 
Fixed asset investments (X5) 0.295*** 5 0.590*** 2 0.616*** 1 0.401*** 5 
Government expenditure (X6) 0.320*** 4 0.396*** 5 0.456*** 6 0.267*** 10 
Green food demand (X7) 0.147*** 8 0.382*** 7 0.612*** 2 0.454*** 2 

Social development 

Illiteracy ratio (X8) 0.329*** 3 0.665*** 1 0.422*** 7 0.293*** 9 
Engel coefficient (X9) 0.363*** 2 0.289*** 11 0.159*** 11 0.184*** 11 
Employment fig. (X10) 0.220*** 6 0.528*** 4 0.582*** 3 0.432*** 4 
Protection policy (X11) 0.215*** 7 0.321*** 8 0.379*** 8 0.344*** 7 

Note: ***indicates statistical significance at p = 0.01. 

Fixed asset investments (X5)

Per capita agricultural 

output value (X4)

Sunshine (X3)

Precipitation (X2)

Temperature (X1) 1990

2000

2010

2018

Government expenditures (X6)Green food demand (X7)

Illiteracy ratio (X8)

Engel coefficient (X9)

Employment figure (X10)

Protection policy (X11)

Fig. 8. Radar map of q values for factor detection results for green development level of cultivated land (GDL-CL) in China in 1990, 2000, 2010, and 2018. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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increase (Fig. 7). Therefore, the positive spatial spillover effect of GDL- 
CL must be captured. The flow of elements such as green technologies, 
capital, labor, and models of arable land production should be inten-
tionally guided from high-level eastern regions to central and western 
regions (Liu et al., 2020b). Furthermore, the western and central regions 
show spatial spillover effects of low-low agglomeration and are con-
strained by resources and climatic conditions. Unfortunately, western 
provinces (such as Sichuan, Qinghai, Ningxia, Gansu, and Xinjiang) that 
have long been in the lower level of GDL-CL may gradually fall into the 
abyss of the “poverty trap” of GDL-CL. Thus, distribution of government 
subsidies and “one-on-one” support from eastern regions are necessary 
for low-level regions (Zhou et al., 2021). In addition, sufficient attention 
should be given to regional contradictions in GDL-CL. There have been 
many different negative environmental impacts on cultivated land in 
different regions of China (Ye et al., 2022), e.g., decreasing soil organic 
matter content in northeast China’s cultivated land; soil acidification in 
southwest China; soil erosion of cultivated land in western China; and 

heavy metal pollution in cultivated land in eastern China. Therefore, any 
specific action must be tailored to local conditions, classification, and 
treatment of the symptoms. 

4.3. Beware of extreme climate effects on GDL-CL 

Unlike the results associated with many previous research discov-
eries where the impact of climate factors on agricultural productivity 
became less and less with the increased use of artificial exploitative and 
technical production methods (Fu et al., 2018; Wang et al., 2018; Han 
and Zhang, 2020), the drivers affecting GDL-CL gradually changed from 
socio-economic factors to climatic factors in this study (especially tem-
perature and precipitation) (Fig. 8). Additionally, the interaction results 
showed that the synergy of climate change with other factors on spatial 
differentiation became stronger and stronger over time (Fig. 9). Both 
results suggest that the impacts of extreme climate such as droughts and 
floods should be given added attention in the future. In particular, the 
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x11 0.853 0.815 0.836 0.770 0.744 0.711 0.821 0.713 0.683 0.768 0.379  x11 0.772 0.783 0.872 0.870 0.736 0.516 0.845 0.713 0.727 0.843 0.344 
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 Legend:               : Enhance, nonlinear     : Enhance, bivariate 

x1: Temperature
x2: Precipitation 
x3: Sunshine
x4: Agricultural output value

x5: Fixed asset investments
x6: Government expenditures
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Fig. 9. The interaction effects (green and beige squares) and corresponding q values and single factor q values (white squares) for green development level of 
cultivated land (GDL-CL) in China in 1990, 2000, 2010, and 2018. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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strongest impacts on flooding and drought were the precipitation 
amount during the warmest quarter of the year and elevation. In 
extreme cases associated with these factors, incalculable negative im-
pacts on GDL-CL have been observed. Floods tend to occur in southern 
China, while droughts are concentrated in western China (Fu et al., 
2018; Wang et al., 2018). However, flood areas in China have been 
gradually moving northward, from Anhui to Henan and Shanxi from 
2020 to 2021. Furthermore, climate change and inconsistent use of 
cultivated land have together been destroying biodiversity, resulting in a 
corresponding threat to yield and GDL-CL (Heikkinen et al., 2021). Due 
to the difficulty in modifying natural conditions and the frequent 
occurrence of drought and flood disasters in China, a dynamic warning 
mechanism and emergency management measures should be quickly 
applied to the green development management of cultivated land. 
Meanwhile, we must not ignore the long-term and stabilizing forces of 
social-economic impacts on GDL-CL while paying attention to extreme 
natural elements (Fig. 8 and Fig. 9). 

5. Conclusions and further research 

The interwoven food security and environmental challenges can be 
effectively mitigated and addressed by GD-CL (Foley et al., 2011). In this 
study, a new multi-dimensional framework considering environmental 
impacts for assessing GDL-CL was proposed based on “elements – pro-
cesses – dimensions – goals – drivers” according to the interaction be-
tween SWPAS and CLUS. An evaluation index system was built 
multidimensionally based on that framework. Overall, GDL-CL showed a 
U-shaped trend, with 1998 as an inflection point and 2008 as a rapid 
growth point in China. Regionally, there was obvious spatial heteroge-
neity between the eastern and western regions of China, with the eastern 
regions showing a high-high agglomeration and the west showing a low- 
low agglomeration. Meanwhile, the gap in GDL-CL between different 
regions has been narrowing from 1990 to 2018. However, the values of 
most of the high-level areas have decreased over time, and the rate of 
decline far exceeded the growth rate of the low-level areas. Using the 
Geodetector method, we found the reason for these phenomena: GDL-CL 
across regions has always been driven by socio-economic factors such as 
agricultural output, farmers’ assets, food markets, farmers’ education, 
employment, and government policies. Particularly, climate factors 
have gradually become the dominant factors during 2010–2018. 
Therefore, to promote the policy strategy of “storing food in the land and 
technology”, it will be necessary to enhance GDL-CL by relying on 
integrating green production, resource conservation, environmental 
governance, and output effect. Additionally, there is an urgent need to 
continuously optimize the production model of cultivation based on 
green technological progress, production factor allocation, and indus-
trial structure upgrading. Furthermore, the “14th Five-Year Plan for 
National Agricultural Green Development” proposes that by 2025, 1.075 
billion mu of continuous high-standard farmland will be built nation-
wide. Thus, it will be necessary to enhance GDL-CL in low-level areas 
such as the central and western regions that lack resources and are more 
affected by environment. Specifically, regional differences can be 
effectively coordinated through policies such as subsidy distribution, 
improvement of green food certification systems and regulatory mech-
anisms, education enhancement, employment stabilization, and one-on- 
one assistance. In particular, mitigating adverse impacts of climate 
change such as droughts or floods on GDL-CL in each region will be 

indispensable through real-time early warning mechanisms and 
comprehensive emergency measures. 

This study developed a new framework and evaluation index system 
for GD-CL, and conducted a series of empirical analyses using mathe-
matical, economic, and geographical methods from the last three de-
cades in China. Therefore, the results of this study have both theoretical 
value and practical significance, and can effectively provide scientific 
and reasonable suggestions for the sustainable management of culti-
vated land. However, readers should be aware that due to the scale of 
data used in this study, the results may have had some precision limi-
tations that were partially remedied by using the scientific missing value 
supplement and spatial interpolation method. On the other hand, this 
study discussed the spatial-temporal evolution, differentiation charac-
teristics, and driving factors of GDL-CL at the provincial level in China, 
and may have limited accuracy. In the future, it will be crucial to analyze 
and discuss GDL-CL at a finer scale (municipal- or county-level). 
Accordingly, after clearly determining the spatiotemporal differentia-
tion and regularity of GDL-CL, there will also be a need to clarify the 
multi-dimensional linkages affecting GDL-CL. For example, under-
standing the related effects of farmers’ behaviors, food market prices, 
consumer demand, and industrial upgrading will also need to be one of 
the directions for future investigations. Furthermore, emphasis should 
be placed on the influence of legislation, procedure, practices, and 
governance of environmental impact assessments on GDL-CL in the 
future. 
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Appendix A

Fig. A1. Interaction of different influencing factors. Fig. A1 is modified from Wang et al., 2016.  

Appendix B  

Table B1 
P-values for spatial agglomeration results for green development level of cultivated land (GDL-CL) for provinces in China in 1990, 2000, 2010, and 2018.  

Year p = 0.05 p = 0.01 p = 0.001 

1990 Tianjin, Hebei, Guizhou Shaanxi Sichuan 

2000 Beijing, Hebei, Tianjin, Jiangsu, Shanghai, Zhejiang, Fujian, Anhui, Jiangxi, Ningxia, Qinghai, Tibet, Yunnan 
Shaanxi Xinjiang 
Gansu Sichuan 

2010 Beijing, Hebei, Shandong, Jiangsu, Shanghai, Zhejiang, Ningxia, Shaanxi, Qinghai, Tibet, Yunnan 
Tianjin Sichuan 

Xinjiang 
Anhui Gansu 

2018 Shandong, Jiangsu, Shanghai, Fujian, Jiangxi, Inner Mongolia, Qinghai, Ningxia, Shaanxi Anhui, Xinjiang, Gansu, Sichuan –  
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Groenigen, J.W., Brussaard, L., 2018. Soil quality – a critical review. Soil Biol. 
Biochem. 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030. 

Cassman, K.G., 1999. Ecological intensification of cereal production systems: yield 
potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U. S. A. 96, 
5952–5959. https://doi.org/10.1073/pnas.96.11.5952. 

Cassman, K.G., Grassini, P., 2020. A global perspective on sustainable intensification 
research. Nat. Sustain. 3, 262–268. https://doi.org/10.1038/s41893-020-0507-8. 

Chen, Longgao, Yang, X., Chen, Longqian, Li, L., 2015. Impact assessment of land use 
planning driving forces on environment. Environ. Impact Assess. Rev. 55, 126–135. 
https://doi.org/10.1016/j.eiar.2015.08.001. 

Chen, L., Song, G., Meadows, M.E., Zou, C., 2018. Spatio-temporal evolution of the early- 
warning status of cultivated land and its driving factors: a case study of Heilongjiang 
Province, China. Land Use Policy 72, 280–292. https://doi.org/10.1016/j. 
landusepol.2017.12.017. 

Cornelis, Wim M., Steppe, Kathy, Gabriels, Donald, 2009. Soil-plant-atmosphere 
dynamics. In: Encyclopedia of Life Support Systems: Natural resources policy and 
management. Unesco. 

Cunha-Zeri, G., Guidolini, J.F., Branco, E.A., Ometto, J.P., 2022. How sustainable is the 
nitrogen management in Brazil? A sustainability assessment using the entropy 
weight method. J. Environ. Manag. 316, 115330 https://doi.org/10.1016/j. 
jenvman.2022.115330. 

Cunningham, S.C., Mac Nally, R., Baker, P.J., Cavagnaro, T.R., Beringer, J., Thomson, J. 
R., Thompson, R.M., 2015. Balancing the environmental benefits of reforestation in 
agricultural regions. Perspect. Plant Ecol. Evol. Syst. 17, 301–317. https://doi.org/ 
10.1016/j.ppees.2015.06.001. 

FAO, 2011. The State of the world’s Land and Water Resources for Food and Agriculture 
(SOLAW) - Managing Systems at Risk. Food and Agriculture Organization of the 
United Nations, Rome and Earthscan, London.  

FAO, 2018. Food and Agriculture Organization of the United Nations Statistics Division 
(FAOSTAT). https://www.fao.org/faostat/zh/#data. 

Firbank, L.G., Elliott, J., Drake, B., Cao, Y., Gooday, R., 2013. Evidence of sustainable 
intensification among British farms. Agric. Ecosyst. Environ. 173, 58–65. https:// 
doi.org/10.1016/j.agee.2013.04.010. 

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., 
Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., 
Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., 
Siebert, S., Tilman, D., Zaks, D.P.M., 2011. Solutions for a cultivated planet. Nature 
478, 337–342. https://doi.org/10.1038/nature10452. 

Fu, Q., Zhou, Z., Li, T., Liu, D., Hou, R., Cui, S., Yan, P., 2018. Spatiotemporal 
characteristics of droughts and floods in northeastern China and their impacts on 
agriculture. Stoch. Environ. Res. Risk Assess. 32, 2913–2931. https://doi.org/ 
10.1007/s00477-018-1543-z. 

Garnett, T., Appleby, M.C., Balmford, A., Bateman, I.J., Benton, T.G., Bloomer, P., 
Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., 
Smith, P., Thornton, P.K., Toulmin, C., Vermeulen, S.J., Godfray, H.C.J., 2013. 
Sustainable intensification in agriculture: premises and policies. Science (80-.) 341, 
33–34. https://doi.org/10.1126/science.1234485. 

Gunton, R.M., Firbank, L.G., Inman, A., Winter, D.M., 2016. How scalable is sustainable 
intensification? Nat. Plants 2, 1–4. https://doi.org/10.1038/NPLANTS.2016.65. 

Gurr, G.M., Lu, Z., Zheng, X., Xu, H., Zhu, P., Chen, G., Yao, X., Cheng, J., Zhu, Z., 
Catindig, J.L., Villareal, S., Van Chien, H., Cuong, L.Q., Channoo, C., 
Chengwattana, N., Lan, L.P., Hai, L.H., Chaiwong, J., Nicol, H.I., Perovic, D.J., 
Wratten, S.D., Heong, K.L., 2016. Multi-country evidence that crop diversification 
promotes ecological intensification of agriculture. Nat. Plants 2. https://doi.org/ 
10.1038/NPLANTS.2016.14. 

Han, H., Zhang, X., 2020. Exploring environmental efficiency and total factor 
productivity of cultivated land use in China. Sci. Total Environ. 726, 138434 https:// 
doi.org/10.1016/j.scitotenv.2020.138434. 

C. Chai et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/c2020-0-02934-8
https://doi.org/10.1038/s41598-021-94616-4
https://doi.org/10.1016/j.still.2015.01.010
https://doi.org/10.1016/j.still.2015.01.010
https://doi.org/10.1016/j.agee.2014.07.015
https://doi.org/10.1016/j.agee.2014.07.015
https://doi.org/10.1016/j.agsy.2009.06.001
https://doi.org/10.1016/j.tree.2012.10.012
https://doi.org/10.1016/j.tree.2012.10.012
https://doi.org/10.1007/978-3-030-23335-8_3
https://doi.org/10.1038/s41586-018-0280-2
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1073/pnas.96.11.5952
https://doi.org/10.1038/s41893-020-0507-8
https://doi.org/10.1016/j.eiar.2015.08.001
https://doi.org/10.1016/j.landusepol.2017.12.017
https://doi.org/10.1016/j.landusepol.2017.12.017
http://refhub.elsevier.com/S0195-9255(22)00193-7/optFjo0FPTl6x
http://refhub.elsevier.com/S0195-9255(22)00193-7/optFjo0FPTl6x
http://refhub.elsevier.com/S0195-9255(22)00193-7/optFjo0FPTl6x
https://doi.org/10.1016/j.jenvman.2022.115330
https://doi.org/10.1016/j.jenvman.2022.115330
https://doi.org/10.1016/j.ppees.2015.06.001
https://doi.org/10.1016/j.ppees.2015.06.001
http://refhub.elsevier.com/S0195-9255(22)00193-7/rf0080
http://refhub.elsevier.com/S0195-9255(22)00193-7/rf0080
http://refhub.elsevier.com/S0195-9255(22)00193-7/rf0080
https://www.fao.org/faostat/zh/#data
https://doi.org/10.1016/j.agee.2013.04.010
https://doi.org/10.1016/j.agee.2013.04.010
https://doi.org/10.1038/nature10452
https://doi.org/10.1007/s00477-018-1543-z
https://doi.org/10.1007/s00477-018-1543-z
https://doi.org/10.1126/science.1234485
https://doi.org/10.1038/NPLANTS.2016.65
https://doi.org/10.1038/NPLANTS.2016.14
https://doi.org/10.1038/NPLANTS.2016.14
https://doi.org/10.1016/j.scitotenv.2020.138434
https://doi.org/10.1016/j.scitotenv.2020.138434


Environmental Impact Assessment Review 98 (2023) 106927

18

Heikkinen, R.K., Kartano, L., Leikola, N., Aalto, J., Aapala, K., Kuusela, S., Virkkala, R., 
2021. High-latitude EU habitats directive species at risk due to climate change and 
land use. Glob. Ecol. Conserv. 28, e01664 https://doi.org/10.1016/j.gecco.2021. 
e01664. 

Hussainzada, W., Lee, H.S., 2022. Effect of an improved agricultural irrigation scheme 
with a hydraulic structure for crop cultivation in arid northern Afghanistan using the 
soil and water assessment tool (SWAT). Sci. Rep. 12, 1–13. https://doi.org/10.1038/ 
s41598-022-09318-2. 

Jayne, T.S., Snapp, S., Place, F., Sitko, N., 2019. Sustainable agricultural intensification 
in an era of rural transformation in Africa. Glob. Food Sec. 20, 105–113. https://doi. 
org/10.1016/j.gfs.2019.01.008. 

Kalibata, A., 2021. Transforming food systems is within reach. Nat. Food 2, 313–314. 
https://doi.org/10.1038/s43016-021-00291-z. 

Kassam, A., Friedrich, T., Shaxson, F., Reeves, T., Pretty, J., De Moraes Sá, J., 2011. 
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Humpenöder, F., von Jeetze, P., Klein, D., Koch, J., Pietzcker, R., Strefler, J., Lotze- 
Campen, H., Popp, A., 2021. A sustainable development pathway for climate action 
within the UN 2030 agenda. Nat. Clim. Chang. 11, 656–664. https://doi.org/ 
10.1038/s41558-021-01098-3. 

Tasser, E., Walde, J., Tappeiner, U., Teutsch, A., Noggler, W., 2007. Land-use changes 
and natural reforestation in the eastern Central Alps. Agric. Ecosyst. Environ. 118, 
115–129. https://doi.org/10.1016/j.agee.2006.05.004. 

Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable 
intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108, 20260–20264. 
https://doi.org/10.1073/pnas.1116437108. 

Uisso, A.M., Tanrıvermiş, H., 2021. Driving factors and assessment of changes in the use 
of arable land in Tanzania. Land Use Policy 104. https://doi.org/10.1016/j. 
landusepol.2021.105359. 

Wang, J.F., Zhang, T.L., Fu, B.J., 2016. A measure of spatial stratified heterogeneity. 
Ecol. Indic. 67, 250–256. https://doi.org/10.1016/j.ecolind.2016.02.052. 

Wang, D., Zhou, Q., Yang, P., Xin, Z., 2018. Design of a spatial sampling scheme 
considering the spatial autocorrelation of crop acreage included in the sampling 
units. J. Integr. Agric. 17, 2096–2106. https://doi.org/10.1016/S2095-3119(17) 
61882-3. 
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