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A B S T R A C T   

Study region: New South Wales, southeast Australia 
Study focus: Estimating potential evapotranspiration (ETp) rates, detecting its temporal trends and 
analysing its interannual oscillation are critical for long-term assessment of water availability and 
regional drought. This study aimed to evaluate the comprehensive performance of 12 simplified 
models in characterising ETp against the benchmark Penman model across different climate sites 
in southeast Australia. This study used Taylor skill score (S), normalised root mean square error 
(nRMSE) and relative mean bias error (rMBE) to estimate models’ capability in estimating ETp 
rates. Then, this study adopted Mann-Kendall test and continuous wavelet transform (CWT) to 
test temporal trends and periodicity of ETp estimated by all models. 
New hydrology insights for the region: Jensen-Haise model was capable to produce fair (nRMSE ≤
30%) estimates of daily ETp across all stations. Models except Mak1 were generally able to 
produce reasonable estimates of ETp at larger time scale. In addition, we found that the 12 
alternative ETp models generally agreed with the Penman model on the primary (9.6–12.4-year) 
and quasi (2.6–3.9-year) periods of ETp, but they did not show matchable ability in detecting ETp 
temporal trends. The comprehensive investigation on models’ performance will shed light on 
models’ selection in estimation of drought and hydrological cycle.   
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1. Introduction 

Evapotranspiration (ET) is a key nexus to water, energy, and nutrients cycles in ecosystems (Allen et al., 1998; Jung et al., 2010; 
McMahon et al., 2016; Peng et al., 2018). As an explanation, evapotranspiration accounts for 60% (up to 95% in arid regions) of water 
loss in the hydrological budget (Jung et al., 2010; Kool et al., 2014) and consumes more than 50% of the solar energy absorbed by land 
surfaces (Trenberth et al., 2009). Actual evapotranspiration (ETa), potential evapotranspiration (ETp), and reference evapotranspi-
ration (ET0) are three related yet slightly different terms in evapotranspiration estimation for different use. In specific, actual 
evapotranspiration is the total amount of water evaporating from land surface to atmosphere, having significant influence on regional 
or global water availability (Xiong et al., 2023). It can be estimated by water balance method at regional or global scale or directly 
measured by lysimeters, eddy covariance flux towers, or satellite-based remote sensing (Xiong et al., 2023; Zhang et al., 2020). 
Conceptually, ETp is the maximum evapotranspiration from a surface which is not limited by water availability. In other words, it 
represents for atmospheric evaporative demand under certain climatic conditions and is the maximum possible value of ETa for a 
evaporative surface (Donohue et al., 2010; Kumar et al., 1987). ETp is an important input to various hydrological models (Oudin et al., 
2005; Peng et al., 2016) and drought indexes (Scheff and Frierson, 2015; Sheffield et al., 2012; Xu et al., 2015). Penman model is the 
most classical model in ETp estimation (Donohue et al., 2010; Shuttleworth, 1993). Similar to ETp, ET0 is the maximum evapo-
transpiration from a well-watered hypothetical crop surface, which is with an assumed height of 0.12 m, a surface resistance of 70 s 
m− 1, and an albedo of 0.23. ET0 is widely used in calculation of crop water requirement and agricultural irrigation management (Li 
et al., 2015; Zhang et al., 2010). The most classical model to estimate ET0 is Penman-Monteith model recommended by FAO (Jensen 
and Allen, 1990). Our study aims to shed light on the option of ETp models as an input for hydrological models or drought indexes. 
Thus, this study focused on ETp models’ assessment. 

Due to difficulty in ET measurement, it is commonly to estimate ET by different models, as mentioned above water balance model 
for ETa estimation, Penman-Monteith model for ET0 estimation, and the classical Penman model for ETp estimation. The accuracy and 
superiority of Penman model in estimating ETp and capturing its temporal trends have been demonstrated across a broad range of 
climatic conditions (Donohue et al., 2010; Yang et al., 2019). However, it may be limited to use due to its intensive requirement of 
climatic data. In this context, various simplified models based on statistical functions between meteorological parameters and ETp 
were developed to estimate ETp. Contrary to the sound performance of Penman model across various climatic conditions, the 

Fig. 1. Spatial distribution of eight weather stations across different climate regimes in NSW.  
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performance of simplified ETp models is mostly location-depended. Therefore, assessments of their accuracy beyond the conditions 
where they were originally developed is necessary (Almorox et al., 2015; Tabari, 2009). For instance, Lu et al. (2005) assessed the 
performance of six ETp models against ETa calculated by water balance equation in the southeast United States. They found that ETp 
values were significantly different among these models. Based on the research, they recommended to use Priestley-Taylor, Turc, and 
Hamon models to estimate ETp in that region. Based on three sites in southeast Australia, Azhar and Perera (2011) compared per-
formance of ten ET0 models against ETa measured from standard-grass weighting lysimeters. They reported that combination methods 
generally produced the most accurate ET estimates. At global scale, Almorox et al. (2015) assessed the performance of 11 
temperature-based models for estimating ETp or ET0 across various climatic conditions with Penman-Monteith as the benchmark. 
They concluded that the Hargreaves-Samani model produced the most accurate global average performance independence of the 
climate conditions. 

However, it is not comprehensive enough to evaluate models’ performance based on estimation of ETp rates alone. As well known 
by researchers, both increasing and decreasing trends of ETp have been reported under a changing climate and influence of human 
activities on hydrological cycle (Irmak et al., 2012; Peng et al., 2020; Roderick et al., 2007; Xiong et al., 2022). For instance, Xiong 
et al. (2022) divided ET into five components and found significant increase in global ET driven by climatic factors or human in-
terventions. Similarly, Peng et al. (2020) found that vegetation greenness in China lead to an increase in ET. Ahmadi and Javanbakht 
(2020) found that ET0 would increase with climate getting drier and warmer in southwest Iran. Furthermore, climatic anomalies (such 
as extreme temperature or precipitation) often occurred periodically. For example, Li et al. (2019) investigated the spatiotemporal 
evolution of extreme temperature events across China. They found that besides the increasing/decreasing trends six extreme tem-
perature indices showed periodically oscillation both in historical and future climate scenarios. Given the strong influence of climatic 
factors and human activities on ETp, it is reasonable to conjecture that the dynamic temporal trends and the interannual oscillation of 
ETp may continue going on (Liang et al., 2010; Wang et al., 2017). In this context, the ability in capturing ETp trends and the possible 
periodically oscillation is also expected from ETp models. However, few studies have investigated the periodicity of ETp. Especially, 
the intercomparison of ability of different ETp models on detecting periodicity of ETp has rarely reported. 

In summary, evapotranspiration rates, temporal trends, and interannual oscillation are all important characteristics of ETp (Liang 
et al., 2010). Comprehensive investigation on models’ performance in these perspectives will fill the existing research gap and shed 
light on models’ selection in estimation of drought and hydrological cycle. Thus, we aimed to evaluate the ability of 12 ETp models in 
the above-mentioned perspectives against the Penman model across eight climatic stations in NSW, Australia. 

2. Materials and methods 

2.1. Study areas and climate data sets 

New South Wales (NSW) is the most populous state in Australia. It is located in southeast Australia (Fig. 1), accounting for 10.4% of 
the Australian land area (8.1 ×105 km2). NSW is divided into four distinct geographical sections by natural features: the east coast, the 
mountains (the Great Dividing Range), the central plains, and the western plains. These diverse geographical features create a varied 
climate across NSW, namely arid climate at the westernmost area, semi-arid climate at the midwestern plains, sub-humid climate at the 
mideastern area, and the humid climate along the eastern coastal area. In specific, average annual rainfall increases from 50 mm 
year− 1 for the westernmost area to 1500 mm year− 1 for the eastern coast. Eight stations across NSW were selected as they have 
complete set of climate data (Fig. 1). The detailed information of these stations was displayed in Table 1. 

Daily meteorological data including maximum temperature (Tmax), minimum temperature (Tmin), maximum and minimum relative 
humidity (RHmax and RHmin, respectively), solar radiation (Rs), and rainfall (P) were obtained from the Scientific Information for Land 
Owners (https://www.longpaddock.qld.gov.au/silo/datadrill/index.php). The measured wind speed data was obtained from the 
Bureau of Meteorology (http://www.bom.gov.au/). All these meteorological factors have complete observations in the research period 
(1970–2014) with the exception of wind speed observation missing less than 5%. For days with missing wind data, we adopted long- 
term local daily average wind speed for that day to drive Penman model and other wind-involved models. With these data as input, 

Table 1 
Multi-year (1970–2014) average of air temperature (T), solar radiation (Rs), relative humidity (RH), wind speed (u2), vapour pressure deficit (VPD), 
rainfall (P), potential evapotranspiration (ETp), and aridity index (AI) of eight stations in New South Wales and their geographical information. Data 
used to calculate the averaged meteorological factors, ETp, and AI is from 1970 to 2014.  

Stations Lon (degree) Lat (degree) DEM (m) T 
(◦C) 

Rs 
(MJ m− 2 day− 1) 

RH 
(%) 

u2 

(m/s) 
VPD 
(kpa) 

P 
(mm) 

ETp 
(mm) 

AI 
(P/ETp†) 

Tibooburra (TBR)  142.0 -29.4 183  20.9  20.7  48.2  1.9  1.8  261  2009  0.16 
Wilcannia (WCN)  143.4 -31.6 75  19.5  19.7  55.3  2.7  1.6  292  2070  0.17 
Cobar (CBR)  145.8 -31.5 260  19.0  19.4  54.6  2.0  1.5  407  1847  0.26 
Gunnedah (GND)  150.3 -31.0 307  18.5  18.6  63.2  1.8  1.2  640  1650  0.47 
Murrurundi (MRD)  150.8 -31.8 466  15.5  17.5  71.8  1.5  0.9  865  1410  0.74 
Paterson (PTS)  151.6 -32.6 30  18.0  16.9  71.5  2.3  0.9  926  1535  0.73 
Sydney (SYD)  151.2 -34.0 6  18.2  16.4  67.6  3.2  0.8  1083  1586  0.82 
Coffs Harbour (CHB)  153.1 -30.3 5  18.9  17.5  72.3  2.7  0.8  1678  1557  1.28 

†P = rainfall; AI = aridity index. 
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daily ETp was firstly calculated. Then, monthly, seasonal, and annual ETp were the accumulation of daily ETp. 

2.2. Estimation of potential evapotranspiration 

ETp measured with Pan, lysimeters, or eddy covariance flux is the most accuracy estimation/observation of ETp and supposed to be 
benchmark for empirical models’ assessment (Liu et al., 2017; Martel et al., 2018). However, observation of ETp by these methods is 
generally expensive, labour-intensive, and high maintenance, thus not always available (Azhar and Perera, 2011; Martel et al., 2018). 
Among different models, Penman is the most classical one and widely used as benchmark to assess other models’ performance. In this 
study, we also assess the 12 models’ (Table 1) ability in ETp estimation, capturing its temporal trends and periodically oscillation. 

2.2.1. Penman model 
Combining radiative component with aerodynamic transfer, the Penman model is the classic for ETp estimation (Penman, 1948; 

Valiantzas, 2006). Among numerous variations of Penman model, the one given by Shuttleworth (1993) is simple, accurate, and has 
been widely used for ETp estimation from water surface (Donohue et al., 2010; Valiantzas, 2006; Zhou et al., 2006), as shown in Eq. 
(1): 

ETp,Penman = ETpR +ETpA =
0.408Δ
Δ + γ

Rn +
γ

Δ + γ
6.43(1 + 0.536u2)(es − ea)

λ
(1)  

where ETPenman (mm day− 1) is ETp from open water; ETpR (mm day− 1) is the radiative component and EpA (mm day− 1) is the aero-
dynamic component. Rn (MJ m− 2 day− 1) is net radiation, which is the algebraic sum of the net short and long wave radiation and could 
be calculated based on the process of Allen et al. (1998); T (◦C) is mean daily air temperature at 2 m height; u2 (m s− 1) is wind speed at 
2 m height; es (kPa) is saturation vapour pressure; ea (kPa) is actual vapour pressure; (es-ea) (kPa) is saturation vapour pressure deficit; 
Δ(kPa ◦C− 1) is the slope of the vapour pressure curve; γ (kPa ◦C− 1) is psychrometric constant; λ is the latent heat of vaporisation of 
water (=2.45 MJ kg− 1 at 20 ℃). More details about this equation can be referred to Shuttleworth (1993). 

2.2.2. Temperature-based ETp models 
Generally, temperature-based models rely on the reliable assumption that temperature is an indicator of the evaporative power of 

the atmosphere (McKenney and Rosenberg, 1993). Good performance of temperature-based models has been reported in literature. For 
instance, Tabari (2009) claimed that Hargreaves (HS) was able to estimate ETp accurately in various climates except humid climate. 
Meanwhile, obvious underestimation of ETp by HS under dry and windy regions was also common (Hargreaves and Allen, 2003). 
Therefore, we also investigated the performance of temperature-based models including Hargreaves (HS) (Droogers and Allen, 2002), 
Schendel (Sc) (Djaman et al., 2015; Schendel, 1967), and Ivanov (Iv) (Valipour et al., 2017) in this study. 

2.2.3. Radiation-based ETp models 
Radiation-based models adopt solar radiation companied with air temperature to estimate ETp based on energy balance (Muniandy 

et al., 2016; Xu and Singh, 2000). The commonly used radiation-based models including Jensen-Haise (JH) (Jensen and Haise, 1963), 
Priestley-Taylor (PT) (Priestley and Taylor, 1972), Makkink (Mak1) (Makkink, 1957), modified Makkink (Mak), Abtew (Ab) (Abtew, 
1996), and Turc (Tu) (Turc, 1961) were adopted in this study. Among them, PT, Mak1 and Mak are simplifications of Penman model. 
PT was originally developed to calculate ETp from a saturated land surface or an open water surface under conditions of minimal 
advection (Priestley and Taylor, 1972). Mak1 model was developed under temperate humid conditions. The difference between Mak1 
and PT is that Mak1 requires the incoming solar radiation whereas PT requires net radiation as input. Jensen-Haise (JH) model was 
developed based on numerous evapotranspiration observations by soil sampling (Jensen and Haise, 1963; Zhang et al., 2018). Turc 
(Tu) was developed under general climatic conditions of western Europe (Xu and Singh, 2000). 

2.2.4. Mass transfer-based models 
The mass transfer-based models are generally developed based on Dalton’s gas Law (Tabari et al., 2013) to estimate evaporation 

from free water surface. They adopt the aerodynamic concept of water vapour movement from the evaporating surface to the air to 
estimate ETp (Muniandy et al., 2016). Three commonly used mass transfer-based models, WMO (Valipour et al., 2017), Mahringer 
(Mah) (Mahringer, 1970), and Trabert (Tra) (Valipour et al., 2017) were studied in this research. 

2.3. Models’ performance in estimating ETp rates 

This study adopted Taylor skill score (S), normalised root mean square error (nRMSE), and relative mean bias error (rMBE) to assess 
the performance of 12 alternative ETp models against Penman model. The S combines correlation coefficient (R) and standard de-
viation (σ) into one index to comprehensively evaluate model performance (Taylor, 2001; Wang et al., 2015). The nRMSE is a powerful 
index to measure the relative difference of ETp calculated by alternative models versus Penman-calculated ETp. Performance of models 
is considered excellent if nRMSE is lower than 10%; good when it is higher than 10% but lower than 20%; fair with nRMSE between 
20% and 30%; poor with nRMSE higher than 30% (Dettori et al., 2011; Nouri and Homaee, 2018). The rMBE is a useful index to 
evaluate model’s bias and systematic error (Nouri and Homaee, 2018). The positive (negative) values of rMBE represent the model’s 
tendency to overestimate (underestimate) ETp relative to Penman model. A high-performing model will have high values of S with 
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values of rMBE and nRMBE close to 0%. 
The mathematical equations of these statistical indexes are as following: 

S =
4(1 + R)2

(
σM

σPenman
+ σPenman

σM

)2

(1 + R0)
2
, (2)  

where S is the Taylor skill score; R is the correlation coefficient between an alternative model and Penman model; R0 is the maximum 
correlation coefficient attainable (0.999 is used in this study). σMand σPenman are the standard deviations of ETp for an alternative model 
and Penman model, respectively; 

nRMSE =
100

ETPenman

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ETM,i − ETPenman,i

)2

√

, (3)  

rMBE =

(
100

ETPenman

)
1
n
∑n

i=1

(
ETM,i − ETPenman,i

)
(4)  

where ETM,i and ETPenman,i are ETp calculated with an alternative model and Penman model, respectively. ETPenman is the average 
Penman-calculated ETp and n is the number of the samples. 

2.4. Temporal trends and periodic analysis of ETp 

The Mann-Kendall test (MK test) is widely used in trend detection. One of the most outstanding advantages of MK test is that it is 
rank-based (non-parametric), which means it is not affected by the actual distribution of the original data even when significantly 
skewed with some outliers (Hu et al., 2020). Various studies showed that MK test is a powerful tool in analysing the seasonal and 
annual trends in climate data (such as rainfall and temperature). Companied with Sen’s estimator (also non-parametric), both trends 
and slope magnitudes of rainfall, temperature, runoff, evapotranspiration, and other hydrological data were widely documented in 
literature (Douglas et al., 2000; Fan et al., 2016; Peng et al., 2017; Tabari et al., 2011). In fact, MK test is highly recommended by the 
World Meteorological Organization to identify trends in hydro-meteorological time series. Thus, this study also adopted MK test to 
identify temporal trends of climatic factors and ETp. 

The temporal trend of data series can be detected by the standardised test statistic (Z) in M-K test. Generally, three different 
confidence intervals were commonly used in MK test to identify whether the temporal trend is significant or not. That is ｜Z｜> 1.65 at 
90% confidence level, ｜Z｜> 1.96 at the 95% confidence level, and ｜Z｜> 2.58 at 99% confidence level. A positive Z-value shows an 
increasing trend, while a negative Z-value indicates a decreasing trend. To capture the temporal trends of climatic factors and ETp as 
thorough as possible, this study adopted all three confidence intervals to test their trends significance. 

The statistical value, Sv, and the standardised test statistic, Z, are defined by equations from (5) to (8) (Han et al., 2018; Pohlert, 
2016): 

Sv =
∑n− 1

k=1

∑n

j=k+1
sgn

(
xj − xk

)
, (5)  

with 

sgn(x) =

⎧
⎨

⎩

1 if x > 0
0 if x = 0
− 1 if x < 0

, (6)  

with the variance of Sv 

σ2 =

{

n(n − 1)(2n+ 5) −
∑p

j=1
tj
(
tj − 1

)(
2tj + 5

)
}/

18, (7)  

Z =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sv − 1
σ if Sv > 0

0 if Sv = 0
Sv + 1

σ if Sv < 0

, (8)  

where xj and xk are two sequential values of the variable, n is the length of the data sequence, p is the number of tied groups, tj is the 
number of data values in the jth group. In addition to the M-K test, Sen’s slope estimator test was applied to calculate the magnitude of 
the ETp trend. The slope β (Gao et al., 2017; Pohlert, 2016) is calculated as Eq. (9): 
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β = Median
(

xj − xk

j − k

)

, 1 < k < j, (9) 

Continuous wavelet transform (CWT) is a powerful tool for analysing the periodic oscillations of climate anomalies (e.g. tem-
perature) (da Silveira and Pezzi, 2014; Torrence and Compo, 1998) and natural hazards (e.g. droughts) (Özger et al., 2009; Wang et al., 
2017). In this method, signals were decomposed into wavelet coefficients, which localised in both time and frequency due to dilation 
and translation of a mother wavelet. We used the Morlet wavelet as the mother wavelet in this study. The Morlet wavelet is a plane 
wave modified by a Gaussian, having a zero mean and providing a balance between time and frequency localisations (Zhang et al., 
2007). It is defined as: 

ψ0(t) = π− 1/4eiω0 te− t2/2, (10)  

where ω0, the dimensionless angular frequency, was set to 6 to render the Morlet wavelet analytical (Angi and Harald, 2014; Farge, 
1992). 

2.5. Sensitivity analysis of ETp to meteorological factors 

To detect which meteorological factor have the greatest influence on ETp, this study calculated the sensitivity coefficient of T, Rn, 
RH, and wind speed (u2) with the method proposed by McCuen (1974), as shown in Eq. (11). This method was based on partial 
derivation and widely used in sensitivity analysis of ETp to meteorological factors (She et al., 2017; Yang et al., 2019). 

SCvi = lim
vi→0

(
ΔETp

/
ETp

Δvi/vi

)

=
∂ETp

∂vi
·

vi

ETp
, (11) 

Fig. 2. The Taylor skill score (S), nRMSE (%), and rMBE (%) between daily ETp estimated by tested models and Penman in the research period 
(1970–2014) for eight stations in NSW. The pink colour filled panel of S represents for S ≥ 0.60; The pink colour filled panel of nRMSE represents for 
nRMSE ≤ 10%; The yellow colour filled panel of nRMSE represents for 10% < nRMSE ≤ 20%; The green colour filled panel of nRMSE represents for 
20% < nRMSE ≤ 30%. The pink colour filled panel of rMBE represents for absolute rMBE ≤ 10%; The yellow colour filled panel of rMBE represents 
for 10% < absolute rMBE ≤ 20%; The green colour filled of rMBE represents for 20% < absolute rMBE≤ 30%. 
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where SCvi is the sensitivity coefficient of the ith meteorological factor v. It is dimensionless, thus convenient for the comparison among 
different factors. When SCvi is positive, it indicates that ETp increases with the increase of meteorological factor vi. On the contrary, a 
negative SCvi means that ETp decreases with the increase of the variable. Meanwhile, the larger absolute SCvi is, the greater influence of 
meteorological factor has on ETp. Given that only Penman model includes all the four meteorological factors, thus this study only did 
sensitivity analysis based on Penman model. 

3. Results 

3.1. Performance of models in estimating ETp rates at various time scales 

This study assessed models’ performance in the estimation of ETp at daily (Fig. 2), monthly (Figs. S1–S4), seasonal (Figs. 3 & 5), and 
annual (Figs. 4 & 6) scales. The results showed that though S of all models were larger than 0.60 (indicating high correlation with 
Penman model), only model JH, whose S was larger than 0.90, nRMSE ranged from 20% to 30%, and rMBE ranged from − 2% to 
− 14%, was able to produce good or fair estimation in daily ETp across all eight stations (Fig. 2). Followed model JH, models including 
Tu, Ab, PT, Mak, HS, and Sc were able to produce fair estimation of daily ETp at two to four stations out of eight stations. For instance, 
model Sc greatly overestimated daily ETp at arid stations and got its best performance at two humid stations (with nRMSE slightly 
lower than 30%). On the contrary, model HS generally performed better at semi-arid and sub-humid stations than it did at other 
stations. 

Most models’ performance was improved at monthly (Figs. S1–S4) and seasonal scales (Figs. 3 & 5). As seasonal ETp was the 
accumulation of monthly ETp in that season, models’ performance at monthly scale generally unified with that in the corresponding 
seasons. Thus, the results focused on the description of models’ performance at seasonal scale. Generally speaking, all radiation-based 
models (JH, Ab, Tu, Mak, and Mak1) and temperature-based HS (temperature-based) tended to underestimate monthly and seasonal 
ETp whereas mass transfer-based models (WMO, Mah, and Tra) and temperature-based IV and Sc generally overestimated seasonal 
ETp at arid and semi-arid stations but underestimated it at sub-humid and humid stations. Another common pattern shared by 
radiation-based models and HS was that their performance was better in estimation of summer and autumn ETp than they did in winter 
and spring whereas mass transfer-based models did not show unified seasonal pattern in their performance (Figs. 3 & 5). Radiation- 
based models and HS were developed based on temperature and radiation (Rs or Rn), which were generally simplified as linear 

Fig. 3. The Taylor skill score (S), nRMSE (%), and rMBE (%) between seasonal ETp estimated by tested models and Penman in the research period 
(1970–2014) for eight stations in NSW. The filled colour panels of S, nRMSE, and rMBE have the same meaning with that in Fig. 2. 
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correlation with ETp (Table 2). Thus, high radiation and temperature in summer, which resulted in relatively high ETp and lower 
underestimation, might be the main cause result in their better performance. Temperature and radiation in autumn were comparable 
with that in spring and slight lower than that in summer but the high humidity in autumn result in smaller ETp, thus better perfor-
mance of the above-mentioned models in autumn. 

In specific, model JH produced excellent (nRMSE ≤ 10%, − 7% < rMBE < 6%, pink colour filled in Fig. 3) estimation of summer and 
autumn ETp across all stations except for the good (10% < nRMSE ≤ 20%, yellow colour filled in Fig. 3) estimation of autumn ETp at 
WCB (rMBE = − 13%) and SYD (rMBE = − 10%). For spring and winter, JH generally produced good (10% < nRMSE ≤ 20%) or fair 
(20% < nRMSE ≤ 30%) estimation of ETp and the performance in spring was generally better than that in winter. Following JH, Tu 
produced good or fair estimation of seasonal ETp across all stations. The third and fourth well or fairly performed radiation-based 
model was Ab and Mak, respectively. Model PT was more suitable for seasonal ETp estimation at sub-humid and humid stations. 
Performance of HS at semi-arid and sub-humid stations was better than that at arid and humid stations. Performance of IV and Sc 
showed large variation among stations. Meanwhile, ETp estimated by them showed larger inter-annual fluctuation especially at arid 
and semi-arid stations (Fig. 5). For mass transfer-based models, WMO outperformed Mah and Tra. In specific, WMO was able to 
produce good or fair estimation of seasonal ETp at most stations whereas Mah and Tra tended to seriously overestimate summer and 
autumn ETp at arid and semi-arid stations. Their performance also showed large inter-annual fluctuation and variation among stations. 

JH followed by Tu still outperformed all other models in annual ETp estimation (Figs. 4 & 6). In specific, JH produced excellent or 
good estimation of annual ETp across all stations and Tu produced good or fair estimation of annual ETp across all stations. Ab and Mak 
produced good or fair estimation of ETp at seven out of eight stations. Performance of PT became good or fair with climate getting 
wetter whereas annual ETp estimated by Mak1 was generally poor (nRMSE > 30%) for most stations. Temperature-based models HS 
and IV also produced good or fair estimation of annual ETp for most stations. Performance of HS was better at semi-arid and sub-humid 
stations than it did at arid and humid stations. On the contrary, IV performed better at arid and semi-arid stations than it did at the wet 

Fig. 4. The Taylor skill score (S), nRMSE (%), and rMBE (%) between annual ETp estimated by tested models and Penman in the research period 
(1970–2014) for eight stations in NSW. The filled colour panels of S, nRMSE, and rMBE have the same meaning with that in Fig. 2. 
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stations at annual scale. Performance of Sc showed large difference among stations, that is, excellent at sub-humid and humid stations 
but poor or barely fair/good at arid and semi-arid stations. Mass transfer-based models WMO and Mah produced good or fair esti-
mation of annual ETp for most stations whereas performance of Tra was not acceptable at arid stations but good at sub-humid and 
humid stations. 

3.2. Ability of alternative models to capture temporal trends in ETp 

Fig. 6 displayed that ETp showed inter-annual variation during the research period. Compared with Penman model, mass transfer- 
based models and temperature-based models except HS generally exaggerated the magnitude of the variation, especially at arid and 
semi-arid stations. On the contrary, the inter-annual variation detected by radiation-based models was smaller than that detected by 
Penman. The unmatched temporal trends of ETp were also confirmed by the result of MK test (Fig. 7). In specific, Penman model only 
detected significant increase of ETp at semi-arid CBR and the two humid stations (SYD & CHB) with increasing rates less than 10 mm 
year− 1 at SYD and 4 mm year− 1 at the other two stations. However, the increasing rates detected by them were around two times than 
that detected by Penman model. On the contrary, most radiation-based models noticed significant increase of ETp at CBR, SYD, and 
PTS with smaller increase rates. As to temperature-based models, IV and Sc detected increase in ETp for most stations but the increase 
detected by HS was not significant for most stations. In summary, the change trends of ETp detected by the 12 tested models were not 
so consistent with that detected by Penman model. 

The change trends of ETp were generally driven by changes of climatic factors. Thus, this study also analysed the change trends of 
climatic factors including Rn, u2, RH, T and difference between Tmax and Tmin (DT), as shown in Fig. S5. It showed that Rn at TBR and 
GND showed significant decrease; u2 showed significant decrease at arid stations, significant increase at humid stations, but no 
uniform change pattern for the semi-arid and sub-humid stations. RH generally showed decrease trend at all stations and the decrease 
was significant at arid and humid stations. On the contrary, T showed significant increase at all stations except WCN. DT generally 
showed an increasing trend except the significant decrease at SYD. It indicated that the increase rate of Tmin at SYD was larger than 
that of Tmax at SYD. 

3.3. Ability of alternative models to analyze the periodicity in ETp 

The results of wavelet analysis showed that all models were capable to detect the primary period (pp, characterised with a 
maximum vibration intensity) and the quasi period (qp, characterised with secondary maximum vibration intensity) of ETp (Fig. 8) in 
spite of slight difference among 13 ETp models. In addition, the multi model averaged pp and qp at eight stations were similar, ranging 
from 9.6 year to 12.4 year (Figs. S6–S13), and from 2.6 year to 3.9 year (Figs. S6–S13), respectively. Thus, we only displayed the results 
of Tibooburra as an example (Fig. 8). Figures of other stations were offered in the supplementary material (Figs. S6–S13). 

In specific, WMO produced the same pp with Penman model at all stations except Sydney, where Penman-calculated pp and qp 
were 3.9 year and 8.3 year, respectively (Fig. S12). The Penman-calculated pp and qp at the other seven stations ranged from 8.3 year 
to 12.4 year and from 2.6 year to 4.6 year, respectively. Second to WMO, Mah and Tra produced the same pp with Penman at five out of 
eight stations. As to radiation-based and temperature-based models, they generally produced slightly longer pp and qp than Penman 

Fig. 5. Boxplots of seasonal ETp in the research period (1970–2014) for eight stations in NSW. Lower and upper box boundaries indicate the 25th 
and 75th percentiles, respectively. The black line and dot inside each box indicate the median and mean, respectively. The lower and upper whiskers 
indicate the 10th and 90th percentiles, respectively. 
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did. 

3.4. Sensitivity of ETp to meteorological factors 

Without surprising, T, Rn, and u2 showed positive influence on ETp whereas RH showed negative influence in dependence of time 
scales, and SC of these factors showed difference (Figs. 9, 10 & S14). At annual scale, Rn followed by RH showed greatest influence on 
ETp at arid and semi-arid stations, with SC ranging from 0.48 to 0.59 and − 0.39 to − 0.56, respectively (Fig. 9). On the contrary, RH 
followed by Rn showed greatest influence on ETp at humid and sub-humid stations, with SC ranging from − 0.64 to − 0.83 and 
0.54–0.63, respectively (Fig. 9). As to T and u2, T showed slightly greater influence on ETp than u2 at all stations besides WCN. Another 
noticeable finding was that the difference of SC between dominant and secondary factors at wetter stations was larger than that at drier 

Fig. 6. The annual ETp estimated by the 12 tested models and Penman at eight stations across different climate regimes in NSW, eastern Australia.  
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stations. For instance, SC of the dominant (Rn) and secondary (u2) factors at TBR (arid station) was 0.52 and 0.25 (about two times 
difference), respectively, indicating 10% increase of Rn with 5.2% increase of ETp and 10% increase of u2 with 2.5% increase of ETp. 
However, SC of the dominant (RH) and secondary (u2) factors at CHB (humid station) was − 0.83 and 0.22 (nearly four times dif-
ference), respectively, indicating 10% increase of RH with 8.3% decrease of ETp and 10% increase of u2 with 2.2% increase of ETp. 

Rn and RH were still the dominant factors influencing seasonal ETp (Fig. 10). In specific, SC of Rn was generally larger than the 
absolute SC of RH in spring and summer but the difference between them became smaller at wetter stations or the influence of RH was 
even larger than that of Rn. On the contrary, it was RH followed by Rn that had the largest influence on ETp in autumn and winter, 
especially for wetter stations. Similar to that at annual scale, T was generally the third importance factor influencing ETp except that u2 
took its place in winter for most stations. In addition, SC of RH (followed by Rn) showed the largest variation among seasons for a given 
station. That is, SC of RH generally became larger from spring to winter but had the lowest value in summer (on the contrary for Rn). 
For instance, SC of RH (Rn) at TBR was − 0.31 (0.54) in spring, − 0.24 (0.56) in summer, − 0.45 (0.51) in Autumn, and − 0.74 (0.46) 
in winter. The variation in SC of T and u2 was smaller among seasons and stations. In general, SC of T and u2 ranged from 0.20–0.37 and 
0.13–0.38, respectively. Changes of SC at monthly scale (Fig. S14) were generally unified with that at seasonal scale. In other words, Rn 
followed by RH was the dominant factor influencing ETp in spring and summer months across all stations except the humid ones 
whereas RH followed by Rn was the first important factor influencing ETp in autumn and winter months. 

4. Discussion 

Our results showed that only the radiation-based JH was able to produce fair estimation of daily ETp across all eight stations 
(Fig. 2). At larger time scales (i.e., monthly, seasonal, and annual scale), the top two models were JH and Tu, which produced 
acceptable ETp estimation across all stations. The rest radiation-based models except Mak1 (Ab, PT & Mak), temperature-based models 
(HS, IV & Sc), and mass transfer-based models (WMO, Mah & Tra) were able to produce reasonable ETp estimation (nRMSE ≤ 30%) for 

Fig. 7. The change rates and long-term trends of ETp estimated by the 12 tested models and Penman with Mann-Kendall test and Sen’s estimator. 
The positive values indicated upward trend of ETp whereas negative values mean downward trend. *** indicated significant trend at 99% confi-
dence level, ** indicated significant trend at 95% confidence level, and * indicated significant trend at 90% confidence level. 
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most stations in spite of the difference among stations and seasons (Figs. 3–6 & S1–S4). For instance, performance of PT became better 
at sub-humid and humid stations. The poor performance of PT model was reflected by the significant underestimation of ETp at arid 
and semi-arid stations. This may be explained by the fact that the PT model was developed for saturated land and open water surfaced 
where advection effects were negligible (Priestley and Taylor, 1972). Thus, the original coefficient of 1.26 embedded in PT may lead to 
significant underestimation of ETp at arid and semi-arid stations (Li et al., 2017; Tongwane et al., 2017). In Liu and Yang (2021), they 
found that PT model was more suitable for regions where temperature was a dominant factor influencing ETp. Our study found that Rn 

Fig. 8. The wavelet-spectra and variances of annual ETp estimated by 12 tested models and Penman at Tibooburra. The thin solid lines denote the 
cones of influence, and the thick solid lines show the 95% confidence levels. The colour bar means the vibration intensity of the periods at 
different timescales. 
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Fig. 9. The averaged absolute sensitivity coefficients of Rn (SRn), u2 (Su2), RH (-SRH), and T (ST) at annual scale during the study period from 1970 
to 2014. Only RH showed negative influence on ETp. Only RH showed negative influence on ETp. To compare the value more conveniently, the 
absolute value of SRH was adopted. 

Fig. 10. The averaged absolute sensitivity coefficients of Rn (SRn), u2 (Su2), RH (-SRH), and T (ST) at seasonal scale during the study period from 
1970 to 2014. Only RH showed negative influence on ETp. To compare the value more conveniently, the absolute value of SRH was adopted. The 
left upper panel is for spring; the right upper panel is for summer; the left bottom panel is for autumn; and the right bottom panel is for winter. 
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and RH were the dominant factors influencing ETp. The unmatchable role of temperature played in structure of PT and influence on 
ETp in the study region may also partly explain the relatively poor performance of PT. Similarly, the poor performance of Sc and the 
overestimation by mass transfer-based models at arid/semi-arid stations was also mainly due to models’ structure (Valipour et al., 
2017). High temperature, low relative humidity, and large vapour pressure deficit were common at arid/semi-arid stations, thus 
leading to overestimation of ETp by Sc. 

The simplified models only agreed with Penman model on the temporal trends of ETp at stations where Penman detected a sig-
nificant trend in ETp change (Fig. 7). This finding agreed with Bormann (2010), which claimed that simplified ETp models only reacted 
in the same direction of ETp change with Penman model at stations exhibiting strong climate trends. Similarly, Donohue et al. (2010) 
found that the ability of simplified ETp models in capturing the temporal change of ETp in Australia was not comparable with Penman 
model. As to models’ ability in capturing periodicity of ETp, mass transfer-based models produced the same pp of ETp with Penman at 
60% stations whereas radiation-based and temperature-based models produced slightly longer periods than Penman did. The dis-
parities in capturing dynamics of ETp among models are mainly caused by models’ structure and underlying physics (Liu et al., 2023; 
Liu et al., 2022; Liu and Yang, 2021; Vishwakarma et al., 2022). In this study, RH and Rn were demonstrated as the dominant factors 
influencing ETp (Figs. S5, 9, and 10). The significant decrease of RH combined with significant increase of wind speed and temperature 
lead to the significant increase of ETp at SYD and CHB (Guo et al., 2017; Liu et al., 2023). However, the radiation-based models and 
temperature-based HS were generally based on Rs (an incarnation of Rn with no significant trends at Sydney and Coffs) and tem-
perature with little manifestation of RH and wind speed in their equations (Table 2). On the contrary, mass transfer-based models 
simplify the complicated relationship between ETp and VPD (an incarnation of RH) as a linear function and linear or square root 
function with wind speed (Table 2). The difference in model’s structure can partly explain why radiation-based models generally 
underestimate whereas mass transfer-based models overestimate the temporal trends of ETp. In addition, Liu et al. (2022) found that 
PM-based models tended to overestimate the sensitivity of ETp to temperature. Thus, there is a possibility that the significant increase 
of ETp at SYD and CHB captured by Penman model was partly overestimated due to the significant increase in temperature. 

Even though the simplified models adopt empirical/experimental coefficients to weaken the influence caused by models’ structure 
and assumption in evaporation process, the application of these models beyond where they were developed companied with uncer-
tainty (Abhishek et al., 2021; Cristea et al., 2013; Nouri and Homaee, 2018; Xiong et al., 2023). For instance, model HS had better 
performance at semi-arid and sub-humid stations than it did at other stations (Figs. 3–5). However, its better performance still varied 
among these stations in terms of levels of performance (excellent, good, or fair). Thus, it’s with high confidence to conclude that 
uncertainty exists when it comes to upscale models’ performance to larger scale or other study regions even if the climate condition is 
similar. This kind of uncertainty was mainly caused by the spatiotemporal heterogeneity of climate and widely reported in literatures 
(McMahon et al., 2016; Xiang et al., 2020; Xiong et al., 2023). Another factor leading to the disparities in models’ performance is that 
these models were developed based on different evaporative surface (Table 2). The vagueness of evaporative surface is embedded in 
the definition of potential evapotranspiration (McMahon et al., 2016; McMahon et al., 2013). Similar to estimation of crop evapo-
transpiration based on ETp, crop coefficients (Kc) can be used to adjust ETp caused by difference in evaporative surface. Meanwhile, it 
is likely that a location-specific calibration might improve model performance (Cristea et al., 2013; Shiri, 2017; Sumner and Jacobs, 
2005; Xu and Singh, 2002). However, the re-adjustment of models’ coefficients could be site-specific (Ravazzani et al., 2012) and 
greatly depend on the study period (Raziei and Pereira, 2013; Tabari and Talaee, 2011). In other words, the possibility of misleading to 
decision-makers companies with the readjustment of original coefficients embedded in empirical modes (Nouri and Homaee, 2018). 
Thus, we only evaluated models’ performance based on the original coefficients. 

In addition to mathematical models, researchers had more choice in ETp estimation and observation, such as mass conservation 
method, reanalysis and satellite-based remote sensing products, in-situ measurements, machine learning method and so on (Mehdi-
zadeh, 2018; Xiong et al., 2023; Zhang et al., 2019). On the one hand, various methods in ETp estimation and observation open up new 
ways to understand ETp process and hydrological cycle better, as suggested by Xiong et al. (2023) ‘different types of datasets have their 
unique values’. For instance, it is based on ETp observation with eddy covariance measurements that Liu et al. (2022) demonstrated 
the PM-based model overestimate the sensitivity of ETp to temperature. Similarly, Pimentel et al. (2023) adopted global evapo-
transpiration data from MODIS16 to investigate performance of JH, PT, and HS in hydrological modelling. On the other hand, it may 
also bring more uncertainties and disparities in ETp estimation due to the difference in methods, spatial resolution, and model as-
sumptions, thus leading to confusion in the selection of the most appropriate product or method to use (Liu et al., 2016; 
Pascolini-Campbell et al., 2020; Xiong et al., 2023). In this context, it is important to leverage the multi-source of ETp or related 
product to get comprehensive information in hydrological studies. Meanwhile, measures such as adopting ensemble mean of various 
ETp products can be taken to minimise uncertainties in future studies (Abhishek et al., 2021; Xiong et al., 2022). 

5. Conclusions 

This study assessed the performance of 12 simplified models in estimating potential evapotranspiration (ETp) rates, capturing its 
temporal trends, and interannual oscillation with Penman model as the benchmark at eight stations in New South Wales, southeast 
Australia. All models were likely to underestimate ETp with the exception that mass transfer-based (WMO, Mah, and Tra) and 
temperature-based IV and Sc overestimated it at arid and semi-arid stations. For daily ETp estimation, only model JH was recom-
mendable across New South Wales when Penman was limited to use; HS was recommended for semi-arid and sub-humid climate 
stations. Other models’ performance showed large variation among stations, thus not recommendable for daily ETp estimation. 
Models’ performance except Mak1 was generally improved in estimation of seasonal and annual ETp. In specific, JH and Tu were the 
most recommendable models for seasonal and annual ETp estimation considering their stable and firm performance across all stations. 
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Then, Ab and Mak were also choices for seasonal (especially summer and autumn) and annual ETp estimation nearly for all stations. By 
contrast, PT was effective at sub-humid and humid stations but poor performed at arid stations. Temperature-based models HS and IV 
were also reliable at most stations with better performance at semi-arid and sub-humid stations, but Sc was only recommended for 
humid/sub-humid stations. Mass transfer-based model WMO performed generally good with better performance at arid and semi-arid 
stations while Tra and Mah could be used to estimate ETp in humid/sub-humid climates. The 12 alternative models only showed 
agreement with Penman model at stations where Penman detected significant change trends of ETp, but the increasing rates detected 
by them were smaller (radiation-based models) or larger (mass transfer-based models) than Penman did. 

Though the meteorological stations used in this study varies from arid, semi-arid, sub-humid, to humid climate conditions, the 
limited number of available stations (eight in total) may bring limitations and uncertainties when it comes to upscale the findings to 
larger spatial scale or study regions due to heterogeneity in climate. This study assessed models’ performance only based on Penman 
model. However, there are more and more ETp methods and products available with the development of machine learning, remote 
sensing, and satellite technology. In this context, it is necessary for future study to leverage the multi-source datasets to assess models’ 
performance and adopt multi-source ensemble mean value of ETp to minimise the potential uncertainties. 

Our study uncovers the most appropriate models in ETp estimation for different time scales in New South Wales, southeast 
Australia, which is susceptible to drought and flood hazards. Findings of this study can be used in model’s selection in the regional 
drought assessment and runoff simulation, especially under future climate scenarios, where the observed ETp by satellite remote 
sensing or traditional methods and full set of climatic factors from general circulation models are not always available for regional 
study. 

CRediT authorship contribution statement 

Linchao Li: Software. Gengxi Zhang: Writing – review & editing. Qiang Yu: Funding acquisition, Supervision. Bin Wang: Formal 
analysis, Methodology, Writing – review & editing. De Li Liu: Conceptualization, Project administration. Puyu Feng: Methodology, 
Software. James Cleverly: Conceptualization. Lijie Shi: Conceptualization, Data curation, Formal analysis, Investigation, Method-
ology, Software, Writing – original draft, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Table 2 
Information of 13 models adopted in this study to calculate potential evapotranspiration.  

Models References Formula Notes 

Penman 
Donohue et al. (2010); Milly 
and Dunne (2016) 

ETp =
0.408Δ
Δ + γ

(Rn − G) +

γ
Δ + γ

6.43(1 + 0.536u2)(es − ea)

λ 

Open water evaporation, often called as 
Penman potential evaporation 

Jensen-Haise (JH) 
Jensen and Haise (1963) 

ETp = 0.0102(T + 3)Rs ETp from an alfalfa surface 

Abtew (Ab) 
Abtew (1996) ETp = 0.01786

RsTmax

λ 
ETp from a grass surface 

Turc（Tu） 
Turc (1961) ETp = (0.3107Rs + 0.65)

Tat

T + 15
at =

⎧
⎨

⎩

1 RH ≥ 50%

1 +
50 − RH

70
RH < 50% 

ETp from a grass surface 

Priestley-Taylor 
(PT) Priestley and Taylor (1972) ETp = 1.26

[ Δ
Δ + γ

Rn

λ
−

G
λ

]
ETp from a pasture surface and E from an 
open water surface 

Modified Makkink 
(Mak) Hansen (1984) ETp = 0.7

Δ
Δ + γ

Rs

λ 
ETp from a grass surface 

Makkink (Mak1) 
Makkink (1957) ETp = 0.61

Δ
Δ + γ

Rs

λ
− 0.12 ETp from a grass surface 

Hargreaves 
（HS） Hargreaves et al. (1985) ETp = 0.0023× 0.408Ra(Tmax − Tmin)

0.5
(T + 17.8) ETp from a grass surface 

Ivanov (Iv) 
Valipour et al. (2017) ETp = 0.00006(25 + T)2

(100 − RH) ETp from an open water surface 

Schendel (Sc) 
Djaman et al. (2015) ETp = 16

T
RH 

ETp from an open water surface 

WMO 
Valipour et al. (2017) 

ETp = (1.298 + 0.934u)(es − ea) ETp from an open water surface 

Mahringer (Mah) 
Mahringer (1970) ETp = 2.86u0.5(es − ea) ETp from an open water surface 

Trabert （Tra） 
Valipour et al. (2017) ETp = 3.075u0.5(es − ea) ETp from an open water surface  
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