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A B S T R A C T   

Robust crop yield projections under future climates are fundamental prerequisites for reliable policy formation. 
Both process-based crop models and statistical models are commonly used for this purpose. Process-based models 
tend to simplify processes, minimize the effects of extreme events, and ignore biotic pressures, while statistical 
models cannot deterministically capture intricate biological and physiological processes underpinning crop 
growth. We attempted to integrate and overcome shortcomings in both modelling frameworks by integrating the 
dynamic linear model (DLM) and random forest machine learning model (RF) with nine global gridded crop 
models (GGCM), respectively, in order to improve projections and reduce uncertainties of maize (Zea mays L.) 
and soybean (Glycine max [L.] Merrill) yield projections. Our results demonstrated substantial improvements in 
model performance accuracy by using RF in concert with GGCM across China’s maize and soybean belt. This 
improvement surpasses that achieved using DLM. For maize, the GGCM+RF models increased the r values from 
0.15 to 0.61–0.64–0.77 and decreased nRMSE from approximately 0.20 to 0.50–0.13–0.17 compared with using 
GGCM alone. For soybean, the models increased r from 0.37 to 0.70–0.54–0.70 and decreased nRMSE from 0.17 
to 0.35–0.17–0.20 compared with using GGCM alone. The main factors influencing maize yield changes included 
chilling days (CD), crop pests and diseases (CPDs), and drought, while for soybean the primary influencing 
factors included CPD, tropical days (based on exceeding a maximum temperature), and drought. Our approach 
decreased uncertainties by 33–78% for maize and by 56–68% for soybean. The main source of uncertainty for 
GGCM was the crop model. For GGCM+RF, the main source of uncertainty for the 2040–2069 period was the 
global climate model, while the main source of uncertainty for the 2070–2099 period was the climate scenario. 
Our results provide a novel, robust, and pragmatic framework to constrain uncertainties in order to accurately 
assess the impact of future climate change on crop yields. These results could be used to interpret future 
ensemble studies by accounting for uncertainty in crop and climate models, as well as to assess future emissions 
scenarios.   
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1. Introduction 

Climate change has led to a declining number of extreme cold events 
(Harrison, 2021) together with an increase in the number of heatwaves 
(Langworthy et al., 2018; Liu et al., 2016), droughts (Lobell et al., 2014), 
and excessive rainfall (Li et al., 2019b; Liu et al., 2023) that can 
significantly impact global food production (Mbow et al., 2019). Maize 
(Zea mays L.) and soybean (Glycine max [L.] Merrill) are two of the 
world’s most important staple food crops, accounting for over 50% of 
global grain production (Liu et al., 2021b). In China, these crops 
contribute about 30% and 6% to global maize and soybean production, 
respectively (FAO, 2020). Crop models are commonly used to develop 
effective adaptation strategies for maintaining stable grain production 
under future climate change (Huang et al., 2020). However, these 
models have limitations and uncertainties due to the model structure, 
parameters, and global climate model (GCM) inputs, particularly under 
extreme events (Asseng et al., 2013; Li et al., 2019b; Müller et al., 2021; 
Rosenzweig et al., 2014). For example, Müller et al. (2021) demon-
strated substantial uncertainties in global crop yield projections based 
on a large model ensemble, hindering our ability to provide reliable crop 
yield projections and to develop effective adaptation strategies (Huang 
et al., 2022). 

Extreme climate events (ECEs) can affect crop growth and yields by 
subjecting crops to various stresses (Asseng et al., 2014; Lesk et al., 
2016; Liu et al., 2023), with some process-based crop models over-
simplifying these complex processes (Feng et al., 2019). For instance, 
the Environmental Policy Integrated Climate (EPIC) model fails to fully 
capture yield losses under extremely wet conditions (Balkovič et al., 
2013), and the JULES model underestimates crop yields in arid irrigated 
regions, but overestimates yields in tropical regions (Osborne et al., 
2015). Similarly, the yield gaps identified in global gridded crop models 
(GGCM) suggest that global process-based crop models tend to under-
estimate the magnitude of crop yield losses caused by extreme heat-
waves and excessive rainfall (Heinicke et al., 2022; Li et al., 2019b; Liu 
et al., 2020), leading some authors to suggest that the multi-model 
median is the most adequate descriptor of model performance (Sandor 
et al., 2020). Moreover, crop pests and diseases (CPDs) are not consid-
ered in most process-based crop models (Jägermeyr et al., 2021; Rose-
nzweig et al., 2014; Xiong et al., 2019), and this omission may lead to 
insufficient accounting of additional yield losses (Deutsch et al., 2018). 
The mechanisms by which CPDs impact crops vary widely, and can 
potentially impact any combination of biomass, leaf area, light inter-
ception, and/or photosynthetic rates of affected plants, making the di-
versity of such processes difficult to capture in crop models (Bondad 
et al., 2023). 

Compared with process-based crop models, statistical-based models, 
such as machine learning algorithms, are able to capture potential non- 
linear relationships between extreme climate events and crop yields 
without requiring a complex set of parameters and a deep understanding 
of physical processes (Feng et al., 2019; Li et al., 2022). Machine 
learning algorithms can incorporate indices such as ECEs and CPDs, as 
well as genotype by management by environment interactions (Ibrahim 
et al., 2019), and may require less parameterization than process-based 
models (Harrison et al., 2019). Several studies have used 
statistical-based crop models such as machine learning or deep learning 
algorithms to predict crop yields with acceptable performance (Cao 
et al., 2021a; Jiang et al., 2020; Li et al., 2021a). However, these models 
may not be able to capture the biological and physiological processes 
that influence crop growth, such as the CO2 fertilization effect. Rather, 
they only capture the statistical yield outcome. Moreover, the results 
obtained from statistical-based models may lack interpretation and be 
less transparent than those obtained from process-based models (Feng 
et al., 2020). 

Numerous studies have developed hybrid models to combine the 
strengths of process-based and statistical-based crop models (Tao et al., 
2022). For example, Feng et al. (2019) integrated APSIM model output 

with ECE using machine learning to improve modeling accuracy in the 
New South Wales wheat belt of Australia, increasing R2 by 0.23. Simi-
larly, Li et al. (2021b) incorporated machine learning with the 
MCWLA-Wheat model to develop a drought risk assessment system, 
reducing the root mean squared error (RMSE) from 530 to 365 kg/ha. 
Such studies only focus on the integration of statistical models into one 
specific crop model. Because hybrid models can consider the effect of 
ECEs using large amounts of experimental data, they may also reduce 
redundancy and further constrain uncertainty in crop yield projections 
from multi-model ensembles. However, most previous studies have 
overlooked the importance of reducing the overall uncertainties and 
compared the sources of uncertainties as projected by crop models and 
hybrid models. Addressing this gap could enhance the robustness of crop 
yield projections and improve the understanding of associated 
uncertainties. 

Because different models have varied responses to climate factors, 
recent studies have explored methods to reduce the uncertainty of crop 
yield projections under climate change, such as improving temperature 
response functions (Wang et al., 2017) and emergent constraint methods 
(Wang et al., 2020c; Yin and Leng, 2022; Zhao et al., 2016b). For 
instance, Wang et al. (2020c) employed an emergent constraint 
approach to constrain crop yield responses to temperature in GGCM, 
utilizing data from 48 field warming experiment sites for wheat, maize, 
rice, and soybean. This approach reduced uncertainties by 12–54% 
across the four crops. However, as the relationship between crop yield 
and ECEs is usually non-linear, machine learning may be better suited to 
capture the potential non-linear response (Lobell et al., 2011). In addi-
tion, other factors that could impact crop yields, such as excessive 
rainfall (Lesk et al., 2020), drought stress (Wang et al., 2022a), and CPDs 
(Wang et al., 2021a), should be considered when constraining uncer-
tainty in crop yield projections. 

Our study presents a novel method that combines nine GGCMs with a 
machine learning algorithm to enhance reliability and reduce uncer-
tainty in crop yield projections for maize and soybean. Our objectives 
were to (1) improve model performance by reproducing observed maize 
and soybean yields from historical data, (2) investigate the non-linear 
response of crop yields to ECE and CPD risk, (3) compare yield pro-
jections from the GGCM alone against yield projections from hybrid 
models under future climate scenarios, and (4) analyze the sources of 
uncertainty in yield projections. Achieving these objectives will provide 
valuable insights into constraining model uncertainty to assist policy-
makers and stakeholders in making informed decisions for sustainable 
agriculture. 

2. Data and methodology 

2.1. Study area 

China’s diverse climate zones can impact crop yields differently 
(Piao et al., 2010; Tao et al., 2008). For example, solar radiation and 
precipitation changes have increased wheat yields by 1–13% in northern 
China and decreased wheat yields in southern China by 1.2–10.2% (Tao 
et al., 2014). It is clear that different climate regions can have varied 
impacts on crop growth and yield. To account for these regional dif-
ferences, we divided China into seven sub-regions based on climate 
conditions and geolocation (see Fig. 1) (Li et al., 2021a; Zhao, 1983). 
These sub-regions include the temperate and warm-temperate deserts of 
Northwestern China (Sub-region I), Inner Mongolia (Sub-region II), the 
temperate humid and sub-humid region of Northeastern China (Sub--
region III), the warm-temperate humid and sub-humid region of 
Northern China (Sub-region IV), subtropical humid Central and South-
ern China (Sub-region V), the tropical humid region of Southern China 
(Sub-region VI), and the Qinghai-Tibetan Plateau (Sub-region VII) (Li 
et al., 2019a). Each of these regions encapsulates distinct climate con-
ditions (Li et al., 2020; Yao et al., 2020), and could influence crop yield 
differently (Li et al., 2022). This approach allows for a more nuanced 
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understanding of how regional climate conditions impact agricultural 
productivity. The Qinghai-Tibetan Plateau was excluded from our study 
as maize and soybean are not primarily grown in this region. 

2.2. Data 

2.2.1. Crop data 
To collect data for our study, we collected maize yield trial data from 

155 sites and soybean yield trial data from 50 sites spanning 1999–2010. 
These data included crop yield and growth stage information (Fig. 1), 
and was obtained from the China Meteorological Data Sharing Network 
(http://data.cma.cn/). The management practices and harvest methods 
used in the studies were consistent with those of local farmers. However, 
due to gaps in the observed crop yield data from 1999 to 2013, we ac-
quired 1076 sets of field data for maize and 368 sets for soybean. 

The risks of CPDs pose a significant threat to food production 
(Sundström et al., 2014; Trebicki and Finlay, 2019), but CPDs have been 
largely overlooked in crop yield projections due to modeling and 
experimental data limitations. Wang et al. (2021a) recently developed a 
dataset that recorded the occurrence of CPDs in China during historical 
and future periods. In this study, we developed a CPD occurrence risk 
model by incorporating a Bayesian approach and utilizing their dataset 
to account for CPD risk. Detailed information can be found in the sup-
plementary materials and Fig. S1. 

2.2.2. Climate data 
We obtained climate data from the China Meteorological Data 

Sharing Network (http://data.cma.cn/), including temperature, pre-
cipitation, hours of sunshine, and relative humidity. From these vari-
ables, we identified ECEs that could impact crop yield using parameters 
such as the Standardized Precipitation and Evapotranspiration Index 
(SPEI), heat (TD, number of days with daily Tmax ≥ 35 ◦C for maize and 
Tmax ≥ 30 ◦C for soybean), cold days (CD, number of days with daily 
minimum temperature of ≤ 8 ◦C), heavy rainfall (R30, number of days 
with precipitation > 30 mm), and drizzle (R1, number of days with 
precipitation between 0.1 and 1.0 mm). We used threshold values for 
heat and chilling based on the temperature for the radiation use effi-
ciency for maize and soybean, as outlined by Soltani (2012). We used 21 
GCMs that included two climate scenarios (SSP126 and SSP585) to 
project future ECEs, downloaded from the CMIP6 site (https://esgf- 
node.llnl.gov/projects/cmip6/). 

2.3. Statistical downscaling methods 

The NWAI-WG statistical downscaling method is a technique based 
on a weather generator. To perform spatial analysis, we selected the four 
grid points nearest to the station and used the inverse distance weighting 
interpolation method to interpolate values for the station. We used QQ 
plots to compare observations with simulations and calibrated simula-
tion values using probability distribution functions. Because the climate 
model data selected for this study were monthly averages, downscaling 
was necessary to obtain daily data. Generation of precipitation down-
scaling relied mainly on a gamma function and a first-order Markov 
chain. We used the first-order Markov chain to generate daily sequences, 
and the gamma distribution to calculate precipitation probabilities. The 
density function of the gamma distribution was determined as: 

f (p) =
pα− 1e

− p
β

βαΓ(α) p, β > 0, 0 < α < 1 (1) 

We generated temperature data using the WGEN weather generator, 
and values were calculated similarly to precipitation. The sequence 
correlation coefficient and cross-correlation coefficient were used:  

Xi(j)=AXi-j(j)+εi(j)                                                                         (2) 

where X(j) is a matrix containing three climate variables for the ith day 
(including maximum temperature, minimum temperature, and solar 
radiation), and εi is an independent random variable. A and B are 
matrices defined by the following equation: 

A = M1M− 1
0 ,BBT = M0 − AMT

1 (3)  

where M0 is the correlation between these three variables on the same 
day, and M1 is the correlation with a lag of one day. 

Due to the randomness of the probability estimation for precipita-
tion, the sum of daily precipitation data did not always equal the input 
monthly value. Therefore, we used 1500 iterations to reduce the dif-
ferences to an acceptable range. This downscaling method is widely used 
as it is efficient, flexible, and has a good bias correction effect (see Liu 
and Zuo (2012) for more details). 

2.4. GGCM emulators 

We projected future crop yields using GGCM emulators developed by 
Franke et al. (2020b) (GGCM Phase II) that were driven by changing 
factors from GCMs. The GGCM emulator approach combined the ad-
vantages of crop models and statistical models, thereby considering the 

Fig. 1. Location and elevation of field trial sites for maize and soybean yields in China.  
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biological and physical processes of the model and some non-linear re-
sponses. The emulators calculated crop yields for each crop and 
geographic location (at 0.5◦ resolution) using atmospheric CO2, changes 
in growing-season temperature (ΔT) and precipitation (ΔP), and N fer-
tilizer inputs (CTNW-A). The CTNW-A experiment was described in 
detail in the GGCMI phase 2 description given by Franke et al. (2020a). 
Several studies have successfully applied this approach to better repro-
duce global yield changes (Liu et al., 2021a; Zabel et al., 2021). We used 
GGCM emulators that exhibited high flexibility in capturing geographic 
differences in crop yield and yield responses and performed well on 
models with different sensitivities to climate or CO2 changes. The maize 
simulations included nine models (CARAIB, EPIC-TAMU, JULES, GEPIC, 
LPJ-GUESS, LPJmL, pDSSAT, PEPIC, and PROMET), and the soybean 
simulations included eight models (CARAIB, EPIC-TAMU, JULES, 
GEPIC, LPJmL, pDSSAT, PEPIC, and PROMET). 

Because GGCMs often differ in simulating benchmark crop produc-
tivity levels (Müller et al., 2017), we corrected the yield output of crop 
models to match the observed yield during the observation period, as 
follows: 

Y∗
t = Yt,c ×

Or,c

Yr,c
(4)  

where Y*t is the calibrated yield for time step t, Yt is the simulated yield 
for time step t, Or,c is the observed yield at station c during the historical 
period r (1999–2010 in this study), and Yr,c is the simulated yield during 
the historical period. This bias correction method helps minimize sys-
tematic errors between GGCM and observed data to better align the 
GGCM predictions with the historical baseline. This approach also im-
proves the accuracy of raw GGCMs and further enhances the relative 
importance of individual GGCMs within the random forest (RF) model, 
allowing for better retention of each GGCM’s unique characteristics. 
Thus, we obtained a more robust starting point for the hybrid model 
(GGCM+RF) and mitigated the influence of inherent biases in the 
GGCMs. 

We used data from 21 monthly GCMs to drive GGCM emulators, and 
we resampled the GCM data to 0.5◦ resolution for compatibility. We 
computed the mean temperature and total precipitation within the 
growing season by taking the weighted average (sum) of monthly mean 
temperature data and precipitation data, respectively. The number of 
days each month during the growing season served as the weight for the 
calculation. 

2.5. Random forest algorithm 

We used the RF algorithm to create a hybrid model incorporating 
ECEs and CPDs with GGCM output. The RF model is well-suited for 
capturing linear and non-linear relationships between crop yields and 
environmental factors (Breiman, 2001; Peichl et al., 2021). Moreover, 
the RF model provides a measure of the relative importance of different 
predictors, and therefore assists in comprehending how ECEs and CPDs 
affect crop yields (Feng et al., 2019). Our previous studies have 
demonstrated the RF model’s performance in agriculture (Li et al., 2022; 
Li et al., 2021a). Overall, incorporating RF with ECEs and CPDs, along 
with GGCM output, can improve the reliability of crop yield projections. 

We used the ‘randomForest’ package in R software to perform the RF 
algorithm. We tuned two hyperparameters (ntree and mtry) to optimize 
the RF model by conducting a cross-validation and selecting the smallest 
RMSE using the ‘caret’ R package (see Fig. S2). For ntree, we set the range 
between 100 and 1100, with 200 intervals, and for mtry, we set the range 
between 1 and 7. We ultimately selected mtry = 3 and ntree = 1100 for 
maize, and mtry = 5 and ntree = 900 for soybean. We used the ‘%IncMSE’ 
metric to evaluate the relative importance of predictors in the RF model. 

2.6. Dynamic linear model 

We also used the dynamic linear model (DLM) as part of our hybrid 
modeling approach to enhance the overall model performance. The DLM 
is a statistical model widely used in regression analysis, known for its 
effectiveness in capturing time series characteristics (Prado and West, 
2010). The DLM relies on data from the previous time step to estimate 
states, utilizing observations according to the classical Kalman filter 
formulas. Recently, this model has been widely used in examining the 
impacts of climate change on Earth’s system and environmental science 
(Hein et al., 2018; Liu et al., 2019; Zhang et al., 2022; Zhang et al., 
2021). Here, we use the DLM as the linear model component of our 
hybrid models, enabling comparisons with non-linear models (e.g., RF 
model). The DLM modeling was executed using the ’dynlm’ R package 
(Zeileis et al., 2005). 

2.7. Uncertainty analysis 

We used analysis of variance (ANOVA) to quantify the primary 
sources of uncertainty in yield projections for maize and soybean, 
considering the climate model, crop model, and emission scenario, and 
using the following formula: 

SS = SSGGCM + SSGCM + SSScen + SSGCM×GGCM + SSGCM×Scen 
+ SSGGCM×Scen + SSGGCM×GCM×Scen (5). 

where SSGGCM, SSGCM, and SSScen are the uncertainty sources from 
GCM, GGCM, and emission scenarios, and SSGCM×GGCM, SSGCM×Scen, 
SSGGCM×Scen, and SSGGCM×GCM×Scen are their interaction effects. 

2.8. Modeling framework 

Fig. 2 presents the modeling framework utilized in this study. First, 
we integrated the outputs from the GGCM-emulator, environmental 
variables (ECEs and CPDs), and observed crop yield data (collected from 
155 sites for maize and 50 sites for soybean) into both the Dynamic 
Linear Model (DLM) and Random Forest (RF) model. This integration 
helped in constructing hybrid models. Then, we used the hybrid model 
to predict crop yields under climate change, driven by future crop yields 
(computed by GGCM emulators driven by GCM), ECEs (based on GCMs), 
and CPDs. Finally, we compared crop yield projections and sources of 
uncertainties between the GGCM and the hybrid models. 

2.9. Model performance assessment 

We used a leave-one-year-out cross-validation method to assess the 
model’s accuracy in predicting historical crop yields for maize and 
soybean. In this study, we used Pearson’s correlation coefficient (r) and 
normalized root mean square error (nRMSE) to assess model perfor-
mance. The equations are written as follows: 

r =

∑n

i=1
(x(i) − x)(y(i) − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x(i) − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(y(i) − y)2

√ (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x(i) − y(i) )2

n

√
√
√
√
√

(7)  

nRMSE =
RMSE

x
(8)  

where y(i) and x(i) are the ith simulated and observed yield values (from 
agricultural meteorological station), respectively; y and x represents the 
mean of forecasted and observed values; n is the number of samples. 

We generated figures using the ‘ggplot2’ R package (Wickham, 2011) 
and mapped the spatial distribution of field trial sites using ArcGIS 10.3 
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software. 

3. Results 

3.1. Model performance 

We assessed the performance of the GGCM and hybrid model 
(GGCM+RF and GGCM+DLM) using leave-one-year-out cross-valida-
tion during the historical period from 1999 to 2010 (Fig. 3). While the 

GGCMs generally showed responses that were consistent with field ex-
periments (Zhao et al., 2016a), they had poor accuracy at the site scale. 
Our results indicated that the GGCM had relatively low accuracy in 
simulating crop yield, with r values ranging from 0.15 to 0.61 and 
nRMSE ranging from 0.18 to 0.50 for maize, and r values ranging from 
0.37 to 0.70 and nRMSE ranging from 0.17 to 0.35 for soybean. How-
ever, the hybrid model (GGCM+RF) showed significant improvement, 
with r ranging from 0.64 to 0.77 and nRMSE ranging from 0.13 to 0.17 
for maize, and r ranging from 0.54 to 0.70 and nRMSE ranging from 0.17 

Fig. 2. Framework of the hybrid modeling approach used in this study based on GGCMs and RF model. SPEI, Standardized Precipitation and Evapotranspiration 
Index; CD, cold days; TD, tropical days; R1, drizzle (daily precipitation between 0.1 and 1 mm); R30, excessive rainfall; CPD, crop pests and diseases. RF, random 
forest; DLM, dynamic linear model; GGCM, global gridded crop model; R2, coefficient of determination; RMSE, root mean square error. 

Fig. 3. Model performance of different models 
and all model ensembles for maize and soybean, 
based on the evaluation for each (left out) year 
during 1999–2010. The filled bars represent the 
mean values of r and nRMSE; the error bars 
represent the standard errors for the 12 years. 
GGCM, the model performance of use of GGCM 
alone; GGCM+DLM, the model performance of 
hybrid models that integrates GGCM and DLM; 
GGCM+RF, the model performance of hybrid 
models that integrates GGCM and RF.   
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to 0.20 for soybean. As for GGCM+DLM, while performing better than 
the standalone GGCM, was not as effective as the GGCM+RF model. For 
maize, its r ranged from 0.48 to 0.67 and nRMSE from 0.17 to 0.19, 
while for soybean, the r values between 0.36 and 0.70 and nRMSE from 

0.17 to 0.2. Thus, the GGCM+RF within the different environmental 
variables (ECEs and CPDs) can significantly improve the model perfor-
mance. While previous research has shown that GGCMs capture tem-
perature and drought responses well (Franke et al., 2020a), they may 

Fig. 4. Partial dependence plots for maize and soybean yields based on six yield predictors. The smoothed black lines represent the model response, with corre-
sponding fitted values for the calibration data. The histograms show the probability distributions for the indexes, while the box plots illustrate the projected fre-
quency of extreme climate events and crop pests and diseases in two future periods (T1: 2040–2069 and T2: 2070–2099) based on 21 downscaled GCMs under 
SSP126 and SSP585. The percentages shown next to the panel letters indicate the relative importance of each variable generated from the random forest algorithm. 
SPEI, Standardized Precipitation and Evapotranspiration Index; CD, cold days; TD, tropical days; R1, drizzle (daily precipitation range of 0.1–1 mm); R30, excessive 
rainfall; CPD, crop pests and diseases. 
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underestimate the magnitude of yield losses under extreme conditions 
(Heinicke et al., 2022), and can be insensitive to extreme precipitation 
events, often overestimating crop yields under extremely wet conditions 
(Li et al., 2019b). By incorporating such extreme events, our hybrid 
model could provide more accurate and responsive simulations. 

Our analysis demonstrated that certain raw GGCM models per-
formed better than others in predicting crop yields. For maize, pDSSAT 
and CARAIB produced the best performance among the raw GGCM 
models, while LPJ-GUESS, PEPIC, pDSSAT, and the multi-model 
ensemble (designated as “All” in Fig. 3) performed best for the hybrid 
models (Fig. 3). For soybean, GEPIC and PEPIC produced the best per-
formance among the raw models, while the three EPIC-based models 
(EPIC-TAMU, GEPIC, PEPIC) and the multi-model ensemble performed 
best for the hybrid models. However, JULES had poor accuracy for 
maize and soybean. Our study also revealed that the multi-model 
average often failed to achieve optimal accuracy, particularly for 
GGCMs, likely due to the significant differences among models masking 
some model characteristics and failing to capture all relevant informa-
tion. As a result, directly averaging the models, such as using an arith-
metic average, may not produce satisfactory results when evaluating 
yield using a multi-model approach. Therefore, selecting appropriate 
models is crucial for achieving optimal simulation or prediction when 
considering multiple models. 

3.2. Relationship between crop yields and environmental factors 

We used the RF model to generate the relative importance and partial 
dependence plots (PDP) (Fig. 4) to demonstrate the non-linear rela-
tionship between environmental factors and crop yield. We normalized 
the relative importance of the six environmental factors to sum to 100%, 
and found that the main influencing factors were CD (33.5%) and CPD 
(23.4%) for maize, and CPD (22.6%) and TD (19.5%) for soybean. 

The PDP revealed that cold days (CD) had a positive effect on maize 
yield but a negative impact on soybean yield, while crop pests and 
diseases (CPD) significantly reduced yields for both crops. Maize yield 
demonstrated a positive correlation with the Standardized Precipitation 
Evapotranspiration Index (SPEI), indicating that the dry season nega-
tively affected yield, whereas the wet season had a positive influence. 
Soybean yield showed a positive correlation with SPEI ≤ − 0.2 and a 
negative correlation with SPEI > − 0.2. Tropical days (TD) negatively 
impacted both maize and soybean yields. However, when TD was less 
than 30 days, soybean yield increased. R1 ≤ 20 days had a positive ef-
fect on maize yield, but R1 > 20 days slightly reduced maize yield. In 
contrast, R1 negatively influenced soybean yield when it was less than or 
equal to 16 days, but when R1 exceeded 16 days, soybean yield was 
positively correlated with R1. R30 exhibited a negative correlation with 
both maize and soybean yields, but when R30 was below approximately 
nine days, it was positively correlated with soybean yield (Fig. 4). 

Under SSP585, the risk of CD was relatively low compared with the 
historical period, but the risk associated with CD remained high under 
SSP126 (Fig. 4). CPD increased significantly in both scenarios, with a 
greater increase under SSP585 than under SSP126, particularly from 
2070 to 2999 (T2). TD had little impact on crop yield under SSP126, but 
caused significant yield losses under SSP585. R1 did not significantly 
change under SSP126 or SSP585 compared with the historical data, 
while R30 increased significantly during T2 under SSP585 (Fig. 4). 

Overall, our findings suggested that managing drought and heat 
events during the growing season will be crucial when cultivating maize 
and soybean in the context of future climate change. Moreover, our 
study highlights the increased risk of CPD in the future, emphasizing the 
need for implementing appropriate management practices (e.g., crop 
rotation and integrated pest management) to mitigate the negative 
impact of CPD on crop yield (Lengai et al., 2020; Tariq et al., 2019). 

3.3. Projected yield change 

Our analysis of the time series of maize and soybean yield changes 
under SSP126 and SSP585 from 1980 to 2099 (Fig. 5) showed that the 
GGCMs and hybrid models (GGCM+RF) projected a substantial decline 
in maize yield, particularly after 2040 (Fig. 5a). Under the SSP126 
scenario, the GGCM model projected an increasing trend in soybean 
yield, while the GGCM+RF model projected a declining trend in soybean 
yield after 2040. In contrast, under the SSP585 scenario, the GGCM 
projected a reduction in soybean yield starting around 2050, whereas 
the GGCM+RF model projected an earlier yield decrease (Fig. 5d). 

The GGCM and GGCM+RF simulations projected a decrease in maize 
yield, with the similarity between the two projections suggesting that 
the GGCM emulators adequately reflected yield losses under certain 
extreme climate conditions. However, for soybean, the GGCM may have 
somewhat overestimated yields due to insufficient consideration of 
ECEs, while machine learning could capture such impacts. Moreover, 
the sensitivity of soybean and maize to different climate factors varies, e. 
g., soybean yields are more sensitive to maximum and minimum tem-
peratures than maize yields (Hoffman et al., 2020), and some process 
models may oversimplify these responses and thus underestimate the 
adverse effects of climate change on soybean yield. In contrast, the 
hybrid models under SSP585 generally produced slightly lower yield 
changes than GGCMs, and this result could be attributed to the machine 
learning model capturing the adaptation and resilience strategies 
employed by farmers in response to extreme events. Such strategies 
could potentially mitigate the impacts of extreme events, resulting in 
higher yields than those predicted exclusively by the GGCM (Siebert 
et al., 2017; Wang et al., 2021b). 

The projected crop yield changes varied across different sub-regions. 
Sub-regions I and IV exhibited more pronounced declines in maize yield, 
while sub-regions IV and V demonstrated greater yield declines for 
soybean (Fig. S3). The GGCM+RF simulations estimated slightly smaller 
yield declines compared with GGCM, particularly in region V for maize 
yield. Under the SSP126 scenario, GGCM+RF projected marginally 
larger yield reductions than GGCM. Under the SSP585 scenario, the 
GGCM simulations in regions IV and V had more pronounced declines in 
soybean yield than GGCM+RF. However, in sub-region III, GGCM+RF 
under SSP126 and SSP585 estimated more significant yield decreases 
than the GGCM simulations (Fig. S4). 

3.4. Uncertainties in the two modeling approaches 

The GGCM+RF method substantially reduced the uncertainty range 
of crop yield changes (compared with the raw GGCM simulations) by 
32.8–77.8% for maize and by 56.0–67.6% for soybean under the SSP126 
and SSP585 scenarios (Fig. 5b, d). Our results for the raw GGCM sim-
ulations indicated that the GGCM was the dominant source of uncer-
tainty, while GGCM+RF reduced GGCM-induced uncertainty, resulting 
in GCM and climate scenario as the main sources of uncertainty for 
GGCM+RF during T1 and T2, respectively. 

The sources of uncertainty in maize and soybean yield projections 
varied across regions, highlighting their region-specific nature (Figs. S5 
and S6). For maize, the main sources of uncertainty were GGCM in sub- 
regions I and IV. The main sources of uncertainty for maize in sub- 
regions III and V were GCM during T1 and climate scenario during T2. 
For soybean, the main sources of uncertainty were crop model in sub- 
region III, and GCM and climate scenario in sub-regions IV and V. 

4. Discussion 

4.1. Model performance 

We improved the performance of crop models at site scales by 
incorporating a machine learning algorithm (Fig. 3). The increased 
improvement was attributed mainly to the external statistical model (RF 
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model) that accounted for the impact of ECEs and CPDs that crop models 
often oversimplify. When comparing the GGCM+RF and GGCM+DLM 
models, our results showed superior performance from the GGCM+RF 
model. Such results are not surprising since non-linear models are 
generally better at capturing the potential impacts of ECEs and CPDs on 
crop yields. This can be attributed to the inherent non-linear relation-
ships between crop yield and these variables in the natural environment. 
However, the accuracy of simulations during the historical period was 
relatively lower than those using multi-source environmental variables 
(Cao et al., 2021a; Cao et al., 2021b; Li et al., 2022) because we only 
used six variables during the growing season and crop model output as 
predictive factors, and did not consider individual growth stages or 
additional remote sensing data. We opted for this approach to avoid 
compromising the distinct features of the GGCM within the machine 
learning process. Including too many variables may lead to convergence 
in the results of different models, ultimately weakening their distinct 

features. Conversely, using too few variables may result in significant 
model biases. Therefore, finding the optimal number of variables is 
crucial for improving model accuracy. 

4.2. Crop yield responses to environmental factors 

We used partial dependence plots to examine the relationships be-
tween environmental factors, including ECEs and crop pests and diseases 
(CPDs), and crop yields (Fig. 4). CPD risk had a significant negative 
correlation with crop yield. However, maize and soybean exhibited 
similar yield loss plateaus at CPD risk values > 220% that we attributed 
to unknown factors that affect crop yields above this threshold. 
Furthermore, maize and soybean yields exhibited different CD response 
curves, with CD positively impacting maize, but negatively affecting 
soybean yield. This result might be due to cool conditions during sum-
mer that can reduce heat stress in maize (Bheemanahalli et al., 2022), 

Fig. 5. Projected crop yield changes using multi-model ensembles and the corresponding proportion of uncertainty. a, Time series for maize and soybean yield 
changes for 1980–2099 (left). Shaded areas illustrate the 25th and 75th percentiles. The two solid lines display the median values and a smoothed trend. b, Boxplots 
showing maize and soybean yield changes for 2040–2069 (T1) and 2070–2099 (T2). Box boundaries indicate the 25th and 75th percentiles across 21 GCMs and nine 
GGCMs; whiskers below and above the box indicate the 10th and 90th percentiles, respectively. c, Bar charts showing the source of uncertainty in maize and soybean 
yield change projections, separated into GCM, GGCM, scenario (SSP), and their interactions. G1, GGCM under SSP126; GR1, GGCM+RF under SSP126; G5, GGCM 
under SSP585; GR5, GGCM+RF under SSP585. 
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improve water use efficiency (Zhang et al., 2008), and optimize 
photosynthesis (Huang et al., 2019). For soybean, CD could slow the rate 
of photosynthesis or cause frost damage if CD duration is excessively 
long (Kumar et al., 2018). Notably, the frequency of CD risk is expected 
to decrease under future climate change, particularly under the SSP585 
scenario (Fig. 4), in which heat also leads to large yield losses, especially 
for maize. Heat impacts maize yield by reducing pollen production 
(Hatfield and Prueger, 2015) and diminishing leaf area, subsequently 
affecting photosynthesis (Bheemanahalli et al., 2022). 

Our analysis revealed that SPEI was positively correlated with maize 
yield, indicating that maize yield increases under wetter conditions and 
decreases under drier conditions. However, for soybean, SPEI was 
negatively correlated with yield at SPEI > − 0.2 (Fig. 4). This type of 
relationship analysis has been used to examine the water constraint on 
vegetation productivity (Jiao et al., 2021) Our results demonstrated a 
negative correlation when SPEI values were relatively higher (SPEI >
− 0.2), indicating that excessive water could limit soybean growth. This 
could be attributed to extremely wet conditions causing yield re-
ductions, a response that is often overlooked by crop models (Li et al., 
2019b) and explains why crop models generally overestimated soybean 
yields in our study (Fig. 5). Furthermore, our findings suggested that 
soybean yields will decline under the R1 scenario, potentially due to 
drizzle not supplying enough available water for crops while inducing 
cold and radiation stress (Lesk et al., 2020). Excess rainfall has a more 
pronounced effect on maize than soybean, possibly because soybean is 
more sensitive to flooding during the seedling stage (around April–May), 
while heavy rain is more common in July and August. Heavy rain is 
often accompanied by strong winds. Under such conditions or other 
severe convective weather events, maize is more likely to experience 
lodging or pest and disease infestations (Chaloner et al., 2021; Li et al., 
2019b; Savary et al., 2019). Analyzing the relationships between 
different factors and crop yields helps us better understand the impact of 
ECEs and CPD risks on crop yields. In general, our study integrated these 
responses through the use of a hybrid model, successfully improving the 
model’s performance and reducing overall uncertainty. 

4.3. Constraining model uncertainty regarding future crop yield changes 

Due to the significant uncertainties in current crop models, some 
studies have attempted to constrain model uncertainty using linear 
emergent approaches (Wang et al., 2020c; Zhao et al., 2016b), but they 
often overlook potential non-linear responses. While recent studies have 
used non-linear models, such as machine learning, to constrain uncer-
tainty (Yin and Leng, 2022), they focused on country-scale analysis 
rather than field-scale assessments. In addition to non-linear responses, 
we considered ECEs and CPD risk, and further analyzed sources of un-
certainty in raw GGCM and GGCM+RF data to provide a deeper un-
derstanding of the impact of future climate change on agriculture. 

Understanding the main sources of uncertainty in climate-crop 
modeling, such as crop models, GCM, and scenarios is essential for 
formulating effective adaptation strategies for cropping systems. In 
addition, this understanding can direct future research toward 
enhancing the precision and effectiveness of yield change predictions 
(Müller et al., 2021; Wang et al., 2020a). Our findings indicated that 
GGCM was the main source of uncertainty for raw GGCM simulations, 
while for GGCM+RF, the dominant source of uncertainty was GCM 
during T1, while the dominant source was SSP during T2 (Fig. 5). This 
may be due to our selection of the low and high ends of the Shared 
Socioeconomic Pathways (SSP126 and SSP585), potentially contrib-
uting to a greater variance source from SSP during T2. Furthermore, 
these sources of uncertainty varied across different maize and soybean 
regions (Figs. S4 and S5), making accurate crop growth modeling 
challenging (Jiang et al., 2022; Wang et al., 2020a) and highlighting the 
need for region-specific modeling approaches. For instance, GGCM was 
the main source of uncertainty in maize yield changes in sub-regions I 
and IV, possibly attributed to their semi-arid climate with limited 

precipitation and significant seasonal temperature variations (Fig. 1). In 
contrast, GCM was the main source of uncertainty in maize yield 
changes in sub-regions III and V, characterized by sub-humid conti-
nental and subtropical humid climates with relatively high humidity and 
rainfall (Li et al., 2020; Wang et al., 2022b). As a result, GCMs may 
struggle to capture distinct climatic patterns and their impacts on 
agriculture. 

4.4. Potential adaptations to mitigate climate change impacts 

Consistent with the results of other studies, we found that climate 
change and global warming will reduce maize and soybean yields 
(Fig. 5) (Huang et al., 2021; Kothari et al., 2022), particularly after the 
mid-21st century. Without appropriate adaptation measures, climate 
change will likely decrease agricultural productivity and increase the 
risk of crop failure (Huang et al., 2021; Kothari et al., 2022). Developing 
new crop varieties adapted to differing growing season conditions can 
help stabilize yields under future climate change (Zabel et al., 2021), 
especially after the 2040 s (Fig. S7). Adjusting planting dates (Huang 
et al., 2020; McDonald et al., 2022; Minoli et al., 2022), switching crop 
species or varieties (Xie et al., 2023), and implementing improved 
management practices (Liu et al., 2021b; McCullough et al., 2022; Wang 
et al., 2022d) will be potential strategies for adapting to climate change. 
Moreover, our findings suggest that optimizing management practices 
can increase yields while reducing greenhouse gas emissions and 
achieving climate change adaptation and mitigation goals (He et al., 
2022; Liu et al., 2021b; Peng and Guan, 2021). 

4.5. Limitations and future framework 

Even though the results of our study demonstrated that the uncer-
tainty of multi-model predictions was significantly reduced by incor-
porating external statistical models, some limitations remain regarding 
the results of the study. The first potential limitation is the impact of data 
quality and quantity on the performance of machine learning models 
(Elavarasan et al., 2018; Liakos et al., 2018). Due to data collection 
limitations, the observational data used in this study were relatively 
scarce, and biases in data quality may have affected model prediction 
results. For instance, during the T2 period under SSP585, some extreme 
indices exceeded the training dataset range. Predictions made beyond 
this range could be unreliable, resulting in slight overestimations of crop 
yields simulated by GGCM+RF (Fig. 5). Moreover, the coarse data res-
olution for CPDs (provincial scale) may influence the prediction accu-
racy. Thus, more controlled variable experiments are needed to better 
capture the impact of ECEs on crop yields. The second potential limi-
tation relative to the results of our study arises from the fact that our 
research focused on using external statistical models to improve model 
prediction accuracy and to constrain uncertainty rather than enhancing 
the response processes used in the crop models. Other studies have 
attempted to improve crop models to enhance model performance and 
reduce uncertainty by addressing the temperature response (Wang et al., 
2017; Wang et al., 2020b), the photosynthetic response (Wang et al., 
2022c), and the waterlogging response (Liu et al., 2023). The third 
limitation is due to the fact that considerable differences in climate 
change response processes among crop models could significantly in-
fluence the sources of uncertainty and yield projections. Future studies 
should consider model composition and ensemble size when compre-
hensively analyzing crop yield changes and associated uncertainty. 
Lastly, it is important to differentiate between uncertainty and inaccu-
racy. While our study successfully reduced the overall uncertainty of 
crop yield projections, further efforts are needed to enhance the accu-
racy of crop models. These efforst will call for additional experiments to 
better harmonize crop and climate model processes, ultimately 
increasing the overall robustness and providing more reliable informa-
tion for decision-making and future research. 
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5. Conclusion 

In summary, we successfully developed hybrid models (GGCM+RF) 
that combined machine learning with crop models by considering ECEs 
and CPD, thereby improving the accuracy of maize and soybean yield 
projections while reducing the overall uncertainty. Our main conclu-
sions are:  

1) Incorporating machine learning into crop models significantly 
improved model performance (higher r values and lower nRMSE 
values), particularly for maize, with r values increasing from 0.15 to 
0.61–0.64–0.77, and nRMSE values decreasing from 0.18 to 
0.50–0.13–0.17.  

2) The dominant factors affecting yield changes in China were CD, CPD, 
and SPEI for maize, and CPD, tropical days (TD), and SPEI for soy-
bean. In addition, our findings highlighted the impact of ECEs and 
CPDs on crop yields, demonstrating that crop yields exhibit 
threshold-like responses to such environmental variables.  

3) Our approach of combining machine learning with crop models 
reduced yield uncertainty by 32.8–77.8% for maize and 56.0–67.6% 
for soybean. For the raw GGCM, the crop model was the main source 
of uncertainty, while for the GGCM+RF model, the main sources of 
uncertainty were GCM during T1 and SSP during T2. 

The results of our study provide valuable information for local 
farmers and policymakers to address the impacts of more extreme 
climate under future climate change. We anticipate that our methods 
can be extended to other regions or applied globally. 
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