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The optimization of model ensemble composition
and size can enhance the robustness of crop yield
projections
Linchao Li 1,2,3, Bin Wang 3✉, Puyu Feng 4, Jonas Jägermeyr5,6,7, Senthold Asseng 8,

Christoph Müller 7, Ian Macadam9, De Li Liu 3,10✉, Cathy Waters11, Yajie Zhang2, Qinsi He12, Yu Shi 1,2,

Shang Chen13, Xiaowei Guo14, Yi Li15, Jianqiang He15, Hao Feng1,15, Guijun Yang16, Hanqin Tian17 &

Qiang Yu 1,2✉

Linked climate and crop simulation models are widely used to assess the impact of climate

change on agriculture. However, it is unclear how ensemble configurations (model compo-

sition and size) influence crop yield projections and uncertainty. Here, we investigate the

influences of ensemble configurations on crop yield projections and modeling uncertainty

from Global Gridded Crop Models and Global Climate Models under future climate change.

We performed a cluster analysis to identify distinct groups of ensemble members based on

their projected outcomes, revealing unique patterns in crop yield projections and corre-

sponding uncertainty levels, particularly for wheat and soybean. Furthermore, our findings

suggest that approximately six Global Gridded Crop Models and 10 Global Climate Models

are sufficient to capture modeling uncertainty, while a cluster-based selection of 3-4 Global

Gridded Crop Models effectively represents the full ensemble. The contribution of individual

Global Gridded Crop Models to overall uncertainty varies depending on region and crop type,

emphasizing the importance of considering the impact of specific models when selecting

models for local-scale applications. Our results emphasize the importance of model com-

position and ensemble size in identifying the primary sources of uncertainty in crop yield

projections, offering valuable guidance for optimizing ensemble configurations in climate-

crop modeling studies tailored to specific applications.
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C limate change associated with increasing atmospheric
greenhouse gas concentrations affects many agricultural
regions and threatens global crop production and food

security1–4. In recent years, climate change has increased the risks
of simultaneous failure of major crops for breadbaskets across the
globe5 and projected climate change may push one-third of food
production areas outside a “safe” climatic space6. Coincident with
these factors, increasing population and food demand increase
the difficulty of achieving the UN’s Sustainable Development
Goal target of hunger eradication by 20307,8 and other health and
environmental targets9.

Process-based biophysical crop models driven by climate data
downscaled from multiple global climate models (GCMs) are
often used to project crop yield changes and aid strategic
decision-making for agriculture10–12. The Agricultural Model
Intercomparison and Improvement Project (AgMIP)’s Global
Gridded Crop Model Intercomparison (GGCMI) provides the
essential data products needed to analyze global crop yield in
response to climate change at global scales13–15. Projections based
on the latest generation of GCMs, those contributing to the
Coupled Model Intercomparison Project phase 6 (CMIP6)16,
show climate change having a largely negative impact on crop
yield in many breadbasket regions but also indicate some positive
changes for individual crops, especially across higher latitudes3.
However, there are large uncertainties in GCM–GGCM yield
projections, both for the breadbasket regions2,17 and at the global
gridded scale18,19. These include modeling uncertainty related to
the structure and parameters of the GCMs and crop models20–22.
Recent analyses of uncertainty due to GCM and GGCM at a
global scale for different crops have been conducted3,23. These
studies reported that GGCMs are often the dominant source of
uncertainty in quantifying relative changes in crop yield, even
though the GGCM-induced variance decreased in the latest
CMIP6-based projections3 compared with an earlier GGCM
ensemble-driven with CMIP5 climate projections18. Note that
Müller et al.23 also found that the overall variance of a crop-
model emulator ensemble increases when driven by CMIP6 in
comparison with being driven by the previous CMIP5 generation
of GCM climate projections, but the relative shares of GGCM-
induced variance were similar between the CMIP5 and CMIP6
ensembles. Wang et al.22 found that the dominant source of
uncertainty in wheat (Triticum aestivum L.) yield change was site-
specific. A more comprehensive analysis of the sources of
uncertainty at a gridded scale for four crops with a very large
ensemble also showed that the exclusion of specific model com-
binations could lead to substantial differences in the representa-
tion of uncertainty23, raising the question of how much of the
actual uncertainty can be represented by large ensembles.

Optimizing the sample size for GCM–GGCM projections
depends on the level of uncertainty and the specific research
question. However, the computational requirements of process-
based crop models constrain the number of GCMs that can be
used in harmonized crop model protocols, thereby influencing
the uncertainty of yield projections24. The latest CMIP6-based
GGCM Intercomparison Project (GGCMI) phase 3 projections
provide the largest archive of process-based future crop yield
projections as of today, with 60 combinations of 12 GGCMs and
five GCMs3. The selection of five GCMs was a tradeoff between
computational requirements and the representation of climate
model uncertainty. Running GGCMs for additional GCMs would
allow for more robust uncertainty attribution. However, the wide
variation among the pool of models can obscure important
information when relying solely on the ensemble mean. The
effective use of large ensembles has received limited attention.

Several studies have established the minimum necessary
ensemble size to effectively capture the uncertainty of models in

different fields, with the aim of reducing redundancies and
offering guidance for model selection21,24–26. For instance, Fal-
connier, et al.27 found that crop model ensemble skill increased
with more maize (Zea mays L.) models considered in an ensemble
in Sub-Saharan Africa. They reported that at least eight randomly
selected models can ensure satisfactory accuracy in reproducing
historical crop yield. However, this does not mean that this
number of models is adequate for sampling uncertainty of future
yield changes. Crop models that produce similar results for a
historical time period can produce divergent results under future
climate due to differences in model processes (e.g., temperature
response, CO2 fertilization effects)22. McSweeney and Jones28

found that in order to cover the full spectrum of climate change
projections for all regions, at least 13 GCMs needed to be con-
sidered. Ruane and McDermid29 found that using five GCMs
with different basic classes (e.g., relatively cool/wet, cool/dry,
middle, hot/wet, and hot/dry) could capture the uncertainty
across the full ensemble of simulated future climate change at a
study site. However, the guidance for creating representative
subsets to accurately reflect the uncertainty of global scale crop
yield projections is still not well defined. The uncertainty of these
projections is highly sensitive to the selection of crop and climate
models23, and there has not yet been a comprehensive study to
quantify the impact of ensemble size (GGCM and GCM) selected
through random or science-based methods on uncertainty in the
agricultural sector.

Wheat, maize, rice (Oryza sativa L.), and soybean (Glycine
max (L.) Merr.) provide two-thirds of the caloric intake of the
human population30. In this study, we present a new framework
for better designing ensembles and extracting more information
from a large pool of models. The framework utilizes nine GGCM
emulators driven by changes in growing-season climate from 32
CMIP6 GCMs31 and 12 GGCM phase 3 simulations driven by
five GCMs3. Because our focus was on modeling uncertainties in
the response of yields to climate change, we generated data for a
single high greenhouse gas emissions scenario (SSP585) for the
end of the 21st century. The study investigates the influences of
ensemble configurations on crop yield projections and modeling
uncertainty from GGCMs and GCMs under future climate
change. We analyze the importance of model composition and
ensemble size in determining the primary sources of uncertainty
in crop yield projections, with the aim of offering valuable gui-
dance for optimizing ensemble configurations in climate-crop
modeling studies. We expect our analysis to enhance the accu-
racy of crop yield projections from a large ensemble, bridging the
gap of notable ensemble uses and contributing to global food
security.

Results
Yield projections by different ensembles. We explored changes
in simulated crop yield across GCMs for wheat, maize, rice, and
soybean between 1980–2010 and 2069–2099 for each GGCM
emulator and the multi-model ensemble mean (Fig. S1). Results
were generated by considering the CO2 fertilization effect.
Without the CO2 fertilization effect, most GCM–GGCM com-
binations showed a decline in simulated yield, although one or
two GGCMs simulated increases in maize, rice, and soybean
yields. As for the CO2 fertilization effect, the wheat, rice, and
soybean yield changes showed a stronger decrease signal com-
pared with maize. In addition, crop yield changes with the CO2

fertilization effect had a larger difference among the models. Note
that the uncertainty in the CO2 fertilization effect as implemented
in the GGCMs is one of the major sources of the variance within
the GGCM ensemble23. For instance, a large response to CO2

fertilization was observed in the emulator of the JULES model,
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while the emulator of EPIC-TAMU showed relatively weaker CO2

fertilization effects, especially for wheat and rice.
We used agglomerative-hierarchical clustering analysis (see the

“Materials and methods” section) to divide yield projections
(considering CO2 fertilization) from GCM–GGCM combinations
into three clusters (clusters 1–3) on the basis of spatial patterns
and magnitudes of percentage yield changes and ranked yield
changes of cluster 1 to cluster 3 from most negative to most
positive for the four respective crops (Figs. 1a and b, and S2a, b,
respectively). The clustering tended to group results by GGCM,
indicating that, in general, differences between GGCMs were
responsible for differences between clusters. For instance, cluster
2 in Fig. 1a illustrates that EPIC-TAMU, GEPIC, PEPIC, and
PROMET (around 44%) are clustered together due to similar
yield changes, yet they include the projections from all 32 GCMs.
This result suggests that in this cluster, the crop models are the

primary factors influencing the projections of crop yield changes.
However, it is worth noting that despite this crop model
dominance in distinguishing ensemble members, different GCMs
also contributed to the diversity of projections within each crop
model group. This is evident as the associated GCMs in clusters 1
and 3 of Fig. 1a do not consistently group by crop models. For
example, both cluster 1 and cluster 3 contain projections from
pDSSAT, LPJ-GUESS, and LPJml, each driven by different
GCMs. Since the spatial patterns of yield changes varied between
clusters, the yield changes for cluster 1 (3) were not always ranked
the most negative (positive) in a particular region of the world
(Fig. 1c, d). For instance, we can see positive wheat yield
responses in some regions (e.g., East Africa, south India) in
cluster 1 and these regions had some negative yield changes in
cluster 2 (Fig. 1c). In addition, some regions experienced yield
losses in the future regardless of clusters, including clusters with a

Fig. 1 Hierarchical clustering of wheat and maize yield changes (between 2069–2099 and 1980–2010) under SSP585. The left panels of a and b are
boxplots showing the change in global yield for each cluster and all models. Box boundaries indicate the 25th and 75th percentiles of crop yield change. The
black line within each box indicates the median value. The right panels of a and b show (from outside to inside) the GGCM names, the simulated yields of
each GGCM (bar plots), the different GCMs, the three clusters, and the cluster tree diagrams, respectively. The three clusters are highlighted with light red,
green, and blue. The left panels of c and d are the average wheat and maize yield changes for each cluster. The numbers (n=) at the bottom left of each
panel represent the number of ensemble members (GGCM×GCM) used for each cluster. The right panels of c and d are the yield changes averaged by
latitude (blue line) and the smoothed relationship between latitude and yield change (black line). Note that the wheat yield is the combined spring wheat
and winter wheat yield based on harvested area data. GGCM is global gridded crop model; GCM is global climate model.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01016-9 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:362 | https://doi.org/10.1038/s43247-023-01016-9 |www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


tendency towards increases in simulated yield. For example,
wheat yield decreased in southern Brazil and southern Africa
across three clusters (Fig. 1c), indicating that climate change will
have negative effects on those areas.

We also generated cluster tree diagrams for the GGCM phase 3
simulation, which was improved with better inputs and an
updated model version (Figs. S3–S6). The spatial patterns of yield
changes among the different clusters displayed large variations,
similar to those in the GGCM emulator. However, the ensemble
member distance in GGCM phase 3 was distinct from that of the
GGCM emulator. For instance, in Fig. 1a, the ensemble members
(GGCMs driven by GCMs) are mainly grouped by the GGCMs,
with only pDSSAT, LPJ-GUESS, and LPJmL appearing concur-
rently in clusters 1 and 3. For GGCM phase 3, the wheat yield
changes within cluster 1 were primarily grouped by two specific
GCMs (IPSL-CM6A-LR and UKESM1-0-LL). This can be
attributed to the fact that these two GCMs exhibit a higher
equilibrium climate sensitivity (ECS)32,33, which leads to expected
large yield losses by some climate-sensitive crop models.
However, it is worth noting that some crop models (e.g., DNDC,
PROMET, and LPJml) still fall in the same branch among the five
GCMs (Fig. S3), indicating that different crop models have
different levels of sensitivity to climate change.

We propose a novel approach for analyzing ensemble data by
defining a distance metric between different ensemble members
and reducing the large ensembles to three key patterns. This
approach offers a deeper understanding of design ensemble
configuration than relying solely on multi-model ensembles that
may ultimately obscure results and overlook important details.
Furthermore, our cluster scheme can potentially improve the
harmonization of crop models and GCMs. For example, by
identifying that sensitive crop models (e.g., those sensitive to
warming) are driven by high ECS GCMs, we can anticipate that
these models will experience a greater yield decline than other
crop models (e.g., cluster 1 in Figs. S3 and S6).

The uncertainty of different ensembles. Crop yield simulations
are impacted by local environment and management practices
(e.g., climate conditions and crop management) that further
influence the source of uncertainty in yield change projections.
Therefore, we used such information as inputs for the cluster
analysis (another type of cluster analysis for classifying regions,
see details in the “Materials and methods” section) to divide the
global cropping region into twelve sub-regions for each crop
(Fig. S7).

We explored the major source of modeling uncertainty for each
subset (the combination of GGCM×GCM based on cluster
analysis) for gridded, latitudinal, and regional scales (Fig. 2).
For the entire ensemble of all GCMs and GGCMs, the crop
model-induced variance share was larger than that of the GCMs
(Fig. 2a, c, left panels). For different clusters, the dominant source
of uncertainty for yield changes varied among different clusters,
especially for maize, rice, and soybean (Figure S8). These results
provide examples of how different model combinations can
impact the sources of modeling of uncertainty. For example, the
ensemble size of cluster 2 (n= 56 and nGGCM= 3, Fig. 1d) and
cluster 3 (n= 64 and nGGCM= 2, Fig. 1d) for maize were similar,
but the dominant source of uncertainty exhibited large differences
at different spatial scales (Fig. 2c, d). For instance, GCM was the
dominant source of uncertainty in Northern Europe, Eastern
Asia, and the USA for cluster 2 (Fig. 2c). However, in cluster 3,
GGCM was the dominant source of uncertainty in these regions.
In addition, the ensemble size of cluster 2 (n= 72 and nGGCM= 4,
Fig. S2) and cluster 3 (n= 85 and nGGCM= 3, Fig. S2) for rice had
a similar number of GGCMs, but they show differences in the

sources of uncertainties across sub-regions (Fig. S8). This is
because, compared with cluster 3, the three GGCMs of cluster 2
had similar physiological processes (note that both EPIC-TAMU
and GEPIC models were developed from EPIC). Several studies
have investigated the source of uncertainty based on different sets
of crop models19,22,34,35. However, the impact of model
compositions, which can significantly influence the uncertainty
of crop yield projections, has often been overlooked. For example,
some studies that focused on the same region and used a similar
number of crop models have shown varied results regarding the
source of uncertainty35,36. Thus, we highlight the need to
carefully select ensemble members in agricultural impact studies,
given that different model compositions can lead to varying
sources of uncertainty. In our study, although each cluster
consisting of varying numbers of models, represents a unique
potential scenario of yield changes under climate change. Such
approaches can offer a more comprehensive understanding of the
complexity and uncertainties involved in projecting crop yields
under climate change.

Impacts of model quantity on uncertainty. In order to reduce
the quantity of simulations, some studies have ranked model
performance and selected representative models for further
analysis37–39, even though the selected models may not reflect the
overall characteristics of the full ensemble. Here we quantify the
uncertainty associated with the number of models, including nine
GGCM emulators and 32 GCMs (Figs. 3 and S9). The results
indicated that the GGCM- or GCM-induced uncertainty pro-
portion first increased with the number of models (GGCM or
GCM) used, and then became stable when the number of models
exceeded a certain value. We found that for GGCM-emulators,
randomly choosing at least five to six crop models (six GGCMs
for wheat, maize, and rice, five GGCMs for soybean) and 9–12
GCMs (nine GCMs for wheat, 10 GCMs for maize, 12 GCMs for
rice and soybean) adequately captured the uncertainty of yield
changes compared with the full model set. For GGCM phase 3
simulations, there were six to seven GGCMs (seven GGCMs for
wheat and soybean, six GGCMs for maize and rice) that could
reflect the overall uncertainty of yield change projections. The
least ensemble size varied between regions (Figs. S10, S11 and
Tables S3–S4) but was within the range of four to six GGCMs and
6–14 GCMs for most regions. Also, the spatial patterns of
GGCM-induced uncertainty and associated standard deviations
changed little when the number of models was greater than
approximately five (Figs. S12, S13).

One question that arises is whether the minimum effective
ensemble size can be further reduced through the use of specific
ensemble strategies. To address this, we used the family tree of
models to select a subset of GGCMs, ensuring that at least one
model belonged to each cluster. Our results indicated that for
both GGCM-emulators and Phase 3 simulations, using 3–4
GGCMs was sufficient to capture the overall variance induced by
the GGCMs (Figs. 3 and S14). However, this may not be the case
for wheat yield projections in Phase 3 simulations (Fig. S14). The
cluster tree for wheat yield (GGCM phase 3) did not always
center around the GGCM, as demonstrated by cluster 1 of Fig. S3
which was mainly grouped by IPSL-CM6A-LR and UKESM1-0-
LL. Generally, although our results indicated that a subset of
GGCMs was sufficient to capture the overall variance, caution
should still be exercised when using multi-model ensemble
projections directly.

Proportion of uncertainty attributed to individual GGCMs.
GGCMs were the dominant source of uncertainty in most of our
study areas. Therefore, we here mainly focus on the uncertainty
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Fig. 2 The proportion of uncertainty from GCM and GGCM in simulated wheat and maize yield changes in 2069–2099 under SSP585 compared with
1980–2010. The left panels of a and c are the spatial patterns of uncertainty proportions from GCMs and GGCMs at the gridded scale across the globe for
different clusters (see Fig. 1) and all ensemble members for wheat and maize. The right panels of a and c show the proportion of uncertainty at different
latitudes for wheat and maize. To obtain the uncertainty at different latitudes, we first calculated the yield change averaged by latitude for each ensemble
member and then quantified the proportion of uncertainty across different latitudes using ANOVA. b and d show the sources of uncertainty at different
sub-regions (see Fig. S7). GGCM is the global gridded crop model; GCM is the global climate model.
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attributed to individual GGCMs. We tested the proportion of
uncertainty attributed to individual models by consecutively
removing each crop model used, and then comparing the dif-
ference of GGCM-induced uncertainty between the full model set
and without the particular model (Figs. 4 and S15–S17). For
wheat, the CARAIB, PEPIC, and pDSSAT models added uncer-
tainty in most regions, while the contributions of LPJ-GUESS and
JULES varied among different regions. For example, the LPJ-
GUESS model increased the GGCM-induced uncertainty share
for wheat yield projections in Australia and decreased the
GGCM-induced uncertainty share in southeast Asia. This vari-
able result could be because LPJ-GUESS often is the outlier in
strong CO2-fertilization responses31. PEPIC and, especially,
pDSSAT increased the GGCM-induced uncertainty share for
maize yield projections. This could be due to pDSSAT having a
strong temperature response for maize31. JULES increased the
GGCM-induced uncertainty share in the Southern Hemisphere
and decreased the GGCM-induced uncertainty share mainly in
the Northern Hemisphere (Fig. S15). For rice, PEPIC mainly
contributed to GGCM-induced uncertainty shares in most
regions, especially in Africa; JULES increased the GGCM-induced
uncertainty share in Asia; PROMET and pDSSAT had large
influences on GGCM-induced uncertainty shares, but the direc-
tion varied among different regions (Fig. S16). For soybean,
JULES increased the GGCM-induced uncertainty share in almost
all regions; CARAIB, PROMET, and pDSSAT also greatly influ-
enced the GGCM-induced uncertainty share, but this varied
between different regions (Fig. S17). These results demonstrated
that each GGCM affected the uncertainty of model predictions
across the globe to some degree, highlighting the importance of
model selection at the local scale.

Implications and limitations. Although the multi-model
ensemble mean is a common summary statistic for yield pro-
jections, it has limited utility for determining adaptation strategies
that are robust to a range of plausible future yield trajectories, and

it may give a misleading result of little change where individual
model combinations have changes of different signs. Thus, it is
necessary to consider results from diverse collections of models.
Our results can provide information for carefully designing
GCM–GGCM ensembles that maximize the sampling of uncer-
tainty. We focused on the SSP585 emissions trajectory to explore
yield changes under a large climate change signal. Müller et al.23

found that the relative importance of different sources of
uncertainty in yield projections was comparable between SSP126
and SSP585 for these GGCM emulators, while overall cross-
ensemble variance was substantially larger under SSP585.
Therefore, the results provided here are likely representative of
other levels of climate change as well.

Understanding the inter-model distances and relationships
using hierarchical clustering and family trees offers valuable
insights into the similarities and differences among ensemble
members, supporting the improvement and diversification of
crop models and their responses to climate change40,41. For
instance, by identifying and addressing any dependence among
models, the overall uncertainty in the ensemble can be more
robustly estimated, leading to more reliable yield projections. In
addition, our study investigated the influence of ensemble size on
uncertainties. We found that the number of models had a large
influence on the represented uncertainty in different regions
across the globe. For example, using 10 GCMs captured the
GCM-induced uncertainty for maize yield change at the global
scale (Fig. S9), but more GCMs were needed for the USA, Central
Asia, and the southern part of South America (sub-regions 1, 3, 8,
and 11) (Fig. S11 and Table S4).

The different yield changes for different ensemble members
have important implications for the design of ensemble
configurations (Figs. 1 and S2–S6). For example, the JULES
simulations of soybean yields were distinct from results obtained
with other models and made a large contribution to overall
uncertainty, especially in South Asia and Central Europe. How
such extreme behavior is dealt with may have a large effect on the
results from the multi-model ensemble and corresponding

Fig. 3 The proportion of uncertainty of yield changes (2069–2099 compared with 1980–2010, under SSP585) for different numbers of GGCMs used
for wheat, maize, rice, and soybean. The numbers 2–9 (and 2–8) represent different numbers of GGCMs used, including all of the possible combinations
for wheat and maize (rice and soybean). The boxplot shows the distribution of uncertainty due to GGCM selection under different numbers of GGCMs
used. The dark and light blue shaded areas respectively represent the thresholds of ±2.5% and ±5% when using the contribution of uncertainty estimated
from all GGCMs as the benchmark. Box boundaries indicate the 25th and 75th percentiles. The black line within each box indicates the median value.
GGCM is a global gridded crop model; GCM is a global climate model. S3 is the scenario when one model was randomly selected from each cluster (total 3
crop models). S4 is the scenario when four models were selected ensuring that at least one model belonged to each cluster.
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uncertainty42. In these kinds of situations, some previous studies
have excluded or down-weighted a given model from the
ensemble in order to reduce the overall uncertainty22,43. There-
fore, it is very important to carefully screen and evaluate the
performance of the individual models for their robustness to
simulate climate change impacts on crop yield before they are
selected for use in a multi-model ensemble for the purpose of
reducing uncertainty in climate change impact assessment44.
Additionally, sensitive crop models driven by high ECS GCMs
may also lead to extreme behavior (Figs. S3–S6), while some
GGCMs may not have significant influence from such high ECS
GCMs. These results highlight the ongoing challenge of designing
an optimal model ensemble. Our study proposes dividing
ensemble members (crop models driven by GCMs) into groups
based on their characteristics in order to provide a more effective
way to select the most suitable ensemble members for a specific
application. This strategy can efficiently represent the full
ensemble and reduce redundancy.

Different methods have been developed to improve crop model
performance and reduce overall modeling uncertainty, such as
improving model structure45,46 or parameter optimization19,47.
However, conducting this work at the global scale is challenging
due to high computation costs and missing calibration target
data. Recently, some studies have constrained the uncertainty of
GGCMs by using the results of field experiments and statistical
models48,49. These studies have suggested that using more

detailed information from field experiments can improve model
responses to climate warming and further reduce the overall
uncertainty. Other factors such as CO2 fertilization are also likely
to impact crop growth and bring uncertainty to yield projections.
Several studies found that the CO2 fertilization effect was
constrained by frequent extreme weather events50,51. However,
such impacts have not been fully considered in current
simulations, and consequently, these simulations have probably
underestimated the yield loss and increased the overall
uncertainty48. Therefore, to better understand the interacting
impacts of climate change (e.g., heatwave, extreme precipitation,
drought, and CO2 fertilization) on crop yields and thereby reduce
uncertainty in climate change impact assessment, more controlled
environment experiments with long time periods and large ranges
of crop genotypes in a wider range of mega-environments are
needed52,53.

We recognize several limitations in our study. Some limitations
are related to the GGCMs. First, sources of uncertainty such as
soil data and management options (e.g., fertilization rate)2,54–57

and the effects of pests and diseases were not considered by the
GGCM simulations18. Second, model parameterization also
influences the projections and affects uncertainty. For example,
Xiong et al.19 analyzed the uncertainty resulting from parameter-
ization using four parameterization strategies. While structural
differences between GGCMs were accounted for in our study,
uncertainty in parameter settings for individual GGCMs was not

PEPIC PROMET pDSSAT

JULES LPJmL

CARAIB EPIC-TAMU 

LPJ-GUESS

GEPIC

  

<−20 −10 0 10
Uncertainty change

>20
 (%)

Fig. 4 Changes in the GGCM-induced uncertainty share contributed by individual GGCMs at the grid level for wheat in 2069–2099 under SSP585. The
contribution was determined by sequentially removing one of the nine GGCMs from the ensemble of GGCMs at each grid point, and then comparing the
GGCM-induced uncertainty share of projected yield changes between the full GGCMmodel set and the set without the particular model. A positive change
indicates that including a particular model increased the GGCM-induced uncertainty share. A negative contribution change indicates that using this model
decreased the GGCM-induced uncertainty share. GGCM is global gridded crop model.
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considered. Third, although some GGCMs can capture yield
losses that occur under extreme temperature events (including
heat and frost) and drought58, they underestimate the magnitude
of yield losses due to extremely wet conditions17,59. This is
compounded by a fourth limitation related to our use of the
change factor method to generate future climate. This method
does not fully sample the uncertainty due to changes in extreme
climate events, or event changes related to within-season
variability (emulators only driven by climate change during the
crop growing season), as simulated by the GCMs. Furthermore,
the emulator may not perfectly reproduce the raw GGCM
simulation. Although we also used the GGCMI phase 3 dataset
that used bias-adjusted daily GCM data to compare dominant
sources of uncertainty with GGCM emulators, only five GCMs
were currently available. Greater efforts are needed to better
harmonize the processes of climate and crop models as we look
towards closing in on a “certain” projection from a large
ensemble.

Materials and methods
GGCM emulators (GGCMI phase 2). Franke et al.31 developed
emulators for many of the GGCMI phase 2 models to facilitate
the use of numerous GCM–GGCM combinations to analyze
climate change impacts on crop yields23. Crop model emulators
have allowed larger sets of GCMs, for example, all CMIP6 GCMs,
to be considered in assessments of uncertainties in yield
predictions23. The emulators combined the advantages of both
process-based and statistical crop models, and have already been
widely used in previous studies60,61. The GGCM emulators can
successfully capture crop yield responses to temperature, pre-
cipitation, CO2 concentration, and nitrogen change. In addition,
GGCM emulators have the potential to project crop yields under
future climate change31. The change factor method was used to
generate future climate data for GGCM emulators. This approach
uses future monthly rainfall and temperature changes from the
GCMs to perturb historical daily data without changing the dis-
tribution of rainfall and temperature. The GGCMI Phase 2
models used in our study are not formally calibrated14,31. It is
conceivable that a lack of calibration could influence the relative
changes that are the basis of our study, but note that calibration
can sometimes have negative impacts on model skill15.

We used the emulators to simulate crop yields at the grid scale
for wheat, maize, rice, and soybean. Emulators for nine GGCMs
(CARAIB, EPIC-TAMU, JULES, GEPIC, LPJ-GUESS, LPJmL,
pDSSAT, PEPIC, and PROMET) for wheat and maize, and eight
GGCMs (CARAIB, EPIC-TAMU, JULES, GEPIC, LPJmL,
pDSSAT, PEPIC, and PROMET) for rice and soybean were
available. The crop yield changes were simulated under both
rainfed and irrigated conditions, and we aggregated the rainfed
and irrigated yield based on the crop area data of Monfreda
et al.62 for maize, rice, and soybean. Winter wheat and spring
wheat were simulated individually; however, the data of
Monfreda et al.62 did not distinguish the harvest areas of winter
wheat and spring wheat. In this study, the harvest areas of winter
wheat and spring wheat were distinguished by average tempera-
tures and the length of the growing season according to Müller
et al.23. Winter wheat yields and spring wheat yields were then
combined.

The emulators used annual values of growing season mean
temperature and total precipitation on a 0.5° × 0.5° global grid
and atmospheric CO2 concentrations as climate inputs. Because
we did not consider growing season adaptation, only the A0 (no
growing season adaptation) setting was used in this study. The
nitrogen application rate for each grid was the same as used by
Elliott et al.13. In this study, we mainly focused on the crop yield

change with CO2 fertilization. More detailed information can be
found in Müller et al.23. Nitrogen application rate and the areas of
rainfed and irrigated crops were assumed to be the same for our
baseline and future time periods (1980–2010 and 2069–2099). We
focused on the relative yield change (%) for each grid under
climate change for model comparisons18.

GGCMI phase 3 crop modeling. The GGCMI phase 3 project3

involved five CMIP6 GCMs (GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM10-LL) and 12
GGCMs (ACEA, CROVER, CYGMA1p74, DSSAT-Pythia, EPIC-
IIASA, ISAM, LandscapeDNDC, LPJmL, pDSSAT, PEPIC,
PROMET, and SIMPLACE-LINTUL5). Daily GCM data were
bias-adjusted and downscaled to a 0.5° × 0.5° global grid by the
ISIMIP (www.isimip.org) framework63–65 prior to input to the
GGCMs. These GCMs were selected to best sample the full
CMIP6 ensemble in terms of the sensitivity of global mean
temperature to increasing atmospheric carbon dioxide con-
centrations (i.e., equilibrium climate sensitivity) and other factors.

In this study, each model within the ensemble has been
subjected to a benchmark performance evaluation for the
historical period, ensuring that the models meet a certain level
of quality3,14,31. We use the relative change approach, which
focuses on the differences between baseline and future projec-
tions, accounting for proportional changes instead of absolute
values. This method allows for a more comprehensive evaluation
of the influence of ensemble configurations, such as model
composition and size, on crop yield projections and uncertainties
under future climate change scenarios.

Climate data. We downloaded monthly temperature and pre-
cipitation data from simulations of 32 GCMs under SSP585 from
the CMIP6 archives (Table S1, https://esgf-node.llnl.gov/search/
cmip6/). We resampled this data to the 0.5o grid using a bilinear
interpolation method. We used the change factor method to
generate data for GGCM emulators. Since our study only focuses
on the changes in future multi-year average temperature (ΔT)
and precipitation (ΔP) in relation to the baseline of the same
GCM, no bias correction is necessary for the computation of ΔT
and ΔP. For each GCM, simulated differences in growing season
mean temperature and growing season total precipitation
between 1980–2010 and 2069–2099 were applied to the baseline
data from the AgMIP Modern-Era Retrospective Analysis for
Research and Applications (AgMERRA). The global average
atmospheric CO2 content was obtained from the International
Institute for Applied Systems Analysis (https://iiasa.ac.at/). A CO2

concentration of 810 ppm was used for SSP585 in 2069–2099, and
the baseline concentration was 360 ppm. The baseline yield for
each GCM was the same for a given GGCM because the change
factor method used AgMERRA data for the baseline period.

Two types of cluster analysis
Cluster analysis of crop-growing regions. We divided the global
cropping regions into different sub-regions based on the char-
acteristics of local crop productivity, climate conditions, and
management10. Four kinds of environmental variables with the k-
mean cluster analysis method were used to determine different
sub-regions for wheat, maize, rice, and soybean (Table S2). To
reflect the crop yield during the baseline period (1980–2010), we
used ensembles of either nine or eight GGCMs to determine the
average crop yield during the historical period. We selected mean
temperature, solar radiation, precipitation, air relative humidity,
and wind speed as the main climate factors for the k-mean
analysis (Table S2). Temperature, water, and light are the main
factors influencing the speed and rate of germination, emergence,
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and growth of crops66. The climate data we used were from
AgMERRA, and are the same as the emulators’ inputs31. We also
used latitude and longitude to represent the location information.
Nitrogen application rate was also considered as a management
option based on Müller et al.23. It is worth noting that the
GGCM-emulators take into account management practices
including water supply and nitrogen inputs. Given that pre-
cipitation is separately accounted for in the cluster analysis,
within the framework of the GGCM-emulator projections, only
nitrogen fertilizer input was represented as a distinct manage-
ment variable. Finally, 12 sub-regions were determined for
each crop.

Currently, there are several regionalizing plans available,
including the IPCC’s climate zones67, global agroecological zones
(AEZs), and global food production units (FPUs). Despite their
existence, these plans may not be able to effectively capture the
regional diversity of sources of uncertainty in crop yields. This is
because of the differences in harvest area distributions and factors
that influence crop yield.

Cluster analysis of future yield change. We used agglomerative-
hierarchical clustering analysis41 to reveal the different ensemble
configurations of the relative yield changes when CO2 fertilization
was considered. The Canberra distance (D) was used to compute
the initial cluster distance among ensemble members68,69. This
approach was performed downstream (without any preselection),
using the results of crop yield changes at every grid location. This
allowed us to cluster ensemble members with high similarity in
terms of spatial pattern and magnitude41. There were 288
members (9 GGCMs × 32 GCMs) for wheat and maize, and 256
members (8 GGCMs × 32 GCMs) for rice and soybean. We
classified future yield change into three clusters to show three
considerably dissimilar yield change predictions. Cluster 1
represented yield decreases, cluster 2 represented small changes in
yield, and cluster 3 represented yield increases. Since crop yield is
a common and key variable in crop modeling, the investigation of
different variables might result in only minor variations in the
outcomes.

Uncertainty analysis
ANOVA methodology. We used the analysis of variance
(ANOVA) technique to quantify the uncertainty in crop yield
changes for wheat, maize, rice, and soybean due to GGCMs and
GCMs. The equations for the total sum of squares (SST) for a
two-way ANOVA are:

SST ¼ SSGGCM þ SSGCM þ SSGGCM � GCM ð1Þ

PGGCMð%Þ ¼ SSGGCM=SST ´ 100 ð2Þ

PGCMð%Þ ¼ SSGCM=SST ´ 100 ð3Þ

PGGCM � GCMð%Þ ¼ SSGGCM � GCM=SST ´ 100 ð4Þ
where PGGCM is the uncertainty contribution due to GGCM,
PGCM is the uncertainty contribution due to GCM, and
PGGCM*GCM is the uncertainty contribution arising from inter-
active effects between GCMs and GGCMs. In this study, we use
the mean proportion of uncertainty as it offers a straightforward
and readily interpretable measure of central tendency.

Subsampling scheme. We used ANOVA to estimate how different
sample sizes of models would affect the total uncertainty in yield
change. For GGCMs, different combinations were selected as C9

i
for wheat and maize, C8

i for rice and soybean, i varies from 2, 3,

…,9 (or 8).

SSTðiÞ ¼
1
n
∑
n

j¼1
ðSSGGCMðiÞ þ SSGCM þ SSGGCMðiÞ ´GCMÞ ð5Þ

PGGCMðiÞð%Þ ¼
1
n∑

n
j¼1ðSSGGCMðiÞÞ
SSTðiÞ

´ 100 ð6Þ

where i is the number of the GGCM used (2–9 for wheat and
maize, 2–8 for rice and soybean), n is the total number of C9

i for
wheat and maize, C8

i for rice and soybean, j is 1,2, …, n.
The ANOVA analysis for the number of GCMs was similar to

the analysis for the number of GGCMs. However, because the
number of GCMs was 32, the combinations of C32

i would be more
than thousands of millions when i was between 6 and 26. It was
therefore not practical to use all combinations when subsampling
GCMs. Consequently, we tested the uncertainty change under
different sizes of random subsets and found that the uncertainty
change tended to be stable when the size was around 100,000
(i ranging from six to 27) for each crop (Fig. S18). Therefore, we
set the maximum size of subsampling GCM to be 100,000.

SSTðiÞ ¼

1
n
∑
n

j¼1
ðSSGGCM þ SSGCMðiÞ þ SSGGCM ´GCMðiÞÞ 2 ≤ i ≤ 5 or i≥ 28

1
100; 000

∑
100;000

j¼1
ðSSGGCM þ SSGCMðiÞ þ SSGGCM ´GCMðiÞÞ 6 ≤ i ≤ 27

8
>>><

>>>:

ð7Þ

PGCMðiÞð%Þ ¼

1
n∑

n
j¼1ðSSGCMðiÞÞ
SSTðiÞ

´ 100 2 ≤ i ≤ 5 or i≥ 28

1
100;000∑

100;000
j¼1 ðSSGCMðiÞÞ
SSTðiÞ

´ 100 6≤ i≤ 27

8
><

>:
ð8Þ

where i is the number of GCMs used, n is the total number of C32
i ,

j ranges from 1 to n
In this study, we defined the least number of GGCMs necessary

to sample uncertainty to be when the GGCM-induced uncer-
tainty was within ±2.5% of the uncertainty for the full ensemble
of GGCMs24. However, because the proportion of GCM-induced
uncertainty was lower than that for GGCM, we used a threshold
of ±1.5% to select the minimum ensemble size for GCMs.

Data availability
All data required to evaluate the conclusions in this paper can be found in the paper itself
or the Supplementary Materials. The CMIP6 data can be accessed at https://esgf-node.
llnl.gov/projects/cmip6/. Publicly available model inputs are obtainable from the ISIMIP
website (https://www.isimip.org/) or by contacting the corresponding author. The
GGCMI crop calendar can be accessed at https://doi.org/10.5281/zenodo.5062513, and
fertilizer input data is available at https://doi.org/10.5281/zenodo.4954582. Crop model
emulators can be found at https://doi.org/10.5281/zenodo.3592453 and https://doi.org/
10.5281/zenodo.4321276.

Code availability
The code of the cluster analysis can be found in the “cluster” v2.1.4R package that is
available at https://www.rdocumentation.org/packages/cluster. The cluster tree diagrams
are made by the “ggtree” v1.4.11R package that is available at https://rdocumentation.
org/packages/ggtree. The code for crop model emulators can be found at Müller et al.
(2021) (https://zenodo.org/record/4321276). The detailed code for data processing and
illustration is available from the corresponding author upon reasonable request.
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