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Abstract

Accurately estimated reference evapotranspiration (ET0) is essential to regional water

management. The FAO recommends coupling the Penman–Monteith (P-M) model

with the Ångström–Prescott (A-P) formula as the standard method for ET0 estimation

with missing Rs measurements. However, its application is usually restricted by the

two fundamental coefficients (a and b) of the A-P formula. This paper proposes a

new method for estimating ET0 with missing Rs by combining machine learning with

physical-based P-M models (PM-ET0). The benchmark values of the A-P coefficients

were first determined at the daily, monthly, and yearly scales, and further evaluated

in Rs and ET0 estimates at 80 national Rs measuring stations. Then, three empirical

models and four machine-learning methods were evaluated in estimating the A-P

coefficients. Machine learning methods were also used to estimate ET0 (ML-ET0) to

compare with the PM-ET0. Finally, the optimal estimation method was used to esti-

mate the A-P coefficients for the 839 regular weather stations for ET0 estimation

without Rs measurement for China. The results demonstrated a descending trend for

coefficient a from northwest to southeast China, with larger values in cold seasons.

However, coefficient b showed the opposite distribution as the coefficient a. The

FAO has recommended a larger a but a smaller b for southeast China, which pro-

duced the region's largest Rs and ET0 estimation errors. Additionally, the A-P coeffi-

cients calibrated at the daily scale obtained the best estimation accuracy for both Rs

and ET0, and slightly outperformed the monthly and yearly coefficients without sig-

nificant difference in most cases. The machine learning methods outperformed the

empirical methods for estimating the A-P coefficients, especially for the sites with

extreme values. Further, ML-ET0 outperformed the PM-ET0 with yearly A-P coeffi-

cients but underperformed those with daily and monthly ones. This study indicates

an exciting potential for combining machine learning with physical models for esti-

mating ET0. However, we found that using the A-P coefficients with finer time scales

is unnecessary to deal with the missing Rs measurements.
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1 | INTRODUCTION

Estimating reference crop evapotranspiration (ET0) accurately is essen-

tial for regional water resource planning and irrigation scheduling (Shiri

et al., 2014). However, measuring ET0 directly through experiments is

usually restricted by high labour and time consumption (Xing

et al., 2022). The FAO56–recommended Penman–Monteith (P-M)

model is widely adopted as the standard method for ET0 estimation

(Allen et al., 1998). Still, limited meteorological data usually restrict its

application worldwide, especially global solar radiation (Rs) (Xing

et al., 2023). Because of the cost of expensive measuring instruments,

weather stations measuring Rs directly cover a limited number of loca-

tions worldwide, especially in developing countries (Jahani et al., 2017).

Various weather datasets containing Rs values have been produced,

including the NASA Prediction of Worldwide Energy Resource (NASA

POWER) (Chandler et al., 2013), the ERA-Interim reanalysis products

(Dee et al., 2011), and the Japanese Meteorological Agency (JRA-55)

(Kobayashi et al., 2015). These datasets provide valuable references for

the relevant research driven by Rs but usually have lag time and unsatis-

factory performance for the Rs products. Hence, real-time Rs estimation

is always needed to meet various application requirements.

Previous studies have established various estimation models for

Rs, such as (1) the interpolation model with limited Rs observations

(Rivington et al., 2006), (2) the empirical regression model between Rs

and meteorological and geographic variables (Bristow &

Campbell, 1984; Makadea & Jamil, 2018), (3) the satellite–based

model with direct measurement of surface shortwave radiation (He

et al., 2015), and (4) the radiation transfer models (Pawlak

et al., 2004). Empirical methods for Rs estimation have been widely

established based on different input variables considering the low

data requirements and computation. These statistical models are

divided into sunshine- (Ångström, 1924; Naserpour et al., 2020),

cloud- (Badescu & Dumitrescu, 2015; Ehnberg & Bollen, 2005), and

temperature-based models (Feng et al., 2019; Yacef et al., 2014).

Studies have shown that sunshine–based models outperformed other

models (Abdul-Aziz et al., 1993; De, Souza, et al., 2016; Trnka

et al., 2005), especially the Ångström–Prescott (A-P) method

(Prescott, 1940). The A-P formula is developed based on limited

inputs and a simple linear relationship and thus has been widely used

in ET0 estimation with missing Rs data (Allen et al., 1998; Chen

et al., 2022).

The default values recommended by the FAO–56 document

(e.g., a = 0.25 and b = 0.50) have been widely used since data were

always inadequate for calibrating these coefficients (Allen

et al., 1998). Unfortunately, Sabziparvar et al. (2013) and Liu et al.

(2014) have reported remarkable spatial variations in the A-P coeffi-

cients that can cause significant errors in regional and national Rs and

ET0 estimates. Thus, calibrating the A-P coefficients with actual local

Rs measurements is essential for minimizing Rs errors (Peng

et al., 2022). In addition to the spatial variation, temporal fluctuation

of the A-P coefficients has also attracted the attention of researchers

(Liu, Mei, Li, Zhang, Wang, et al., 2009). No consensus on time–

dependent or fixed A-P coefficients for Rs estimation has been

reached. Soler (1990) found that monthly a and b coefficients outper-

formed yearly ones, and Tymvios et al. (2005) drew a similar conclu-

sion. Further, other studies report that time–dependent coefficients

obtained similar accuracy (Almorox & Hontoria, 2004; Ertekin &

Evrendilek, 2007) or worse (Hussain et al., 1999) Rs estimation.

Additionally, the A-P coefficients are usually estimated through

single- (Hassan et al., 2016) or multi-factor (Liu, Mei, Li, Wang, Jensen,

et al., 2009) empirical regression models. These traditional models are

usually inefficient in dealing with the complex nonlinear relationships

between input factors and target variables (Kisi & Parmar, 2016). Fur-

ther, input variables are usually set for a specific empirical model,

which cannot always be done (Ming et al., 2015). Machine learning is

widely adopted for Rs and ET0 estimates due to the flexible combina-

tion of predictors and satisfactory accuracy in dealing with nonlinear

problems (Fan et al., 2020; Gürel et al., 2020). However, considerable

uncertainty can be generated in scenarios different from those in the

training processes since machine learning usually performs as “black
box” without a physical basis (Dong et al., 2022; Zhang et al., 2018).

Therefore, this study evaluated several empirical regression

models and machine learning methods to estimate the A-P coeffi-

cients for ET0 at different time scales with missing Rs data. The main

objectives of this study were to (1) evaluate the spatiotemporal varia-

tion of the A-P coefficients, (2) assess the performance of time–

dependent (daily and monthly) and fixed (yearly and FAO–recom-

mended) A-P coefficients in daily Rs and ET0 estimation, and (3) evalu-

ate different empirical regression models and machine learning

methods in estimating the A-P coefficients across all of China. The

findings were expected to facilitate the application of the P-M and

A-P models in ET0 estimation for sites without Rs measurements in

China.

2 | MATERIALS AND METHODS

2.1 | Study area

The four main climatic zones are the mountain plateau zone (MPZ),

the temperate continental zone (TCZ), the temperate monsoon zone

(TMZ), and the subtropical monsoon zone (SMZ) (Figure 1). The aver-

age elevations of the MPZ, TCZ, TMZ, and SMZ are 4236, 912, 288,

and 611 m, respectively. There is a noticeable difference in mean
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annual precipitation for these four climatic zones. The most arid and

humid zones are TCZ (193 mm) and the SMZ (1360 mm) in northwest

and southeast China, while the TMZ (460 mm) and MPZ (591 mm)

share a similar annual precipitation.

2.2 | Datasets

Daily measurements of Rs were collected from 80 Rs national measur-

ing stations in China (Figure 1 and Table S1). There were 7, 16,

23, and 34 Rs stations in the MPZ, TCZ, TMZ, and SMZ zones, respec-

tively. Daily meteorological measurements in this dataset including

daily global solar radiation (Rs, MJ m�2), sunshine hours (n, h), maxi-

mum (Tmax, �C) and minimum air temperature (Tmin, �C), average air

temperature (Tmean, �C), wind speed (U, m s�1), precipitation (P, mm),

and relative humidity (RH, %). Additionally, except for Rs, regular mea-

surements were collected from 839 weather stations. The two data-

sets also contained each site's latitude, longitude, and altitude

information and were obtained from the China Meteorological Admin-

istration (CMA). Weather measurements will be omitted for the day

with the following two conditions: (1) missing measurements for

either Rs or n; (2) Rs/Ra ≥1 or n/N ≥ 1 (Persaud et al., 1997).

2.3 | Description of the Ångström–Prescott (A-P)
formula and penman–Monteith model

Ångström (1924) established a linear relationship between Rs/Rs0 and

n/N in 1924, where Rs0 represents the solar radiation on a sunny day,

n represents the sunshine hour, and N represents the day length. We

use Equation (1) to estimate the value of N:

N¼24�ωs=π ð1Þ

where ωs is the sunset hour angle in rad. Prescott (1940) suggested

replacing Rs0 with Ra (extra-terrestrial radiation) due to the difficulty

in measuring Rs0. In this way, the Ångström formula was translated

into the Ångström–Prescott (A-P) format (Equation 2):

Rs

Ra
¼ aþb

n
N

ð2Þ

where a (0–1) and b (0–1) are fundamental coefficients, and the sum

of a and b is the transmissivity of clear sky. We further adopt

Equation (3) to estimate Ra:

Ra ¼ 24�60=πð ÞGscdr ωs sinφsinδþ cosφcosδsinωsð Þ ð3Þ

where Gsc represents the solar constant, 0.0820 MJ m�2 min�1; dr is

the inverse square of the Earth-Sun relative distance; φ is the latitude,

rad; δ is the solar declination, rad.

The standard Penman–Monteith model (or P-M equation, Equa-

tion 4) has been recommended as the standard method for estimating

ET0 by the Food and Agriculture Organization of the United Nations

(FAO) (Allen et al., 1998):

ET0 ¼
0:408Δ Rn�Gð Þþ γ 900

Tmeanþ273u2 es�eað Þ
Δþ γ 1þ0:34u2ð Þ ð4Þ

where Rn is the net radiation above the canopy, MJ m�2 d�1;

G represents the soil heat flux density, MJ m�2 d�1; γ is the air psy-

chrometric, kPa �C �1; Tmean is the mean daily air temperature, �C; u2
represents the wind speed 2 m above ground in m s�1; es and ea are

the saturation and actual vapour pressures, kPa; Δ is the slope of the

vapour pressure curve, kPa �C�1.

2.4 | Generating the optimal time–scale A-P
coefficients for Rs and ET0

Previous studies have indicated the great spatiotemporal variations in

the two fundamental coefficients (a and b) of the A-P formula. Hence,

using fixed A-P coefficients can cause large errors in Rs estimation and

further generate significant errors in ET0 with the P-M model (PM-

ET0). However, local calibration of the coefficients a and b requires

mass meteorological data, including Rs and other variables. Unfortu-

nately, long-term measurements of Rs are always scarce for most

areas worldwide. This study established a framework to generate the

A-P coefficients with the optimal time scale for Rs and ET0 estimation

over all of China (Figure 2). First, the temporal (daily, monthly, and

yearly) and spatial variations of the A-P coefficients were assessed

based on the benchmark values of 80 solar radiation measuring sta-

tions. Then, the performance of the three different time-scale A-P

coefficients was evaluated in calculating Rs and further estimating

ET0. Finally, the empirical regression functions and machine learning

algorithms were employed to estimate the A-P coefficients with

F IGURE 1 Study area and distribution of the 80 national solar
radiation measuring stations (red crosses) and 839 weather stations
without solar radiation measurements (black dots) in the four climatic
zones of MPZ (the mountain plateau), TCZ (the temperate continental
zone), TMZ (the temperate monsoon zone), and SMZ (the subtropical
monsoon zone) in China. The acronyms are the same below.
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common meteorological and geographic variables. The optimal

method was selected to estimate the A-P coefficients of 839 regular

weather stations without direct Rs measurements.

2.4.1 | Benchmark values of the A-P coefficients in
different time scales

This study focused on the variations of yearly, monthly, and daily

values of the A-P coefficients. First, the benchmark values of coeffi-

cients a and b were obtained for the three time scales based on least

squares regression for each of the 80 Rs measuring stations. All of the

Rs measurements were used to fit the regression function for

the yearly A-P coefficients. For the monthly A-P coefficients, the Rs

measurements in the target month were used to fit the given month.

The target-day Rs measurements were used to fit the A-P coefficients

for the given day. Taking a station with 50 years of Rs measurements

as an example, the number of data involved in the calibration of a and

b were 18 250 (approx. 365 d � 50 a), 1500 (approx. 30 d � 50 a for

each month), and 50 (50 a for each day) for the yearly, monthly, and

daily scale, respectively.

2.4.2 | Evaluating time–scale A-P coefficients for Rs
and ET0 estimation

The benchmark (daily, monthly, and yearly) and FAO–recommended

values of the A-P coefficients were evaluated in the estimations of Rs

F IGURE 2 Flowchart of the
generation of the optimal time-
scale fundamental coefficients
(a and b) of the Ångström-
Prescott (A-P) formula in Rs and
ET0 estimation for the entire
China. Estimation of ET0 is
conducted based on the Penman-
Monteith (P-M) model. The SVM,

Cubist, BP, and ELM represent
four different machine learning
methods of the support vector
machine, Cubist model tree, back
propagation neural network, and
extreme learning machine,
respectively.
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and ET0 at the 80 Rs measuring stations. The estimates based on the

four types of A-P coefficients above were compared directly with

the daily measurements for Rs. For ET0, calculations based on the

measured Rs and the P-M models (i.e., ET0 benchmark) were accepted

as the standard ET0 values due to a lack of direct measurement. Then,

the performance of the four A-P coefficients for ET0 estimation was

assessed according to the deviation between the estimates and

benchmarks. Finally, the time scale of A-P coefficients with the most

minor errors in Rs and ET0 estimations was taken as the optimal time

scale. The A-P coefficients with the relevant time scale were then

estimated for all 839 regular weather stations.

2.4.3 | Estimating A-P coefficients with empirical
regression functions

This study employed three empirical regression models and four

machine-learning methods to estimate the A-P coefficients. Since the

three empirical models can only estimate yearly (or time-invariant)

A-P coefficients, the comparisons between empirical models and

machine learning methods were only conducted at a yearly scale. For

monthly and daily a and b, we evaluated the performances of different

machine learning methods.

Empirical model I based on mean annual air temperature

Liu, Mei, Li, Wang, Zhang, and Porter (2009) established the estima-

tion formula for the A-P coefficients based on the Rs records from

30 Rs measuring stations in the Yellow River Basin in northern China.

This model employed only mean annual air temperature in the two–

step model (Equations 5 and 6):

b¼4:33�10�4 �T2�0:0126 �Tþ0:6289 ð5Þ

aþbð Þ¼�9:66�10�3 �Tþ0:8424 ð6Þ

where T represents the mean annual air temperature of the target

site, �C.

Empirical model II based on altitude

Liu, Mei, Li, Wang, Zhang, and Porter (2009) also established another

estimation function for a and b based only on site's altitude through a

two-step method (Equations 7 and 8):

a¼1:57�10�5 �Zþ0:1705 ð7Þ

aþbð Þ¼3:58�10�5 �Zþ0:7121 ð8Þ

where Z is the altitude of the target site, m.

Empirical model III based on multiple variables

Liu et al. (2014) further modified the above formulas by introducing

additional variables (Equations 9 and 10). The new functions were

established and evaluated based on the Rs records from 80 Rs measur-

ing stations:

a¼1:04�10�5 �Zþ0:1094 � n=N
� �

�7:64�10�4 �ϕþ0:1917 ð9Þ

aþbð Þ¼3:39�10�5 �Z�0:13922 � cosφþ0:0241 � cosϕþ0:8349

ð10Þ

where Z is altitude, m; n is sunshine hours, n; N is day length, n; ϕ is

longitude; φ is latitude.

2.4.4 | Estimating A-P coefficients with machine
learning models

The steps for establishing machine-learning models for the estimating

A-P coefficients include normalizing of input data, determining key

parameters of machine learning models, training and testing models,

and applying the models (Chen et al., 2022). Four machine learning

methods were employed to estimate the A-P coefficients at daily,

monthly, and yearly scales based on the variables same as the Empiri-

cal model III. The four machine learning algorithms were a back propa-

gation (BP) neural network, a Cubist model tree, a support vector

machine (SVM), and an extreme learning machine (ELM). The optimal

machine-learning algorithm was then used to estimate the relevant

time–scale A-P coefficients at the 839 weather stations without Rs

measurements. The Kriging method was selected to interpolate the

839–site A-P coefficients (Peng et al., 2022). Additionally, the four

machine learning algorithms were also directly used to establish the

ET0 estimation (ML-ET0) models based on the above variables and

been compared with the PM-ET0. The algorithms were coded in the R

language (R Core Team, 2013).

BP neural network

The BP (backpropagation) neural network is one kind of feed–forward

network for supervised learning (Rumelhart et al., 1986). This algo-

rithm minimizes the error between the actual and expected outputs

through backpropagation to modify the key parameters of the net-

work (Tian et al., 2020). This study used the nnet package in the R lan-

guage to establish the BP model. The key parameters of this algorithm

include the number of hidden nodes (size) and the weight attenuation

parameter (decay).

Cubist model tree

The Cubist model tree was established based on the M5 tree algo-

rithm (Quinlan, 1992). Predictions with the Cubist were conducted

based on the combinations of several successive piecewise models.

This study used the Cubist package in the R language to establish the

Cubist model. The critical parameters of this algorithm include

the number of boosting iteration models (committees) and the number

of instances used to correct the rule–based prediction (neighbours).

SVM algorithm

The SVM (support vector machine) was established based on the Vap-

nik (1996) construct of support vectors. The SVM can minimize the

error by adding the hyperplane to maximize the margin between

CHEN ET AL. 5 of 18
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prediction and observation (Drucker et al., 1997). The SVM is good at

dealing with problems with small samples, nonlinearity, and high dimen-

sionality and is extensively used in Rs estimation (Chen et al., 2013; He

et al., 2020). This study adopted the e1071 package (Karatzoglou

et al., 2004) in the R language to establish the SVM model. The kernel

function was set as radial. The critical parameters of this algorithm

include the effect of a single sample on the entire classification hyper-

plane (gamma) and the cost of constraint violation (cost).

ELM algorithm

The ELM method is also a feed-forward neuron network

algorithm but much faster due to its better generalization capability

(Huang et al., 2006). This study used the elmNNRcpp package in the

R language to establish the ELM model. The critical parameters of this

algorithm include the number of hidden neurons (nhid), the type of

activation function (actfun), and the distribution from which the input

weights and the bias were initialized (init_weights).

2.5 | Statistical analysis

This study used three statistical indicators to evaluate the A-P coeffi-

cients estimated with different methods, including the coefficient of

determination (R2, Equation 11), the root mean square error (RMSE,

Equation 12), and the normalized root mean square error (nRMSE,

Equation 13). A larger R2 shows better model fitness and a smaller

RMSE shows slight model deviation. The statistical nRMSE, originally

the ratio between RMSE and the mean value of the relevant observa-

tions, was used to evaluate the estimation errors of different vari-

ables. A smaller nRMSE value usually indicates higher accuracy:

R2 ¼

Pn
i¼1

xi�xð Þ yi�yð Þ
� �2

Pn
i¼1

xi�xð Þ2Pn
i¼1

yi�yð Þ2
ð11Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

xi�yið Þ2
vuut ð12Þ

nRMSE¼RMSE
y

ð13Þ

where m is the data sample size; xi is the ith estimation value; yi is the

ith observed value; x is the mean value of xi; y is the mean value of yi.

3 | RESULTS

3.1 | Benchmark values of the A-P coefficients for
different time scales

The benchmark values of the a and b for the three time scales were

obtained through linear regression at the 80 Rs measuring stations

(Table 1) and Tables S1 and S2. Generally, the mean benchmark values

of A-P coefficients were similar at the different time scales. The mean

value ranges of a and b coefficients were 0.16–0.23 and 0.53–0.59,

respectively. Compared with the FAO–recommended values

(a = 0.25, b = 0.50), a large a and a small b are recommended for

China. For coefficient a, the yearly benchmarks ranged from 0.12 to

0.29, while the daily benchmarks ranged from 0.01 to 0.61. For coeffi-

cient b, the yearly benchmarks ranged from 0.48 to 0.72, while the

daily benchmarks ranged from 0.05 to 0.96. The largest mean values

of the benchmarks were found in the MPZ zone for both the a and b.

The smallest mean benchmark value was found in the SMZ zone for

a and the TCZ zone for b.

Periodic variations were found in the benchmark values of a and

b at daily and monthly scales at the four randomly selected represen-

tative stations (Station 55 299 in MPZ; Station 51 567 in TCZ; Station

54 511 in TMZ; Station 59 287 in SMZ) in China (Figure 3). For coeffi-

cient a, larger benchmark values were found in December, January,

TABLE 1 Maximum (Max), minimum (Min), mean values, and standard errors (SE) of the benchmark values of coefficient a and b of the
Ångström-Prescott (A-P) formula in the four climatic zones in China.

Coefficient Region Site number

Yearly Monthly Daily

Max Min Mean ± SE Max Min Mean ± SE Max Min Mean ± SE

a MPZ 7 0.29 0.20 0.23 ± 0.03 0.31 0.17 0.23 ± 0.08 0.47 0.01 0.23 ± 0.09

TCZ 16 0.27 0.18 0.22 ± 0.02 0.38 0.14 0.22 ± 0.05 0.61 0.01 0.23 ± 0.07

TMZ 23 0.28 0.14 0.19 ± 0.03 0.39 0.12 0.19 ± 0.04 0.57 0.02 0.20 ± 0.06

SMZ 34 0.21 0.12 0.16 ± 0.02 0.27 0.10 0.16 ± 0.03 0.36 0.01 0.16 ± 0.04

Total 80 0.29 0.12 0.19 ± 0.04 0.39 0.10 0.19 ± 0.05 0.61 0.01 0.19 ± 0.06

b MPZ 7 0.66 0.54 0.59 ± 0.04 0.70 0.48 0.58 ± 0.05 0.93 0.29 0.58 ± 0.08

TCZ 16 0.60 0.48 0.54 ± 0.04 0.64 0.35 0.53 ± 0.06 0.86 0.08 0.53 ± 0.09

TMZ 23 0.59 0.49 0.54 ± 0.03 0.64 0.34 0.54 ± 0.06 0.86 0.05 0.53 ± 0.08

SMZ 34 0.72 0.51 0.58 ± 0.04 0.78 0.45 0.57 ± 0.05 0.96 0.24 0.57 ± 0.07

Total 80 0.72 0.48 0.56 ± 0.04 0.78 0.34 0.56 ± 0.06 0.96 0.05 0.55 ± 0.08
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and February (winter) in the MPZ, TCZ, and TMZ zones. In contrast,

smaller ones were found in June, July, and August (summer). Addition-

ally, the temporal trends of b were contrary to a. Distributions of

benchmark values of the two coefficients also varied among sites.

Compared with the sites in the other three climatic zones, no notice-

able temporal trend was found at Site 57 461 in the SMZ zone.

3.2 | Estimating Rs and ET0 based on different
time–scale A-P coefficients

3.2.1 | Estimating Rs

Superior performance in Rs estimation was obtained through the A-P

formula with different values of the fundamental coefficients

(Figure 4). The RMSE values of the four methods were all less than

3.1 MJ m�2 d�1, and R2 values were more significant than 0.85. Addi-

tionally, all of the four methods overestimated the Rs in the interval of

1–10 MJ m�2 d�1. However, Rs was underestimated with the FAO–

recommended A-P coefficients, which generated the most errors,

especially under the high Rs conditions (Figure 4d). The maximum esti-

mation of the FAO–recommended coefficients was 31.3 MJ m�2 d�1

while the maximum observation was 41.6 MJ m�2 d�1. Compared

with the Rs estimated with the FAO–recommended coefficients, a

noticeable improvement was generated using the site–calibrated A-P

coefficients. Meanwhile, the estimation errors of Rs were decreased

with the finer temporal resolution of the A-P coefficients. The best Rs

estimations were produced with the daily A-P coefficients (Figure 4c).

3.2.2 | Estimating ET0

The site–calibrated coefficients provided significant improvement in

ET0 estimation was over the FAO recommended coefficients of the

A-P formula (Figure 5a). The mean RMSEs were 0.34, 0.28, 0.29, and

0.30 mm d�1 in ET0 estimation using the FAO recommended, daily,

monthly, and yearly calibrated A-P coefficients, respectively. The site–

calibrated coefficients improved the estimation accuracy significantly

compared to the FAO–recommended coefficients, especially in the

SMZ. Additionally, there was an insignificant decreasing trend in

errors for the site–calibrated A-P coefficients from yearly to daily

scales. Further, an apparent spatial gradient of estimation errors

increased from the north to the south (Figure 5d,e). The most remark-

able errors were found in the SMZ for all four groups of coefficients,

especially the FAO–recommended coefficients. Seven out of the

80 stations had RMSEs greater than 0.5 mm d�1; the largest RMSE

was greater than 0.65 mm d�1. These three site–calibrated coeffi-

cients provided better estimations for most sites than the FAO-

recommended coefficients did. The daily A-P coefficients achieved

the most considerable improvement in ET0 estimation in the SMZ

with all sites' RMSE less than 0.5 mm d�1.

The four different A-P coefficients in ET0 estimation were evalu-

ated in different months (Figure 6). Generally, the FAO–recommended

site–calibrated coefficients produced the largest errors in ET0 in all

months. Compared with the FAO–recommended coefficients, the

site–calibrated coefficients significantly improved estimation accuracy

throughout the year, especially from April to September. The best

estimates were provided through the Rs obtained with the daily A-P

coefficients. However, these three site–calibrated coefficients in ET0

estimation had almost no significant difference. Additionally, larger

estimation errors were found in hot seasons (the mean RMSE

>0.3 mm d�1) than in cold seasons (the mean RMSE <0.2 mm d�1).

Generally, the ET0 estimated with the PM–ET0 models showed

greater variations (Table 2). Using the P-M model combing daily A-P

coefficients provided the best ET0 estimations among these eight

models. However, the ET0 estimations based on the FAO recom-

mended A-P coefficients obtained the largest estimation errors. Com-

pared with the PM–based methods, the four ML-ET0 methods

obtained similar accuracies in ET0 estimation, the RMSEs were all

greater than 0.97, RMSEs less than 0.31 mm d�1, and nRMSEs less

than 12%. Notably, the PM-ET0 model with the yearly A-P coeffi-

cients obtained similar estimation accuracy as the machine–learning

models. The difference of RMSE and nRMSE were less than

0.003 mm d�1 and 0.3% between the PM-ET0 with yearly coefficients

and the ML-ET0 model with SVM. The results proved that the P-M

model combined with site–special A-P coefficients was potential for

ET0 estimation due to acceptable accuracy and convenience.

3.3 | Optimal methods for estimating the A-P
coefficients

3.3.1 | Yearly A-P coefficients

Generally, the machine learning methods outperformed the empirical

models in estimating both a and b (Figure 7). The nRMSEs were

16.8%–23.6% for a and 6.5%–8.8% for b. The empirical models under-

estimated a but overestimated b at most sites (Figure 7a,c). Empirical

model III provided similar estimate distribution as benchmarks and

produced the smallest errors. However, the three empirical models

performed poorly at the sites with extreme benchmark values. Com-

pared with the empirical models, all four machine learning methods

obtained good estimates of the a and b coefficients, especially for

a (Figure 7b,d). The nRMSEs were 10.2%–11.3% for a and 4.8%–5.6%

for b. Hence, the machine learning methods were more accurate and

promising for estimating the a and b coefficients of the A-P formula.

Among the four machine learning methods, the SVM and Cubist pro-

vided the most negligible errors for the a and b, respectively.

3.3.2 | Monthly A-P coefficients

Compared with the yearly values of the a and b coefficients, large

errors were obtained in the estimates of monthly values at the train-

ing stages (Table 3). The nRMSEs were 3.8%–8.4% for a and 3.5%–

6.8% for b. The highest estimation accuracy was provided in the MPZ,

which was the same as the yearly coefficients. Larger errors arose in

the TCZ and TMZ zones. The optimal machine learning methods were

CHEN ET AL. 7 of 18
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also different in the estimating the A-P coefficients. For a, the Cubist

method outperformed the other three methods in two climatic zones

and all of China. The corresponding RMSEs and nRMSEs were 0.008–

0.014 and 3.8%–8.6%. However, for b, the BP method outperformed

the other three methods at three zones and all of China. The corre-

sponding RMSEs and nRMSEs values were 0.018–0.026 and

3.1%–5.0%.

3.4 | Estimating the A-P coefficient without Rs

measurement

3.4.1 | Generating the yearly A-P coefficients

The yearly values of the A-P coefficients were estimated for the

839 regular weather stations with the selected optimal machine

F IGURE 3 Benchmark values of the a and b coefficients of the Ångström-Prescott (A-P) formula at the daily (dots), monthly (bars), and yearly
(horizontal lines) scales at four representative sites of each climatic zones (Station 52 866 in MPZ; Station 50 527 in TCZ; Station 50 136 in TMZ;
Station 57 461 in SMZ).

8 of 18 CHEN ET AL.
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learning method of SVM (Figure 8 and Tables S1 and S2). Compared

with the site–calibrated values (Table 1), the machine learning

methods provided similar ranges for a and b. Generally, remarkable

spatial variations were found for the two coefficients in the four dif-

ferent climatic zones. Larger coefficient values were mainly found in

the MPZ and TCM, while smaller values were obtained in the SMZ

and TMZ. The estimate distributions of a revealed a positive correla-

tion with altitude. The coefficient b showed an opposite distribution

to a. The largest estimated b was found in the MPZ, followed by the

SMZ, TMZ, and TCZ.

3.4.2 | Generating the monthly A-P coefficients

The monthly coefficient of a was estimated with the optimal machine

learning method of Cubist for the 839 regular weather stations and fur-

ther interpolated over all of China (Figure 9; Table S3). For a, larger

values were found in northern and western China. In comparison, smal-

ler values were found in southeast China (especially in the SMZ). There

were also noticeable temporal variations of the coefficient a in different

months. Extreme values were in the cold season (Figure 9a,b,l), which

resulted in the largest ranges of a. Further, the smallest spatial variation

for a was in September and October (Figure 9i,j).

The values of monthly b were generated with the optimal machine

learning method of BP (Figure 10; Table S4). Generally, b showed the

opposite spatiotemporal distributions to a. Larger values were found in

south eastern China during cold seasons (Figure 10a,b,l). However, the

spatial patterns of b were similar to a in September and October since

the coefficient varied over a smaller range than in other months.

3.5 | ET0 estimation without Rs measurements

Daily Rs values, calculated through the A-P formula based on the

FAO–recommended and the machine learning–based coefficients,

were compared at the 839 regular weather stations without direct Rs

measurement (Figure 11). In general, both types of A-P coefficients

produced similar distributions of ET0 in different meteorological

F IGURE 4 Estimation of daily global solar radiation (Rs) with the yearly (a), month (b), and daily (c) scale calibration and the FAO
recommendation (d) of the two fundamental coefficients of the Ångström-Prescott formula at the 80 Rs measuring stations in China.
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zones. Difference of ET0 estimated with these A-P coefficients in the

TCZ and SMZ was more significant than those in the other two mete-

orological zones. However, there were still differences between these

two kinds of A-P coefficients in ET0 estimation in the four zones.

Compared with the machine learning–based coefficients, ET0 was

slightly overestimated in MPZ and TCZ while being significantly

underestimated in TMZ and SMZ by the FAO–recommended coeffi-

cients. Notably, there was almost no difference between the two

groups of ET0 estimated in the TCZ.

4 | DISCUSSION

4.1 | Spatiotemporal variations of A-P coefficients

The A-P formula has been extensively applied for daily Rs estimation

because of the simple data requirements and acceptable performance (Li

et al., 2012). However, some earlier researchers found that the two fun-

damental coefficients of the A-P formula were site–dependent (Chen

et al., 2006; Jin et al., 2005). Hence, these coefficients must be calibrated

F IGURE 5 RMSE for ET0 estimation based on the site-calibrated and FAO-recommended values of the fundamental coefficients of the

Ångström-Prescott (A-P) formula. The A-P coefficients were calibrated at the daily, monthly, and yearly scales. The dark red dot shows the mean
value of each box. The symbol * shows the significance level, and ns represents no significance.

F IGURE 6 Temporal
variation of RMSE for ET0
estimations based on the
estimated Rs and the Penman-
Monteith model. The Rs is

estimated through the Ångström-
Prescott formula with the daily,
monthly, and yearly coefficients.
The number above each sub-
figure shows the month index.
The symbol * shows the
significance level, and ns
represents no significance.
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locally to guarantee satisfactory accuracy for daily Rs estimation. In this

study, the linear regression method calibrated different time–scale bench-

marks of the A-P coefficients at 80 national Rs measuring stations. Larger

mean a benchmarks were found in the MPZ and TCZ zones with a dry

climate and high altitude, while smaller mean a benchmarks were found

in the SMZ zone with a wet environment and low altitude.

Coefficient a varies with the season. Larger values of a were found

in winter (dry), while b showed the opposite trend in China. Adaramola

(2012) reported that the A-P coefficients varied with geographical loca-

tion and weather conditions. Liu et al. (2012) calibrated the benchmarks

for the A-P coefficients and obtained similar distributions of the variable

values as in this study. They also pointed out that a and the sum of a and

b correlate with altitude positively. This study showed that the bench-

marks for a were mainly less than 0.25 (mean value is 0.19), while those

for b was notably greater than 0.50 (mean value is 0.56) (Table 1). Liu

et al. (2014) calibrated the A-P coefficients at different sites across China

and found that the mean values were 0.18 and 0.56 for coefficients

a and b, respectively. Hence, there are apparent differences between the

calibrations and the FAO recommendation, which can cause significant

errors in the estimation of daily Rs (Figure 4). Additionally, the largest dif-

ferences between the A-P coefficients recommended by the FAO and

those calibrated in this study were in the SMZ. Xia et al. (2021) pointed

out that the FAO recommendations are advised in northern China,

including the northeast, North China Plain, and the Loess Plateau. Liu,

Mei, Li, Wang, Zhang, and Porter (2009) found that the FAO

TABLE 2 Coefficient of determination (R2), root mean square
error (RMSE, mm d�1), and normalized root mean square error (nRMSE,
mm d�1) of ET0 estimations with BP, Cubist, ELM, and SVM. The
grey-shaded cells show the approach obtains the highest estimation
accuracy.

ET0 category Methods R 2 RMSE (mm d�1) nRMSE (%)

PM-ET0 Daily 0.974 0.287 10.9

Monthly 0.972 0.293 11.1

Yearly 0.970 0.305 11.6

FAO 0.961 0.375 14.2

ML- ET0 BP 0.972 0.309 11.6

Cubist 0.973 0.305 11.4

ELM 0.972 0.306 11.4

SVM 0.973 0.302 11.3

Note: The PM-ET0 represents the Penman-Monteith model derived by the

Rs estimated with the Ångström-Prescott formula. The ML-ET0 represents

the ET0 estimated directly with machine learning.

F IGURE 7 Comparisons
between the a and b coefficients
of the Ångström-Prescott (A-P)
formula estimated with three
empirical models (Model I, II, and
III; a, c) and four machine learning
methods (BP, Cubist, ELM, and
SVM; b, d) at the 80 Rs measuring
stations.
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recommendations can provide acceptable Rs estimations where the alti-

tude exceeds 1928 m. Thus, worse ET0 estimates were found in the SMZ

in south eastern China with lower altitudes when using the FAO–

recommended values (Figure 5).

4.2 | Empirical and machine learning methods in A-
P coefficient estimation

Machine learning is widely used for Rs and ET0 estimations due to the

flexible combination of predictors and satisfactory accuracy in dealing

with nonlinear problems (Fan et al., 2020; Gürel et al., 2020). How-

ever, machine learning works as a “black–box” model and usually

becomes overfitted (Zhang et al., 2018). The performance of machine

learning models is restricted by data training (Dong et al., 2022).

Applying machine learning models would be inefficient when the sce-

nario does not appear in the training dataset (Shu et al., 2022). Hence,

the parameterization of the P-M model with machine learning can

take advantage of the generalization ability of machine learning and

the physical basis of the P-M models. This study used optimal

machine learning algorithms to estimate the A-P coefficients of sta-

tions without Rs measurements. The coefficients were further used to

TABLE 3 Evaluation of the four
machine learning methods (MLM) in the
estimations of monthly a and b
coefficients of the Ångström-Prescott
(A-P) formula in the four climatic zones
and entire China. The grey-shaded cells
show the approach obtains the highest
estimation accuracy.

Region MLM

Coefficient a Coefficient b

R 2 RMSE nRMSE (%) R 2 RMSE nRMSE (%)

MPZ BP 0.916 0.008 3.8 0.791 0.021 3.6

Cubist 0.877 0.011 5.1 0.793 0.021 3.6

ELM 0.833 0.012 5.5 0.823 0.020 3.5

SVM 0.692 0.017 7.6 0.721 0.024 4.2

TCZ BP 0.845 0.020 8.7 0.832 0.026 5.0

Cubist 0.773 0.023 10.4 0.721 0.034 6.5

ELM 0.791 0.023 10.2 0.550 0.044 8.5

SVM 0.853 0.019 8.6 0.702 0.035 6.8

TMZ BP 0.755 0.024 11.9 0.871 0.021 4.0

Cubist 0.925 0.013 6.5 0.827 0.025 4.6

ELM 0.818 0.020 10.3 0.859 0.023 4.2

SVM 0.836 0.019 9.7 0.792 0.027 5.1

SMZ BP 0.854 0.011 7.2 0.877 0.018 3.1

Cubist 0.889 0.009 6.3 0.880 0.018 4.1

ELM 0.755 0.014 9.5 0.774 0.024 4.2

SVM 0.881 0.010 6.4 0.829 0.021 3.6

National BP 0.881 0.017 9.1 0.879 0.021 3.8

Cubist 0.914 0.014 7.7 0.842 0.024 4.3

ELM 0.868 0.018 9.7 0.778 0.029 5.2

SVM 0.898 0.016 8.4 0.808 0.026 4.8

F IGURE 8 Estimation of yearly-scale coefficients a (a) and b (b) of the Ångström-Prescott (A-P) formula with the optimal machine learning
algorithm at the 839 national weather stations. The optimal machine learning algorithms selected for estimating the coefficients a and b are SVM
and Cubist, respectively.
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calculate Rs to drive the P-M model to estimate the daily ET0. Satisfac-

tory accuracy was obtained, indicating an exciting potential for com-

bining machine learning with physical–process models for

geoscientific predictions.

We compared the empirical and machine learning methods in

estimating the A-P coefficients. In general, the machine learning

methods outperformed the empirical models, especially for the sta-

tions with extreme a and b values (Figure 7). Large variations were

found in the estimates of a and b among the empirical models, despite

they were specially established for China. As in this study, the three

empirical models published by Liu et al. (2009 and 2014) were estab-

lished based on meteorological measurements over different periods.

Hence, recalibrating the fundamental coefficients of the three

empirical models may better estimate the A-P coefficients. Generally,

the machine learning methods could better estimate the a and

b coefficients than the empirical models.

The machine learning methods performed exceptionally well at

sites with extreme values of a and b. Fan et al. (2020) pointed out that

machine learning methods take advantage of dealing with nonlinear

problems with dispensable prior knowledge. Hence, machine learning

methods have been widely used in direct estimation of solar radiation

(Lu et al., 2023; Wang et al., 2017) and evapotranspiration (Niu

et al., 2021). We evaluated the ET0 estimated with machine learning

methods and the PM-AP model with missing Rs measurements. The

results indicated that using Rs estimations based on the daily and

monthly A-P coefficients outperformed machine learning models in

F IGURE 9 Spatial distributions of monthly coefficient a of the Ångström-Prescott (A-P) formula. The distributions are generated with the
Kriging interpolation method based on the estimated coefficients a at 839 national weather stations through the Cubist.
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ET0 estimation (Table 2). Since the estimations of the A-P coefficients

have been produced in this study, the PM-ET0 model is recommended

for ET0 estimation in China for researches who are not good at com-

puter programing when only Rs data are missing.

However, the A-P coefficients were estimated with the machine

learning models that established based on observations from sparsely

distributed stations. For example, there were only 7 and 16 stations in

the MPZ and TCZ, respectively. Thus, the machine learning models

and the A-P coefficient interpolation require further evaluation in

these zones. Additionally, only four common machine learning algo-

rithms were employed in this study. Searching for more efficient

machine learning models for the parameterization of physical models

is promising for geoscientific predictions (Nearing et al., 2021). In the

further, we will investigate new machine learning and deep learning

methods in estimating Rs and ET0.

4.3 | Different time–scale A-P coefficients in Rs

and ET0 estimation

Great variation was found among the different time-scale A-P coeffi-

cient benchmark values (Table 1). The ranges of daily A-P coefficients

were more extensive than their yearly ones, which may be caused by

the data size used for linear regression (Liu, Mei, Li, Zhang, Wang,

et al., 2009). The data size used for calibrating the values of A-P coef-

ficients decreased substantially with a temporal gradient from yearly

F IGURE 10 Spatial distributions of monthly coefficient b of the Ångström-Prescott (A-P) formula. The distributions are generated with the
Kriging interpolation method based on the estimated values of coefficients b at 839 national weather stations through the BP.
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to daily scales. Compared with Rs estimates with monthly and

yearly A-P coefficients (both benchmarks and FAO recommendation),

the Rs errors caused due to daily A-P coefficients were the smallest

across China. Soler (1990) used monthly values in Rs estimation and

obtained better results in Europe. Podestá et al. (2004) pointed out

that seasonal or finer time–scale A-P coefficients should be used to

eliminate the systematic residuals of Rs estimation. However, the daily

A-P coefficients slightly outperformed the monthly and yearly coeffi-

cients. The errors of Rs were further transferred to the ET0 estimation

through the P-M model. The ET0 estimation driven by the Rs esti-

mated with the daily A-P coefficients provided the highest accuracy.

Moreover, there was a nonsignificant difference among these three

time–scale A-P coefficients in ET0 estimation. Due to their conve-

nience and accuracy, the yearly A-P coefficients are more suitable for

estimating of daily Rs and ET0 in China.

5 | CONCLUSION

This study proposes a new method for estimating ET0 with missing Rs

by combining machine learning with physical–based P-M models.

Firstly, four machine learning algorithms were used to parameterize the

fundamental coefficients of the A-P formula at different time scales

(daily, monthly, and yearly). Then, the estimated A-P coefficients were

used to calculate Rs to drive the P-M model for ET0 estimation (PM-

ET0). Additionally, ET0 values were also directly estimated with machine

learning methods (ML-ET0). Values of the a descended from northwest

to southeast China while the b shared an opposite distribution. The two

coefficients were more scattered in the daily scale, followed by the

monthly and yearly scales. Compared with the benchmarks, the FAO

recommended a large a, but a small b for most stations in China, which

resulted in the largest errors both in Rs and ET0, especially in south east-

ern China. Estimation of ET0 with the FAO-recommended coefficients

significantly improved by all of the site–calibrated A-P coefficients at

different time scales, especially during the growing season from April to

September. However, an insignificant decreasing gradient was found in

ET0 estimation with the A-P coefficients from the yearly to daily scales.

Compared with the PM-ET0, the ML-ET0 outperformed the ET0 esti-

mated with yearly A-P coefficients but underperformed those esti-

mated with daily and monthly ones. Further machine learning methods

were more reliable in estimating the A-P coefficients than empirical

regression methods. Hence, in terms of robustness and convenience,

using the A-P formula with yearly A-P coefficients to calculate Rs to

drive the P-M model for ET0 estimation is superior in China.

F IGURE 11 Estimation of
ET0 for the 839 weather stations
without direct Rs measurements
in the four meteorological zones
in China. Daily Rs used to drive
the P-M model is calculated
based on the Ångström-Prescott
formula with the FAO-
recommended coefficients (red)

and yearly estimates based on
the optimal machine-learning
model (blue). The symbol * shows
the significance level, and ns
represents no significance.
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