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A B S T R A C T

Ecological models are important tools for quantifying and evaluating the carbon and water cycles of agricultural 
and forest ecosystems. However, quick determination of the values of parameters of a given model remains a big 
challenge for most model users, especially beginners. In this study, we coupled an independent automatic 
parameter optimization tool of PEST (Parameter ESTimation) with the Biome-BGC model through Python pro
gramming language, and finally developed a new Biome-BGC-PEST software package for automatic model 
optimization. The encapsulation of the optimization process for Biome-BGC model parameters has heavily 
simplified model operational steps and improved model calibration efficiency. With the Biome-BGC-PEST 
package, sensitivity analysis and optimization of physiological and ecological parameters of the Biome-BGC 
model were conducted based on combined remote-sensing products of GPP (Gross primary productivity) and 
ET (Evapotranspiration) for the agricultural and forest ecosystems in the Qinling Mountains of China. Compared 
with the traditional trial-and-error methods for parameter optimization, the influential parameters estimated by 
the Biome-BGC-PEST package were similar, mainly including atmospheric deposition of N, symbiotic and 
asymbiotic fixation of N, cuticular conductance, etc. However, they were dramatically different in their sensi
tivity magnitudes. This was mainly because the new method greatly enhanced the efficiency of parameter 
optimization through allowing simultaneously tuning all of the parameters related to carbon and water fluxes. 
Consequently, the simulation accuracy of the Biome-BGC model was dramatically improved for the agricultural 
and forest ecosystems in the Qinling Mountains after parameter optimization. The R2 (Coefficient of determi
nation) of general GPP simulations increased from 0.67 to 0.89 and the RMSE (Root mean square error) 
decreased by about 37 %. Similarly, the R2 of general ET simulations increased from 0.57 to 0.86 and the RMSE 
decreased by about 55 %. In conclusion, the newly established Biome-BGC-PEST package demonstrated similar 
or better optimization efficiency and accuracy compared to the traditional methods, which could greatly promote 
the application of the Biome-BGC model in relevant research of agricultural and ecological modeling.

1. Introduction

Forest ecosystems store 70 % of the global terrestrial vegetation 
carbon pool (Ciais et al., 2014) and contribute to half of the global 
terrestrial carbon sequestration(Beer et al., 2010; Pan et al., 2011). The 

carbon and water cycles of ecosystems are closely linked to global 
ecosystem changes. Quantifying and assessing the carbon and water 
cycles, as well as energy allocation in forest and agricultural ecosystems 
are of great importance for the studies on regional carbon budgets, water 
cycles, and climate change at regional scales. This study specifically 
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focuses on the process of parameter optimization for the Biome-BGC 
model to improve its performance in simulating forest and agricultural 
ecosystems. Simultaneously, the water cycle within forest ecosystems 
constitutes a crucial component of the terrestrial water cycle, governing 
the dynamic allocation, transportation, and transformation of various 
forms of water in the forest ecosystems (Liu and Wu, 2012). With the 
increase of human activities, agricultural production has been influ
encing the carbon and water cycles of terrestrial ecosystems through 
alterations in land use patterns, soil, and vegetation structure (Xia et al., 
2021).

Studying water-carbon flux usually involves separately measuring 
the carbon sequestration (in terms of gross primary productivity, GPP) 
and water consumption components (in terms of evapotranspiration, 
ET) of terrestrial vegetation (Baldocchi, 1994; Beer et al., 2009). The 
GPP of an ecosystem refers to the amount of carbon fixed by green plants 
per unit area over a unit of time through photosynthesis (Wang et al., 
2023b; Yu et al., 2023). It serves as the foundation of the ecosystem 
carbon cycle and represents the initial material and energy acquisition 
for the ecosystem (Ryu et al., 2011). Evapotranspiration is the sum of 
vegetation transpiration, soil evaporation, and evaporation intercepted 
by the canopy. It constitutes a crucial component of both the global 
water cycle and the Earth’s surface energy balance (Priestley and Taylor, 
1972; Ryu et al., 2011). Due to the complexity and the temporal and 
spatial variability of these fluxes, process-based ecosystem models have 
become essential tools to integrate and extrapolate them to broader 
spatial scales.

Process-based ecosystem models are research tools constructed on 
theoretical foundations through mathematical equations. They simulate 
and predict the mechanisms of the whole ecosystem based on local dy
namics, allowing the extrapolation of small-scale carbon and water cycle 
relationships to larger spatial scales. These models provide an effective 
approach for investigating the coupled carbon-water relationships at 
regional scales. The Biome-BGC model could provide accurate de
scriptions of carbon, nitrogen, and water cycle dynamics in various 
vegetation types (Running and Hunt Jr, 1993). Among the many 
process-based ecosystem models available, the Biome-BGC model stands 
out for its detailed representation of vegetation physiological processes, 
more comprehensive simulation over time, and higher level of integra
tion. However, a major challenge in the current applications of the 
Biome-BGC model lies in the sensitivity analysis and optimization of 
model parameter. Once optimized and validated, the model can be 
widely used in the simulations and analyses of carbon and water fluxes 
across diverse ecosystems including forests, grasslands, and agricultural 
fields (Bond-Lamberty et al., 2007; Ren et al., 2022; Sun et al., 2017).

Currently, methods used for sensitivity analysis of model parameters 
mainly included local sensitivity analysis (Kumar and Raghubanshi, 
2012) and global sensitivity analysis (Raj et al., 2014; Yan et al., 2016). 
The method for model parameter estimation usually involved refer
encing parameter values from previous studies and refining them with 
physiological principles of plants. Influential model parameters were 
continuously adjusted within a reasonable range, and parameter values 
were ultimately determined for various natural vegetation types (Chen 
and Xiao, 2019; Ren et al., 2022; Ueyama et al., 2010). These methods 
have been widely applied in previous studies related to the Biome-BGC 
model. However, they suffer from issues such as low parameter opti
mization efficiency, high entry barriers, and significant uncertainties in 
optimization results, with the parameter optimization process typically 
occupying most of the time in these studies (Huang et al., 2022a; Jia and 
Zhang, 2024; Liu et al., 2025; You et al., 2019). Therefore, this study 
aims to improve the efficiency and accuracy of parameter optimization 
for the Biome-BGC model using parameter optimization software. The 
PEST (Parameter ESTimation) is a nonlinear parameter estimation 
software widely used for the automatic estimation of parameters in 
almost any kind of computer models (Friedel, 2005).

PEST adjusts model parameters based on multiple model runs until 
the model output closely matches the observed values. PEST utilizes the 

Gauss-Marquardt-Levenberg (GML) algorithm, which is a gradient- 
based method, to optimize model parameters. The theoretical founda
tion of the GML method stems from linear parameter estimation theory. 
The GML algorithm enhances the ability to identify the global minimum 
for the model (Skahill and Doherty, 2006). The most remarkable 
advantage of the GML method is its ability to achieve parameter esti
mation with very high model efficiency (Ma et al., 2020). In recent 
years, the PEST software has been widely used hydrological models, 
crop models, and physiological-ecological models, demonstrating 
favorable parameter optimization performance in these models 
(Bahremand and De Smedt, 2010; Bezak et al., 2015; Gao et al., 2014; 
Ma et al., 2012; Tebakari and Kita, 2015). However, due to the difficulty 
of getting started and the cumbersome operation of the PEST software, 
its application in the Biome-BGC model was very limited. In PEST 
optimization, manual adjustment of parameter ranges is required for 
each round of optimization, which consumes a considerable amount of 
time and leads to low efficiency. PEST application requires a profes
sional programmer to write computer code, prepare relevant files, and 
invoke PEST running within the model. This kind of programming de
mand may pose a great challenge for model users, especially the be
ginners (Fang et al., 2010).

To address this issue, this study coupled the Biome-BGC model with 
the PEST software. The main objectives were to (1) encapsulate the 
parameter optimization steps of the PEST software into the Biome-BGC 
model for automatic model calibration; (2) assess the applicability of 
calibrated Biome-BGC model in simulating the forest and farmland 
ecosystems of the Qinling Mountains; and (3) propose a replicable model 
calibration approach for regional-scale applications of the Biome-BGC 
model.

2. Materials and methods

2.1. Study area

The Qinling Mountains is a geographical dividing line between 
northern China and southern parts of China, running in a west-to-east 
direction and spanning across Gansu Province, Shaanxi Province, and 
Henan Province. The Qinling Mountains are located at an east-west 
distance of 1600 km and a north-south distance of 100–300 km, with 
elevations of 95–3881 m (Fig. 1). The Qinling Mountains serve as the 
boundary between the subtropical and the warm temperate climates in 
China. It is bordered by the Weihe River to the north and the Hanjiang 
River to the south. The region has abundant precipitation, with an 
annual average of 600–1200 mm. However, there are considerable 
variations in seasonal rainfall distributions. The obvious climatic dif
ference between the northern and southern slopes can be attributed to 
the pronounced obstruction of mountain ranges to atmospheric flow. 
The northern slope belongs to a warm-temperate, semi-humid climate, 
characterized by an annual average precipitation of 520 mm and an 
annual average temperature of 10 ◦C. In contrast, the southern slope 
falls within the subtropical, humid climate zone, with an annual average 

Fig. 1. Location and elevation map of the Qinling Mountains of China.
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precipitation of 820 mm and an annual average temperature of 14 ◦C 
(Wang and Bai, 2017). The Qinling Mountains are characterized by 
abundant vegetation, high forest coverage, well-defined vertical zona
tion spectrum of vegetations, and exceptionally rich biodiversity. The 
region encompasses various vegetation types, including deciduous 
broad-leaved forests, evergreen coniferous forests, mixed 
conifer-broadleaved forests, as well as subalpine meadows, alpine 
grasslands, shrublands, and farmlands. Therefore, it holds significant 
importance to study on the ecosystem of the Qinling Mountains to 
address the issues related to water conservation and ecological 
protection.

2.2. Brief introduction to the Biome-BGC model

The Biome-BGC model is a typical process-based terrestrial 
ecosystem model that simulates the water, carbon, oxygen cycles, as 
well as energy flow within vegetation, litter, and soil components of 
terrestrial ecosystems. The Biome-BGC model was jointly developed and 
maintained by the National Center for Atmospheric Research (NCAR) 
and the Numerical Terradynamic Simulation Group (NTSG) at the 
University of Montana, United States. Since the initial release of the first- 
generation Biome-BGC model in 1993, the running team has continu
ously worked on improving and enhancing the model to refine the 
carbon, water, and nutrient cycling and storage processes within the 
atmosphere-vegetation-soil interactions of terrestrial ecosystems 

(Running and Hunt Jr, 1993). The current version of the Biome-BGC 
model is V4.2 (https://www.ntsg.umt.edu/project/biome-bgc.php), 
which comprehensively considers the carbon, nitrogen, and water cy
cles, as well as soil processes and energy flows within ecosystem pro
cesses. It has become a widely recognized ecological process simulation 
model in the forefront of international researches (Chiesi et al., 2007; Li 
et al., 2020; White et al., 2000).

2.3. PEST software

The PEST software is parameter-independent and uncertainty- 
analysis-based software (Doherty et al.). PEST is also a parameter esti
mation tool renowned for its ability to optimize model parameters 
without requiring any modifications to the original model structure. 
This exceptional characteristic endows PEST with robust adaptability, 
enabling seamless integration with a wide range of existing models 
(Fang et al., 2012; Nolan et al., 2010; Zhen et al., 2023). By incorpo
rating PEST into a given model, it can be transformed to a non-linear 
parameter estimator or a sophisticated data interpretation package for 
the model simulation system. The main algorithm of PEST estimates 
model parameters by minimizing a given objective function. The 
objective function, denoted as ψ(F), is defined as a weighted 
least-squares difference function based on the observed and calculated 
values of one or multiple output variables with respect to the model 
parameters (Eq. (1)). In this study, observations of GPP and ET fluxes 

Fig. 2. Schematic diagram of the distribution of grid points (a) and the four typical vegetation types (b) in the Qinling Mountains of China. Arabic numbers of 17, 
267, 580, 599, 608, and 880 indicate the six selected representative sites of typical vegetation types for sensitivity analysis of the parameters of Biome-BGC model.
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were employed as input data. The PEST software was utilized to perform 
the optimization for the Biome-BGC model. 

ψ(F) = ψ (GPP) + ψ (ET)

=
∑n1

i=1
w2

GPP,i
(
obsGPP,i − simGPP,i

)2
+
∑n2

i=1
w2

ET,i
(
obsET,i − simET,i

)2 (1) 

where ψ(F) represents the objective function; the subscript GPP in
dicates gross primary productivity; the subscript ET denotes evapo
transpiration; obs refers to the observed values; w represents the weight 

coefficient assigned to each observed value; sim represents the simulated 
values; i denotes the time step (i = 1 to 365, representing the daily time 
steps for the Biome-BGC model); and n1, n2 denote the number of 
observed values for GPP and ET, respectively. In this study, there are 
observed flux data for 365 days in each year.

The PEST software requires three types of input files: (1) the tem
plate files, in which model input files and the parameters are identified; 
(2) instruction files, in which identifies the templates and output data; 
and (3) a control file, which controls the PEST optimization process. 
Once built, these files can be checked for correctness and consistency by 

Fig. 3. Flowchart of the automatic parameter optimization process for the Biome-BGC-PEST package. Blue part indicates the running process of the PEST software 
program; yellow part indicates the running process of the Biome-BGC model; and green part the batch running program that couples the PEST and the Biome-BGC.
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the programs of TEMPCHEK, INSCHEK, and PESTCHEK (Malone et al., 
2010; Nolan et al., 2010). In the application of PEST, it is essential for 
users to ensure the successful execution of the target model before 
preparing PEST files. Subsequently, correct commands should be written 
in Windows DOS command line mode to validate the files and run the 
PEST program.

2.4. Data acquisition and processing

2.4.1. Data for Biome-BGC model simulation
Primary data utilized in this study include climate, vegetation cover, 

soil, DEM (digital elevation model), and other foundational geograph
ical information data. Meteorological data of 2003-2016 were obtained 
from the National Tibetan Plateau Data Center (http://westdc.westgis. 
ac.cn/). This dataset encompassed daily maximum and minimum tem
peratures ( ◦C) as well as daily precipitation (mm). To provide complete 
meteorological data necessary for the Biome-BGC model running, the 
Mountain Microclimate Simulation Model (MT-CLIM) was employed to 
generate the meteorological data required ( Running et al., 1987). The 
MT-CLIM model was utilized to estimate site-level daily values of 
various climatic variables, including solar radiation, vapor pressure 
deficit, and daylength based on the observed data of daily maximum 
temperature, minimum temperature, and precipitation. Vegetation 
cover data were obtained from the National Tibetan Plateau Data Center 
(https://www.ncdc.ac.cn/). The dataset utilized in this study was the 
Chinese Vegetation Functional Type map, with a spatial resolution of 1 
km (Hengl et al., 2014). The soil data were obtained from the Global Soil 
Information System (https://soilgrids.org/). This system provides soil 
grid data at a spatial resolution of 1 km. The dataset includes various soil 
attributes such as soil organic carbon content (g kg-1), pH, bulk density 
(kg m-3), coarse fraction ( %), soil organic carbon stock (t ha-1), rock 
depth (cm), as well as the composition of sand, silt, and clay components 
( %). Elevation data were sourced from the Shuttle Radar Topography 
Mission (SRTM)(Farr and Kobrick, 2000), while the other fundamental 
geographical data included site latitude information.

2.4.2. Data rasterization
In this study, the Qinling Mountains was partitioned into funda

mental spatial units. These units were simulated individually, enabling 
the regionalized running of the model. Specifically, the Qinling Moun
tains were divided into 967 grid cells, each with dimensions of 10 km ×
10 km (Fig. 2a). The vegetation cover type for each 10 km-resolution 
grids was determined based on the dominant vegetation type in the 
grid, which refers to the vegetation type with the largest coverage area 
within the given grid. Furthermore, the diverse multi-dimensional data 
required for the operation of the Biome-BGC model were harmonized to 
a consistent resolution.

2.4.3. Validation data of GPP and ET preparation
To verify model simulation accuracy, it is essential to compare model 

simulations with the corresponding observations of GPP and ET for 
different vegetation cover types in the Qinling Mountains. The accuracy 
of different satellite remote-sensing products could vary heavily for 
different vegetation cover types. Therefore, this study referred to pre
vious research findings and selected the most accurate products avail
able in China for each of the four vegetation cover types in the Qinling 
Mountains (Table S1) (Huang et al., 2022b). Subsequently, the data 
were standardized to a spatial resolution of 10 km and a temporal res
olution of month (30 d). Then, guided by the distributions of vegetation 
cover in the Qinling Mountains, GPP and ET products were systemati
cally integrated grid by grid for the four different vegetation cover types. 
Finally, optimized composite datasets of GPP and ET were provided for 
the Qinling Mountains. More details about the producing process of GPP 
and ET composite products could be found in Huang et al. (2022b). This 
study selected the composite datasets of GPP and ET of 2003–2016 as 
observational data for future analysis (Fig. 2b).

2.4.4. Statistical analysis
This study evaluated the optimization results of the Biome-BGC 

model and assessed the model’s regional adaptability according to two 
statistical metrics: the coefficient of determination (R2; Eq. (2)) and the 
root mean square error (RMSE; Eq. (3)). Meanwhile, to calculate the 
systematic trend changes in the model optimization results, we also 
computed the mean bias error (MBE; Eq. (4)) for different vegetation 
types. 

R2 =

(
n(
∑

xy) − (
∑

x)(
∑

y)
[
n
∑

x2 − (
∑

x)2
][

n
∑

y2 − (
∑

y)2
]

)2

(2) 

RMSE =
[(∑

(x − y)2
/

n
)]0.5

(3) 

MBE=

∑
x − y
n

(4) 

where x and y represent the simulated and observed values; and n rep
resents the number of paired values. R2 close to 1 and RMSE, MBE close 
to 0 indicate a good agreement between model simulations and field 
observations.

2.5. Biome-BGC and PEST coupling

2.5.1. Establishment of the Biome-BGC-pest package
The PEST software was encapsulated to facilitate the steps and pro

cedures of parameter optimization for the Biome-BGC model. The 
automatic optimization of model parameters could thereby obviously 
reduce the errors and improve the efficiency of model calibration. Thus, 
the Biome-BGC-PEST package was developed with Python language to 
enable the model integration. The Biome-BGC-PEST package consists of 
four main components. (1) First, it prepared basic information files (. 
csv) about parameter optimization sites and control files (.pst) for the 
PEST program. (2) Next, it started an automatic process wherein the 
Python program generated files (.ini) related to the Biome-BGC model 
and the files (*.tpl, *.par, *.pmt, *.ins, *.obf) relevant to the PEST pro
gram. (3) Third, the program automatically created commands to write 
and execute the *.bat files. (4) Finally, these files enable the Biome-BGC- 
PEST to run automatically and output results (Fig. 3). The Python code 
and file instructions for the Biome-BGC-PEST package can be found in 
the supplementary file (Table S2).

To use the Biome-BGC-PEST package, it needed geographic infor
mation, land cover data, meteorological data of 2003-2016, and the 
composite datasets of GPP and ET for the 967 grid points within the 
Qinling Mountains. Then, researchers can simply select the representa
tive pixels, specify the parameters to be adjusted, and control the files to 
achieve automatic parameter optimization. In this study, the automatic 
optimization process of Biome-BGC-PEST package was based on the 
Monte Carlo method, which generated multiple sets of initial parameter 
sets within predefined parameter value ranges (set empirically). The 
initial parameter sets were then utilized to drive the coupled Biome-BGC 
and PEST program for sequential optimization. The optimization results 
from all initial parameter sets were collected, but only the parameter set 
with the best optimization performance was selected as the final opti
mization result. The number of initial parameter sets can be set in the 
control file of the package, which was set to 500 sets in this study. This 
approach could help avoid the problems encountered in some previous 
studies, in which parameter estimations with the PEST software were 
only based on a single set of default parameters and the optimization 
result was easy to be trapped in local optima.

2.5.2. Parameter sensitivity analysis based on the Biome-BGC-pest package
Sensitivity analysis of model parameters was performed using the 

Biome-BGC-PEST package when simulating typical vegetation types in 
the Qinling Mountains, including deciduous broad-leaved forests, 
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evergreen needle-leaved forests, shrub meadows, and crop farmlands. 
Notably, the crops in the Qinling Mountains exhibited distinct differ
ences compared to the other vegetation types. Based on their cultivation 
practices, the crops in the study area were categorized into three main 
types: (1) annual crop (wheat) with one harvest per year, distributed in 
the northwestern part of the Qinling Mountains; (2) wheat-paddy rota
tion with two harvests per year, distributed in the southern part of the 
Qinling Mountains; (3) wheat-maize rotation with two harvests per year, 
distributed in the northern, eastern, and southern parts of the Qinling 
Mountains. Hence, for the crop farmlands, separate sensitivity analyses 
and optimizations of model parameters were conducted for each of the 
three different cultivation types of annual crop, wheat-maize rotation 
(where wheat and maize were analyzed separately), and wheat-paddy 
rotation.

The Biome-BGC model has a total of 43 physiological and ecological 
parameters, among which the identity-related parameters (e.g., 
parameter indicating deciduous or herbaceous vegetation) were 
excluded from the optimization process according to some previous 
studies. In addition to the physiological ecological parameters, this 
study added two environmental parameters related to GPP and ET 
simulations: atmospheric nitrogen deposition and symbiotic and non- 
symbiotic nitrogen. Therefore, there were a total of 41 parameters 
(Table S3). The Biome-BGC-PEST package was applied separately using 
the initial parameter files provided by the model for different vegetation 
types, namely ‘enf.epc’ for evergreen needle-leaved forests, ‘dbf.epc’ for 
deciduous broad-leaved forests, ‘C3grass.epc’ for wheat, ‘C4grass.epc’ for 
maize, and ‘shrub.epc’ for shrub meadows. The initial parameter files of 
‘C3grass.epc’ (wheat) and ‘C4grass.epc’ (maize) were slightly modified 
based on previous research to better meet the physiological status of the 
crops (Wang et al., 2005). For each vegetation cover type, random 

sampling was performed to select the representative sites for sensitivity 
analysis and optimization of model parameter (Fig. 2b).

Based on the sensitivity analysis files (*.sen) and referring to the 
manual of the PEST software (Fig. 3), this study set the sensitivity 
thresholds as 1.0 for forest types (Deciduous broad-leaved forest, ever
green needle-leaved forest, and shrub meadow), and 0.1 for crop types 
(Annual crop, wheat in wheat-maize rotation, maize in wheat-maize 
rotation, and wheat-paddy rotation). After the program was run, the 
influential parameters of each vegetation type were obtained according 
to the sensitivity values to GPP and ET (Fig. 4). The sensitivity analysis 
files (*. sen) is based on the calculation of Jacobian matrices in the PEST 
optimization process (Doherty et al.). Based on the contents of the Ja
cobian matrix, PEST calculates the composite sensitivity of i th param
eter with respect to all observations (Eq. (5)). 

si =
(JtQJ)ii

1/2

m
(5) 

where si is the comprehensive sensitivity of the i th parameter; J is the 
Jacobian matrix; Q is the cofactor matrix; and m is the weighted average 
of the observed values. Thus, the composite sensitivity of the i th 
parameter is the normalized (with respect to the number of observa
tions) magnitude of the column of the Jacobian matrix pertaining to that 
parameter, with each element of that column multiplied by the weight 
pertaining to the respective observation.

2.5.3. Optimization of influential model parameters
The composite datasets of GPP and ET were utilized as observations 

at the selected sites in the Qinling Mountains (Fig. 4). Data in 2003-2012 
were employed for parameter optimization, while data in 2013-2016 

Fig. 4. Flow chart for the adaptability evaluation of the Biome-BGC-PEST package to optimize the parameters of the Biome-BGC model in the Qinling Mountains 
of China.

K. Gong et al.                                                                                                                                                                                                                                    Agricultural and Forest Meteorology 375 (2025) 110868 

6 



were reserved for model validation. The optimization of influential 
parameter was conducted with the Biome-BGC-PEST package for typical 
vegetation types (i.e., deciduous broad-leaved forests, evergreen needle- 
leaved forests, shrub meadows, and crop farmlands of annual crop, 
wheat-maize rotation, and wheat-paddy rotation) (Table S4) in the 
Qinling Mountains. In the wheat-maize rotation system, parameters for 
wheat and maize were optimized separately. To achieve separate 

optimizations for wheat and maize at the grids of wheat-maize rotation, 
the weights of observations were adjusted according to the growth 
months of wheat and maize. The simulated variable values of wheat and 
maize were combined based on the weights for model validation and 
evaluation.

Fig. 5. Histogram of parameter sensitivities in the simulations of GPP and ET with the Biome-BGC model under typical vegetation types (deciduous broad-leaved 
forest, a; evergreen needle-leaved forest, b; shrub meadow, c; annual crop, d; wheat in wheat-maize rotation, e; maize in wheat-maize rotation, f; and wheat-paddy 
rotation, g) in the Qinling Mountains of China. The parameters with sensitivities above the dotted lines are selected as the influential parameters.
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3. Results

3.1. Model parameter optimization with the Biome-BGC-pest package

3.1.1. Parameter sensitivity analysis
Sensitivities of different parameters of the Biome-BGC model were 

obtained for each coverage type by optimizing model parameters at 
different sites with various vegetation covers. This process allowed us to 
select the most influential parameters. The results of sensitivity analysis 
revealed that there were a total of 14 influential parameters for the GPP 
and ET simulations of deciduous broad-leaved forest, while evergreen 
needle-leaved forest and shrub meadow both only had 11 influential 
parameters (Fig. 5). For crops, the number of influential parameters was 
11 for the maize in the wheat-maize rotation, while it was thirteen for 
the other crop types. The most influential parameters across all 

vegetation cover types were the “atmospheric deposition of N”, “sym
biotic and asymbiotic fixation of N”, “cuticular conductance”, and 
“maximum stomatal conductance”. The influential parameters were 
summarized for typical vegetation types for GPP and ET simulations in 
the Qinling Mountains (Tables S5 and S6). It was found that the types of 
influential parameters were very similar across different vegetation 
cover types.

3.1.2. Optimization of influential parameters for different vegetation cover 
types

Before parameter optimization, the model performance in GPPmonth 
simulations for deciduous broad-leaved forest (Fig. 6a), evergreen 
needle-leaved forest (Fig. 6b), shrub meadow (Fig. 6c), and paddy- 

Fig. 6. Comparisons of observed and simulated GPPmonth with the Biome-BGC 
model before (green dashed lines) and after (blue solid lines) the optimization 
of influential parameters of the Biome-BGC model under different typical 
vegetation cover types (deciduous broad-leaved forest, a; evergreen needle- 
leaved forest, b; shrub meadow, c; annual crop, d; wheat-maize rotation, e; 
and wheat-paddy rotation, f) in the Qinling Mountains of China. The numbers 
in the parentheses after vegetation types are the representative site number as 
shown in Fig. 2. And the same below.

Fig. 7. Comparisons of observed and simulated ETmonth with the Biome-BGC 
model before (red dashed lines) and after (violet solid lines) the optimization 
of influential parameters of the Biome-BGC model under different typical 
vegetation cover types (deciduous broad-leaved forest, a; evergreen needle- 
leaved forest, b; shrub meadow, c; annual crop, d; wheat-maize rotation, e; 
and wheat-paddy rotation, f) in the Qinling Mountains of China.
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wheat rotation crop (Fig. 6f) was better than that for annual crop 
(Fig. 6d) and wheat-maize rotation (Fig. 6e). Particularly at the grids of 
wheat-maize rotation, there was a notable variation in GPPmonth before 
and after the rotation. This phenomenon could be attributed to the lack 
of model parameter optimization, which consequently hindered an ac
curate representation of the GPPmonth fluctuations. As a result, remark
able disparities between simulated and observed values were observed. 
The simulation results of ETmonth before optimization showed that the 
wheat-paddy rotation (Fig. 7f) grids exhibited the most favorable 
simulation performance, while the simulations at shrub meadow 
(Fig. 7c) and wheat-maize rotation grids (Fig. 7e) showed substantial 
discrepancies compared to the observed values. However, the simula
tion performance of GPPmonth and ETmonth was generally improved to 
varying degrees for all vegetation cover types after model parameter 
optimization. At the grids of wheat-maize rotation, separately optimized 
parameters for wheat and maize could help capture the changes in 
GPPmonth before and after rotation, resulting in an obvious enhancement 
of simulation accuracy. The simulated values generally became much 

close to the observed values and shared similar temporal variation 
patterns.

The GPPmonth and ETmonth simulation results with the Biome-BGC 
model were compared before and after parameter optimization across 
different vegetation cover grids based on the statistics of R2 and RMSE. 
After model parameter optimization, the R2 of GPP simulation increased 
from 0.86 to 0.96 at deciduous broad-leaved forest grids, and RMSE 
decreased from 71.84 gC m-2 to 34.30 gC m-2. At evergreen needle- 
leaved forest grids, the R2 of GPPmonth simulation increased from 0.79 
to 0.91, while RMSE decreased from 71.97 gC m-2 to 45.13 gC m-2. For 
shrub meadow grids, the R2 and RMSE after parameter optimization 
were 0.95 and 18.02 gC m-2, respectively. Similarly, for the GPPmonth 
simulations at the three crop grids, it demonstrated that the Biome-BGC 
model generally had increased R2 and reduced RMSE values after model 
parameter optimization (Fig. 8). The ET simulation accuracy of the 
Biome-BGC model was also greatly enhanced after parameter optimi
zation. The shrub meadow grids had the lowest R2 (0.49) before 
parameter optimization, but achieved an R2 of 0.92 after parameter 

Fig. 8. Scatter plots of observed and simulated GPPmonth with the Biome-BGC model before (green triangles) and after (blue dots) parameter optimization under 
typical vegetation cover types (deciduous broad-leaved forest, a; evergreen needle-leaved forest, b; shrub meadow, c; annual crop, d; wheat-maize rotation, e; and 
wheat-paddy rotation, f) in the Qinling Mountains of China.
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Fig. 9. Scatter plots of observed and simulated ETmonth with the Biome-BGC model before (orange triangles) and after (violet dots) parameter optimization of typical 
vegetation cover types (deciduous broad-leaved forest, a; evergreen needle-leaved forest, b; shrub meadow, c; annual crop, d; wheat-maize rotation, e; and wheat- 
paddy rotation, f) in the Qinling Mountains of China.
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optimization. Similarly, for all vegetation cover types, the R2 values 
were consistently above 0.85 after parameter optimization. Scatter plots 
of simulation results revealed a substantial enhancement of R2 values 
after model parameter optimization, predominantly exceeding 0.9. The 
reductions of RMSE values were between 20 % and 60 %, with an 
average decrease of 40 % (Fig. 9).

In general, the simulated GPP and ET curves by the Biome-BGC 
model with the optimized model parameters were much closer to the 
observations than those with parameters without optimization. This 
kind of model performance improvement was evident based on the 
substantial increase in R2 and decrease in RMSE values, indicating that 
the optimized parameters could help better capture the variations in 
GPPmonth and ETmonth, leading to enhanced simulation accuracies.

3.2. Performance of calibrated Biome-BGC model in the Qinling 
Mountains

3.2.1. GPP simulation performance
The calibrated Biome-BGC model was then used to simulate GPP and 

ET under different vegetation cover types of the Qinling Mountains of 
China. Based on the statistics of R2 and RMSE between observed and 
simulated values of variables concerned in years of 2003-2016, the 
adaptability of the Biome-BGC model was evaluated for the simulations 
of ecosystems in the Qinling Mountains. Generally, simulation perfor
mance for GPP in forest types was better than that for crops before 
parameter optimization (Table 1). However, through parameter opti
mization, the R2 values generally increased for all vegetation cover 
types, and the RMSE values decreased to varying degrees, indicating 
reduced discrepancies between observations and model simulations 
under different vegetation cover types. By comparing the differences in 
MBE before and after parameter optimization, we found that the simu
lation results for all vegetation types except shrub meadows generally 
underestimated GPP prior to optimization. Parameter optimization has 
enabled the simulation results of GPP in the Qinling Mountains to be 
closer to the actual values. Overall, compared to the model performance 
before parameter optimization, the performance of Biome-BGC model 
for GPP simulation improved remarkably in the Qinling Mountains, with 
an increase of average R2 from 0.67 to 0.89 and a decrease of average 
RMSE from 75.99 to 47.86 gC m-2 in the entire region.

Through the Taylor diagrams, obvious differences in the distribu
tions of scatter points were observed before and after model parameter 
optimization (Fig. 10). Before optimization, R2 values ranged between 
0.2 and 0.8 for different cover types, while RMSE values ranged between 
40 and 150 gC m-2. Among these vegetation cover types, deciduous 
broad-leaved forest (Fig. 10a) and shrub meadow (Fig. 10e) exhibited 

better simulation performance than the other vegetation cover types, 
while regions with wheat-maize rotation showed the poorest perfor
mance. After optimization, R2 values concentrated between 0.8 and 0.95 
and RMSE values ranged from 15 to 90 gC m-2. Compared to the results 
before optimization, R2 values became higher, RMSE values became 
lower, and scatter points were more concentrated. Notably, the 
improvement in simulation performance was most obvious in regions of 
wheat-maize rotation (Fig. 10e). Combining the Taylor diagrams 
(Fig. 10) with the vegetation distributions in the Qinling Mountains 
(Fig. 2b), it was observed that deciduous broad-leaved forest and shrub 
meadow regions were interconnected and their scatter points in Taylor 
diagram were relatively concentrated. Conversely, crop planting regions 
were scattered along the edges of the entire Qinling Mountains and had 
more dispersed scatter points in Taylor diagram. This indicates that the 
original parameters of forest ecosystems (Deciduous broad-leaved for
est, Evergreen needle-leaved forest, Shrub meadow) are relatively good, 
with a small improvement after optimization, while farmland ecosys
tems, especially those under crop rotation conditions, have a poor 
simulation basis, so the improvement effect after optimization is the 
most significant. This is mainly due to the complexity of the farmland 
ecosystem’s own structure and human intervention activities. This 
indicated that the simulation performance of the Biome-BGC model for 
GPP was influenced by vegetation cover types and the underlying sur
face conditions.

According to the distributions of R2 and RMSE values for GPP sim
ulations across the entire Qinling Mountains (Fig. 11), it was found that 
R2 improved from an overall range of 0.6–0.8 to 0.8–1.0, while RMSE 
decreased from 50–100 gC m-2 to 25–75 gC m-2 after model parameter 
optimization. The distributions of R2 and RMSE before optimization 
were uneven across the entire area (Fig. 11a and 11c), with overall lower 
R2 and higher RMSE values in crop regions. This suggested that the 
Biome-BGC model had poor performance in simulating GPP for crops, 
especially for rotation crops. However, the Biome-BGC model had a 
dramatic improvement in the simulation of crop GPP after parameter 
optimization (Fig. 11b and Fig. 11d). The differences of R2 and RMSE 
between different grids decreased, resulting in more uniform distribu
tions of R2 and RMSE across the entire region.

3.2.2. ET simulation performance
Different from the simulation results for GPP, the Biome-BGC model 

exhibited less favorable performance in ET simulations in forest types 
before parameter optimization, compared to crops. However, the results 
became similar to those for GPP simulations after model parameter 
optimization. The values of R2 increased for all vegetation cover types 
and values of RMSE decreased to varying degrees, resulting in an overall 
improvement in model performance for ET simulations (Table 2).

The simulation results for ET were similar to those for GPP. The 
Taylor diagrams showed noticeable differences in the distributions of 
data points before and after model parameter optimization. However, 
the distributions of ET data points were more concentrated than the GPP 
data points. Before optimization, the R² values for different vegetation 
types ranged from 0.2 to 0.7, and the RMSE values ranged from 15 to 60 
mm. After parameter optimization, the R² values concentrated between 
0.7 and 0.9, and the RMSE decreased to 5–30 mm. This indicates that 
parameter adjustment effectively reduced errors, making the simulated 
ET closer to the observed values. Through model parameter optimiza
tion, the improvement of simulation performance was the most obvious 
in the deciduous broad-leaved forest (Fig. 12a) and shrub meadow 
(Fig. 12c) regions. Additionally, simulation performance was the best in 
regions with annual crop (Fig. 12d) and wheat-paddy rotation (Fig. 12f). 
Vegetation distribution and underlying surface conditions had relatively 
smaller impacts on ET simulations than on GPP simulations. This is 
because the ET process has a more direct connection with environmental 
factors (such as temperature and humidity), while GPP is more sensitive 
to the unique physiological characteristics of vegetation, which vary 
significantly among different types. Therefore, the Taylor diagram 

Table 1 
Statistics of R2, RMSE and MBE between simulated and observed GPPmonth 
before and after optimization of the Biome-BGC model parameters under 
different vegetation cover types of the Qinling Mountains of China.

Vegetation type Before parameter optimization After parameter optimization

R2 RMSE 
(gC m-2)

MBE (gC 
m-2)

R2 RMSE 
(gC m-2)

MBE (gC 
m-2)

Deciduous 
broad-leaved 
forest

0.78 70.91 − 25.75 0.93 46.70 − 10.12

Evergreen 
needle-leaved 
forest

0.59 78.16 − 10.10 0.87 56.86 5.52

Shrub meadow 0.73 53.05 1.96 0.94 33.28 − 0.15
Annual crop 0.62 76.54 − 14.95 0.89 56.74 2.66
Wheat-maize 

rotation crop
0.38 104.02 − 61.77 0.79 56.23 11.64

Wheat-paddy 
rotation crop

0.74 81.83 − 30.57 0.91 47.05 − 2.08

The Qinling 
Mountains

0.67 75.99 − 23.53 0.89 47.86 1.24
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Fig. 10. Taylor plots of R2 and RMSE distributions of observed and simulated GPPmonth with the Biome-BGC model before (green triangles) and after (blue dots) 
optimization parameter under different typical vegetation types (deciduous broad-leaved forest, a; evergreen needle-leaved forest, b; shrub meadow, c; annual crop, 
d; wheat-maize rotation, e; and wheat-paddy rotation, f) in the Qinling Mountains of China.
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quantifies this difference.
The R2 and RMSE values of ET simulation results in the Qinling 

Mountains indicated that after parameter optimization, the overall R2 

values improved from 0.4–0.6 to 0.8–1.0, and RMSE values decreased 
from 30–50 mm to 10–20 mm, demonstrating a dramatic enhancement 
in simulation performance (Fig. 13). Before model parameter optimi
zation, only the southwestern part of the Qinling Mountains exhibited 
higher R2 values, while differences in other regions were less pro
nounced, all with low R2 values. RMSE values followed an uneven dis
tribution across the entire region of the Qinling Mountains. Through 
parameter optimization, the ET simulation performance was obviously 
improved, and the distributions of R2 and RMSE of ET simulations 
became more uniform than those of GPP simulations. Meanwhile, the 
MBE results indicate that before parameter optimization, the ET simu
lation results for farmland ecosystems among vegetation cover types 
were lower than the actual values, while the simulation results for forest 
ecosystems, including deciduous broad-leaved forest, evergreen needle- 
leaved forest, and shrub meadow, overestimated ET. After model 
parameter optimization, the MBE values of the simulation results under 
different vegetation cover types are closer to 0.

4. Discussion

In this study, the PEST software was used to automatically estimate 

the parameters of the Biome-BGC model, thereby improving the effi
ciency of model parameter optimization. The PEST algorithm obtains 
optimization results through multiple iterations of the initial parameter 
vector. However, PEST involves many steps and is very complex to use, 
which increases the difficulties for model users (Song et al., 2015; Sun 
et al., 2014). This study integrated the PEST software with the 
Biome-BGC model to create a Python-based package of 
Biome-BGC-PEST, addressing the challenges of model parameter tuning 
faced for most model users. The program code of the Biome-BGC-PEST 
package was provided in the supplementary file.

In some previous studies, optimization of model genetic parameters 
with PEST often selected a set of default parameters based on user 
experience and parameter range adjustment in each iteration to achieve 
optimal parameter values (Song et al., 2015). However, this approach 
was susceptible to getting stuck in local optima, and the manual 
adjustment of parameter ranges before rerunning PEST was 
time-consuming and cumbersome, making it less user-friendly. If the 
initial parameter value vector was not selected rationally, satisfactory 
optimization results could not be obtained. Additionally, for new model 
users, it could also be very challenging for them to determine a vector of 
appropriate initial parameters. To address this issue, this study utilized 
multiple initial parameter sets, then conducted optimizations based on 
these parameter sets, and finally selected the best result from the mul
tiple optimization outcomes. The test results showed that with the 
Biome-BGC-PEST package, the parameter sensitivity analysis and auto
matic optimization process could be completed within 30 min for a 
single site with more than 10 years of observation data, which was far 
more efficient than the manual parameter tuning process (Supplemen
tary code). This improvement alleviated the problem of getting trapped 
in local optima encountered by the PEST software.

Then, this study conducted sensitivity analysis and optimization for 
the parameters of the Biome-BGC model with the newly established 
Biome-BGC-PEST package in the Qinling Mountains of China. The study 
identified the influential parameters both for GPP and ET simulations 
under typical vegetation cover types in the region. These influential 
parameters included: “atmospheric deposition of N”, “symbiotic and 
asymbiotic fixation of N”, “cuticular conductance”, “maximum stomatal 
conductance”, and etc. The types of influential parameters identified in 
this study were similar to several previous studies (Li and Sun, 2018; Li 
et al., 2018). It was found that the parameters of “C:N of leaves” and 
“Canopy water interception coefficient” were influential in both this 
present study and previous studies. This was primarily because changes 
in “C:N of leaves” could affect the nitrogen content of ribulose-1, 
5-bisphosphate carboxylase/oxygenase, thereby influence photosyn
thesis (White et al., 2000). The canopy water interception coefficient 

Fig. 11. Spatial distributions of R2 (a, b) and RMSE (c, d) values between observed and simulated GPPmonth with the Biome-BGC model before (a, c) and after (b, d) 
parameter optimization in the Qinling Mountains of China.

Table 2 
Statistics of R2, RMSE and MBE between simulated and observed ETmonth before 
and after optimization of the Biome-BGC model parameters under different 
vegetation cover types of the Qinling Mountains of China.

Vegetation type Before parameter 
optimization

After parameter 
optimization

R2 RMSE 
(mm)

MBE 
(mm)

R2 RMSE 
(mm)

MBE 
(mm)

Deciduous broad- 
leaved forest

0.61 38.31 15.22 0.89 14.65 − 6.48

Evergreen needle- 
leaved forest

0.45 39.51 6.35 0.74 20.2 − 4.21

Shrub meadow 0.45 41.74 20.44 0.89 16.93 0.01
Annual crop 0.78 16.61 − 2.92 0.88 14.66 − 0.53
Wheat-maize 

rotation crop
0.5 29.36 − 25.41 0.83 16.31 − 6.35

Wheat-paddy 
rotation crop

0.84 14.88 − 4.16 0.91 11.43 − 2.12

The Qinling 
Mountains

0.57 34.94 3.67 0.86 15.72 − 1.98
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Fig. 12. Taylor plots of R2 and RMSE distributions of observed and simulated ETmonth with the Biome-BGC model before and after parameter optimization under 
different typical vegetation cover types (deciduous broad-leaved forest, a; evergreen needle-leaved forest, b; shrub meadow, c; annual crop, d; wheat-maize rotation, 
e; and wheat-paddy rotation, f) in the Qinling Mountains of China.
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could determine the amount of precipitation intercepted by the canopy 
and control the volume of precipitation infiltrating into the soil. An in
crease of this coefficient indicated a more closed canopy with increased 
interception, reduced throughfall within the forest, and correspondingly 
decreased soil water sources to some extent, which in turn could affect 
the simulations of GPP and ET.

Additionally, this study found that the GPP and ET simulations of the 
Biome-BGC model were highly sensitive to the parameters of “Annual 
leaf and fine root turnover fraction” for evergreen needle-leaved forest 
and shrub meadow of the forest ecosystems, while such sensitivity was 
not significant for the farmland ecosystems (Table S5). This was mainly 
because the growth, senescence, and turnover processes of leaves in 
evergreen needle-leaved forest were relatively slow but occurred 
continuously, so these parameters could affect the efficiency of plants in 
absorbing and utilizing nutrients. For shrub meadow, their root systems 
were shallowly distributed with a high proportion of fine roots and the 
turnover rate of fine roots was relatively fast, which could partially 
explain the influences of these parameters. Furthermore, the GPP and ET 
simulations of tree-dominated vegetation types (i.e., evergreen needle- 
leaved forest and deciduous broad-leaved forest) were sensitive to the 
parameter of "Annual live wood turnover fraction". This was primarily 
because live xylem constituted the core structural and functional unit of 
trees and served as the main reservoir for carbon storage in trees, thus 
directly affecting the growth efficiency of trees. Furthermore, for the 
differences in the magnitudes of parameter sensitivity between this 
study and previous researches, the main reason was probably because 
earlier studies often focused on the sensitivity of individual parameters 
for carbon and water flux simulations, without considering the in
teractions among different model parameters.

The Qinling Mountains act as a natural divider between northern and 
southern China, rich in forest resources and offering substantial carbon 
sequestration potentials (Chen, 2019). Moreover, they play a pivotal 
role as a primary water source for the Central Route of the 
South-to-North Water Diversion Project of China, contributing about 70 
% of the total water volume diverted (Bai and Li, 2022). The significance 
of the Qinling Mountains as water resources for the socioeconomic 
development of North China has been growing, currently easing water 
scarcity issues in Beijing, the capital of China (Wang et al., 2023a). The 
Biome-BGC model, which was calibrated with the Biome-BGC-PEST 
package, enables more precise simulations of GPP and ET in the Qin
ling Mountains. This will greatly facilitate quantifying the contributions 
of the ecosystems of the Qinling Mountains to climate regulation, soil 
and water conservation, water resource retention, and carbon seques
tration in China. The Biome-BGC-PEST package developed in this study 

can also be applied to other regions and similar ecosystems since it only 
relies on the model input variables and model validation data of the 
study area. Furthermore, the application of this package could dramat
ically improve the efficiency of model calibration, thereby facilitating 
model simulations at large regional scales.

5. Conclusions

This study coupled the Biome-BGC model with the parameter opti
mization program of PEST using Python language to greatly simplify the 
processes of model parameter estimation and enable automatic model 
optimization. Then, this study validated the Biome-BGC-PEST package 
to optimize the influential parameters of the Biome-BGC model for 
different vegetation cover types in the Qinling Mountains of China. The 
main conclusions were drawn as follows. 

(1) The newly developed Biome-BGC-PEST package for automatic 
model parameter optimization could dramatically streamline the 
processes and steps of parameter optimization for the Biome-BGC 
model. Hence, this study provided a useful reference for the 
optimization of other ecological models with the PEST software.

(2) The influential parameters of the Biome-BGC model were ob
tained through parameter sensitivity analysis for GPP and ET 
simulations under different typical vegetation cover types in the 
Qinling Mountains, which included “atmospheric deposition of 
N”, “symbiotic and asymbiotic fixation of N”, “cuticular 
conductance”, “maximum stomatal conductance”, and etc.

(3) After parameter optimization, the Biome-BGC model was able to 
simulate the GPP and ET fluxes in the Qinling Mountains with 
obviously improved simulation performance. For GPP, the gen
eral R2 between observed and simulated values increased from 
0.67 to 0.89, and the general RMSE decreased from 75.99 gC m-2 

to 47.86 gC m-2. For ET, the general R2 between observed and 
simulated values improved from 0.57 to 0.86, and the general 
RMSE decreased from 34.94 mm to 15.72 mm.

Based on the new findings of this study, it was proposed that future 
research could further integrate farmland management practices into 
the model simulations and test the adaptability of this package under 
extreme environmental conditions. This would contribute to ecosystem 
management and assist in addressing the challenges posed by climate 
change in the Qinling Mountains of China.

Fig. 13. Spatial distributions of R2 (a, b) and RMSE (c, d) values between observed and simulated ETmonth with the Biome-BGC model before (a, c) and after (b, d) 
parameter optimization in the Qinling Mountains of China.
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